1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "exec/translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/cpu-timers.h"
61 #include "sysemu/tcg.h"
62 #include "qapi/error.h"
63 #include "hw/core/tcg-cpu-ops.h"
64 #include "internal.h"
65
66 /* #define DEBUG_TB_INVALIDATE */
67 /* #define DEBUG_TB_FLUSH */
68 /* make various TB consistency checks */
69 /* #define DEBUG_TB_CHECK */
70
71 #ifdef DEBUG_TB_INVALIDATE
72 #define DEBUG_TB_INVALIDATE_GATE 1
73 #else
74 #define DEBUG_TB_INVALIDATE_GATE 0
75 #endif
76
77 #ifdef DEBUG_TB_FLUSH
78 #define DEBUG_TB_FLUSH_GATE 1
79 #else
80 #define DEBUG_TB_FLUSH_GATE 0
81 #endif
82
83 #if !defined(CONFIG_USER_ONLY)
84 /* TB consistency checks only implemented for usermode emulation. */
85 #undef DEBUG_TB_CHECK
86 #endif
87
88 #ifdef DEBUG_TB_CHECK
89 #define DEBUG_TB_CHECK_GATE 1
90 #else
91 #define DEBUG_TB_CHECK_GATE 0
92 #endif
93
94 /* Access to the various translations structures need to be serialised via locks
95 * for consistency.
96 * In user-mode emulation access to the memory related structures are protected
97 * with mmap_lock.
98 * In !user-mode we use per-page locks.
99 */
100 #ifdef CONFIG_SOFTMMU
101 #define assert_memory_lock()
102 #else
103 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
104 #endif
105
106 #define SMC_BITMAP_USE_THRESHOLD 10
107
108 typedef struct PageDesc {
109 /* list of TBs intersecting this ram page */
110 uintptr_t first_tb;
111 #ifdef CONFIG_SOFTMMU
112 /* in order to optimize self modifying code, we count the number
113 of lookups we do to a given page to use a bitmap */
114 unsigned long *code_bitmap;
115 unsigned int code_write_count;
116 #else
117 unsigned long flags;
118 void *target_data;
119 #endif
120 #ifndef CONFIG_USER_ONLY
121 QemuSpin lock;
122 #endif
123 } PageDesc;
124
125 /**
126 * struct page_entry - page descriptor entry
127 * @pd: pointer to the &struct PageDesc of the page this entry represents
128 * @index: page index of the page
129 * @locked: whether the page is locked
130 *
131 * This struct helps us keep track of the locked state of a page, without
132 * bloating &struct PageDesc.
133 *
134 * A page lock protects accesses to all fields of &struct PageDesc.
135 *
136 * See also: &struct page_collection.
137 */
138 struct page_entry {
139 PageDesc *pd;
140 tb_page_addr_t index;
141 bool locked;
142 };
143
144 /**
145 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
146 * @tree: Binary search tree (BST) of the pages, with key == page index
147 * @max: Pointer to the page in @tree with the highest page index
148 *
149 * To avoid deadlock we lock pages in ascending order of page index.
150 * When operating on a set of pages, we need to keep track of them so that
151 * we can lock them in order and also unlock them later. For this we collect
152 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
153 * @tree implementation we use does not provide an O(1) operation to obtain the
154 * highest-ranked element, we use @max to keep track of the inserted page
155 * with the highest index. This is valuable because if a page is not in
156 * the tree and its index is higher than @max's, then we can lock it
157 * without breaking the locking order rule.
158 *
159 * Note on naming: 'struct page_set' would be shorter, but we already have a few
160 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
161 *
162 * See also: page_collection_lock().
163 */
164 struct page_collection {
165 GTree *tree;
166 struct page_entry *max;
167 };
168
169 /* list iterators for lists of tagged pointers in TranslationBlock */
170 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
171 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
172 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
173 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
174
175 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
176 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
177
178 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
179 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
180
181 /*
182 * In system mode we want L1_MAP to be based on ram offsets,
183 * while in user mode we want it to be based on virtual addresses.
184 *
185 * TODO: For user mode, see the caveat re host vs guest virtual
186 * address spaces near GUEST_ADDR_MAX.
187 */
188 #if !defined(CONFIG_USER_ONLY)
189 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
190 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
191 #else
192 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
193 #endif
194 #else
195 # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
196 #endif
197
198 /* Size of the L2 (and L3, etc) page tables. */
199 #define V_L2_BITS 10
200 #define V_L2_SIZE (1 << V_L2_BITS)
201
202 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
203 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
204 sizeof_field(TranslationBlock, trace_vcpu_dstate)
205 * BITS_PER_BYTE);
206
207 /*
208 * L1 Mapping properties
209 */
210 static int v_l1_size;
211 static int v_l1_shift;
212 static int v_l2_levels;
213
214 /* The bottom level has pointers to PageDesc, and is indexed by
215 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
216 */
217 #define V_L1_MIN_BITS 4
218 #define V_L1_MAX_BITS (V_L2_BITS + 3)
219 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
220
221 static void *l1_map[V_L1_MAX_SIZE];
222
223 /* code generation context */
224 TCGContext tcg_init_ctx;
225 __thread TCGContext *tcg_ctx;
226 TBContext tb_ctx;
227
page_table_config_init(void)228 static void page_table_config_init(void)
229 {
230 uint32_t v_l1_bits;
231
232 assert(TARGET_PAGE_BITS);
233 /* The bits remaining after N lower levels of page tables. */
234 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
235 if (v_l1_bits < V_L1_MIN_BITS) {
236 v_l1_bits += V_L2_BITS;
237 }
238
239 v_l1_size = 1 << v_l1_bits;
240 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
241 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
242
243 assert(v_l1_bits <= V_L1_MAX_BITS);
244 assert(v_l1_shift % V_L2_BITS == 0);
245 assert(v_l2_levels >= 0);
246 }
247
cpu_gen_init(void)248 static void cpu_gen_init(void)
249 {
250 tcg_context_init(&tcg_init_ctx);
251 }
252
253 /* Encode VAL as a signed leb128 sequence at P.
254 Return P incremented past the encoded value. */
encode_sleb128(uint8_t * p,target_long val)255 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
256 {
257 int more, byte;
258
259 do {
260 byte = val & 0x7f;
261 val >>= 7;
262 more = !((val == 0 && (byte & 0x40) == 0)
263 || (val == -1 && (byte & 0x40) != 0));
264 if (more) {
265 byte |= 0x80;
266 }
267 *p++ = byte;
268 } while (more);
269
270 return p;
271 }
272
273 /* Decode a signed leb128 sequence at *PP; increment *PP past the
274 decoded value. Return the decoded value. */
decode_sleb128(const uint8_t ** pp)275 static target_long decode_sleb128(const uint8_t **pp)
276 {
277 const uint8_t *p = *pp;
278 target_long val = 0;
279 int byte, shift = 0;
280
281 do {
282 byte = *p++;
283 val |= (target_ulong)(byte & 0x7f) << shift;
284 shift += 7;
285 } while (byte & 0x80);
286 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
287 val |= -(target_ulong)1 << shift;
288 }
289
290 *pp = p;
291 return val;
292 }
293
294 /* Encode the data collected about the instructions while compiling TB.
295 Place the data at BLOCK, and return the number of bytes consumed.
296
297 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
298 which come from the target's insn_start data, followed by a uintptr_t
299 which comes from the host pc of the end of the code implementing the insn.
300
301 Each line of the table is encoded as sleb128 deltas from the previous
302 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
303 That is, the first column is seeded with the guest pc, the last column
304 with the host pc, and the middle columns with zeros. */
305
encode_search(TranslationBlock * tb,uint8_t * block)306 static int encode_search(TranslationBlock *tb, uint8_t *block)
307 {
308 uint8_t *highwater = tcg_ctx->code_gen_highwater;
309 uint8_t *p = block;
310 int i, j, n;
311
312 for (i = 0, n = tb->icount; i < n; ++i) {
313 target_ulong prev;
314
315 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
316 if (i == 0) {
317 prev = (j == 0 ? tb->pc : 0);
318 } else {
319 prev = tcg_ctx->gen_insn_data[i - 1][j];
320 }
321 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
322 }
323 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
324 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
325
326 /* Test for (pending) buffer overflow. The assumption is that any
327 one row beginning below the high water mark cannot overrun
328 the buffer completely. Thus we can test for overflow after
329 encoding a row without having to check during encoding. */
330 if (unlikely(p > highwater)) {
331 return -1;
332 }
333 }
334
335 return p - block;
336 }
337
338 /* The cpu state corresponding to 'searched_pc' is restored.
339 * When reset_icount is true, current TB will be interrupted and
340 * icount should be recalculated.
341 */
cpu_restore_state_from_tb(CPUState * cpu,TranslationBlock * tb,uintptr_t searched_pc,bool reset_icount)342 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
343 uintptr_t searched_pc, bool reset_icount)
344 {
345 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
346 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
347 CPUArchState *env = cpu->env_ptr;
348 const uint8_t *p = tb->tc.ptr + tb->tc.size;
349 int i, j, num_insns = tb->icount;
350 #ifdef CONFIG_PROFILER
351 TCGProfile *prof = &tcg_ctx->prof;
352 int64_t ti = profile_getclock();
353 #endif
354
355 searched_pc -= GETPC_ADJ;
356
357 if (searched_pc < host_pc) {
358 return -1;
359 }
360
361 /* Reconstruct the stored insn data while looking for the point at
362 which the end of the insn exceeds the searched_pc. */
363 for (i = 0; i < num_insns; ++i) {
364 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
365 data[j] += decode_sleb128(&p);
366 }
367 host_pc += decode_sleb128(&p);
368 if (host_pc > searched_pc) {
369 goto found;
370 }
371 }
372 return -1;
373
374 found:
375 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
376 assert(icount_enabled());
377 /* Reset the cycle counter to the start of the block
378 and shift if to the number of actually executed instructions */
379 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
380 }
381 restore_state_to_opc(env, tb, data);
382
383 #ifdef CONFIG_PROFILER
384 qatomic_set(&prof->restore_time,
385 prof->restore_time + profile_getclock() - ti);
386 qatomic_set(&prof->restore_count, prof->restore_count + 1);
387 #endif
388 return 0;
389 }
390
tb_destroy(TranslationBlock * tb)391 void tb_destroy(TranslationBlock *tb)
392 {
393 qemu_spin_destroy(&tb->jmp_lock);
394 }
395
cpu_restore_state(CPUState * cpu,uintptr_t host_pc,bool will_exit)396 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
397 {
398 /*
399 * The host_pc has to be in the rx region of the code buffer.
400 * If it is not we will not be able to resolve it here.
401 * The two cases where host_pc will not be correct are:
402 *
403 * - fault during translation (instruction fetch)
404 * - fault from helper (not using GETPC() macro)
405 *
406 * Either way we need return early as we can't resolve it here.
