1 /*
2 * ARM AMBA PrimeCell PL031 RTC
3 *
4 * Copyright (c) 2007 CodeSourcery
5 *
6 * This file is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Contributions after 2012-01-13 are licensed under the terms of the
11 * GNU GPL, version 2 or (at your option) any later version.
12 */
13
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "hw/rtc/pl031.h"
17 #include "migration/vmstate.h"
18 #include "hw/irq.h"
19 #include "hw/qdev-properties.h"
20 #include "hw/sysbus.h"
21 #include "qemu/timer.h"
22 #include "sysemu/sysemu.h"
23 #include "qemu/cutils.h"
24 #include "qemu/log.h"
25 #include "qemu/module.h"
26 #include "trace.h"
27
28 #define RTC_DR 0x00 /* Data read register */
29 #define RTC_MR 0x04 /* Match register */
30 #define RTC_LR 0x08 /* Data load register */
31 #define RTC_CR 0x0c /* Control register */
32 #define RTC_IMSC 0x10 /* Interrupt mask and set register */
33 #define RTC_RIS 0x14 /* Raw interrupt status register */
34 #define RTC_MIS 0x18 /* Masked interrupt status register */
35 #define RTC_ICR 0x1c /* Interrupt clear register */
36
37 static const unsigned char pl031_id[] = {
38 0x31, 0x10, 0x14, 0x00, /* Device ID */
39 0x0d, 0xf0, 0x05, 0xb1 /* Cell ID */
40 };
41
pl031_update(PL031State * s)42 static void pl031_update(PL031State *s)
43 {
44 uint32_t flags = s->is & s->im;
45
46 trace_pl031_irq_state(flags);
47 qemu_set_irq(s->irq, flags);
48 }
49
pl031_interrupt(void * opaque)50 static void pl031_interrupt(void * opaque)
51 {
52 PL031State *s = (PL031State *)opaque;
53
54 s->is = 1;
55 trace_pl031_alarm_raised();
56 pl031_update(s);
57 }
58
pl031_get_count(PL031State * s)59 static uint32_t pl031_get_count(PL031State *s)
60 {
61 int64_t now = qemu_clock_get_ns(rtc_clock);
62 return s->tick_offset + now / NANOSECONDS_PER_SECOND;
63 }
64
pl031_set_alarm(PL031State * s)65 static void pl031_set_alarm(PL031State *s)
66 {
67 uint32_t ticks;
68
69 /* The timer wraps around. This subtraction also wraps in the same way,
70 and gives correct results when alarm < now_ticks. */
71 ticks = s->mr - pl031_get_count(s);
72 trace_pl031_set_alarm(ticks);
73 if (ticks == 0) {
74 timer_del(s->timer);
75 pl031_interrupt(s);
76 } else {
77 int64_t now = qemu_clock_get_ns(rtc_clock);
78 timer_mod(s->timer, now + (int64_t)ticks * NANOSECONDS_PER_SECOND);
79 }
80 }
81
pl031_read(void * opaque,hwaddr offset,unsigned size)82 static uint64_t pl031_read(void *opaque, hwaddr offset,
83 unsigned size)
84 {
85 PL031State *s = (PL031State *)opaque;
86 uint64_t r;
87
88 switch (offset) {
89 case RTC_DR:
90 r = pl031_get_count(s);
91 break;
92 case RTC_MR:
93 r = s->mr;
94 break;
95 case RTC_IMSC:
96 r = s->im;
97 break;
98 case RTC_RIS:
99 r = s->is;
100 break;
101 case RTC_LR:
102 r = s->lr;
103 break;
104 case RTC_CR:
105 /* RTC is permanently enabled. */
106 r = 1;
107 break;
108 case RTC_MIS:
109 r = s->is & s->im;
110 break;
111 case 0xfe0 ... 0xfff:
112 r = pl031_id[(offset - 0xfe0) >> 2];
113 break;
114 case RTC_ICR:
115 qemu_log_mask(LOG_GUEST_ERROR,
116 "pl031: read of write-only register at offset 0x%x\n",
117 (int)offset);
118 r = 0;
119 break;
120 default:
121 qemu_log_mask(LOG_GUEST_ERROR,
122 "pl031_read: Bad offset 0x%x\n", (int)offset);
123 r = 0;
124 break;
125 }
126
127 trace_pl031_read(offset, r);
128 return r;
129 }
130
pl031_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)131 static void pl031_write(void * opaque, hwaddr offset,
132 uint64_t value, unsigned size)
133 {
134 PL031State *s = (PL031State *)opaque;
