1 /****************************************************************
2 
3 The author of this software is David M. Gay.
4 
5 Copyright (C) 1998-2000 by Lucent Technologies
6 All Rights Reserved
7 
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
16 permission.
17 
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 THIS SOFTWARE.
26 
27 ****************************************************************/
28 
29 /* This is a variation on dtoa.c that converts arbitary binary
30    floating-point formats to and from decimal notation.  It uses
31    double-precision arithmetic internally, so there are still
32    various #ifdefs that adapt the calculations to the native
33    double-precision arithmetic (any of IEEE, VAX D_floating,
34    or IBM mainframe arithmetic).
35 
36    Please send bug reports to David M. Gay (dmg at acm dot org,
37    with " at " changed at "@" and " dot " changed to ".").
38  */
39 
40 /* On a machine with IEEE extended-precision registers, it is
41  * necessary to specify double-precision (53-bit) rounding precision
42  * before invoking strtod or dtoa.  If the machine uses (the equivalent
43  * of) Intel 80x87 arithmetic, the call
44  *	_control87(PC_53, MCW_PC);
45  * does this with many compilers.  Whether this or another call is
46  * appropriate depends on the compiler; for this to work, it may be
47  * necessary to #include "float.h" or another system-dependent header
48  * file.
49  */
50 
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52  *
53  * This strtod returns a nearest machine number to the input decimal
54  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
55  * broken by the IEEE round-even rule.  Otherwise ties are broken by
56  * biased rounding (add half and chop).
57  *
58  * Inspired loosely by William D. Clinger's paper "How to Read Floating
59  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60  *
61  * Modifications:
62  *
63  *	1. We only require IEEE, IBM, or VAX double-precision
64  *		arithmetic (not IEEE double-extended).
65  *	2. We get by with floating-point arithmetic in a case that
66  *		Clinger missed -- when we're computing d * 10^n
67  *		for a small integer d and the integer n is not too
68  *		much larger than 22 (the maximum integer k for which
69  *		we can represent 10^k exactly), we may be able to
70  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
71  *	3. Rather than a bit-at-a-time adjustment of the binary
72  *		result in the hard case, we use floating-point
73  *		arithmetic to determine the adjustment to within
74  *		one bit; only in really hard cases do we need to
75  *		compute a second residual.
76  *	4. Because of 3., we don't need a large table of powers of 10
77  *		for ten-to-e (just some small tables, e.g. of 10^k
78  *		for 0 <= k <= 22).
79  */
80 
81 /*
82  * #define IEEE_8087 for IEEE-arithmetic machines where the least
83  *	significant byte has the lowest address.
84  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85  *	significant byte has the lowest address.
86  * #define Long int on machines with 32-bit ints and 64-bit longs.
87  * #define Sudden_Underflow for IEEE-format machines without gradual
88  *	underflow (i.e., that flush to zero on underflow).
89  * #define IBM for IBM mainframe-style floating-point arithmetic.
90  * #define VAX for VAX-style floating-point arithmetic (D_floating).
91  * #define No_leftright to omit left-right logic in fast floating-point
92  *	computation of dtoa and gdtoa.  This will cause modes 4 and 5 to be
93  *	treated the same as modes 2 and 3 for some inputs.
94  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
95  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
96  *	that use extended-precision instructions to compute rounded
97  *	products and quotients) with IBM.
98  * #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
99  *	that rounds toward +Infinity.
100  * #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
101  *	rounding when the underlying floating-point arithmetic uses
102  *	unbiased rounding.  This prevent using ordinary floating-point
103  *	arithmetic when the result could be computed with one rounding error.
104  * #define Inaccurate_Divide for IEEE-format with correctly rounded
105  *	products but inaccurate quotients, e.g., for Intel i860.
106  * #define NO_LONG_LONG on machines that do not have a "long long"
107  *	integer type (of >= 64 bits).  On such machines, you can
108  *	#define Just_16 to store 16 bits per 32-bit Long when doing
109  *	high-precision integer arithmetic.  Whether this speeds things
110  *	up or slows things down depends on the machine and the number
111  *	being converted.  If long long is available and the name is
112  *	something other than "long long", #define Llong to be the name,
113  *	and if "unsigned Llong" does not work as an unsigned version of
114  *	Llong, #define #ULLong to be the corresponding unsigned type.