407 */
408 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
409 TranslationBlock *tb = tcg_tb_lookup(host_pc);
410 if (tb) {
411 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
412 return true;
413 }
414 }
415 return false;
416 }
417
page_init(void)418 static void page_init(void)
419 {
420 page_size_init();
421 page_table_config_init();
422
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
424 {
425 #ifdef HAVE_KINFO_GETVMMAP
426 struct kinfo_vmentry *freep;
427 int i, cnt;
428
429 freep = kinfo_getvmmap(getpid(), &cnt);
430 if (freep) {
431 mmap_lock();
432 for (i = 0; i < cnt; i++) {
433 unsigned long startaddr, endaddr;
434
435 startaddr = freep[i].kve_start;
436 endaddr = freep[i].kve_end;
437 if (h2g_valid(startaddr)) {
438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
439
440 if (h2g_valid(endaddr)) {
441 endaddr = h2g(endaddr);
442 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
443 } else {
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
445 endaddr = ~0ul;
446 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
447 #endif
448 }
449 }
450 }
451 free(freep);
452 mmap_unlock();
453 }
454 #else
455 FILE *f;
456
457 last_brk = (unsigned long)sbrk(0);
458
459 f = fopen("/compat/linux/proc/self/maps", "r");
460 if (f) {
461 mmap_lock();
462
463 do {
464 unsigned long startaddr, endaddr;
465 int n;
466
467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
468
469 if (n == 2 && h2g_valid(startaddr)) {
470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
471
472 if (h2g_valid(endaddr)) {
473 endaddr = h2g(endaddr);
474 } else {
475 endaddr = ~0ul;
476 }
477 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
478 }
479 } while (!feof(f));
480
481 fclose(f);
482 mmap_unlock();
483 }
484 #endif
485 }
486 #endif
487 }
488
page_find_alloc(tb_page_addr_t index,int alloc)489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
490 {
491 PageDesc *pd;
492 void **lp;
493 int i;
494
495 /* Level 1. Always allocated. */
496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
497
498 /* Level 2..N-1. */
499 for (i = v_l2_levels; i > 0; i--) {
500 void **p = qatomic_rcu_read(lp);
501
502 if (p == NULL) {
503 void *existing;
504
505 if (!alloc) {
506 return NULL;
507 }
508 p = g_new0(void *, V_L2_SIZE);
509 existing = qatomic_cmpxchg(lp, NULL, p);
510 if (unlikely(existing)) {
511 g_free(p);
512 p = existing;
513 }
514 }
515
516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
517 }
518
519 pd = qatomic_rcu_read(lp);
520 if (pd == NULL) {
521 void *existing;
522
523 if (!alloc) {
524 return NULL;
525 }
526 pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
528 {
529 int i;
530
531 for (i = 0; i < V_L2_SIZE; i++) {
532 qemu_spin_init(&pd[i].lock);
533 }
534 }
535 #endif
536 existing = qatomic_cmpxchg(lp, NULL, pd);
537 if (unlikely(existing)) {
538 #ifndef CONFIG_USER_ONLY
539 {
540 int i;
541
542 for (i = 0; i < V_L2_SIZE; i++) {
543 qemu_spin_destroy(&pd[i].lock);
544 }
545 }
546 #endif
547 g_free(pd);
548 pd = existing;
549 }
550 }
551
552 return pd + (index & (V_L2_SIZE - 1));
553 }
554
page_find(tb_page_addr_t index)555 static inline PageDesc *page_find(tb_page_addr_t index)
556 {
557 return page_find_alloc(index, 0);
558 }
559
560 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
561 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
562
563 /* In user-mode page locks aren't used; mmap_lock is enough */
564 #ifdef CONFIG_USER_ONLY
565
566 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
567
page_lock(PageDesc * pd)568 static inline void page_lock(PageDesc *pd)
569 { }
570
page_unlock(PageDesc * pd)571 static inline void page_unlock(PageDesc *pd)
572 { }
573
page_lock_tb(const TranslationBlock * tb)574 static inline void page_lock_tb(const TranslationBlock *tb)
575 { }
576
page_unlock_tb(const TranslationBlock * tb)577 static inline void page_unlock_tb(const TranslationBlock *tb)
578 { }
579
580 struct page_collection *
page_collection_lock(tb_page_addr_t start,tb_page_addr_t end)581 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
582 {
583 return NULL;
584 }
585
page_collection_unlock(struct page_collection * set)586 void page_collection_unlock(struct page_collection *set)
587 { }
588 #else /* !CONFIG_USER_ONLY */
589
590 #ifdef CONFIG_DEBUG_TCG
591
592 static __thread GHashTable *ht_pages_locked_debug;
593
ht_pages_locked_debug_init(void)594 static void ht_pages_locked_debug_init(void)
595 {
596 if (ht_pages_locked_debug) {
597 return;
598 }
599 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
600 }
601
page_is_locked(const PageDesc * pd)602 static bool page_is_locked(const PageDesc *pd)
603 {
604 PageDesc *found;
605
606 ht_pages_locked_debug_init();
607 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
608 return !!found;
609 }
610
page_lock__debug(PageDesc * pd)611 static void page_lock__debug(PageDesc *pd)
612 {
613 ht_pages_locked_debug_init();
614 g_assert(!page_is_locked(pd));
615 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
616 }
617
page_unlock__debug(const PageDesc * pd)618 static void page_unlock__debug(const PageDesc *pd)
619 {
620 bool removed;
621
622 ht_pages_locked_debug_init();
623 g_assert(page_is_locked(pd));
624 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
625 g_assert(removed);
626 }
627
628 static void
do_assert_page_locked(const PageDesc * pd,const char * file,int line)629 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
630 {
631 if (unlikely(!page_is_locked(pd))) {
632 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
633 pd, file, line);
634 abort();
635 }
636 }
637
638 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
639
assert_no_pages_locked(void)640 void assert_no_pages_locked(void)
641 {
642 ht_pages_locked_debug_init();
643 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
644 }
645
646 #else /* !CONFIG_DEBUG_TCG */
647
648 #define assert_page_locked(pd)
649
page_lock__debug(const PageDesc * pd)650 static inline void page_lock__debug(const PageDesc *pd)
651 {
652 }
653
page_unlock__debug(const PageDesc * pd)654 static inline void page_unlock__debug(const PageDesc *pd)
655 {
656 }
657
658 #endif /* CONFIG_DEBUG_TCG */
659
page_lock(PageDesc * pd)660 static inline void page_lock(PageDesc *pd)
661 {
662 page_lock__debug(pd);
663 qemu_spin_lock(&pd->lock);
664 }
665
page_unlock(PageDesc * pd)666 static inline void page_unlock(PageDesc *pd)
667 {
668 qemu_spin_unlock(&pd->lock);
669 page_unlock__debug(pd);
670 }
671
672 /* lock the page(s) of a TB in the correct acquisition order */
page_lock_tb(const TranslationBlock * tb)673 static inline void page_lock_tb(const TranslationBlock *tb)
674 {
675 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
676 }
677
page_unlock_tb(const TranslationBlock * tb)678 static inline void page_unlock_tb(const TranslationBlock *tb)
679 {
680 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
681
682 page_unlock(p1);
683 if (unlikely(tb->page_addr[1] != -1)) {
684 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
685
686 if (p2 != p1) {
687 page_unlock(p2);
688 }
689 }
690 }
691
692 static inline struct page_entry *
page_entry_new(PageDesc * pd,tb_page_addr_t index)693 page_entry_new(PageDesc *pd, tb_page_addr_t index)
694 {
695 struct page_entry *pe = g_malloc(sizeof(*pe));
696
697 pe->index = index;
698 pe->pd = pd;
699 pe->locked = false;
700 return pe;
701 }
702
page_entry_destroy(gpointer p)703 static void page_entry_destroy(gpointer p)
704 {
705 struct page_entry *pe = p;
706
707 g_assert(pe->locked);
708 page_unlock(pe->pd);
709 g_free(pe);
710 }
711
712 /* returns false on success */
page_entry_trylock(struct page_entry * pe)713 static bool page_entry_trylock(struct page_entry *pe)
714 {
715 bool busy;
716
717 busy = qemu_spin_trylock(&pe->pd->lock);
718 if (!busy) {
719 g_assert(!pe->locked);
720 pe->locked = true;
721 page_lock__debug(pe->pd);
722 }
723 return busy;
724 }
725
do_page_entry_lock(struct page_entry * pe)726 static void do_page_entry_lock(struct page_entry *pe)
727 {
728 page_lock(pe->pd);
729 g_assert(!pe->locked);
730 pe->locked = true;
731 }
732
page_entry_lock(gpointer key,gpointer value,gpointer data)733 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
734 {
735 struct page_entry *pe = value;
736
737 do_page_entry_lock(pe);
738 return FALSE;
739 }
740
page_entry_unlock(gpointer key,gpointer value,gpointer data)741 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
742 {
743 struct page_entry *pe = value;
744
745 if (pe->locked) {
746 pe->locked = false;
747 page_unlock(pe->pd);
748 }
749 return FALSE;
750 }
751
752 /*
753 * Trylock a page, and if successful, add the page to a collection.
754 * Returns true ("busy") if the page could not be locked; false otherwise.
755 */
page_trylock_add(struct page_collection * set,tb_page_addr_t addr)756 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
757 {
758 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
759 struct page_entry *pe;
760 PageDesc *pd;
761
762 pe = g_tree_lookup(set->tree, &index);
763 if (pe) {
764 return false;
765 }
766
767 pd = page_find(index);
768 if (pd == NULL) {
769 return false;
770 }
771
772 pe = page_entry_new(pd, index);
773 g_tree_insert(set->tree, &pe->index, pe);
774
775 /*
776 * If this is either (1) the first insertion or (2) a page whose index
777 * is higher than any other so far, just lock the page and move on.
778 */
779 if (set->max == NULL || pe->index > set->max->index) {
780 set->max = pe;
781 do_page_entry_lock(pe);
782 return false;
783 }
784 /*
785 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
786 * locks in order.
787 */
788 return page_entry_trylock(pe);
789 }
790
tb_page_addr_cmp(gconstpointer ap,gconstpointer bp,gpointer udata)791 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
792 {
793 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
794 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
795
796 if (a == b) {
797 return 0;
798 } else if (a < b) {
799 return -1;
800 }
801 return 1;
802 }
803
804 /*
805 * Lock a range of pages ([@start,@end[) as well as the pages of all
806 * intersecting TBs.
807 * Locking order: acquire locks in ascending order of page index.
