1 /*
2  * jcdctmgr.c
3  *
4  * Copyright (C) 1994-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains the forward-DCT management logic.
9  * This code selects a particular DCT implementation to be used,
10  * and it performs related housekeeping chores including coefficient
11  * quantization.
12  */
13 
14 #define JPEG_INTERNALS
15 #include "jinclude.h"
16 #include "jpeglib.h"
17 #include "jdct.h"		/* Private declarations for DCT subsystem */
18 
19 
20 /* Private subobject for this module */
21 
22 typedef struct {
23   struct jpeg_forward_dct pub;	/* public fields */
24 
25   /* Pointer to the DCT routine actually in use */
26   forward_DCT_method_ptr do_dct;
27 
28   /* The actual post-DCT divisors --- not identical to the quant table
29    * entries, because of scaling (especially for an unnormalized DCT).
30    * Each table is given in normal array order.
31    */
32   DCTELEM * divisors[NUM_QUANT_TBLS];
33 
34 #ifdef DCT_FLOAT_SUPPORTED
35   /* Same as above for the floating-point case. */
36   float_DCT_method_ptr do_float_dct;
37   FAST_FLOAT * float_divisors[NUM_QUANT_TBLS];
38 #endif
39 } my_fdct_controller;
40 
41 typedef my_fdct_controller * my_fdct_ptr;
42 
43 
44 /*
45  * Initialize for a processing pass.
46  * Verify that all referenced Q-tables are present, and set up
47  * the divisor table for each one.
48  * In the current implementation, DCT of all components is done during
49  * the first pass, even if only some components will be output in the
50  * first scan.  Hence all components should be examined here.
51  */
52 
53 METHODDEF(void)
start_pass_fdctmgr(j_compress_ptr cinfo)54 start_pass_fdctmgr (j_compress_ptr cinfo)
55 {
56   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
57   int ci, qtblno, i;
58   jpeg_component_info *compptr;
59   JQUANT_TBL * qtbl;
60 
61   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
62        ci++, compptr++) {
63     qtblno = compptr->quant_tbl_no;
64     /* Make sure specified quantization table is present */
65     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
66 	cinfo->quant_tbl_ptrs[qtblno] == NULL)
67       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
68     qtbl = cinfo->quant_tbl_ptrs[qtblno];
69     /* Compute divisors for this quant table */
70     /* We may do this more than once for same table, but it's not a big deal */
71     switch (cinfo->dct_method) {
72 #ifdef DCT_ISLOW_SUPPORTED
73     case JDCT_ISLOW:
74       /* For LL&M IDCT method, divisors are equal to raw quantization
75        * coefficients multiplied by 8 (to counteract scaling).
76        */
77       if (fdct->divisors[qtblno] == NULL) {
78 	fdct->divisors[qtblno] = (DCTELEM *)
79 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
80 				      DCTSIZE2 * SIZEOF(DCTELEM));
81       }
82       dtbl = fdct->divisors[qtblno];
83       for (i = 0; i < DCTSIZE2; i++) {
84 	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
85       }
86       break;
87 #endif
88 #ifdef DCT_IFAST_SUPPORTED
89     case JDCT_IFAST:
90       {
91 	/* For AA&N IDCT method, divisors are equal to quantization
92 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
93 	 *   scalefactor[0] = 1
94 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
95 	 * We apply a further scale factor of 8.
96 	 */
97 #define CONST_BITS 14
98 	static const INT16 aanscales[DCTSIZE2] = {
99 	  /* precomputed values scaled up by 14 bits */
100 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
101 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
102 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
103 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
104 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
105 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
106 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
107 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
108 	};
109 	SHIFT_TEMPS
110 
111 	if (fdct->divisors[qtblno] == NULL) {
112 	  fdct->divisors[qtblno] = (DCTELEM *)
113 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
114 					DCTSIZE2 * SIZEOF(DCTELEM));
115 	}
116 	dtbl = fdct->divisors[qtblno];
117 	for (i = 0; i < DCTSIZE2; i++) {
118 	  dtbl[i] = (DCTELEM)
119 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
120 				  (INT32) aanscales[i]),
121 		    CONST_BITS-3);
122 	}
123       }
124       break;
125 #endif
126 #ifdef DCT_FLOAT_SUPPORTED
127     case JDCT_FLOAT:
128       {
129 	/* For float AA&N IDCT method, divisors are equal to quantization
130 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where
131 	 *   scalefactor[0] = 1
132 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
133 	 * We apply a further scale factor of 8.