115  * #define KR_headers for old-style C function headers.
116  * #define Bad_float_h if your system lacks a float.h or if it does not
117  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
118  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
119  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
120  *	if memory is available and otherwise does something you deem
121  *	appropriate.  If MALLOC is undefined, malloc will be invoked
122  *	directly -- and assumed always to succeed.  Similarly, if you
123  *	want something other than the system's free() to be called to
124  *	recycle memory acquired from MALLOC, #define FREE to be the
125  *	name of the alternate routine.  (FREE or free is only called in
126  *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
127  *	mode 3 with thousands of digits requested.)
128  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
129  *	memory allocations from a private pool of memory when possible.
130  *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
131  *	unless #defined to be a different length.  This default length
132  *	suffices to get rid of MALLOC calls except for unusual cases,
133  *	such as decimal-to-binary conversion of a very long string of
134  *	digits.  When converting IEEE double precision values, the
135  *	longest string gdtoa can return is about 751 bytes long.  For
136  *	conversions by strtod of strings of 800 digits and all gdtoa
137  *	conversions of IEEE doubles in single-threaded executions with
138  *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
139  *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
140  * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
141  *	#defined automatically on IEEE systems.  On such systems,
142  *	when INFNAN_CHECK is #defined, strtod checks
143  *	for Infinity and NaN (case insensitively).
144  *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
145  *	strtodg also accepts (case insensitively) strings of the form
146  *	NaN(x), where x is a string of hexadecimal digits (optionally
147  *	preceded by 0x or 0X) and spaces; if there is only one string
148  *	of hexadecimal digits, it is taken for the fraction bits of the
149  *	resulting NaN; if there are two or more strings of hexadecimal
150  *	digits, each string is assigned to the next available sequence
151  *	of 32-bit words of fractions bits (starting with the most
152  *	significant), right-aligned in each sequence.
153  *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
154  *	is consumed even when ... has the wrong form (in which case the
155  *	"(...)" is consumed but ignored).
156  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
157  *	multiple threads.  In this case, you must provide (or suitably
158  *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
159  *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
160  *	in pow5mult, ensures lazy evaluation of only one copy of high
161  *	powers of 5; omitting this lock would introduce a small
162  *	probability of wasting memory, but would otherwise be harmless.)
163  *	You must also invoke freedtoa(s) to free the value s returned by
164  *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
165  * #define IMPRECISE_INEXACT if you do not care about the setting of
166  *	the STRTOG_Inexact bits in the special case of doing IEEE double
167  *	precision conversions (which could also be done by the strtod in
168  *	dtoa.c).
169  * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
170  *	floating-point constants.
171  * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
172  *	strtodg.c).
173  * #define NO_STRING_H to use private versions of memcpy.
174  *	On some K&R systems, it may also be necessary to
175  *	#define DECLARE_SIZE_T in this case.
176  * #define USE_LOCALE to use the current locale's decimal_point value.
177  */
178 
179 #ifndef GDTOAIMP_H_INCLUDED
180 #define GDTOAIMP_H_INCLUDED
181 #include "gdtoa.h"
182 
183 #if defined(_MSC_VER)
184 /* [RH] Generating gd_qnan.h strikes me as too cumbersome under Visual
185 * Studio, so here's the equivalent, given the limited number of
186 * architectures that MSC can target. (Itanium? Who cares about that?)
187 */
188 #define f_QNAN 0xffc00000
189 #define d_QNAN0 0x0
190 #define d_QNAN1 0xfff80000
191 #define ld_QNAN0 0x0
192 #define ld_QNAN1 0xfff80000
193 #define ld_QNAN2 0x0
194 #define ld_QNAN3 0x0
195 #define ldus_QNAN0 0x0
196 #define ldus_QNAN1 0x0
197 #define ldus_QNAN2 0x0
198 #define ldus_QNAN3 0xfff8
199 #define ldus_QNAN4 0x0
200 /* [RH] Interestingly, MinGW produces something different because
201 * it turns out that it has a true long double type. I thought that
202 * all ia32 compilers had phased out extended precision.