808 */
809 struct page_collection *
page_collection_lock(tb_page_addr_t start,tb_page_addr_t end)810 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
811 {
812 struct page_collection *set = g_malloc(sizeof(*set));
813 tb_page_addr_t index;
814 PageDesc *pd;
815
816 start >>= TARGET_PAGE_BITS;
817 end >>= TARGET_PAGE_BITS;
818 g_assert(start <= end);
819
820 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
821 page_entry_destroy);
822 set->max = NULL;
823 assert_no_pages_locked();
824
825 retry:
826 g_tree_foreach(set->tree, page_entry_lock, NULL);
827
828 for (index = start; index <= end; index++) {
829 TranslationBlock *tb;
830 int n;
831
832 pd = page_find(index);
833 if (pd == NULL) {
834 continue;
835 }
836 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
837 g_tree_foreach(set->tree, page_entry_unlock, NULL);
838 goto retry;
839 }
840 assert_page_locked(pd);
841 PAGE_FOR_EACH_TB(pd, tb, n) {
842 if (page_trylock_add(set, tb->page_addr[0]) ||
843 (tb->page_addr[1] != -1 &&
844 page_trylock_add(set, tb->page_addr[1]))) {
845 /* drop all locks, and reacquire in order */
846 g_tree_foreach(set->tree, page_entry_unlock, NULL);
847 goto retry;
848 }
849 }
850 }
851 return set;
852 }
853
page_collection_unlock(struct page_collection * set)854 void page_collection_unlock(struct page_collection *set)
855 {
856 /* entries are unlocked and freed via page_entry_destroy */
857 g_tree_destroy(set->tree);
858 g_free(set);
859 }
860
861 #endif /* !CONFIG_USER_ONLY */
862
page_lock_pair(PageDesc ** ret_p1,tb_page_addr_t phys1,PageDesc ** ret_p2,tb_page_addr_t phys2,int alloc)863 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
864 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
865 {
866 PageDesc *p1, *p2;
867 tb_page_addr_t page1;
868 tb_page_addr_t page2;
869
870 assert_memory_lock();
871 g_assert(phys1 != -1);
872
873 page1 = phys1 >> TARGET_PAGE_BITS;
874 page2 = phys2 >> TARGET_PAGE_BITS;
875
876 p1 = page_find_alloc(page1, alloc);
877 if (ret_p1) {
878 *ret_p1 = p1;
879 }
880 if (likely(phys2 == -1)) {
881 page_lock(p1);
882 return;
883 } else if (page1 == page2) {
884 page_lock(p1);
885 if (ret_p2) {
886 *ret_p2 = p1;
887 }
888 return;
889 }
890 p2 = page_find_alloc(page2, alloc);
891 if (ret_p2) {
892 *ret_p2 = p2;
893 }
894 if (page1 < page2) {
895 page_lock(p1);
896 page_lock(p2);
897 } else {
898 page_lock(p2);
899 page_lock(p1);
900 }
901 }
902
903 /* Minimum size of the code gen buffer. This number is randomly chosen,
904 but not so small that we can't have a fair number of TB's live. */
905 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB)
906
907 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
908 indicated, this is constrained by the range of direct branches on the
909 host cpu, as used by the TCG implementation of goto_tb. */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
920 #elif defined(__s390x__)
921 /* We have a +- 4GB range on the branches; leave some slop. */
922 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB)
923 #elif defined(__mips__)
924 /* We have a 256MB branch region, but leave room to make sure the
925 main executable is also within that region. */
926 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB)
927 #else
928 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
929 #endif
930
931 #if TCG_TARGET_REG_BITS == 32
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
933 #ifdef CONFIG_USER_ONLY
934 /*
935 * For user mode on smaller 32 bit systems we may run into trouble
936 * allocating big chunks of data in the right place. On these systems
937 * we utilise a static code generation buffer directly in the binary.
938 */
939 #define USE_STATIC_CODE_GEN_BUFFER
940 #endif
941 #else /* TCG_TARGET_REG_BITS == 64 */
942 #ifdef CONFIG_USER_ONLY
943 /*
944 * As user-mode emulation typically means running multiple instances
945 * of the translator don't go too nuts with our default code gen
946 * buffer lest we make things too hard for the OS.
947 */
948 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
949 #else
950 /*
951 * We expect most system emulation to run one or two guests per host.
952 * Users running large scale system emulation may want to tweak their
953 * runtime setup via the tb-size control on the command line.
954 */
955 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
956 #endif
957 #endif
958
959 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
960 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
961 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
962
size_code_gen_buffer(size_t tb_size)963 static size_t size_code_gen_buffer(size_t tb_size)
964 {
965 /* Size the buffer. */
966 if (tb_size == 0) {
967 size_t phys_mem = qemu_get_host_physmem();
968 if (phys_mem == 0) {
969 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
970 } else {
971 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
972 }
973 }
974 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
975 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
976 }
977 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
978 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
979 }
980 return tb_size;
981 }
982
983 #ifdef __mips__
984 /* In order to use J and JAL within the code_gen_buffer, we require
985 that the buffer not cross a 256MB boundary. */
cross_256mb(void * addr,size_t size)986 static inline bool cross_256mb(void *addr, size_t size)
987 {
988 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
989 }
990
991 /* We weren't able to allocate a buffer without crossing that boundary,
992 so make do with the larger portion of the buffer that doesn't cross.
993 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
split_cross_256mb(void * buf1,size_t size1)994 static inline void *split_cross_256mb(void *buf1, size_t size1)
995 {
996 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
997 size_t size2 = buf1 + size1 - buf2;
998
999 size1 = buf2 - buf1;
1000 if (size1 < size2) {
1001 size1 = size2;
1002 buf1 = buf2;
1003 }
1004
1005 tcg_ctx->code_gen_buffer_size = size1;
1006 return buf1;
1007 }
1008 #endif
1009
1010 #ifdef USE_STATIC_CODE_GEN_BUFFER
1011 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1012 __attribute__((aligned(CODE_GEN_ALIGN)));
1013
alloc_code_gen_buffer(size_t tb_size,int splitwx,Error ** errp)1014 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
1015 {
1016 void *buf, *end;
1017 size_t size;
1018
1019 if (splitwx > 0) {
1020 error_setg(errp, "jit split-wx not supported");
1021 return false;
1022 }
1023
1024 /* page-align the beginning and end of the buffer */
1025 buf = static_code_gen_buffer;
1026 end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1027 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1028 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1029
1030 size = end - buf;
1031
1032 /* Honor a command-line option limiting the size of the buffer. */
1033 if (size > tb_size) {
1034 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
1035 }
1036 tcg_ctx->code_gen_buffer_size = size;
1037
1038 #ifdef __mips__
1039 if (cross_256mb(buf, size)) {
1040 buf = split_cross_256mb(buf, size);
1041 size = tcg_ctx->code_gen_buffer_size;
1042 }
1043 #endif
1044
1045 if (qemu_mprotect_rwx(buf, size)) {
1046 error_setg_errno(errp, errno, "mprotect of jit buffer");
1047 return false;
1048 }
1049 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1050
1051 tcg_ctx->code_gen_buffer = buf;
1052 return true;
1053 }
1054 #elif defined(_WIN32)
alloc_code_gen_buffer(size_t size,int splitwx,Error ** errp)1055 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1056 {
1057 void *buf;
1058
1059 if (splitwx > 0) {
1060 error_setg(errp, "jit split-wx not supported");
1061 return false;
1062 }
1063
1064 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1065 PAGE_EXECUTE_READWRITE);
1066 if (buf == NULL) {
1067 error_setg_win32(errp, GetLastError(),
1068 "allocate %zu bytes for jit buffer", size);
1069 return false;
1070 }
1071
1072 tcg_ctx->code_gen_buffer = buf;
1073 tcg_ctx->code_gen_buffer_size = size;
1074 return true;
1075 }
1076 #else
alloc_code_gen_buffer_anon(size_t size,int prot,int flags,Error ** errp)1077 static bool alloc_code_gen_buffer_anon(size_t size, int prot,
1078 int flags, Error **errp)
1079 {
1080 void *buf;
1081
1082 buf = mmap(NULL, size, prot, flags, -1, 0);
1083 if (buf == MAP_FAILED) {
1084 error_setg_errno(errp, errno,
1085 "allocate %zu bytes for jit buffer", size);
1086 return false;
1087 }
1088 tcg_ctx->code_gen_buffer_size = size;
1089
1090 #ifdef __mips__
1091 if (cross_256mb(buf, size)) {
1092 /*
1093 * Try again, with the original still mapped, to avoid re-acquiring
1094 * the same 256mb crossing.
1095 */
1096 size_t size2;
1097 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1098 switch ((int)(buf2 != MAP_FAILED)) {
1099 case 1:
1100 if (!cross_256mb(buf2, size)) {
1101 /* Success! Use the new buffer. */
1102 munmap(buf, size);
1103 break;
1104 }
1105 /* Failure. Work with what we had. */
1106 munmap(buf2, size);
1107 /* fallthru */
1108 default:
1109 /* Split the original buffer. Free the smaller half. */
1110 buf2 = split_cross_256mb(buf, size);
1111 size2 = tcg_ctx->code_gen_buffer_size;
1112 if (buf == buf2) {
1113 munmap(buf + size2, size - size2);
1114 } else {
1115 munmap(buf, size - size2);
1116 }
1117 size = size2;
1118 break;
1119 }
1120 buf = buf2;
1121 }
1122 #endif
1123
1124 /* Request large pages for the buffer. */
1125 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1126
1127 tcg_ctx->code_gen_buffer = buf;
1128 return true;
1129 }
1130
1131 #ifndef CONFIG_TCG_INTERPRETER
1132 #ifdef CONFIG_POSIX
1133 #include "qemu/memfd.h"
1134
alloc_code_gen_buffer_splitwx_memfd(size_t size,Error ** errp)1135 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
1136 {
1137 void *buf_rw = NULL, *buf_rx = MAP_FAILED;
1138 int fd = -1;
1139
1140 #ifdef __mips__
1141 /* Find space for the RX mapping, vs the 256MiB regions. */
1142 if (!alloc_code_gen_buffer_anon(size, PROT_NONE,
1143 MAP_PRIVATE | MAP_ANONYMOUS |
1144 MAP_NORESERVE, errp)) {
1145 return false;
1146 }
1147 /* The size of the mapping may have been adjusted. */
1148 size = tcg_ctx->code_gen_buffer_size;
1149 buf_rx = tcg_ctx->code_gen_buffer;
1150 #endif
1151
1152 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
1153 if (buf_rw == NULL) {
1154 goto fail;
1155 }
1156
1157 #ifdef __mips__
1158 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
1159 MAP_SHARED | MAP_FIXED, fd, 0);
1160 if (tmp != buf_rx) {
1161 goto fail_rx;
1162 }
1163 #else
1164 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
1165 if (buf_rx == MAP_FAILED) {
1166 goto fail_rx;
1167 }
1168 #endif
1169
1170 close(fd);
1171 tcg_ctx->code_gen_buffer = buf_rw;
1172 tcg_ctx->code_gen_buffer_size = size;
1173 tcg_splitwx_diff = buf_rx - buf_rw;
1174
1175 /* Request large pages for the buffer and the splitwx. */
1176 qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE);
1177 qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE);
1178 return true;
1179
1180 fail_rx:
1181 error_setg_errno(errp, errno, "failed to map shared memory for execute");
1182 fail:
1183 if (buf_rx != MAP_FAILED) {
1184 munmap(buf_rx, size);
1185 }
1186 if (buf_rw) {
1187 munmap(buf_rw, size);
1188 }
1189 if (fd >= 0) {
1190 close(fd);
1191 }
1192 return false;
1193 }
1194 #endif /* CONFIG_POSIX */
1195
1196 #ifdef CONFIG_DARWIN
1197 #include <mach/mach.h>
1198
1199 extern kern_return_t mach_vm_remap(vm_map_t target_task,
1200 mach_vm_address_t *target_address,
1201 mach_vm_size_t size,
1202 mach_vm_offset_t mask,
1203 int flags,
1204 vm_map_t src_task,
1205 mach_vm_address_t src_address,
1206 boolean_t copy,
1207 vm_prot_t *cur_protection,
1208 vm_prot_t *max_protection,
1209 vm_inherit_t inheritance);
1210
alloc_code_gen_buffer_splitwx_vmremap(size_t size,Error ** errp)1211 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
1212 {
1213 kern_return_t ret;
1214 mach_vm_address_t buf_rw, buf_rx;
1215 vm_prot_t cur_prot, max_prot;
1216
1217 /* Map the read-write portion via normal anon memory. */
1218 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
1219 MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
1220 return false;
1221 }
1222
1223 buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer;
1224 buf_rx = 0;
1225 ret = mach_vm_remap(mach_task_self(),
1226 &buf_rx,
1227 size,
1228 0,
1229 VM_FLAGS_ANYWHERE,
1230 mach_task_self(),
1231 buf_rw,
1232 false,
1233 &cur_prot,
1234 &max_prot,
1235 VM_INHERIT_NONE);
1236 if (ret != KERN_SUCCESS) {
1237 /* TODO: Convert "ret" to a human readable error message. */
1238 error_setg(errp, "vm_remap for jit splitwx failed");
1239 munmap((void *)buf_rw, size);
1240 return false;
1241 }
1242
1243 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
1244 error_setg_errno(errp, errno, "mprotect for jit splitwx");
1245 munmap((void *)buf_rx, size);
1246 munmap((void *)buf_rw, size);
1247 return false;
1248 }
1249
1250 tcg_splitwx_diff = buf_rx - buf_rw;
1251 return true;
1252 }
1253 #endif /* CONFIG_DARWIN */
1254 #endif /* CONFIG_TCG_INTERPRETER */
1255
alloc_code_gen_buffer_splitwx(size_t size,Error ** errp)1256 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
1257 {
1258 #ifndef CONFIG_TCG_INTERPRETER
1259 # ifdef CONFIG_DARWIN
1260 return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
1261 # endif
1262 # ifdef CONFIG_POSIX
1263 return alloc_code_gen_buffer_splitwx_memfd(size, errp);
1264 # endif
1265 #endif
1266 error_setg(errp, "jit split-wx not supported");
1267 return false;
1268 }
1269
alloc_code_gen_buffer(size_t size,int splitwx,Error ** errp)1270 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1271 {
1272 ERRP_GUARD();
1273 int prot, flags;
1274
1275 if (splitwx) {
1276 if (alloc_code_gen_buffer_splitwx(size, errp)) {
1277 return true;
1278 }
1279 /*
1280 * If splitwx force-on (1), fail;
1281 * if splitwx default-on (-1), fall through to splitwx off.