134 	 * What's actually stored is 1/divisor so that the inner loop can
135 	 * use a multiplication rather than a division.
136 	 */
137 	FAST_FLOAT * fdtbl;
138 	int row, col;
139 	static const double aanscalefactor[DCTSIZE] = {
140 	  1.0, 1.387039845, 1.306562965, 1.175875602,
141 	  1.0, 0.785694958, 0.541196100, 0.275899379
142 	};
143 
144 	if (fdct->float_divisors[qtblno] == NULL) {
145 	  fdct->float_divisors[qtblno] = (FAST_FLOAT *)
146 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
147 					DCTSIZE2 * SIZEOF(FAST_FLOAT));
148 	}
149 	fdtbl = fdct->float_divisors[qtblno];
150 	i = 0;
151 	for (row = 0; row < DCTSIZE; row++) {
152 	  for (col = 0; col < DCTSIZE; col++) {
153 	    fdtbl[i] = (FAST_FLOAT)
154 	      (1.0 / (((double) qtbl->quantval[i] *
155 		       aanscalefactor[row] * aanscalefactor[col] * 8.0)));
156 	    i++;
157 	  }
158 	}
159       }
160       break;
161 #endif
162     default:
163       ERREXIT(cinfo, JERR_NOT_COMPILED);
164       break;
165     }
166   }
167 }
168 
169 
170 /* code/jpeg-6b/jcdctmgr.c:184: warning: ‘forward_DCT’ defined but not used */
171 #if 0
172 /*
173  * Perform forward DCT on one or more blocks of a component.
174  *
175  * The input samples are taken from the sample_data[] array starting at
176  * position start_row/start_col, and moving to the right for any additional
177  * blocks. The quantized coefficients are returned in coef_blocks[].
178  */
179 
180 METHODDEF(void)
181 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr,
182 	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
183 	     JDIMENSION start_row, JDIMENSION start_col,
184 	     JDIMENSION num_blocks)
185 /* This version is used for integer DCT implementations. */
186 {
187   /* This routine is heavily used, so it's worth coding it tightly. */
188   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
189   forward_DCT_method_ptr do_dct = fdct->do_dct;
190   DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no];
191   DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */
192   JDIMENSION bi;
193 
194   sample_data += start_row;	/* fold in the vertical offset once */
195 
196   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
197     /* Load data into workspace, applying unsigned->signed conversion */
198     { register DCTELEM *workspaceptr;
199       register JSAMPROW elemptr;
200       register int elemr;
201 
202       workspaceptr = workspace;
203       for (elemr = 0; elemr < DCTSIZE; elemr++) {
204 	elemptr = sample_data[elemr] + start_col;
205 #if DCTSIZE == 8		/* unroll the inner loop */
206 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
207 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
208 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
209 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
210 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
211 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
212 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
213 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
214 #else
215 	{ register int elemc;
216 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
217 	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
218 	  }
219 	}
220 #endif
221       }
222     }
223 
224     /* Perform the DCT */
225     (*do_dct) (workspace);
226 
227     /* Quantize/descale the coefficients, and store into coef_blocks[] */
228     { register DCTELEM temp, qval;
229       register int i;
230       register JCOEFPTR output_ptr = coef_blocks[bi];
231 
232       for (i = 0; i < DCTSIZE2; i++) {
233 	qval = divisors[i];
234 	temp = workspace[i];
235 	/* Divide the coefficient value by qval, ensuring proper rounding.
236 	 * Since C does not specify the direction of rounding for negative
237 	 * quotients, we have to force the dividend positive for portability.
238 	 *
239 	 * In most files, at least half of the output values will be zero
240 	 * (at default quantization settings, more like three-quarters...)
241 	 * so we should ensure that this case is fast.  On many machines,
242 	 * a comparison is enough cheaper than a divide to make a special test
243 	 * a win.  Since both inputs will be nonnegative, we need only test
244 	 * for a < b to discover whether a/b is 0.
245 	 * If your machine's division is fast enough, define FAST_DIVIDE.