203 */
204 #elif defined(__APPLE__) || defined(__ANDROID__)
205 #if defined(__x86_64__) || defined(__i386__) || defined(__ANDROID__)
206 #define f_QNAN 0xffc00000
207 #define d_QNAN0 0x0
208 #define d_QNAN1 0xfff80000
209 #define ld_QNAN0 0x0
210 #define ld_QNAN1 0xc0000000
211 #define ld_QNAN2 0xffff
212 #define ld_QNAN3 0x0
213 #define ldus_QNAN0 0x0
214 #define ldus_QNAN1 0x0
215 #define ldus_QNAN2 0x0
216 #define ldus_QNAN3 0xc000
217 #define ldus_QNAN4 0xffff
218 #else
219 #define f_QNAN 0xffc00000
220 #define d_QNAN0 0xfff80000
221 #define d_QNAN1 0x0
222 #define ld_QNAN0 0xfff80000
223 #define ld_QNAN1 0x0
224 #define ld_QNAN2 0x0
225 #define ld_QNAN3 0x0
226 #define ldus_QNAN0 0xfff8
227 #define ldus_QNAN1 0x0
228 #define ldus_QNAN2 0x0
229 #define ldus_QNAN3 0x0
230 #define ldus_QNAN4 0x0
231 #endif
232 #else
233 #include "gd_qnan.h"
234 #endif
235 
236 #ifdef Honor_FLT_ROUNDS
237 #include <fenv.h>
238 #endif
239 
240 #ifdef DEBUG
241 #include "stdio.h"
242 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
243 #endif
244 
245 #include "stdlib.h"
246 #include "string.h"
247 
248 #ifdef KR_headers
249 #define Char char
250 #else
251 #define Char void
252 #endif
253 
254 #ifdef MALLOC
255 extern Char *MALLOC ANSI((size_t));
256 #else
257 #define MALLOC malloc
258 #endif
259 
260 #undef IEEE_Arith
261 #undef Avoid_Underflow
262 #ifdef IEEE_MC68k
263 #define IEEE_Arith
264 #endif
265 #ifdef IEEE_8087
266 #define IEEE_Arith
267 #endif
268 
269 #include "errno.h"
270 #ifdef Bad_float_h
271 
272 #ifdef IEEE_Arith
273 #define DBL_DIG 15
274 #define DBL_MAX_10_EXP 308
275 #define DBL_MAX_EXP 1024
276 #define FLT_RADIX 2
277 #define DBL_MAX 1.7976931348623157e+308
278 #endif
279 
280 #ifdef IBM
281 #define DBL_DIG 16
282 #define DBL_MAX_10_EXP 75
283 #define DBL_MAX_EXP 63
284 #define FLT_RADIX 16
285 #define DBL_MAX 7.2370055773322621e+75
286 #endif
287 
288 #ifdef VAX
289 #define DBL_DIG 16
290 #define DBL_MAX_10_EXP 38
291 #define DBL_MAX_EXP 127
292 #define FLT_RADIX 2
293 #define DBL_MAX 1.7014118346046923e+38
294 #define n_bigtens 2
295 #endif
296 
297 #ifndef LONG_MAX
298 #define LONG_MAX 2147483647
299 #endif
300 
301 #else /* ifndef Bad_float_h */
302 #include "float.h"
303 #endif /* Bad_float_h */
304 
305 #ifdef IEEE_Arith
306 #define Scale_Bit 0x10
307 #define n_bigtens 5
308 #endif
309 
310 #ifdef IBM
311 #define n_bigtens 3
312 #endif
313 
314 #ifdef VAX
315 #define n_bigtens 2
316 #endif
317 
318 #ifndef __MATH_H__
319 #include "math.h"
320 #endif
321 
322 #ifdef __cplusplus
323 extern "C" {
324 #endif
325 
326 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
327 Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
328 #endif
329 
330 typedef union { double d; ULong L[2]; } U;
331 
332 #ifdef IEEE_8087
333 #define word0(x) (x)->L[1]
334 #define word1(x) (x)->L[0]
335 #else
336 #define word0(x) (x)->L[0]
337 #define word1(x) (x)->L[1]
338 #endif
339 #define dval(x) (x)->d
340 
341 /* The following definition of Storeinc is appropriate for MIPS processors.
