1 /*
2 * Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #ifndef B2_FIXTURE_H
20 #define B2_FIXTURE_H
21 
22 #include <Box2D/Dynamics/b2Body.h>
23 #include <Box2D/Collision/b2Collision.h>
24 #include <Box2D/Collision/Shapes/b2Shape.h>
25 
26 class b2BlockAllocator;
27 class b2Body;
28 class b2BroadPhase;
29 class b2Fixture;
30 
31 /// This holds contact filtering data.
32 struct b2Filter
33 {
b2Filterb2Filter34 	b2Filter()
35 	{
36 		categoryBits = 0x0001;
37 		maskBits = 0xFFFF;
38 		groupIndex = 0;
39 	}
40 
41 	/// The collision category bits. Normally you would just set one bit.
42 	uint16 categoryBits;
43 
44 	/// The collision mask bits. This states the categories that this
45 	/// shape would accept for collision.
46 	uint16 maskBits;
47 
48 	/// Collision groups allow a certain group of objects to never collide (negative)
49 	/// or always collide (positive). Zero means no collision group. Non-zero group
50 	/// filtering always wins against the mask bits.
51 	int16 groupIndex;
52 };
53 
54 /// A fixture definition is used to create a fixture. This class defines an
55 /// abstract fixture definition. You can reuse fixture definitions safely.
56 struct b2FixtureDef
57 {
58 	/// The constructor sets the default fixture definition values.
b2FixtureDefb2FixtureDef59 	b2FixtureDef()
60 	{
61 		shape = NULL;
62 		userData = NULL;
63 		friction = 0.2f;
64 		restitution = 0.0f;
65 		density = 0.0f;
66 		isSensor = false;
67 	}
68 
69 	/// The shape, this must be set. The shape will be cloned, so you
70 	/// can create the shape on the stack.
71 	const b2Shape* shape;
72 
73 	/// Use this to store application specific fixture data.
74 	void* userData;
75 
76 	/// The friction coefficient, usually in the range [0,1].
77 	float32 friction;
78 
79 	/// The restitution (elasticity) usually in the range [0,1].
80 	float32 restitution;
81 
82 	/// The density, usually in kg/m^2.
83 	float32 density;
84 
85 	/// A sensor shape collects contact information but never generates a collision
86 	/// response.
87 	bool isSensor;
88 
89 	/// Contact filtering data.
90 	b2Filter filter;
91 };
92 
93 /// This proxy is used internally to connect fixtures to the broad-phase.
94 struct b2FixtureProxy
95 {
96 	b2AABB aabb;
97 	b2Fixture* fixture;
98 	int32 childIndex;
99 	int32 proxyId;
100 };
101 
102 /// A fixture is used to attach a shape to a body for collision detection. A fixture
103 /// inherits its transform from its parent. Fixtures hold additional non-geometric data
104 /// such as friction, collision filters, etc.
105 /// Fixtures are created via b2Body::CreateFixture.
106 /// @warning you cannot reuse fixtures.
107 class b2Fixture
108 {
109 public:
110 	/// Get the type of the child shape. You can use this to down cast to the concrete shape.
111 	/// @return the shape type.
112 	b2Shape::Type GetType() const;
113 
114 	/// Get the child shape. You can modify the child shape, however you should not change the
115 	/// number of vertices because this will crash some collision caching mechanisms.
116 	/// Manipulating the shape may lead to non-physical behavior.
117 	b2Shape* GetShape();
118 	const b2Shape* GetShape() const;
119 
120 	/// Set if this fixture is a sensor.
121 	void SetSensor(bool sensor);
122 
123 	/// Is this fixture a sensor (non-solid)?
124 	/// @return the true if the shape is a sensor.
125 	bool IsSensor() const;
126 
127 	/// Set the contact filtering data. This will not update contacts until the next time
128 	/// step when either parent body is active and awake.
129 	/// This automatically calls Refilter.
130 	void SetFilterData(const b2Filter& filter);
131 
132 	/// Get the contact filtering data.
133 	const b2Filter& GetFilterData() const;
134 
135 	/// Call this if you want to establish collision that was previously disabled by b2ContactFilter::ShouldCollide.
136 	void Refilter();
137 
138 	/// Get the parent body of this fixture. This is NULL if the fixture is not attached.
139 	/// @return the parent body.
140 	b2Body* GetBody();
141 	const b2Body* GetBody() const;
142 
143 	/// Get the next fixture in the parent body's fixture list.
144 	/// @return the next shape.
145 	b2Fixture* GetNext();
146 	const b2Fixture* GetNext() const;
147 
148 	/// Get the user data that was assigned in the fixture definition. Use this to
149 	/// store your application specific data.
150 	void* GetUserData() const;
151 
152 	/// Set the user data. Use this to store your application specific data.
153 	void SetUserData(void* data);
154 
155 	/// Test a point for containment in this fixture.
156 	/// @param p a point in world coordinates.
157 	bool TestPoint(const b2Vec2& p) const;
158 
159 	/// Cast a ray against this shape.
160 	/// @param output the ray-cast results.
161 	/// @param input the ray-cast input parameters.
162 	bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input, int32 childIndex) const;
163 
164 	/// Get the mass data for this fixture. The mass data is based on the density and
165 	/// the shape. The rotational inertia is about the shape's origin. This operation
166 	/// may be expensive.
167 	void GetMassData(b2MassData* massData) const;
168 
169 	/// Set the density of this fixture. This will _not_ automatically adjust the mass
170 	/// of the body. You must call b2Body::ResetMassData to update the body's mass.