246 	 */
247 #ifdef FAST_DIVIDE
248 #define DIVIDE_BY(a,b)	a /= b
249 #else
250 #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0
251 #endif
252 	if (temp < 0) {
253 	  temp = -temp;
254 	  temp += qval>>1;	/* for rounding */
255 	  DIVIDE_BY(temp, qval);
256 	  temp = -temp;
257 	} else {
258 	  temp += qval>>1;	/* for rounding */
259 	  DIVIDE_BY(temp, qval);
260 	}
261 	output_ptr[i] = (JCOEF) temp;
262       }
263     }
264   }
265 }
266 #endif
267 
268 
269 #ifdef DCT_FLOAT_SUPPORTED
270 
271 METHODDEF(void)
forward_DCT_float(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY sample_data,JBLOCKROW coef_blocks,JDIMENSION start_row,JDIMENSION start_col,JDIMENSION num_blocks)272 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr,
273 		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
274 		   JDIMENSION start_row, JDIMENSION start_col,
275 		   JDIMENSION num_blocks)
276 /* This version is used for floating-point DCT implementations. */
277 {
278   /* This routine is heavily used, so it's worth coding it tightly. */
279   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
280   float_DCT_method_ptr do_dct = fdct->do_float_dct;
281   FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no];
282   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */
283   JDIMENSION bi;
284 
285   sample_data += start_row;	/* fold in the vertical offset once */
286 
287   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
288     /* Load data into workspace, applying unsigned->signed conversion */
289     { register FAST_FLOAT *workspaceptr;
290       register JSAMPROW elemptr;
291       register int elemr;
292 
293       workspaceptr = workspace;
294       for (elemr = 0; elemr < DCTSIZE; elemr++) {
295 	elemptr = sample_data[elemr] + start_col;
296 #if DCTSIZE == 8		/* unroll the inner loop */
297 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
298 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
299 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
300 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
301 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
302 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
303 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
304 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
305 #else
306 	{ register int elemc;
307 	  for (elemc = DCTSIZE; elemc > 0; elemc--) {
308 	    *workspaceptr++ = (FAST_FLOAT)
309 	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
310 	  }
311 	}
312 #endif
313       }
314     }
315 
316     /* Perform the DCT */
317     (*do_dct) (workspace);
318 
319     /* Quantize/descale the coefficients, and store into coef_blocks[] */
320     { register FAST_FLOAT temp;
321       register int i;
322       register JCOEFPTR output_ptr = coef_blocks[bi];
323 
324       for (i = 0; i < DCTSIZE2; i++) {
325 	/* Apply the quantization and scaling factor */
326 	temp = workspace[i] * divisors[i];
327 	/* Round to nearest integer.
328 	 * Since C does not specify the direction of rounding for negative
329 	 * quotients, we have to force the dividend positive for portability.
330 	 * The maximum coefficient size is +-16K (for 12-bit data), so this
331 	 * code should work for either 16-bit or 32-bit ints.
332 	 */
333 	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
334       }
335     }
336   }
337 }
338 
339 #endif /* DCT_FLOAT_SUPPORTED */
340 
341 
342 /*
343  * Initialize FDCT manager.
344  */
345 
346 GLOBAL(void)
jinit_forward_dct(j_compress_ptr cinfo)347 jinit_forward_dct (j_compress_ptr cinfo)
348 {
349   my_fdct_ptr fdct;
350   int i;
351 
352   fdct = (my_fdct_ptr)
353     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
354 				SIZEOF(my_fdct_controller));
355   cinfo->fdct = (struct jpeg_forward_dct *) fdct;
356   fdct->pub.start_pass = start_pass_fdctmgr;
357 
358   switch (cinfo->dct_method) {
359 #ifdef DCT_ISLOW_SUPPORTED
360   case JDCT_ISLOW:
361     fdct->pub.forward_DCT = forward_DCT;
362     fdct->do_dct = jpeg_fdct_islow;
363     break;
364 #endif
365 #ifdef DCT_IFAST_SUPPORTED
366   case JDCT_IFAST:
367     fdct->pub.forward_DCT = forward_DCT;
368     fdct->do_dct = jpeg_fdct_ifast;
369     break;
370 #endif
371 #ifdef DCT_FLOAT_SUPPORTED
372   case JDCT_FLOAT:
373     fdct->pub.forward_DCT = forward_DCT_float;
374     fdct->do_float_dct = jpeg_fdct_float;
375     break;
376 #endif
377   default:
378     ERREXIT(cinfo, JERR_NOT_COMPILED);
379     break;
380   }
381 
382   /* Mark divisor tables unallocated */
383   for (i = 0; i < NUM_QUANT_TBLS; i++) {
384     fdct->divisors[i] = NULL;
385 #ifdef DCT_FLOAT_SUPPORTED
386     fdct->float_divisors[i] = NULL;
387 #endif
388   }
389 }
390