1282 */
1283 if (splitwx > 0) {
1284 return false;
1285 }
1286 error_free_or_abort(errp);
1287 }
1288
1289 prot = PROT_READ | PROT_WRITE | PROT_EXEC;
1290 flags = MAP_PRIVATE | MAP_ANONYMOUS;
1291 #ifdef CONFIG_TCG_INTERPRETER
1292 /* The tcg interpreter does not need execute permission. */
1293 prot = PROT_READ | PROT_WRITE;
1294 #elif defined(CONFIG_DARWIN)
1295 /* Applicable to both iOS and macOS (Apple Silicon). */
1296 if (!splitwx) {
1297 flags |= MAP_JIT;
1298 }
1299 #endif
1300
1301 return alloc_code_gen_buffer_anon(size, prot, flags, errp);
1302 }
1303 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1304
tb_cmp(const void * ap,const void * bp)1305 static bool tb_cmp(const void *ap, const void *bp)
1306 {
1307 const TranslationBlock *a = ap;
1308 const TranslationBlock *b = bp;
1309
1310 return a->pc == b->pc &&
1311 a->cs_base == b->cs_base &&
1312 a->flags == b->flags &&
1313 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
1314 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1315 a->page_addr[0] == b->page_addr[0] &&
1316 a->page_addr[1] == b->page_addr[1];
1317 }
1318
tb_htable_init(void)1319 static void tb_htable_init(void)
1320 {
1321 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1322
1323 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1324 }
1325
1326 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1327 (in bytes) allocated to the translation buffer. Zero means default
1328 size. */
tcg_exec_init(unsigned long tb_size,int splitwx)1329 void tcg_exec_init(unsigned long tb_size, int splitwx)
1330 {
1331 bool ok;
1332
1333 tcg_allowed = true;
1334 cpu_gen_init();
1335 page_init();
1336 tb_htable_init();
1337
1338 ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size),
1339 splitwx, &error_fatal);
1340 assert(ok);
1341
1342 #if defined(CONFIG_SOFTMMU)
1343 /* There's no guest base to take into account, so go ahead and
1344 initialize the prologue now. */
1345 tcg_prologue_init(tcg_ctx);
1346 #endif
1347 }
1348
1349 /* call with @p->lock held */
invalidate_page_bitmap(PageDesc * p)1350 static inline void invalidate_page_bitmap(PageDesc *p)
1351 {
1352 assert_page_locked(p);
1353 #ifdef CONFIG_SOFTMMU
1354 g_free(p->code_bitmap);
1355 p->code_bitmap = NULL;
1356 p->code_write_count = 0;
1357 #endif
1358 }
1359
1360 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
page_flush_tb_1(int level,void ** lp)1361 static void page_flush_tb_1(int level, void **lp)
1362 {
1363 int i;
1364
1365 if (*lp == NULL) {
1366 return;
1367 }
1368 if (level == 0) {
1369 PageDesc *pd = *lp;
1370
1371 for (i = 0; i < V_L2_SIZE; ++i) {
1372 page_lock(&pd[i]);
1373 pd[i].first_tb = (uintptr_t)NULL;
1374 invalidate_page_bitmap(pd + i);
1375 page_unlock(&pd[i]);
1376 }
1377 } else {
1378 void **pp = *lp;
1379
1380 for (i = 0; i < V_L2_SIZE; ++i) {
1381 page_flush_tb_1(level - 1, pp + i);
1382 }
1383 }
1384 }
1385
page_flush_tb(void)1386 static void page_flush_tb(void)
1387 {
1388 int i, l1_sz = v_l1_size;
1389
1390 for (i = 0; i < l1_sz; i++) {
1391 page_flush_tb_1(v_l2_levels, l1_map + i);
1392 }
1393 }
1394
tb_host_size_iter(gpointer key,gpointer value,gpointer data)1395 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1396 {
1397 const TranslationBlock *tb = value;
1398 size_t *size = data;
1399
1400 *size += tb->tc.size;
1401 return false;
1402 }
1403
1404 /* flush all the translation blocks */
do_tb_flush(CPUState * cpu,run_on_cpu_data tb_flush_count)1405 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1406 {
1407 bool did_flush = false;
1408
1409 mmap_lock();
1410 /* If it is already been done on request of another CPU,
1411 * just retry.
1412 */
1413 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1414 goto done;
1415 }
1416 did_flush = true;
1417
1418 if (DEBUG_TB_FLUSH_GATE) {
1419 size_t nb_tbs = tcg_nb_tbs();
1420 size_t host_size = 0;
1421
1422 tcg_tb_foreach(tb_host_size_iter, &host_size);
1423 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1424 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1425 }
1426
1427 CPU_FOREACH(cpu) {
1428 cpu_tb_jmp_cache_clear(cpu);
1429 }
1430
1431 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1432 page_flush_tb();
1433
1434 tcg_region_reset_all();
1435 /* XXX: flush processor icache at this point if cache flush is
1436 expensive */
1437 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1438
1439 done:
1440 mmap_unlock();
1441 if (did_flush) {
1442 qemu_plugin_flush_cb();
1443 }
1444 }
1445
tb_flush(CPUState * cpu)1446 void tb_flush(CPUState *cpu)
1447 {
1448 if (tcg_enabled()) {
1449 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
1450
1451 if (cpu_in_exclusive_context(cpu)) {
1452 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1453 } else {
1454 async_safe_run_on_cpu(cpu, do_tb_flush,
1455 RUN_ON_CPU_HOST_INT(tb_flush_count));
1456 }
1457 }
1458 }
1459
1460 /*
1461 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1462 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1463 * and let the optimizer get rid of them by wrapping their user-only callers
1464 * with if (DEBUG_TB_CHECK_GATE).
1465 */
1466 #ifdef CONFIG_USER_ONLY
1467
do_tb_invalidate_check(void * p,uint32_t hash,void * userp)1468 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1469 {
1470 TranslationBlock *tb = p;
1471 target_ulong addr = *(target_ulong *)userp;
1472
1473 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1474 printf("ERROR invalidate: address=" TARGET_FMT_lx
1475 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1476 }
1477 }
1478
1479 /* verify that all the pages have correct rights for code
1480 *
1481 * Called with mmap_lock held.
1482 */
tb_invalidate_check(target_ulong address)1483 static void tb_invalidate_check(target_ulong address)
1484 {
1485 address &= TARGET_PAGE_MASK;
1486 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1487 }
1488
do_tb_page_check(void * p,uint32_t hash,void * userp)1489 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1490 {
1491 TranslationBlock *tb = p;
1492 int flags1, flags2;
1493
1494 flags1 = page_get_flags(tb->pc);
1495 flags2 = page_get_flags(tb->pc + tb->size - 1);
1496 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1497 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1498 (long)tb->pc, tb->size, flags1, flags2);
1499 }
1500 }
1501
1502 /* verify that all the pages have correct rights for code */
tb_page_check(void)1503 static void tb_page_check(void)
1504 {
1505 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1506 }
1507
1508 #endif /* CONFIG_USER_ONLY */
1509
1510 /*
1511 * user-mode: call with mmap_lock held
1512 * !user-mode: call with @pd->lock held
1513 */
tb_page_remove(PageDesc * pd,TranslationBlock * tb)1514 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1515 {
1516 TranslationBlock *tb1;
1517 uintptr_t *pprev;
1518 unsigned int n1;
1519
1520 assert_page_locked(pd);
1521 pprev = &pd->first_tb;
1522 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1523 if (tb1 == tb) {
1524 *pprev = tb1->page_next[n1];
1525 return;
1526 }
1527 pprev = &tb1->page_next[n1];
1528 }
1529 g_assert_not_reached();
1530 }
1531
1532 /* remove @orig from its @n_orig-th jump list */
tb_remove_from_jmp_list(TranslationBlock * orig,int n_orig)1533 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1534 {
1535 uintptr_t ptr, ptr_locked;
1536 TranslationBlock *dest;
1537 TranslationBlock *tb;
1538 uintptr_t *pprev;
1539 int n;
1540
1541 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1542 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1543 dest = (TranslationBlock *)(ptr & ~1);
1544 if (dest == NULL) {
1545 return;
1546 }
1547
1548 qemu_spin_lock(&dest->jmp_lock);
1549 /*
1550 * While acquiring the lock, the jump might have been removed if the
1551 * destination TB was invalidated; check again.
1552 */
1553 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
1554 if (ptr_locked != ptr) {
1555 qemu_spin_unlock(&dest->jmp_lock);
1556 /*
1557 * The only possibility is that the jump was unlinked via
1558 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1559 * because we set the LSB above.
1560 */
1561 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1562 return;
1563 }
1564 /*
1565 * We first acquired the lock, and since the destination pointer matches,
1566 * we know for sure that @orig is in the jmp list.
