1 // Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
2 // Licensed under GPLv2+
3 // Refer to the license.txt file included.
4 
5 #include <catch2/catch.hpp>
6 
7 #include <array>
8 #include <bitset>
9 #include <chrono>
10 #include <cstdlib>
11 #include <memory>
12 #include <string>
13 
14 #include "common/file_util.h"
15 #include "core/core.h"
16 #include "core/core_timing.h"
17 
18 namespace {
19 // Numbers are chosen randomly to make sure the correct one is given.
20 constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
21 constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
22 std::array<s64, 5> delays{};
23 
24 std::bitset<CB_IDS.size()> callbacks_ran_flags;
25 u64 expected_callback = 0;
26 
27 template <unsigned int IDX>
HostCallbackTemplate(std::uintptr_t user_data,std::chrono::nanoseconds ns_late)28 void HostCallbackTemplate(std::uintptr_t user_data, std::chrono::nanoseconds ns_late) {
29     static_assert(IDX < CB_IDS.size(), "IDX out of range");
30     callbacks_ran_flags.set(IDX);
31     REQUIRE(CB_IDS[IDX] == user_data);
32     REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
33     delays[IDX] = ns_late.count();
34     ++expected_callback;
35 }
36 
37 struct ScopeInit final {
ScopeInit__anon6f1e7a510111::ScopeInit38     ScopeInit() {
39         core_timing.SetMulticore(true);
40         core_timing.Initialize([]() {});
41     }
~ScopeInit__anon6f1e7a510111::ScopeInit42     ~ScopeInit() {
43         core_timing.Shutdown();
44     }
45 
46     Core::Timing::CoreTiming core_timing;
47 };
48 
TestTimerSpeed(Core::Timing::CoreTiming & core_timing)49 u64 TestTimerSpeed(Core::Timing::CoreTiming& core_timing) {
50     const u64 start = core_timing.GetGlobalTimeNs().count();
51     volatile u64 placebo = 0;
52     for (std::size_t i = 0; i < 1000; i++) {
53         placebo = placebo + core_timing.GetGlobalTimeNs().count();
54     }
55     const u64 end = core_timing.GetGlobalTimeNs().count();
56     return end - start;
57 }
58 
59 } // Anonymous namespace
60 
61 TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
62     ScopeInit guard;
63     auto& core_timing = guard.core_timing;
64     std::vector<std::shared_ptr<Core::Timing::EventType>> events{
65         Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
66         Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
67         Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
68         Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
69         Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
70     };
71 
72     expected_callback = 0;
73 
74     core_timing.SyncPause(true);
75 
76     const u64 one_micro = 1000U;
77     for (std::size_t i = 0; i < events.size(); i++) {
78         const u64 order = calls_order[i];
79         const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
80 
81         core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
82     }
83     /// test pause
84     REQUIRE(callbacks_ran_flags.none());
85 
86     core_timing.Pause(false); // No need to sync
87 
88     while (core_timing.HasPendingEvents())
89         ;
90 
91     REQUIRE(callbacks_ran_flags.all());
92 
93     for (std::size_t i = 0; i < delays.size(); i++) {
94         const double delay = static_cast<double>(delays[i]);
95         const double micro = delay / 1000.0f;
96         const double mili = micro / 1000.0f;
97         printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
98     }
99 }
100 
101 TEST_CASE("CoreTiming[BasicOrderNoPausing]", "[core]") {
102     ScopeInit guard;
103     auto& core_timing = guard.core_timing;
104     std::vector<std::shared_ptr<Core::Timing::EventType>> events{
105         Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
106         Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
107         Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
108         Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
109         Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
110     };
111 
112     core_timing.SyncPause(true);
113     core_timing.SyncPause(false);
114 
115     expected_callback = 0;
116 
117     const u64 start = core_timing.GetGlobalTimeNs().count();
118     const u64 one_micro = 1000U;
119 
120     for (std::size_t i = 0; i < events.size(); i++) {
121         const u64 order = calls_order[i];
122         const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
123         core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
124     }
125 
126     const u64 end = core_timing.GetGlobalTimeNs().count();
127     const double scheduling_time = static_cast<double>(end - start);
128     const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));
129 
130     while (core_timing.HasPendingEvents())
131         ;
132 
133     REQUIRE(callbacks_ran_flags.all());
134 
135     for (std::size_t i = 0; i < delays.size(); i++) {
136         const double delay = static_cast<double>(delays[i]);
137         const double micro = delay / 1000.0f;
138         const double mili = micro / 1000.0f;
139         printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
140     }
141 
142     const double micro = scheduling_time / 1000.0f;
143     const double mili = micro / 1000.0f;
144     printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
145     printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
146            timer_time / 1000000.f);
147 }
148