1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_EXPM1_INCLUDED
7 #define BOOST_MATH_EXPM1_INCLUDED
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/config/no_tr1/cmath.hpp>
14 #include <math.h> // platform's ::expm1
15 #include <boost/limits.hpp>
16 #include <boost/math/tools/config.hpp>
17 #include <boost/math/tools/series.hpp>
18 #include <boost/math/tools/precision.hpp>
19 #include <boost/math/policies/error_handling.hpp>
20 #include <boost/math/tools/rational.hpp>
21 #include <boost/math/special_functions/math_fwd.hpp>
22 #include <boost/mpl/less_equal.hpp>
23 
24 #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
25 #  include <boost/static_assert.hpp>
26 #else
27 #  include <boost/assert.hpp>
28 #endif
29 
30 namespace boost{ namespace math{
31 
32 namespace detail
33 {
34   // Functor expm1_series returns the next term in the Taylor series
35   // x^k / k!
36   // each time that operator() is invoked.
37   //
38   template <class T>
39   struct expm1_series
40   {
41      typedef T result_type;
42 
expm1_seriesboost::math::detail::expm1_series43      expm1_series(T x)
44         : k(0), m_x(x), m_term(1) {}
45 
operator ()boost::math::detail::expm1_series46      T operator()()
47      {
48         ++k;
49         m_term *= m_x;
50         m_term /= k;
51         return m_term;
52      }
53 
countboost::math::detail::expm1_series54      int count()const
55      {
56         return k;
57      }
58 
59   private:
60      int k;
61      const T m_x;
62      T m_term;
63      expm1_series(const expm1_series&);
64      expm1_series& operator=(const expm1_series&);
65   };
66 
67 //
68 // Algorithm expm1 is part of C99, but is not yet provided by many compilers.
69 //
70 // This version uses a Taylor series expansion for 0.5 > |x| > epsilon.
71 //
72 template <class T, class Policy>
73 T expm1_imp(T x, const mpl::int_<0>&, const Policy& pol)
74 {
75    BOOST_MATH_STD_USING
76 
77    T a = fabs(x);
78    if(a > T(0.5f))
79    {
80       if(a >= tools::log_max_value<T>())
81       {
82          if(x > 0)
83             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
84          return -1;
85       }
86       return exp(x) - T(1);
87    }
88    if(a < tools::epsilon<T>())
89       return x;
90    detail::expm1_series<T> s(x);
91    boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
92 #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) && !BOOST_WORKAROUND(__EDG_VERSION__, <= 245)
93    T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter);
94 #else
95    T zero = 0;
96    T result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, zero);
97 #endif
98    policies::check_series_iterations("boost::math::expm1<%1%>(%1%)", max_iter, pol);
99    return result;
100 }
101 
102 template <class T, class P>
103 T expm1_imp(T x, const mpl::int_<53>&, const P& pol)
104 {
105    BOOST_MATH_STD_USING
106 
107    T a = fabs(x);
108    if(a > T(0.5L))
109    {
110       if(a >= tools::log_max_value<T>())
111       {
112          if(x > 0)
113             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
114          return -1;
115       }
116       return exp(x) - T(1);
117    }
118    if(a < tools::epsilon<T>())
119       return x;
120 
121    static const float Y = 0.10281276702880859e1f;
122    static const T n[] = { -0.28127670288085937e-1, 0.51278186299064534e0, -0.6310029069350198e-1, 0.11638457975729296e-1, -0.52143390687521003e-3, 0.21491399776965688e-4 };
123    static const T d[] = { 1, -0.45442309511354755e0, 0.90850389570911714e-1, -0.10088963629815502e-1, 0.63003407478692265e-3, -0.17976570003654402e-4 };
124 
125    T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
126    return result;
127 }
128 
129 template <class T, class P>
130 T expm1_imp(T x, const mpl::int_<64>&, const P& pol)
131 {
132    BOOST_MATH_STD_USING
133 
134    T a = fabs(x);
135    if(a > T(0.5L))
136    {
137       if(a >= tools::log_max_value<T>())
138       {
139          if(x > 0)
140             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
141          return -1;
142       }
143       return exp(x) - T(1);
144    }
145    if(a < tools::epsilon<T>())
146       return x;
147 
148    static const float Y = 0.10281276702880859375e1f;
149    static const T n[] = {
150       -0.281276702880859375e-1L,
151        0.512980290285154286358e0L,
152        -0.667758794592881019644e-1L,
153        0.131432469658444745835e-1L,
154        -0.72303795326880286965e-3L,
155        0.447441185192951335042e-4L,
156        -0.714539134024984593011e-6L
157    };
158    static const T d[] = {
159       1,
160       -0.461477618025562520389e0L,
161       0.961237488025708540713e-1L,
162       -0.116483957658204450739e-1L,
163       0.873308008461557544458e-3L,
164       -0.387922804997682392562e-4L,
165       0.807473180049193557294e-6L
166    };
167 
168    T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
169    return result;
170 }
171 
172 template <class T, class P>
173 T expm1_imp(T x, const mpl::int_<113>&, const P& pol)
174 {
175    BOOST_MATH_STD_USING