1567 */
1568 pprev = &dest->jmp_list_head;
1569 TB_FOR_EACH_JMP(dest, tb, n) {
1570 if (tb == orig && n == n_orig) {
1571 *pprev = tb->jmp_list_next[n];
1572 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1573 qemu_spin_unlock(&dest->jmp_lock);
1574 return;
1575 }
1576 pprev = &tb->jmp_list_next[n];
1577 }
1578 g_assert_not_reached();
1579 }
1580
1581 /* reset the jump entry 'n' of a TB so that it is not chained to
1582 another TB */
tb_reset_jump(TranslationBlock * tb,int n)1583 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1584 {
1585 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1586 tb_set_jmp_target(tb, n, addr);
1587 }
1588
1589 /* remove any jumps to the TB */
tb_jmp_unlink(TranslationBlock * dest)1590 static inline void tb_jmp_unlink(TranslationBlock *dest)
1591 {
1592 TranslationBlock *tb;
1593 int n;
1594
1595 qemu_spin_lock(&dest->jmp_lock);
1596
1597 TB_FOR_EACH_JMP(dest, tb, n) {
1598 tb_reset_jump(tb, n);
1599 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1600 /* No need to clear the list entry; setting the dest ptr is enough */
1601 }
1602 dest->jmp_list_head = (uintptr_t)NULL;
1603
1604 qemu_spin_unlock(&dest->jmp_lock);
1605 }
1606
1607 /*
1608 * In user-mode, call with mmap_lock held.
1609 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1610 * locks held.
1611 */
do_tb_phys_invalidate(TranslationBlock * tb,bool rm_from_page_list)1612 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1613 {
1614 CPUState *cpu;
1615 PageDesc *p;
1616 uint32_t h;
1617 tb_page_addr_t phys_pc;
1618 uint32_t orig_cflags = tb_cflags(tb);
1619
1620 assert_memory_lock();
1621
1622 /* make sure no further incoming jumps will be chained to this TB */
1623 qemu_spin_lock(&tb->jmp_lock);
1624 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1625 qemu_spin_unlock(&tb->jmp_lock);
1626
1627 /* remove the TB from the hash list */
1628 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1629 h = tb_hash_func(phys_pc, tb->pc, tb->flags, orig_cflags,
1630 tb->trace_vcpu_dstate);
1631 if (!qht_remove(&tb_ctx.htable, tb, h)) {
1632 return;
1633 }
1634
1635 /* remove the TB from the page list */
1636 if (rm_from_page_list) {
1637 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1638 tb_page_remove(p, tb);
1639 invalidate_page_bitmap(p);
1640 if (tb->page_addr[1] != -1) {
1641 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1642 tb_page_remove(p, tb);
1643 invalidate_page_bitmap(p);
1644 }
1645 }
1646
1647 /* remove the TB from the hash list */
1648 h = tb_jmp_cache_hash_func(tb->pc);
1649 CPU_FOREACH(cpu) {
1650 if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1651 qatomic_set(&cpu->tb_jmp_cache[h], NULL);
1652 }
1653 }
1654
1655 /* suppress this TB from the two jump lists */
1656 tb_remove_from_jmp_list(tb, 0);
1657 tb_remove_from_jmp_list(tb, 1);
1658
1659 /* suppress any remaining jumps to this TB */
1660 tb_jmp_unlink(tb);
1661
1662 qatomic_set(&tcg_ctx->tb_phys_invalidate_count,
1663 tcg_ctx->tb_phys_invalidate_count + 1);
1664 }
1665
tb_phys_invalidate__locked(TranslationBlock * tb)1666 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1667 {
1668 qemu_thread_jit_write();
1669 do_tb_phys_invalidate(tb, true);
1670 qemu_thread_jit_execute();
1671 }
1672
1673 /* invalidate one TB
1674 *
1675 * Called with mmap_lock held in user-mode.
1676 */
tb_phys_invalidate(TranslationBlock * tb,tb_page_addr_t page_addr)1677 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1678 {
1679 if (page_addr == -1 && tb->page_addr[0] != -1) {
1680 page_lock_tb(tb);
1681 do_tb_phys_invalidate(tb, true);
1682 page_unlock_tb(tb);
1683 } else {
1684 do_tb_phys_invalidate(tb, false);
1685 }
1686 }
1687
1688 #ifdef CONFIG_SOFTMMU
1689 /* call with @p->lock held */
build_page_bitmap(PageDesc * p)1690 static void build_page_bitmap(PageDesc *p)
1691 {
1692 int n, tb_start, tb_end;
1693 TranslationBlock *tb;
1694
1695 assert_page_locked(p);
1696 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1697
1698 PAGE_FOR_EACH_TB(p, tb, n) {
1699 /* NOTE: this is subtle as a TB may span two physical pages */
1700 if (n == 0) {
1701 /* NOTE: tb_end may be after the end of the page, but
1702 it is not a problem */
1703 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1704 tb_end = tb_start + tb->size;
1705 if (tb_end > TARGET_PAGE_SIZE) {
1706 tb_end = TARGET_PAGE_SIZE;
1707 }
1708 } else {
1709 tb_start = 0;
1710 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1711 }
1712 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1713 }
1714 }
1715 #endif
1716
1717 /* add the tb in the target page and protect it if necessary
1718 *
1719 * Called with mmap_lock held for user-mode emulation.
1720 * Called with @p->lock held in !user-mode.
1721 */
tb_page_add(PageDesc * p,TranslationBlock * tb,unsigned int n,tb_page_addr_t page_addr)1722 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1723 unsigned int n, tb_page_addr_t page_addr)
1724 {
1725 #ifndef CONFIG_USER_ONLY
1726 bool page_already_protected;
1727 #endif
1728
1729 assert_page_locked(p);
1730
1731 tb->page_addr[n] = page_addr;
1732 tb->page_next[n] = p->first_tb;
1733 #ifndef CONFIG_USER_ONLY
1734 page_already_protected = p->first_tb != (uintptr_t)NULL;
1735 #endif
1736 p->first_tb = (uintptr_t)tb | n;
1737 invalidate_page_bitmap(p);
1738
1739 #if defined(CONFIG_USER_ONLY)
1740 if (p->flags & PAGE_WRITE) {
1741 target_ulong addr;
1742 PageDesc *p2;
1743 int prot;
1744
1745 /* force the host page as non writable (writes will have a
1746 page fault + mprotect overhead) */
1747 page_addr &= qemu_host_page_mask;
1748 prot = 0;
1749 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1750 addr += TARGET_PAGE_SIZE) {
1751
1752 p2 = page_find(addr >> TARGET_PAGE_BITS);
1753 if (!p2) {
1754 continue;
1755 }
1756 prot |= p2->flags;
1757 p2->flags &= ~PAGE_WRITE;
1758 }
1759 mprotect(g2h_untagged(page_addr), qemu_host_page_size,
1760 (prot & PAGE_BITS) & ~PAGE_WRITE);
1761 if (DEBUG_TB_INVALIDATE_GATE) {
1762 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1763 }
1764 }
1765 #else
1766 /* if some code is already present, then the pages are already
1767 protected. So we handle the case where only the first TB is
1768 allocated in a physical page */
1769 if (!page_already_protected) {
1770 tlb_protect_code(page_addr);
1771 }
1772 #endif
1773 }
1774
1775 /*
1776 * Add a new TB and link it to the physical page tables. phys_page2 is
1777 * (-1) to indicate that only one page contains the TB.
1778 *
1779 * Called with mmap_lock held for user-mode emulation.
1780 *
1781 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1782 * Note that in !user-mode, another thread might have already added a TB
1783 * for the same block of guest code that @tb corresponds to. In that case,
1784 * the caller should discard the original @tb, and use instead the returned TB.
1785 */
1786 static TranslationBlock *
tb_link_page(TranslationBlock * tb,tb_page_addr_t phys_pc,tb_page_addr_t phys_page2)1787 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1788 tb_page_addr_t phys_page2)
1789 {
1790 PageDesc *p;
1791 PageDesc *p2 = NULL;
1792 void *existing_tb = NULL;
1793 uint32_t h;
1794
1795 assert_memory_lock();
1796 tcg_debug_assert(!(tb->cflags & CF_INVALID));
1797
1798 /*
1799 * Add the TB to the page list, acquiring first the pages's locks.
1800 * We keep the locks held until after inserting the TB in the hash table,
1801 * so that if the insertion fails we know for sure that the TBs are still
1802 * in the page descriptors.
1803 * Note that inserting into the hash table first isn't an option, since
1804 * we can only insert TBs that are fully initialized.
1805 */
1806 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1807 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1808 if (p2) {
1809 tb_page_add(p2, tb, 1, phys_page2);
1810 } else {
1811 tb->page_addr[1] = -1;
1812 }
1813
1814 /* add in the hash table */
1815 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags,
1816 tb->trace_vcpu_dstate);
1817 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1818
1819 /* remove TB from the page(s) if we couldn't insert it */
1820 if (unlikely(existing_tb)) {
1821 tb_page_remove(p, tb);
1822 invalidate_page_bitmap(p);
1823 if (p2) {
1824 tb_page_remove(p2, tb);
1825 invalidate_page_bitmap(p2);
1826 }
1827 tb = existing_tb;
1828 }
1829
1830 if (p2 && p2 != p) {
1831 page_unlock(p2);
1832 }
1833 page_unlock(p);
1834
1835 #ifdef CONFIG_USER_ONLY
1836 if (DEBUG_TB_CHECK_GATE) {
1837 tb_page_check();
1838 }
1839 #endif
1840 return tb;
1841 }
1842
1843 /* Called with mmap_lock held for user mode emulation. */
tb_gen_code(CPUState * cpu,target_ulong pc,target_ulong cs_base,uint32_t flags,int cflags)1844 TranslationBlock *tb_gen_code(CPUState *cpu,
1845 target_ulong pc, target_ulong cs_base,
1846 uint32_t flags, int cflags)
1847 {
1848 CPUArchState *env = cpu->env_ptr;
1849 TranslationBlock *tb, *existing_tb;
1850 tb_page_addr_t phys_pc, phys_page2;
1851 target_ulong virt_page2;
1852 tcg_insn_unit *gen_code_buf;
1853 int gen_code_size, search_size, max_insns;
1854 #ifdef CONFIG_PROFILER
1855 TCGProfile *prof = &tcg_ctx->prof;
1856 int64_t ti;
1857 #endif
1858
1859 assert_memory_lock();
1860 qemu_thread_jit_write();
1861
1862 phys_pc = get_page_addr_code(env, pc);
1863
1864 if (phys_pc == -1) {
1865 /* Generate a one-shot TB with 1 insn in it */
1866 cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
1867 }
1868
1869 max_insns = cflags & CF_COUNT_MASK;
1870 if (max_insns == 0) {
1871 max_insns = CF_COUNT_MASK;
1872 }
1873 if (max_insns > TCG_MAX_INSNS) {
1874 max_insns = TCG_MAX_INSNS;
1875 }
1876 if (cpu->singlestep_enabled || singlestep) {
1877 max_insns = 1;
1878 }
1879
1880 buffer_overflow:
1881 tb = tcg_tb_alloc(tcg_ctx);
1882 if (unlikely(!tb)) {
1883 /* flush must be done */
1884 tb_flush(cpu);
1885 mmap_unlock();
1886 /* Make the execution loop process the flush as soon as possible. */
1887 cpu->exception_index = EXCP_INTERRUPT;
1888 cpu_loop_exit(cpu);
1889 }
1890
1891 gen_code_buf = tcg_ctx->code_gen_ptr;
1892 tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
1893 tb->pc = pc;
1894 tb->cs_base = cs_base;
1895 tb->flags = flags;
1896 tb->cflags = cflags;
1897 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1898 tcg_ctx->tb_cflags = cflags;
1899 tb_overflow:
1900
1901 #ifdef CONFIG_PROFILER
1902 /* includes aborted translations because of exceptions */
1903 qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1904 ti = profile_getclock();
1905 #endif
1906
1907 gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
1908 if (unlikely(gen_code_size != 0)) {
1909 goto error_return;
1910 }
1911
1912 tcg_func_start(tcg_ctx);
1913
1914 tcg_ctx->cpu = env_cpu(env);
1915 gen_intermediate_code(cpu, tb, max_insns);
1916 tcg_ctx->cpu = NULL;
1917 max_insns = tb->icount;
1918
1919 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1920
1921 /* generate machine code */
1922 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1923 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1924 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1925 if (TCG_TARGET_HAS_direct_jump) {
1926 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1927 tcg_ctx->tb_jmp_target_addr = NULL;
1928 } else {
1929 tcg_ctx->tb_jmp_insn_offset = NULL;
1930 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1931 }
1932
1933 #ifdef CONFIG_PROFILER
1934 qatomic_set(&prof->tb_count, prof->tb_count + 1);
1935 qatomic_set(&prof->interm_time,
1936 prof->interm_time + profile_getclock() - ti);
1937 ti = profile_getclock();
1938 #endif
1939
1940 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1941 if (unlikely(gen_code_size < 0)) {
1942 error_return:
1943 switch (gen_code_size) {
1944 case -1:
1945 /*
1946 * Overflow of code_gen_buffer, or the current slice of it.