171 	void SetDensity(float32 density);
172 
173 	/// Get the density of this fixture.
174 	float32 GetDensity() const;
175 
176 	/// Get the coefficient of friction.
177 	float32 GetFriction() const;
178 
179 	/// Set the coefficient of friction. This will _not_ change the friction of
180 	/// existing contacts.
181 	void SetFriction(float32 friction);
182 
183 	/// Get the coefficient of restitution.
184 	float32 GetRestitution() const;
185 
186 	/// Set the coefficient of restitution. This will _not_ change the restitution of
187 	/// existing contacts.
188 	void SetRestitution(float32 restitution);
189 
190 	/// Get the fixture's AABB. This AABB may be enlarge and/or stale.
191 	/// If you need a more accurate AABB, compute it using the shape and
192 	/// the body transform.
193 	const b2AABB& GetAABB(int32 childIndex) const;
194 
195 	/// Dump this fixture to the log file.
196 	void Dump(int32 bodyIndex);
197 
198 protected:
199 
200 	friend class b2Body;
201 	friend class b2World;
202 	friend class b2Contact;
203 	friend class b2ContactManager;
204 
205 	b2Fixture();
206 
207 	// We need separation create/destroy functions from the constructor/destructor because
208 	// the destructor cannot access the allocator (no destructor arguments allowed by C++).
209 	void Create(b2BlockAllocator* allocator, b2Body* body, const b2FixtureDef* def);
210 	void Destroy(b2BlockAllocator* allocator);
211 
212 	// These support body activation/deactivation.
213 	void CreateProxies(b2BroadPhase* broadPhase, const b2Transform& xf);
214 	void DestroyProxies(b2BroadPhase* broadPhase);
215 
216 	void Synchronize(b2BroadPhase* broadPhase, const b2Transform& xf1, const b2Transform& xf2);
217 
218 	float32 m_density;
219 
220 	b2Fixture* m_next;
221 	b2Body* m_body;
222 
223 	b2Shape* m_shape;
224 
225 	float32 m_friction;
226 	float32 m_restitution;
227 
228 	b2FixtureProxy* m_proxies;
229 	int32 m_proxyCount;
230 
231 	b2Filter m_filter;
232 
233 	bool m_isSensor;
234 
235 	void* m_userData;
236 };
237 
GetType()238 inline b2Shape::Type b2Fixture::GetType() const
239 {
240 	return m_shape->GetType();
241 }
242 
GetShape()243 inline b2Shape* b2Fixture::GetShape()
244 {
245 	return m_shape;
246 }
247 
GetShape()248 inline const b2Shape* b2Fixture::GetShape() const
249 {
250 	return m_shape;
251 }
252 
IsSensor()253 inline bool b2Fixture::IsSensor() const
254 {
255 	return m_isSensor;
256 }
257 
GetFilterData()258 inline const b2Filter& b2Fixture::GetFilterData() const
259 {
260 	return m_filter;
261 }
262 
GetUserData()263 inline void* b2Fixture::GetUserData() const
264 {
265 	return m_userData;
266 }
267 
SetUserData(void * data)268 inline void b2Fixture::SetUserData(void* data)
269 {
270 	m_userData = data;
271 }
272 
GetBody()273 inline b2Body* b2Fixture::GetBody()
274 {
275 	return m_body;
276 }
277 
GetBody()278 inline const b2Body* b2Fixture::GetBody() const
279 {
280 	return m_body;
281 }
282 
GetNext()283 inline b2Fixture* b2Fixture::GetNext()
284 {
285 	return m_next;
286 }
287 
GetNext()288 inline const b2Fixture* b2Fixture::GetNext() const
289 {
290 	return m_next;
291 }
292 
SetDensity(float32 density)293 inline void b2Fixture::SetDensity(float32 density)
294 {
295 	b2Assert(b2IsValid(density) && density >= 0.0f);
296 	m_density = density;
297 }
298 
GetDensity()299 inline float32 b2Fixture::GetDensity() const
300 {
301 	return m_density;
302 }
303 
GetFriction()304 inline float32 b2Fixture::GetFriction() const
305 {
306 	return m_friction;
307 }
308 
SetFriction(float32 friction)309 inline void b2Fixture::SetFriction(float32 friction)
310 {
311 	m_friction = friction;
312 }
313 
GetRestitution()314 inline float32 b2Fixture::GetRestitution() const
315 {
316 	return m_restitution;
317 }
318 
SetRestitution(float32 restitution)319 inline void b2Fixture::SetRestitution(float32 restitution)
320 {
321 	m_restitution = restitution;
322 }
323 
TestPoint(const b2Vec2 & p)324 inline bool b2Fixture::TestPoint(const b2Vec2& p) const
325 {
326 	return m_shape->TestPoint(m_body->GetTransform(), p);
327 }
328 
RayCast(b2RayCastOutput * output,const b2RayCastInput & input,int32 childIndex)329 inline bool b2Fixture::RayCast(b2RayCastOutput* output, const b2RayCastInput& input, int32 childIndex) const
330 {
331 	return m_shape->RayCast(output, input, m_body->GetTransform(), childIndex);
332 }
333 
GetMassData(b2MassData * massData)334 inline void b2Fixture::GetMassData(b2MassData* massData) const
335 {
336 	m_shape->ComputeMass(massData, m_density);
337 }
338 
GetAABB(int32 childIndex)339 inline const b2AABB& b2Fixture::GetAABB(int32 childIndex) const
340 {
341 	b2Assert(0 <= childIndex && childIndex < m_proxyCount);
342 	return m_proxies[childIndex].aabb;
343 }
344 
345 #endif
346