135
136 trace_pl031_write(offset, value);
137
138 switch (offset) {
139 case RTC_LR:
140 s->tick_offset += value - pl031_get_count(s);
141 pl031_set_alarm(s);
142 break;
143 case RTC_MR:
144 s->mr = value;
145 pl031_set_alarm(s);
146 break;
147 case RTC_IMSC:
148 s->im = value & 1;
149 pl031_update(s);
150 break;
151 case RTC_ICR:
152 s->is &= ~value;
153 pl031_update(s);
154 break;
155 case RTC_CR:
156 /* Written value is ignored. */
157 break;
158
159 case RTC_DR:
160 case RTC_MIS:
161 case RTC_RIS:
162 qemu_log_mask(LOG_GUEST_ERROR,
163 "pl031: write to read-only register at offset 0x%x\n",
164 (int)offset);
165 break;
166
167 default:
168 qemu_log_mask(LOG_GUEST_ERROR,
169 "pl031_write: Bad offset 0x%x\n", (int)offset);
170 break;
171 }
172 }
173
174 static const MemoryRegionOps pl031_ops = {
175 .read = pl031_read,
176 .write = pl031_write,
177 .endianness = DEVICE_NATIVE_ENDIAN,
178 };
179
pl031_init(Object * obj)180 static void pl031_init(Object *obj)
181 {
182 PL031State *s = PL031(obj);
183 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
184 struct tm tm;
185
186 memory_region_init_io(&s->iomem, obj, &pl031_ops, s, "pl031", 0x1000);
187 sysbus_init_mmio(dev, &s->iomem);
188
189 sysbus_init_irq(dev, &s->irq);
190 qemu_get_timedate(&tm, 0);
191 s->tick_offset = mktimegm(&tm) -
192 qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND;
193
194 s->timer = timer_new_ns(rtc_clock, pl031_interrupt, s);
195 }
196
pl031_finalize(Object * obj)197 static void pl031_finalize(Object *obj)
198 {
199 PL031State *s = PL031(obj);
200
201 timer_free(s->timer);
202 }
203
pl031_pre_save(void * opaque)204 static int pl031_pre_save(void *opaque)
205 {
206 PL031State *s = opaque;
207
208 /*
209 * The PL031 device model code uses the tick_offset field, which is
210 * the offset between what the guest RTC should read and what the
211 * QEMU rtc_clock reads:
212 * guest_rtc = rtc_clock + tick_offset
213 * and so
214 * tick_offset = guest_rtc - rtc_clock
215 *
216 * We want to migrate this offset, which sounds straightforward.
217 * Unfortunately older versions of QEMU migrated a conversion of this
218 * offset into an offset from the vm_clock. (This was in turn an
219 * attempt to be compatible with even older QEMU versions, but it
220 * has incorrect behaviour if the rtc_clock is not the same as the
221 * vm_clock.) So we put the actual tick_offset into a migration
222 * subsection, and the backwards-compatible time-relative-to-vm_clock
223 * in the main migration state.
224 *
225 * Calculate base time relative to QEMU_CLOCK_VIRTUAL:
226 */
227 int64_t delta = qemu_clock_get_ns(rtc_clock) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
228 s->tick_offset_vmstate = s->tick_offset + delta / NANOSECONDS_PER_SECOND;
229
230 return 0;
231 }
232
pl031_pre_load(void * opaque)233 static int pl031_pre_load(void *opaque)
234 {
235 PL031State *s = opaque;
236
237 s->tick_offset_migrated = false;
238 return 0;
239 }
240
pl031_post_load(void * opaque,int version_id)241 static int pl031_post_load(void *opaque, int version_id)
242 {
243 PL031State *s = opaque;
244
245 /*
246 * If we got the tick_offset subsection, then we can just use
247 * the value in that. Otherwise the source is an older QEMU and
248 * has given us the offset from the vm_clock; convert it back to
249 * an offset from the rtc_clock. This will cause time to incorrectly
250 * go backwards compared to the host RTC, but this is unavoidable.