1947 *
1948 * TODO: We don't need to re-do gen_intermediate_code, nor
1949 * should we re-do the tcg optimization currently hidden
1950 * inside tcg_gen_code. All that should be required is to
1951 * flush the TBs, allocate a new TB, re-initialize it per
1952 * above, and re-do the actual code generation.
1953 */
1954 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1955 "Restarting code generation for "
1956 "code_gen_buffer overflow\n");
1957 goto buffer_overflow;
1958
1959 case -2:
1960 /*
1961 * The code generated for the TranslationBlock is too large.
1962 * The maximum size allowed by the unwind info is 64k.
1963 * There may be stricter constraints from relocations
1964 * in the tcg backend.
1965 *
1966 * Try again with half as many insns as we attempted this time.
1967 * If a single insn overflows, there's a bug somewhere...
1968 */
1969 assert(max_insns > 1);
1970 max_insns /= 2;
1971 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1972 "Restarting code generation with "
1973 "smaller translation block (max %d insns)\n",
1974 max_insns);
1975 goto tb_overflow;
1976
1977 default:
1978 g_assert_not_reached();
1979 }
1980 }
1981 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1982 if (unlikely(search_size < 0)) {
1983 goto buffer_overflow;
1984 }
1985 tb->tc.size = gen_code_size;
1986
1987 #ifdef CONFIG_PROFILER
1988 qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1989 qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1990 qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1991 qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1992 #endif
1993
1994 #ifdef DEBUG_DISAS
1995 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1996 qemu_log_in_addr_range(tb->pc)) {
1997 FILE *logfile = qemu_log_lock();
1998 int code_size, data_size;
1999 const tcg_target_ulong *rx_data_gen_ptr;
2000 size_t chunk_start;
2001 int insn = 0;
2002
2003 if (tcg_ctx->data_gen_ptr) {
2004 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
2005 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
2006 data_size = gen_code_size - code_size;
2007 } else {
2008 rx_data_gen_ptr = 0;
2009 code_size = gen_code_size;
2010 data_size = 0;
2011 }
2012
2013 /* Dump header and the first instruction */
2014 qemu_log("OUT: [size=%d]\n", gen_code_size);
2015 qemu_log(" -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
2016 tcg_ctx->gen_insn_data[insn][0]);
2017 chunk_start = tcg_ctx->gen_insn_end_off[insn];
2018 log_disas(tb->tc.ptr, chunk_start);
2019
2020 /*
2021 * Dump each instruction chunk, wrapping up empty chunks into
2022 * the next instruction. The whole array is offset so the
2023 * first entry is the beginning of the 2nd instruction.
2024 */
2025 while (insn < tb->icount) {
2026 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
2027 if (chunk_end > chunk_start) {
2028 qemu_log(" -- guest addr 0x" TARGET_FMT_lx "\n",
2029 tcg_ctx->gen_insn_data[insn][0]);
2030 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
2031 chunk_start = chunk_end;
2032 }
2033 insn++;
2034 }
2035
2036 if (chunk_start < code_size) {
2037 qemu_log(" -- tb slow paths + alignment\n");
2038 log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
2039 }
2040
2041 /* Finally dump any data we may have after the block */
2042 if (data_size) {
2043 int i;
2044 qemu_log(" data: [size=%d]\n", data_size);
2045 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
2046 qemu_log("0x%08" PRIxPTR ": .quad 0x%" TCG_PRIlx "\n",
2047 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2048 }
2049 }
2050 qemu_log("\n");
2051 qemu_log_flush();
2052 qemu_log_unlock(logfile);
2053 }
2054 #endif
2055
2056 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
2057 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
2058 CODE_GEN_ALIGN));
2059
2060 /* init jump list */
2061 qemu_spin_init(&tb->jmp_lock);
2062 tb->jmp_list_head = (uintptr_t)NULL;
2063 tb->jmp_list_next[0] = (uintptr_t)NULL;
2064 tb->jmp_list_next[1] = (uintptr_t)NULL;
2065 tb->jmp_dest[0] = (uintptr_t)NULL;
2066 tb->jmp_dest[1] = (uintptr_t)NULL;
2067
2068 /* init original jump addresses which have been set during tcg_gen_code() */
2069 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2070 tb_reset_jump(tb, 0);
2071 }
2072 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2073 tb_reset_jump(tb, 1);
2074 }
2075
2076 /*
2077 * If the TB is not associated with a physical RAM page then
2078 * it must be a temporary one-insn TB, and we have nothing to do
2079 * except fill in the page_addr[] fields. Return early before
2080 * attempting to link to other TBs or add to the lookup table.
2081 */
2082 if (phys_pc == -1) {
2083 tb->page_addr[0] = tb->page_addr[1] = -1;
2084 return tb;
2085 }
2086
2087 /* check next page if needed */
2088 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
2089 phys_page2 = -1;
2090 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
2091 phys_page2 = get_page_addr_code(env, virt_page2);
2092 }
2093 /*
2094 * No explicit memory barrier is required -- tb_link_page() makes the
2095 * TB visible in a consistent state.
2096 */
2097 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
2098 /* if the TB already exists, discard what we just translated */
2099 if (unlikely(existing_tb != tb)) {
2100 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
2101
2102 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
2103 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
2104 tb_destroy(tb);
2105 return existing_tb;
2106 }
2107 tcg_tb_insert(tb);
2108 return tb;
2109 }
2110
2111 /*
2112 * @p must be non-NULL.
2113 * user-mode: call with mmap_lock held.
2114 * !user-mode: call with all @pages locked.
2115 */
2116 static void
tb_invalidate_phys_page_range__locked(struct page_collection * pages,PageDesc * p,tb_page_addr_t start,tb_page_addr_t end,uintptr_t retaddr)2117 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
2118 PageDesc *p, tb_page_addr_t start,
2119 tb_page_addr_t end,
2120 uintptr_t retaddr)
2121 {
2122 TranslationBlock *tb;
2123 tb_page_addr_t tb_start, tb_end;
2124 int n;
2125 #ifdef TARGET_HAS_PRECISE_SMC
2126 CPUState *cpu = current_cpu;
2127 CPUArchState *env = NULL;
2128 bool current_tb_not_found = retaddr != 0;
2129 bool current_tb_modified = false;
2130 TranslationBlock *current_tb = NULL;
2131 target_ulong current_pc = 0;
2132 target_ulong current_cs_base = 0;
2133 uint32_t current_flags = 0;
2134 #endif /* TARGET_HAS_PRECISE_SMC */
2135
2136 assert_page_locked(p);
2137
2138 #if defined(TARGET_HAS_PRECISE_SMC)
2139 if (cpu != NULL) {
2140 env = cpu->env_ptr;
2141 }
2142 #endif
2143
2144 /* we remove all the TBs in the range [start, end[ */
2145 /* XXX: see if in some cases it could be faster to invalidate all
2146 the code */
2147 PAGE_FOR_EACH_TB(p, tb, n) {
2148 assert_page_locked(p);
2149 /* NOTE: this is subtle as a TB may span two physical pages */
2150 if (n == 0) {
2151 /* NOTE: tb_end may be after the end of the page, but
2152 it is not a problem */
2153 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
2154 tb_end = tb_start + tb->size;
2155 } else {
2156 tb_start = tb->page_addr[1];
2157 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
2158 }
2159 if (!(tb_end <= start || tb_start >= end)) {
2160 #ifdef TARGET_HAS_PRECISE_SMC
2161 if (current_tb_not_found) {
2162 current_tb_not_found = false;
2163 /* now we have a real cpu fault */
2164 current_tb = tcg_tb_lookup(retaddr);
2165 }
2166 if (current_tb == tb &&
2167 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2168 /*
2169 * If we are modifying the current TB, we must stop
2170 * its execution. We could be more precise by checking
2171 * that the modification is after the current PC, but it
2172 * would require a specialized function to partially
2173 * restore the CPU state.
2174 */
2175 current_tb_modified = true;
2176 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
2177 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
2178 ¤t_flags);
2179 }
2180 #endif /* TARGET_HAS_PRECISE_SMC */
2181 tb_phys_invalidate__locked(tb);
2182 }
2183 }
2184 #if !defined(CONFIG_USER_ONLY)
2185 /* if no code remaining, no need to continue to use slow writes */
2186 if (!p->first_tb) {
2187 invalidate_page_bitmap(p);
2188 tlb_unprotect_code(start);
2189 }
2190 #endif
2191 #ifdef TARGET_HAS_PRECISE_SMC
2192 if (current_tb_modified) {
2193 page_collection_unlock(pages);
2194 /* Force execution of one insn next time. */
2195 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2196 mmap_unlock();
2197 cpu_loop_exit_noexc(cpu);
2198 }
2199 #endif
2200 }
2201
2202 /*
2203 * Invalidate all TBs which intersect with the target physical address range
2204 * [start;end[. NOTE: start and end must refer to the *same* physical page.
2205 * 'is_cpu_write_access' should be true if called from a real cpu write
2206 * access: the virtual CPU will exit the current TB if code is modified inside
2207 * this TB.
