1// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT.
2
3package cases
4
5// This file contains definitions for interpreting the trie value of the case
6// trie generated by "go run gen*.go". It is shared by both the generator
7// program and the resultant package. Sharing is achieved by the generator
8// copying gen_trieval.go to trieval.go and changing what's above this comment.
9
10// info holds case information for a single rune. It is the value returned
11// by a trie lookup. Most mapping information can be stored in a single 16-bit
12// value. If not, for example when a rune is mapped to multiple runes, the value
13// stores some basic case data and an index into an array with additional data.
14//
15// The per-rune values have the following format:
16//
17//   if (exception) {
18//     15..4  unsigned exception index
19//   } else {
20//     15..8  XOR pattern or index to XOR pattern for case mapping
21//            Only 13..8 are used for XOR patterns.
22//         7  inverseFold (fold to upper, not to lower)
23//         6  index: interpret the XOR pattern as an index
24//            or isMid if case mode is cIgnorableUncased.
25//      5..4  CCC: zero (normal or break), above or other
26//   }
27//      3  exception: interpret this value as an exception index
28//         (TODO: is this bit necessary? Probably implied from case mode.)
29//   2..0  case mode
30//
31// For the non-exceptional cases, a rune must be either uncased, lowercase or
32// uppercase. If the rune is cased, the XOR pattern maps either a lowercase
33// rune to uppercase or an uppercase rune to lowercase (applied to the 10
34// least-significant bits of the rune).
35//
36// See the definitions below for a more detailed description of the various
37// bits.
38type info uint16
39
40const (
41	casedMask      = 0x0003
42	fullCasedMask  = 0x0007
43	ignorableMask  = 0x0006
44	ignorableValue = 0x0004
45
46	inverseFoldBit = 1 << 7
47	isMidBit       = 1 << 6
48
49	exceptionBit     = 1 << 3
50	exceptionShift   = 4
51	numExceptionBits = 12
52
53	xorIndexBit = 1 << 6
54	xorShift    = 8
55
56	// There is no mapping if all xor bits and the exception bit are zero.
57	hasMappingMask = 0xff80 | exceptionBit
58)
59
60// The case mode bits encodes the case type of a rune. This includes uncased,
61// title, upper and lower case and case ignorable. (For a definition of these
62// terms see Chapter 3 of The Unicode Standard Core Specification.) In some rare
63// cases, a rune can be both cased and case-ignorable. This is encoded by
64// cIgnorableCased. A rune of this type is always lower case. Some runes are
65// cased while not having a mapping.
66//
67// A common pattern for scripts in the Unicode standard is for upper and lower
68// case runes to alternate for increasing rune values (e.g. the accented Latin
69// ranges starting from U+0100 and U+1E00 among others and some Cyrillic
70// characters). We use this property by defining a cXORCase mode, where the case
71// mode (always upper or lower case) is derived from the rune value. As the XOR
72// pattern for case mappings is often identical for successive runes, using
73// cXORCase can result in large series of identical trie values. This, in turn,
74// allows us to better compress the trie blocks.
75const (
76	cUncased          info = iota // 000
77	cTitle                        // 001
78	cLower                        // 010
79	cUpper                        // 011
80	cIgnorableUncased             // 100
81	cIgnorableCased               // 101 // lower case if mappings exist
82	cXORCase                      // 11x // case is cLower | ((rune&1) ^ x)
83
84	maxCaseMode = cUpper
85)
86
87func (c info) isCased() bool {
88	return c&casedMask != 0
89}
90
91func (c info) isCaseIgnorable() bool {
92	return c&ignorableMask == ignorableValue
93}
94
95func (c info) isNotCasedAndNotCaseIgnorable() bool {
96	return c&fullCasedMask == 0
97}
98
99func (c info) isCaseIgnorableAndNotCased() bool {
100	return c&fullCasedMask == cIgnorableUncased
101}
102
103func (c info) isMid() bool {
104	return c&(fullCasedMask|isMidBit) == isMidBit|cIgnorableUncased
105}
106
107// The case mapping implementation will need to know about various Canonical
108// Combining Class (CCC) values. We encode two of these in the trie value:
109// cccZero (0) and cccAbove (230). If the value is cccOther, it means that
110// CCC(r) > 0, but not 230. A value of cccBreak means that CCC(r) == 0 and that
111// the rune also has the break category Break (see below).
112const (
113	cccBreak info = iota << 4
114	cccZero
115	cccAbove
116	cccOther
117
118	cccMask = cccBreak | cccZero | cccAbove | cccOther
119)
120
121const (
122	starter       = 0
123	above         = 230
124	iotaSubscript = 240
125)
126
127// The exceptions slice holds data that does not fit in a normal info entry.
128// The entry is pointed to by the exception index in an entry. It has the
129// following format:
130//
131// Header
132// byte 0:
133//  7..6  unused
134//  5..4  CCC type (same bits as entry)
135//     3  unused
136//  2..0  length of fold
137//
138// byte 1:
139//   7..6  unused
140//   5..3  length of 1st mapping of case type
141//   2..0  length of 2nd mapping of case type
142//
143//   case     1st    2nd
144//   lower -> upper, title
145//   upper -> lower, title
146//   title -> lower, upper
147//
148// Lengths with the value 0x7 indicate no value and implies no change.
149// A length of 0 indicates a mapping to zero-length string.
150//
151// Body bytes:
152//   case folding bytes
153//   lowercase mapping bytes
154//   uppercase mapping bytes
155//   titlecase mapping bytes
156//   closure mapping bytes (for NFKC_Casefold). (TODO)
157//
158// Fallbacks:
159//   missing fold  -> lower
160//   missing title -> upper
161//   all missing   -> original rune
162//
163// exceptions starts with a dummy byte to enforce that there is no zero index
164// value.
165const (
166	lengthMask = 0x07
167	lengthBits = 3
168	noChange   = 0
169)
170
171// References to generated trie.
172
173var trie = newCaseTrie(0)
174
175var sparse = sparseBlocks{
176	values:  sparseValues[:],
177	offsets: sparseOffsets[:],
178}
179
180// Sparse block lookup code.
181
182// valueRange is an entry in a sparse block.
183type valueRange struct {
184	value  uint16
185	lo, hi byte
186}
187
188type sparseBlocks struct {
189	values  []valueRange
190	offsets []uint16
191}
192
193// lookup returns the value from values block n for byte b using binary search.
194func (s *sparseBlocks) lookup(n uint32, b byte) uint16 {
195	lo := s.offsets[n]
196	hi := s.offsets[n+1]
197	for lo < hi {
198		m := lo + (hi-lo)/2
199		r := s.values[m]
200		if r.lo <= b && b <= r.hi {
201			return r.value
202		}
203		if b < r.lo {
204			hi = m
205		} else {
206			lo = m + 1
207		}
208	}
209	return 0
210}
211
212// lastRuneForTesting is the last rune used for testing. Everything after this
213// is boring.
214const lastRuneForTesting = rune(0x1FFFF)
215