251 */
252
253 if (!s->tick_offset_migrated) {
254 int64_t delta = qemu_clock_get_ns(rtc_clock) -
255 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
256 s->tick_offset = s->tick_offset_vmstate -
257 delta / NANOSECONDS_PER_SECOND;
258 }
259 pl031_set_alarm(s);
260 return 0;
261 }
262
pl031_tick_offset_post_load(void * opaque,int version_id)263 static int pl031_tick_offset_post_load(void *opaque, int version_id)
264 {
265 PL031State *s = opaque;
266
267 s->tick_offset_migrated = true;
268 return 0;
269 }
270
pl031_tick_offset_needed(void * opaque)271 static bool pl031_tick_offset_needed(void *opaque)
272 {
273 PL031State *s = opaque;
274
275 return s->migrate_tick_offset;
276 }
277
278 static const VMStateDescription vmstate_pl031_tick_offset = {
279 .name = "pl031/tick-offset",
280 .version_id = 1,
281 .minimum_version_id = 1,
282 .needed = pl031_tick_offset_needed,
283 .post_load = pl031_tick_offset_post_load,
284 .fields = (VMStateField[]) {
285 VMSTATE_UINT32(tick_offset, PL031State),
286 VMSTATE_END_OF_LIST()
287 }
288 };
289
290 static const VMStateDescription vmstate_pl031 = {
291 .name = "pl031",
292 .version_id = 1,
293 .minimum_version_id = 1,
294 .pre_save = pl031_pre_save,
295 .pre_load = pl031_pre_load,
296 .post_load = pl031_post_load,
297 .fields = (VMStateField[]) {
298 VMSTATE_UINT32(tick_offset_vmstate, PL031State),
299 VMSTATE_UINT32(mr, PL031State),
300 VMSTATE_UINT32(lr, PL031State),
301 VMSTATE_UINT32(cr, PL031State),
302 VMSTATE_UINT32(im, PL031State),
303 VMSTATE_UINT32(is, PL031State),
304 VMSTATE_END_OF_LIST()
305 },
306 .subsections = (const VMStateDescription*[]) {
307 &vmstate_pl031_tick_offset,
308 NULL
309 }
310 };
311
312 static Property pl031_properties[] = {
313 /*
314 * True to correctly migrate the tick offset of the RTC. False to
315 * obtain backward migration compatibility with older QEMU versions,
316 * at the expense of the guest RTC going backwards compared with the
317 * host RTC when the VM is saved/restored if using -rtc host.
318 * (Even if set to 'true' older QEMU can migrate forward to newer QEMU;
319 * 'false' also permits newer QEMU to migrate to older QEMU.)
320 */
321 DEFINE_PROP_BOOL("migrate-tick-offset",
322 PL031State, migrate_tick_offset, true),
323 DEFINE_PROP_END_OF_LIST()
324 };
325
pl031_class_init(ObjectClass * klass,void * data)326 static void pl031_class_init(ObjectClass *klass, void *data)
327 {
328 DeviceClass *dc = DEVICE_CLASS(klass);
329
330 dc->vmsd = &vmstate_pl031;
331 device_class_set_props(dc, pl031_properties);
332 }
333
334 static const TypeInfo pl031_info = {
335 .name = TYPE_PL031,
336 .parent = TYPE_SYS_BUS_DEVICE,
337 .instance_size = sizeof(PL031State),
338 .instance_init = pl031_init,
339 .instance_finalize = pl031_finalize,
340 .class_init = pl031_class_init,
341 };
342
pl031_register_types(void)343 static void pl031_register_types(void)
344 {
345 type_register_static(&pl031_info);
346 }
347
348 type_init(pl031_register_types)
349