2208 *
2209 * Called with mmap_lock held for user-mode emulation
2210 */
tb_invalidate_phys_page_range(tb_page_addr_t start,tb_page_addr_t end)2211 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2212 {
2213 struct page_collection *pages;
2214 PageDesc *p;
2215
2216 assert_memory_lock();
2217
2218 p = page_find(start >> TARGET_PAGE_BITS);
2219 if (p == NULL) {
2220 return;
2221 }
2222 pages = page_collection_lock(start, end);
2223 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2224 page_collection_unlock(pages);
2225 }
2226
2227 /*
2228 * Invalidate all TBs which intersect with the target physical address range
2229 * [start;end[. NOTE: start and end may refer to *different* physical pages.
2230 * 'is_cpu_write_access' should be true if called from a real cpu write
2231 * access: the virtual CPU will exit the current TB if code is modified inside
2232 * this TB.
2233 *
2234 * Called with mmap_lock held for user-mode emulation.
2235 */
2236 #ifdef CONFIG_SOFTMMU
tb_invalidate_phys_range(ram_addr_t start,ram_addr_t end)2237 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2238 #else
2239 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2240 #endif
2241 {
2242 struct page_collection *pages;
2243 tb_page_addr_t next;
2244
2245 assert_memory_lock();
2246
2247 pages = page_collection_lock(start, end);
2248 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2249 start < end;
2250 start = next, next += TARGET_PAGE_SIZE) {
2251 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2252 tb_page_addr_t bound = MIN(next, end);
2253
2254 if (pd == NULL) {
2255 continue;
2256 }
2257 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2258 }
2259 page_collection_unlock(pages);
2260 }
2261
2262 #ifdef CONFIG_SOFTMMU
2263 /* len must be <= 8 and start must be a multiple of len.
2264 * Called via softmmu_template.h when code areas are written to with
2265 * iothread mutex not held.
2266 *
2267 * Call with all @pages in the range [@start, @start + len[ locked.
2268 */
tb_invalidate_phys_page_fast(struct page_collection * pages,tb_page_addr_t start,int len,uintptr_t retaddr)2269 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2270 tb_page_addr_t start, int len,
2271 uintptr_t retaddr)
2272 {
2273 PageDesc *p;
2274
2275 assert_memory_lock();
2276
2277 p = page_find(start >> TARGET_PAGE_BITS);
2278 if (!p) {
2279 return;
2280 }
2281
2282 assert_page_locked(p);
2283 if (!p->code_bitmap &&
2284 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2285 build_page_bitmap(p);
2286 }
2287 if (p->code_bitmap) {
2288 unsigned int nr;
2289 unsigned long b;
2290
2291 nr = start & ~TARGET_PAGE_MASK;
2292 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2293 if (b & ((1 << len) - 1)) {
2294 goto do_invalidate;
2295 }
2296 } else {
2297 do_invalidate:
2298 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2299 retaddr);
2300 }
2301 }
2302 #else
2303 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2304 * host PC of the faulting store instruction that caused this invalidate.
2305 * Returns true if the caller needs to abort execution of the current
2306 * TB (because it was modified by this store and the guest CPU has
2307 * precise-SMC semantics).
2308 */
tb_invalidate_phys_page(tb_page_addr_t addr,uintptr_t pc)2309 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2310 {
2311 TranslationBlock *tb;
2312 PageDesc *p;
2313 int n;
2314 #ifdef TARGET_HAS_PRECISE_SMC
2315 TranslationBlock *current_tb = NULL;
2316 CPUState *cpu = current_cpu;
2317 CPUArchState *env = NULL;
2318 int current_tb_modified = 0;
2319 target_ulong current_pc = 0;
2320 target_ulong current_cs_base = 0;
2321 uint32_t current_flags = 0;
2322 #endif
2323
2324 assert_memory_lock();
2325
2326 addr &= TARGET_PAGE_MASK;
2327 p = page_find(addr >> TARGET_PAGE_BITS);
2328 if (!p) {
2329 return false;
2330 }
2331
2332 #ifdef TARGET_HAS_PRECISE_SMC
2333 if (p->first_tb && pc != 0) {
2334 current_tb = tcg_tb_lookup(pc);
2335 }
2336 if (cpu != NULL) {
2337 env = cpu->env_ptr;
2338 }
2339 #endif
2340 assert_page_locked(p);
2341 PAGE_FOR_EACH_TB(p, tb, n) {
2342 #ifdef TARGET_HAS_PRECISE_SMC
2343 if (current_tb == tb &&
2344 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2345 /* If we are modifying the current TB, we must stop
2346 its execution. We could be more precise by checking
2347 that the modification is after the current PC, but it
2348 would require a specialized function to partially
2349 restore the CPU state */
2350
2351 current_tb_modified = 1;
2352 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2353 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
2354 ¤t_flags);
2355 }
2356 #endif /* TARGET_HAS_PRECISE_SMC */
2357 tb_phys_invalidate(tb, addr);
2358 }
2359 p->first_tb = (uintptr_t)NULL;
2360 #ifdef TARGET_HAS_PRECISE_SMC
2361 if (current_tb_modified) {
2362 /* Force execution of one insn next time. */
2363 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2364 return true;
2365 }
2366 #endif
2367
2368 return false;
2369 }
2370 #endif
2371
2372 /* user-mode: call with mmap_lock held */
tb_check_watchpoint(CPUState * cpu,uintptr_t retaddr)2373 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2374 {
2375 TranslationBlock *tb;
2376
2377 assert_memory_lock();
2378
2379 tb = tcg_tb_lookup(retaddr);
2380 if (tb) {
2381 /* We can use retranslation to find the PC. */
2382 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2383 tb_phys_invalidate(tb, -1);
2384 } else {
2385 /* The exception probably happened in a helper. The CPU state should
2386 have been saved before calling it. Fetch the PC from there. */
2387 CPUArchState *env = cpu->env_ptr;
2388 target_ulong pc, cs_base;
2389 tb_page_addr_t addr;
2390 uint32_t flags;
2391
2392 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2393 addr = get_page_addr_code(env, pc);
2394 if (addr != -1) {
2395 tb_invalidate_phys_range(addr, addr + 1);
2396 }
2397 }
2398 }
2399
2400 #ifndef CONFIG_USER_ONLY
2401 /*
2402 * In deterministic execution mode, instructions doing device I/Os
2403 * must be at the end of the TB.
2404 *
2405 * Called by softmmu_template.h, with iothread mutex not held.
2406 */
cpu_io_recompile(CPUState * cpu,uintptr_t retaddr)2407 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2408 {
2409 TranslationBlock *tb;
2410 CPUClass *cc;
2411 uint32_t n;
2412
2413 tb = tcg_tb_lookup(retaddr);
2414 if (!tb) {
2415 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2416 (void *)retaddr);
2417 }
2418 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2419
2420 /*
2421 * Some guests must re-execute the branch when re-executing a delay
2422 * slot instruction. When this is the case, adjust icount and N
2423 * to account for the re-execution of the branch.
2424 */
2425 n = 1;
2426 cc = CPU_GET_CLASS(cpu);
2427 if (cc->tcg_ops->io_recompile_replay_branch &&
2428 cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
2429 cpu_neg(cpu)->icount_decr.u16.low++;
2430 n = 2;
2431 }
2432
2433 /*
2434 * Exit the loop and potentially generate a new TB executing the
2435 * just the I/O insns. We also limit instrumentation to memory
2436 * operations only (which execute after completion) so we don't
2437 * double instrument the instruction.
2438 */
2439 cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
2440
2441 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
2442 "cpu_io_recompile: rewound execution of TB to "
2443 TARGET_FMT_lx "\n", tb->pc);
2444
2445 cpu_loop_exit_noexc(cpu);
2446 }
2447
print_qht_statistics(struct qht_stats hst)2448 static void print_qht_statistics(struct qht_stats hst)
2449 {
2450 uint32_t hgram_opts;
2451 size_t hgram_bins;
2452 char *hgram;
2453
2454 if (!hst.head_buckets) {
2455 return;
2456 }
2457 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2458 hst.used_head_buckets, hst.head_buckets,
2459 (double)hst.used_head_buckets / hst.head_buckets * 100);
2460
2461 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2462 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2463 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2464 hgram_opts |= QDIST_PR_NODECIMAL;
2465 }
2466 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2467 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2468 qdist_avg(&hst.occupancy) * 100, hgram);
2469 g_free(hgram);
2470
2471 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2472 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2473 if (hgram_bins > 10) {
2474 hgram_bins = 10;
2475 } else {
2476 hgram_bins = 0;
2477 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2478 }
2479 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2480 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2481 qdist_avg(&hst.chain), hgram);
2482 g_free(hgram);
2483 }
2484
2485 struct tb_tree_stats {
2486 size_t nb_tbs;
2487 size_t host_size;
2488 size_t target_size;
2489 size_t max_target_size;
2490 size_t direct_jmp_count;
2491 size_t direct_jmp2_count;
2492 size_t cross_page;
2493 };
2494
tb_tree_stats_iter(gpointer key,gpointer value,gpointer data)2495 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2496 {
2497 const TranslationBlock *tb = value;
2498 struct tb_tree_stats *tst = data;
2499
2500 tst->nb_tbs++;
2501 tst->host_size += tb->tc.size;
2502 tst->target_size += tb->size;
2503 if (tb->size > tst->max_target_size) {
2504 tst->max_target_size = tb->size;
2505 }
2506 if (tb->page_addr[1] != -1) {
2507 tst->cross_page++;
2508 }
2509 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2510 tst->direct_jmp_count++;
2511 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2512 tst->direct_jmp2_count++;
2513 }
2514 }
2515 return false;
2516 }
2517
dump_exec_info(void)2518 void dump_exec_info(void)
2519 {
2520 struct tb_tree_stats tst = {};
2521 struct qht_stats hst;
2522 size_t nb_tbs, flush_full, flush_part, flush_elide;
2523
2524 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2525 nb_tbs = tst.nb_tbs;
2526 /* XXX: avoid using doubles ? */
2527 qemu_printf("Translation buffer state:\n");
2528 /*
2529 * Report total code size including the padding and TB structs;
2530 * otherwise users might think "-accel tcg,tb-size" is not honoured.
2531 * For avg host size we use the precise numbers from tb_tree_stats though.
2532 */
2533 qemu_printf("gen code size %zu/%zu\n",
2534 tcg_code_size(), tcg_code_capacity());
2535 qemu_printf("TB count %zu\n", nb_tbs);
2536 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2537 nb_tbs ? tst.target_size / nb_tbs : 0,
2538 tst.max_target_size);
2539 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2540 nb_tbs ? tst.host_size / nb_tbs : 0,
2541 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2542 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2543 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2544 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2545 tst.direct_jmp_count,
2546 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2547 tst.direct_jmp2_count,
2548 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2549
2550 qht_statistics_init(&tb_ctx.htable, &hst);
2551 print_qht_statistics(hst);
2552 qht_statistics_destroy(&hst);
2553
2554 qemu_printf("\nStatistics:\n");
2555 qemu_printf("TB flush count %u\n",
2556 qatomic_read(&tb_ctx.tb_flush_count));
2557 qemu_printf("TB invalidate count %zu\n",
2558 tcg_tb_phys_invalidate_count());
2559
2560 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2561 qemu_printf("TLB full flushes %zu\n", flush_full);
2562 qemu_printf("TLB partial flushes %zu\n", flush_part);
2563 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2564 tcg_dump_info();
2565 }
2566
dump_opcount_info(void)2567 void dump_opcount_info(void)
2568 {
2569 tcg_dump_op_count();
2570 }
2571
2572 #else /* CONFIG_USER_ONLY */
2573
cpu_interrupt(CPUState * cpu,int mask)2574 void cpu_interrupt(CPUState *cpu, int mask)
2575 {
2576 g_assert(qemu_mutex_iothread_locked());
2577 cpu->interrupt_request |= mask;
2578 qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2579 }
2580
2581 /*
2582 * Walks guest process memory "regions" one by one
2583 * and calls callback function 'fn' for each region.
