1 //  ---------------------------------------------------------------------------
2 //  This file is part of reSID, a MOS6581 SID emulator engine.
3 //  Copyright (C) 2010  Dag Lem <resid@nimrod.no>
4 //
5 //  This program is free software; you can redistribute it and/or modify
6 //  it under the terms of the GNU General Public License as published by
7 //  the Free Software Foundation; either version 2 of the License, or
8 //  (at your option) any later version.
9 //
10 //  This program is distributed in the hope that it will be useful,
11 //  but WITHOUT ANY WARRANTY; without even the implied warranty of
12 //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 //  GNU General Public License for more details.
14 //
15 //  You should have received a copy of the GNU General Public License
16 //  along with this program; if not, write to the Free Software
17 //  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 //  ---------------------------------------------------------------------------
19 
20 #ifndef RESID_EXTFILT_H
21 #define RESID_EXTFILT_H
22 
23 #include "resid-config.h"
24 
25 namespace reSID
26 {
27 
28 // ----------------------------------------------------------------------------
29 // The audio output stage in a Commodore 64 consists of two STC networks,
30 // a low-pass filter with 3-dB frequency 16kHz followed by a high-pass
31 // filter with 3-dB frequency 16Hz (the latter provided an audio equipment
32 // input impedance of 1kOhm).
33 // The STC networks are connected with a BJT supposedly meant to act as
34 // a unity gain buffer, which is not really how it works. A more elaborate
35 // model would include the BJT, however DC circuit analysis yields BJT
36 // base-emitter and emitter-base impedances sufficiently low to produce
37 // additional low-pass and high-pass 3dB-frequencies in the order of hundreds
38 // of kHz. This calls for a sampling frequency of several MHz, which is far
39 // too high for practical use.
40 //
41 //                                 9/12V
42 // -----+
43 // audio|       10k                  |
44 //      +----+---R---+--------+-----(K)          +-----
45 //  out |    |       |        |      |           |audio
46 // -----+    R 1k    C 1000   |      |    10 uF  |
47 //           |       |  pF    +-C----+-----C-----+ 1K
48 //                             470   |           |
49 //          GND     GND         pF   R 1K        | amp
50 //                                   |           +-----
51 //
52 //                                  GND
53 //
54 // ----------------------------------------------------------------------------
55 class ExternalFilter
56 {
57 public:
58   ExternalFilter();
59 
60   void enable_filter(bool enable);
61 
62   void clock(short Vi);
63   void clock(cycle_count delta_t, short Vi);
64   void reset();
65 
66   // Audio output (16 bits).
67   int output();
68 
69 protected:
70   // Filter enabled.
71   bool enabled;
72 
73   // State of filters (27 bits).
74   int Vlp; // lowpass
75   int Vhp; // highpass
76 
77   // Cutoff frequencies.
78   int w0lp_1_s7;
79   int w0hp_1_s17;
80 
81 friend class SID;
82 };
83 
84 
85 // ----------------------------------------------------------------------------
86 // Inline functions.
87 // The following functions are defined inline because they are called every
88 // time a sample is calculated.
89 // ----------------------------------------------------------------------------
90 
91 #if RESID_INLINING || defined(RESID_EXTFILT_CC)
92 
93 // ----------------------------------------------------------------------------
94 // SID clocking - 1 cycle.
95 // ----------------------------------------------------------------------------
96 RESID_INLINE
clock(short Vi)97 void ExternalFilter::clock(short Vi)
98 {
99   // This is handy for testing.
100   if (unlikely(!enabled)) {
101     // Vo  = Vlp - Vhp;
102     Vlp = Vi << 11;
103     Vhp = 0;
104     return;
105   }
106 
107   // Calculate filter outputs.
108   // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
109   // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
110   // Vo  = Vlp - Vhp;
111 
112   int dVlp = w0lp_1_s7*int((unsigned(Vi) << 11) - unsigned(Vlp)) >> 7;
113   int dVhp = w0hp_1_s17*(Vlp - Vhp) >> 17;
114   Vlp += dVlp;
115   Vhp += dVhp;
116 }
117 
118 // ----------------------------------------------------------------------------
119 // SID clocking - delta_t cycles.
120 // ----------------------------------------------------------------------------
121 RESID_INLINE
clock(cycle_count delta_t,short Vi)122 void ExternalFilter::clock(cycle_count delta_t, short Vi)
123 {
124   // This is handy for testing.
125   if (unlikely(!enabled)) {
126     // Vo  = Vlp - Vhp;
127     Vlp = Vi << 11;
128     Vhp = 0;
129     return;
130   }
131 
132   // Maximum delta cycles for the external filter to work satisfactorily
133   // is approximately 8.
134   cycle_count delta_t_flt = 8;
135 
136   while (delta_t) {
137     if (unlikely(delta_t < delta_t_flt)) {
138       delta_t_flt = delta_t;
139     }
140 
141     // Calculate filter outputs.
142     // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t;
143     // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t;
144     // Vo  = Vlp - Vhp;
145 
146     int dVlp = (w0lp_1_s7*delta_t_flt >> 3)*((Vi << 11) - Vlp) >> 4;
147     int dVhp = (w0hp_1_s17*delta_t_flt >> 3)*(Vlp - Vhp) >> 14;
148     Vlp += dVlp;
149     Vhp += dVhp;
150 
151     delta_t -= delta_t_flt;
152   }
153 }
154 
155 
156 // ----------------------------------------------------------------------------
157 // Audio output (16 bits).
158 // ----------------------------------------------------------------------------
159 RESID_INLINE
output()160 int ExternalFilter::output()
161 {
162   return (Vlp - Vhp) >> 11;
163 }
164 
165 #endif // RESID_INLINING || defined(RESID_EXTFILT_CC)
166 
167 } // namespace reSID
168 
169 #endif // not RESID_EXTFILT_H
170