342  * An alternative that might be better on some machines is
343  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
344  */
345 #if defined(IEEE_8087) + defined(VAX)
346 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
347 ((unsigned short *)a)[0] = (unsigned short)c, a++)
348 #else
349 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
350 ((unsigned short *)a)[1] = (unsigned short)c, a++)
351 #endif
352 
353 /* #define P DBL_MANT_DIG */
354 /* Ten_pmax = floor(P*log(2)/log(5)) */
355 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
356 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
357 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
358 
359 #ifdef IEEE_Arith
360 #define Exp_shift  20
361 #define Exp_shift1 20
362 #define Exp_msk1    0x100000
363 #define Exp_msk11   0x100000
364 #define Exp_mask  0x7ff00000
365 #define P 53
366 #define Bias 1023
367 #define Emin (-1022)
368 #define Exp_1  0x3ff00000
369 #define Exp_11 0x3ff00000
370 #define Ebits 11
371 #define Frac_mask  0xfffff
372 #define Frac_mask1 0xfffff
373 #define Ten_pmax 22
374 #define Bletch 0x10
375 #define Bndry_mask  0xfffff
376 #define Bndry_mask1 0xfffff
377 #define LSB 1
378 #define Sign_bit 0x80000000
379 #define Log2P 1
380 #define Tiny0 0
381 #define Tiny1 1
382 #define Quick_max 14
383 #define Int_max 14
384 
385 #ifndef Flt_Rounds
386 #ifdef FLT_ROUNDS
387 #define Flt_Rounds FLT_ROUNDS
388 #else
389 #define Flt_Rounds 1
390 #endif
391 #endif /*Flt_Rounds*/
392 
393 #else /* ifndef IEEE_Arith */
394 #undef  Sudden_Underflow
395 #define Sudden_Underflow
396 #ifdef IBM
397 #undef Flt_Rounds
398 #define Flt_Rounds 0
399 #define Exp_shift  24
400 #define Exp_shift1 24
401 #define Exp_msk1   0x1000000
402 #define Exp_msk11  0x1000000
403 #define Exp_mask  0x7f000000
404 #define P 14
405 #define Bias 65
406 #define Exp_1  0x41000000
407 #define Exp_11 0x41000000
408 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
409 #define Frac_mask  0xffffff
410 #define Frac_mask1 0xffffff
411 #define Bletch 4
412 #define Ten_pmax 22
413 #define Bndry_mask  0xefffff
414 #define Bndry_mask1 0xffffff
415 #define LSB 1
416 #define Sign_bit 0x80000000
417 #define Log2P 4
418 #define Tiny0 0x100000
419 #define Tiny1 0
420 #define Quick_max 14
421 #define Int_max 15
422 #else /* VAX */
423 #undef Flt_Rounds
424 #define Flt_Rounds 1
425 #define Exp_shift  23
426 #define Exp_shift1 7
427 #define Exp_msk1    0x80
428 #define Exp_msk11   0x800000
429 #define Exp_mask  0x7f80
430 #define P 56
431 #define Bias 129
432 #define Exp_1  0x40800000
433 #define Exp_11 0x4080
434 #define Ebits 8
435 #define Frac_mask  0x7fffff
436 #define Frac_mask1 0xffff007f
437 #define Ten_pmax 24
438 #define Bletch 2
439 #define Bndry_mask  0xffff007f
440 #define Bndry_mask1 0xffff007f
441 #define LSB 0x10000
442 #define Sign_bit 0x8000
443 #define Log2P 1
444 #define Tiny0 0x80
445 #define Tiny1 0
446 #define Quick_max 15
447 #define Int_max 15
448 #endif /* IBM, VAX */
449 #endif /* IEEE_Arith */
450 
451 #ifndef IEEE_Arith
452 #define ROUND_BIASED
453 #else
454 #ifdef ROUND_BIASED_without_Round_Up
455 #undef  ROUND_BIASED
456 #define ROUND_BIASED
457 #endif
458 #endif
459 
460 #ifdef RND_PRODQUOT
461 #define rounded_product(a,b) a = rnd_prod(a, b)
462 #define rounded_quotient(a,b) a = rnd_quot(a, b)
463 #ifdef KR_headers
464 extern double rnd_prod(), rnd_quot();
465 #else
466 extern double rnd_prod(double, double), rnd_quot(double, double);
467 #endif
468 #else
469 #define rounded_product(a,b) a *= b
470 #define rounded_quotient(a,b) a /= b
471 #endif
472 
473 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
474 #define Big1 0xffffffff
475 
476 #undef  Pack_16
477 #ifndef Pack_32
478 #define Pack_32
479 #endif
480 
481 #ifdef NO_LONG_LONG
482 #undef ULLong
483 #ifdef Just_16
484 #undef Pack_32
485 #define Pack_16
486 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
487  * This makes some inner loops simpler and sometimes saves work
488  * during multiplications, but it often seems to make things slightly
489  * slower.  Hence the default is now to store 32 bits per Long.