176 
177    T a = fabs(x);
178    if(a > T(0.5L))
179    {
180       if(a >= tools::log_max_value<T>())
181       {
182          if(x > 0)
183             return policies::raise_overflow_error<T>("boost::math::expm1<%1%>(%1%)", 0, pol);
184          return -1;
185       }
186       return exp(x) - T(1);
187    }
188    if(a < tools::epsilon<T>())
189       return x;
190 
191    static const float Y = 0.10281276702880859375e1f;
192    static const T n[] = {
193       -0.28127670288085937499999999999999999854e-1L,
194       0.51278156911210477556524452177540792214e0L,
195       -0.63263178520747096729500254678819588223e-1L,
196       0.14703285606874250425508446801230572252e-1L,
197       -0.8675686051689527802425310407898459386e-3L,
198       0.88126359618291165384647080266133492399e-4L,
199       -0.25963087867706310844432390015463138953e-5L,
200       0.14226691087800461778631773363204081194e-6L,
201       -0.15995603306536496772374181066765665596e-8L,
202       0.45261820069007790520447958280473183582e-10L
203    };
204    static const T d[] = {
205       1,
206       -0.45441264709074310514348137469214538853e0L,
207       0.96827131936192217313133611655555298106e-1L,
208       -0.12745248725908178612540554584374876219e-1L,
209       0.11473613871583259821612766907781095472e-2L,
210       -0.73704168477258911962046591907690764416e-4L,
211       0.34087499397791555759285503797256103259e-5L,
212       -0.11114024704296196166272091230695179724e-6L,
213       0.23987051614110848595909588343223896577e-8L,
214       -0.29477341859111589208776402638429026517e-10L,
215       0.13222065991022301420255904060628100924e-12L
216    };
217 
218    T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x);
219    return result;
220 }
221 
222 } // namespace detail
223 
224 template <class T, class Policy>
expm1(T x,const Policy &)225 inline typename tools::promote_args<T>::type expm1(T x, const Policy& /* pol */)
226 {
227    typedef typename tools::promote_args<T>::type result_type;
228    typedef typename policies::evaluation<result_type, Policy>::type value_type;
229    typedef typename policies::precision<result_type, Policy>::type precision_type;
230    typedef typename policies::normalise<
231       Policy,
232       policies::promote_float<false>,
233       policies::promote_double<false>,
234       policies::discrete_quantile<>,
235       policies::assert_undefined<> >::type forwarding_policy;
236 
237    typedef typename mpl::if_c<
238       ::std::numeric_limits<result_type>::is_specialized == 0,
239       mpl::int_<0>,  // no numeric_limits, use generic solution
240       typename mpl::if_<
241          typename mpl::less_equal<precision_type, mpl::int_<53> >::type,
242          mpl::int_<53>,  // double
243          typename mpl::if_<
244             typename mpl::less_equal<precision_type, mpl::int_<64> >::type,
245             mpl::int_<64>, // 80-bit long double
246             typename mpl::if_<
247                typename mpl::less_equal<precision_type, mpl::int_<113> >::type,
248                mpl::int_<113>, // 128-bit long double
249                mpl::int_<0> // too many bits, use generic version.
250             >::type
251          >::type
252       >::type
253    >::type tag_type;
254 
255    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expm1_imp(
256       static_cast<value_type>(x),
257       tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)");
258 }
259 
260 #ifdef expm1
261 #  ifndef BOOST_HAS_expm1
262 #     define BOOST_HAS_expm1
263 #  endif
264 #  undef expm1
265 #endif
266 
267 #if defined(BOOST_HAS_EXPM1) && !(defined(__osf__) && defined(__DECCXX_VER))
268 #  ifdef BOOST_MATH_USE_C99
expm1(float x,const policies::policy<> &)269 inline float expm1(float x, const policies::policy<>&){ return ::expm1f(x); }
270 #     ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
expm1(long double x,const policies::policy<> &)271 inline long double expm1(long double x, const policies::policy<>&){ return ::expm1l(x); }
272 #     endif
273 #  else
expm1(float x,const policies::policy<> &)274 inline float expm1(float x, const policies::policy<>&){ return ::expm1(x); }
275 #  endif
expm1(double x,const policies::policy<> &)276 inline double expm1(double x, const policies::policy<>&){ return ::expm1(x); }
277 #endif
278 
279 template <class T>
expm1(T x)280 inline typename tools::promote_args<T>::type expm1(T x)
281 {
282    return expm1(x, policies::policy<>());
283 }
284 
285 #if BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x564))
expm1(float z)286 inline float expm1(float z)
287 {
288    return expm1<float>(z);
289 }
expm1(double z)290 inline double expm1(double z)
291 {
292    return expm1<double>(z);
293 }
294 #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
expm1(long double z)295 inline long double expm1(long double z)
296 {
297    return expm1<long double>(z);
298 }
299 #endif
300 #endif
301 
302 } // namespace math
303 } // namespace boost
304 
305 #endif // BOOST_MATH_HYPOT_INCLUDED
306 
307 
308 
309 
310