2584 */
2585 struct walk_memory_regions_data {
2586 walk_memory_regions_fn fn;
2587 void *priv;
2588 target_ulong start;
2589 int prot;
2590 };
2591
walk_memory_regions_end(struct walk_memory_regions_data * data,target_ulong end,int new_prot)2592 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2593 target_ulong end, int new_prot)
2594 {
2595 if (data->start != -1u) {
2596 int rc = data->fn(data->priv, data->start, end, data->prot);
2597 if (rc != 0) {
2598 return rc;
2599 }
2600 }
2601
2602 data->start = (new_prot ? end : -1u);
2603 data->prot = new_prot;
2604
2605 return 0;
2606 }
2607
walk_memory_regions_1(struct walk_memory_regions_data * data,target_ulong base,int level,void ** lp)2608 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2609 target_ulong base, int level, void **lp)
2610 {
2611 target_ulong pa;
2612 int i, rc;
2613
2614 if (*lp == NULL) {
2615 return walk_memory_regions_end(data, base, 0);
2616 }
2617
2618 if (level == 0) {
2619 PageDesc *pd = *lp;
2620
2621 for (i = 0; i < V_L2_SIZE; ++i) {
2622 int prot = pd[i].flags;
2623
2624 pa = base | (i << TARGET_PAGE_BITS);
2625 if (prot != data->prot) {
2626 rc = walk_memory_regions_end(data, pa, prot);
2627 if (rc != 0) {
2628 return rc;
2629 }
2630 }
2631 }
2632 } else {
2633 void **pp = *lp;
2634
2635 for (i = 0; i < V_L2_SIZE; ++i) {
2636 pa = base | ((target_ulong)i <<
2637 (TARGET_PAGE_BITS + V_L2_BITS * level));
2638 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2639 if (rc != 0) {
2640 return rc;
2641 }
2642 }
2643 }
2644
2645 return 0;
2646 }
2647
walk_memory_regions(void * priv,walk_memory_regions_fn fn)2648 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2649 {
2650 struct walk_memory_regions_data data;
2651 uintptr_t i, l1_sz = v_l1_size;
2652
2653 data.fn = fn;
2654 data.priv = priv;
2655 data.start = -1u;
2656 data.prot = 0;
2657
2658 for (i = 0; i < l1_sz; i++) {
2659 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2660 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2661 if (rc != 0) {
2662 return rc;
2663 }
2664 }
2665
2666 return walk_memory_regions_end(&data, 0, 0);
2667 }
2668
dump_region(void * priv,target_ulong start,target_ulong end,unsigned long prot)2669 static int dump_region(void *priv, target_ulong start,
2670 target_ulong end, unsigned long prot)
2671 {
2672 FILE *f = (FILE *)priv;
2673
2674 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2675 " "TARGET_FMT_lx" %c%c%c\n",
2676 start, end, end - start,
2677 ((prot & PAGE_READ) ? 'r' : '-'),
2678 ((prot & PAGE_WRITE) ? 'w' : '-'),
2679 ((prot & PAGE_EXEC) ? 'x' : '-'));
2680
2681 return 0;
2682 }
2683
2684 /* dump memory mappings */
page_dump(FILE * f)2685 void page_dump(FILE *f)
2686 {
2687 const int length = sizeof(target_ulong) * 2;
2688 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2689 length, "start", length, "end", length, "size", "prot");
2690 walk_memory_regions(f, dump_region);
2691 }
2692
page_get_flags(target_ulong address)2693 int page_get_flags(target_ulong address)
2694 {
2695 PageDesc *p;
2696
2697 p = page_find(address >> TARGET_PAGE_BITS);
2698 if (!p) {
2699 return 0;
2700 }
2701 return p->flags;
2702 }
2703
2704 /* Modify the flags of a page and invalidate the code if necessary.
2705 The flag PAGE_WRITE_ORG is positioned automatically depending
2706 on PAGE_WRITE. The mmap_lock should already be held. */
page_set_flags(target_ulong start,target_ulong end,int flags)2707 void page_set_flags(target_ulong start, target_ulong end, int flags)
2708 {
2709 target_ulong addr, len;
2710 bool reset_target_data;
2711
2712 /* This function should never be called with addresses outside the
2713 guest address space. If this assert fires, it probably indicates
2714 a missing call to h2g_valid. */
2715 assert(end - 1 <= GUEST_ADDR_MAX);
2716 assert(start < end);
2717 /* Only set PAGE_ANON with new mappings. */
2718 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
2719 assert_memory_lock();
2720
2721 start = start & TARGET_PAGE_MASK;
2722 end = TARGET_PAGE_ALIGN(end);
2723
2724 if (flags & PAGE_WRITE) {
2725 flags |= PAGE_WRITE_ORG;
2726 }
2727 reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
2728 flags &= ~PAGE_RESET;
2729
2730 for (addr = start, len = end - start;
2731 len != 0;
2732 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2733 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2734
2735 /* If the write protection bit is set, then we invalidate
2736 the code inside. */
2737 if (!(p->flags & PAGE_WRITE) &&
2738 (flags & PAGE_WRITE) &&
2739 p->first_tb) {
2740 tb_invalidate_phys_page(addr, 0);
2741 }
2742 if (reset_target_data) {
2743 g_free(p->target_data);
2744 p->target_data = NULL;
2745 p->flags = flags;
2746 } else {
2747 /* Using mprotect on a page does not change MAP_ANON. */
2748 p->flags = (p->flags & PAGE_ANON) | flags;
2749 }
2750 }
2751 }
2752
page_get_target_data(target_ulong address)2753 void *page_get_target_data(target_ulong address)
2754 {
2755 PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2756 return p ? p->target_data : NULL;
2757 }
2758
page_alloc_target_data(target_ulong address,size_t size)2759 void *page_alloc_target_data(target_ulong address, size_t size)
2760 {
2761 PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2762 void *ret = NULL;
2763
2764 if (p->flags & PAGE_VALID) {
2765 ret = p->target_data;
2766 if (!ret) {
2767 p->target_data = ret = g_malloc0(size);
2768 }
2769 }
2770 return ret;
2771 }
2772
page_check_range(target_ulong start,target_ulong len,int flags)2773 int page_check_range(target_ulong start, target_ulong len, int flags)
2774 {
2775 PageDesc *p;
2776 target_ulong end;
2777 target_ulong addr;
2778
2779 /* This function should never be called with addresses outside the
2780 guest address space. If this assert fires, it probably indicates
2781 a missing call to h2g_valid. */
2782 if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2783 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2784 }
2785
2786 if (len == 0) {
2787 return 0;
2788 }
2789 if (start + len - 1 < start) {
2790 /* We've wrapped around. */
2791 return -1;
2792 }
2793
2794 /* must do before we loose bits in the next step */
2795 end = TARGET_PAGE_ALIGN(start + len);
2796 start = start & TARGET_PAGE_MASK;
2797
2798 for (addr = start, len = end - start;
2799 len != 0;
2800 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2801 p = page_find(addr >> TARGET_PAGE_BITS);
2802 if (!p) {
2803 return -1;
2804 }
2805 if (!(p->flags & PAGE_VALID)) {
2806 return -1;
2807 }
2808
2809 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2810 return -1;
2811 }
2812 if (flags & PAGE_WRITE) {
2813 if (!(p->flags & PAGE_WRITE_ORG)) {
2814 return -1;
2815 }
2816 /* unprotect the page if it was put read-only because it
2817 contains translated code */
2818 if (!(p->flags & PAGE_WRITE)) {
2819 if (!page_unprotect(addr, 0)) {
2820 return -1;
2821 }
2822 }
2823 }
2824 }
2825 return 0;
2826 }
2827
2828 /* called from signal handler: invalidate the code and unprotect the
2829 * page. Return 0 if the fault was not handled, 1 if it was handled,
2830 * and 2 if it was handled but the caller must cause the TB to be
2831 * immediately exited. (We can only return 2 if the 'pc' argument is
2832 * non-zero.)
2833 */
page_unprotect(target_ulong address,uintptr_t pc)2834 int page_unprotect(target_ulong address, uintptr_t pc)
2835 {
2836 unsigned int prot;
2837 bool current_tb_invalidated;
2838 PageDesc *p;
2839 target_ulong host_start, host_end, addr;
2840
2841 /* Technically this isn't safe inside a signal handler. However we
2842 know this only ever happens in a synchronous SEGV handler, so in
2843 practice it seems to be ok. */
2844 mmap_lock();
2845
2846 p = page_find(address >> TARGET_PAGE_BITS);
2847 if (!p) {
2848 mmap_unlock();
2849 return 0;
2850 }
2851
2852 /* if the page was really writable, then we change its
2853 protection back to writable */
2854 if (p->flags & PAGE_WRITE_ORG) {
2855 current_tb_invalidated = false;
2856 if (p->flags & PAGE_WRITE) {
2857 /* If the page is actually marked WRITE then assume this is because
2858 * this thread raced with another one which got here first and
2859 * set the page to PAGE_WRITE and did the TB invalidate for us.
2860 */
2861 #ifdef TARGET_HAS_PRECISE_SMC
2862 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2863 if (current_tb) {
2864 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2865 }
2866 #endif
2867 } else {
2868 host_start = address & qemu_host_page_mask;
2869 host_end = host_start + qemu_host_page_size;
2870
2871 prot = 0;
2872 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2873 p = page_find(addr >> TARGET_PAGE_BITS);
2874 p->flags |= PAGE_WRITE;
2875 prot |= p->flags;
2876
2877 /* and since the content will be modified, we must invalidate
2878 the corresponding translated code. */
2879 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2880 #ifdef CONFIG_USER_ONLY
2881 if (DEBUG_TB_CHECK_GATE) {
2882 tb_invalidate_check(addr);
2883 }
2884 #endif
2885 }
2886 mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
2887 prot & PAGE_BITS);
2888 }
2889 mmap_unlock();
2890 /* If current TB was invalidated return to main loop */
2891 return current_tb_invalidated ? 2 : 1;
2892 }
2893 mmap_unlock();
2894 return 0;
2895 }
2896 #endif /* CONFIG_USER_ONLY */
2897
2898 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
tcg_flush_softmmu_tlb(CPUState * cs)2899 void tcg_flush_softmmu_tlb(CPUState *cs)
2900 {
2901 #ifdef CONFIG_SOFTMMU
2902 tlb_flush(cs);
2903 #endif
2904 }
2905