490  */
491 #endif
492 #else	/* long long available */
493 #ifndef Llong
494 #define Llong long long
495 #endif
496 #ifndef ULLong
497 #define ULLong unsigned Llong
498 #endif
499 #endif /* NO_LONG_LONG */
500 
501 #ifdef Pack_32
502 #define ULbits 32
503 #define kshift 5
504 #define kmask 31
505 #define ALL_ON 0xffffffff
506 #else
507 #define ULbits 16
508 #define kshift 4
509 #define kmask 15
510 #define ALL_ON 0xffff
511 #endif
512 
513 //#ifndef MULTIPLE_THREADS
514 #define ACQUIRE_DTOA_LOCK(n)	/*nothing*/
515 #define FREE_DTOA_LOCK(n)	/*nothing*/
516 //#endif
517 
518 #define Kmax 9
519 
520  struct
521 Bigint {
522 	struct Bigint *next;
523 	int k, maxwds, sign, wds;
524 	ULong x[1];
525 	};
526 
527  typedef struct Bigint Bigint;
528 
529 #ifdef NO_STRING_H
530 #ifdef DECLARE_SIZE_T
531 typedef unsigned int size_t;
532 #endif
533 extern void memcpy_D2A ANSI((void*, const void*, size_t));
534 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
535 #else /* !NO_STRING_H */
536 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
537 #endif /* NO_STRING_H */
538 
539 #define Balloc Balloc_D2A
540 #define Bfree Bfree_D2A
541 #define InfName InfName_D2A
542 #define NanName NanName_D2A
543 #define ULtoQ ULtoQ_D2A
544 #define ULtof ULtof_D2A
545 #define ULtod ULtod_D2A
546 #define ULtodd ULtodd_D2A
547 #define ULtox ULtox_D2A
548 #define ULtoxL ULtoxL_D2A
549 #define add_nanbits add_nanbits_D2A
550 #define any_on any_on_D2A
551 #define b2d b2d_D2A
552 #define bigtens bigtens_D2A
553 #define cmp cmp_D2A
554 #define copybits copybits_D2A
555 #define d2b d2b_D2A
556 #define decrement decrement_D2A
557 #define diff diff_D2A
558 #define dtoa_result dtoa_result_D2A
559 #define g__fmt g__fmt_D2A
560 #define gethex gethex_D2A
561 #define hexdig hexdig_D2A
562 #define hexnan hexnan_D2A
563 #define hi0bits(x) hi0bits_D2A((ULong)(x))
564 #define i2b i2b_D2A
565 #define increment increment_D2A
566 #define lo0bits lo0bits_D2A
567 #define lshift lshift_D2A
568 #define match match_D2A
569 #define mult mult_D2A
570 #define multadd multadd_D2A
571 #define nrv_alloc nrv_alloc_D2A
572 #define pow5mult pow5mult_D2A
573 #define quorem quorem_D2A
574 #define ratio ratio_D2A
575 #define rshift rshift_D2A
576 #define rv_alloc rv_alloc_D2A
577 #define s2b s2b_D2A
578 #define set_ones set_ones_D2A
579 #define strcp strcp_D2A
580 #define strtoIg strtoIg_D2A
581 #define sum sum_D2A
582 #define tens tens_D2A
583 #define tinytens tinytens_D2A
584 #define tinytens tinytens_D2A
585 #define trailz trailz_D2A
586 #define ulp ulp_D2A
587 
588  extern char *add_nanbits ANSI((char*, size_t, ULong*, int));
589  extern char *dtoa_result;
590  extern CONST double bigtens[], tens[], tinytens[];
591  extern unsigned char hexdig[];
592  extern const char *InfName[6], *NanName[3];
593 
594  extern Bigint *Balloc ANSI((int));
595  extern void Bfree ANSI((Bigint*));
596  extern void ULtof ANSI((ULong*, ULong*, Long, int));
597  extern void ULtod ANSI((ULong*, ULong*, Long, int));
598  extern void ULtodd ANSI((ULong*, ULong*, Long, int));
599  extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
600  extern void ULtox ANSI((UShort*, ULong*, Long, int));
601  extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
602  extern ULong any_on ANSI((Bigint*, int));
603  extern double b2d ANSI((Bigint*, int*));
604  extern int cmp ANSI((Bigint*, Bigint*));
605  extern void copybits ANSI((ULong*, int, Bigint*));
606  extern Bigint *d2b ANSI((double, int*, int*));
607  extern void decrement ANSI((Bigint*));
608  extern Bigint *diff ANSI((Bigint*, Bigint*));
609  extern char *dtoa ANSI((double d, int mode, int ndigits,
610 			int *decpt, int *sign, char **rve));
611  extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
612  extern int gethex ANSI((CONST char**, FPI*, Long*, Bigint**, int));
613  extern void hexdig_init_D2A(Void);
614  extern int hexnan ANSI((CONST char**, FPI*, ULong*));
615  extern int hi0bits_D2A ANSI((ULong));
616  extern Bigint *i2b ANSI((int));
617  extern Bigint *increment ANSI((Bigint*));
618  extern int lo0bits ANSI((ULong*));
619  extern Bigint *lshift ANSI((Bigint*, int));
620  extern int match ANSI((CONST char**, char*));
621  extern Bigint *mult ANSI((Bigint*, Bigint*));
622  extern Bigint *multadd ANSI((Bigint*, int, int));
623  extern char *nrv_alloc ANSI((char*, char **, int));
624  extern Bigint *pow5mult ANSI((Bigint*, int));
625  extern int quorem ANSI((Bigint*, Bigint*));
626  extern double ratio ANSI((Bigint*, Bigint*));
627  extern void rshift ANSI((Bigint*, int));
628  extern char *rv_alloc ANSI((int));
629  extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
630  extern Bigint *set_ones ANSI((Bigint*, int));
631  extern char *strcp ANSI((char*, const char*));
632  extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
633 // extern double strtod ANSI((const char *s00, char **se));
634  extern Bigint *sum ANSI((Bigint*, Bigint*));
635  extern int trailz ANSI((Bigint*));
636  extern double ulp ANSI((U*));
637 
638 #ifdef __cplusplus
639 }
640 #endif
641 /*
642  * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
643  * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
644  * respectively), but now are determined by compiling and running
645  * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
646  * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
647  * and -DNAN_WORD1=...  values if necessary.  This should still work.
648  * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
649  */
650 #ifdef IEEE_Arith
651 #ifndef NO_INFNAN_CHECK
652 #undef INFNAN_CHECK
653 #define INFNAN_CHECK
654 #endif
655 #ifdef IEEE_MC68k
656 #define _0 0
657 #define _1 1
658 #ifndef NAN_WORD0
659 #define NAN_WORD0 d_QNAN0
660 #endif
661 #ifndef NAN_WORD1
662 #define NAN_WORD1 d_QNAN1
663 #endif
664 #else
665 #define _0 1
666 #define _1 0
667 #ifndef NAN_WORD0
668 #define NAN_WORD0 d_QNAN1
669 #endif
670 #ifndef NAN_WORD1
671 #define NAN_WORD1 d_QNAN0
672 #endif
673 #endif
674 #else
675 #undef INFNAN_CHECK
676 #endif
677 
678 #undef SI
679 #ifdef Sudden_Underflow
680 #define SI 1
681 #else
682 #define SI 0
683 #endif
684 
685 #endif /* GDTOAIMP_H_INCLUDED */
686