1 
2 //! if OPC_TRITRI_EPSILON_TEST is true then we do a check (if |dv|<EPSILON then dv=0.0;) else no check is done (which is less robust, but faster)
3 #define LOCAL_EPSILON 0.000001f
4 
5 //! sort so that a<=b
6 #define SORT(a,b)			\
7 	if(a>b)					\
8 	{						\
9 		const float c=a;	\
10 		a=b;				\
11 		b=c;				\
12 	}
13 
14 //! Edge to edge test based on Franlin Antonio's gem: "Faster Line Segment Intersection", in Graphics Gems III, pp. 199-202
15 #define EDGE_EDGE_TEST(V0, U0, U1)						\
16 	Bx = U0[i0] - U1[i0];								\
17 	By = U0[i1] - U1[i1];								\
18 	Cx = V0[i0] - U0[i0];								\
19 	Cy = V0[i1] - U0[i1];								\
20 	f  = Ay*Bx - Ax*By;									\
21 	d  = By*Cx - Bx*Cy;									\
22 	if((f>0.0f && d>=0.0f && d<=f) || (f<0.0f && d<=0.0f && d>=f))	\
23 	{													\
24 		const float e=Ax*Cy - Ay*Cx;					\
25 		if(f>0.0f)										\
26 		{												\
27 			if(e>=0.0f && e<=f) return TRUE;			\
28 		}												\
29 		else											\
30 		{												\
31 			if(e<=0.0f && e>=f) return TRUE;			\
32 		}												\
33 	}
34 
35 //! TO BE DOCUMENTED
36 #define EDGE_AGAINST_TRI_EDGES(V0, V1, U0, U1, U2)		\
37 {														\
38 	float Bx,By,Cx,Cy,d,f;								\
39 	const float Ax = V1[i0] - V0[i0];					\
40 	const float Ay = V1[i1] - V0[i1];					\
41 	/* test edge U0,U1 against V0,V1 */					\
42 	EDGE_EDGE_TEST(V0, U0, U1);							\
43 	/* test edge U1,U2 against V0,V1 */					\
44 	EDGE_EDGE_TEST(V0, U1, U2);							\
45 	/* test edge U2,U1 against V0,V1 */					\
46 	EDGE_EDGE_TEST(V0, U2, U0);							\
47 }
48 
49 //! TO BE DOCUMENTED
50 #define POINT_IN_TRI(V0, U0, U1, U2)					\
51 {														\
52 	/* is T1 completly inside T2? */					\
53 	/* check if V0 is inside tri(U0,U1,U2) */			\
54 	float a  = U1[i1] - U0[i1];							\
55 	float b  = -(U1[i0] - U0[i0]);						\
56 	float c  = -a*U0[i0] - b*U0[i1];					\
57 	float d0 = a*V0[i0] + b*V0[i1] + c;					\
58 														\
59 	a  = U2[i1] - U1[i1];								\
60 	b  = -(U2[i0] - U1[i0]);							\
61 	c  = -a*U1[i0] - b*U1[i1];							\
62 	const float d1 = a*V0[i0] + b*V0[i1] + c;			\
63 														\
64 	a  = U0[i1] - U2[i1];								\
65 	b  = -(U0[i0] - U2[i0]);							\
66 	c  = -a*U2[i0] - b*U2[i1];							\
67 	const float d2 = a*V0[i0] + b*V0[i1] + c;			\
68 	if(d0*d1>0.0f)										\
69 	{													\
70 		if(d0*d2>0.0f) return TRUE;						\
71 	}													\
72 }
73 
74 //! TO BE DOCUMENTED
CoplanarTriTri(const Point & n,const Point & v0,const Point & v1,const Point & v2,const Point & u0,const Point & u1,const Point & u2)75 BOOL CoplanarTriTri(const Point& n, const Point& v0, const Point& v1, const Point& v2, const Point& u0, const Point& u1, const Point& u2)
76 {
77 	float A[3];
78 	short i0,i1;
79 	/* first project onto an axis-aligned plane, that maximizes the area */
80 	/* of the triangles, compute indices: i0,i1. */
81 	A[0] = fabsf(n[0]);
82 	A[1] = fabsf(n[1]);
83 	A[2] = fabsf(n[2]);
84 	if(A[0]>A[1])
85 	{
86 		if(A[0]>A[2])
87 		{
88 			i0=1;      /* A[0] is greatest */
89 			i1=2;
90 		}
91 		else
92 		{
93 			i0=0;      /* A[2] is greatest */
94 			i1=1;
95 		}
96 	}
97 	else   /* A[0]<=A[1] */
98 	{
99 		if(A[2]>A[1])
100 		{
101 			i0=0;      /* A[2] is greatest */
102 			i1=1;
103 		}
104 		else
105 		{
106 			i0=0;      /* A[1] is greatest */
107 			i1=2;
108 		}
109 	}
110 
111 	/* test all edges of triangle 1 against the edges of triangle 2 */
112 	EDGE_AGAINST_TRI_EDGES(v0, v1, u0, u1, u2);
113 	EDGE_AGAINST_TRI_EDGES(v1, v2, u0, u1, u2);
114 	EDGE_AGAINST_TRI_EDGES(v2, v0, u0, u1, u2);
115 
116 	/* finally, test if tri1 is totally contained in tri2 or vice versa */
117 	POINT_IN_TRI(v0, u0, u1, u2);
118 	POINT_IN_TRI(u0, v0, v1, v2);
119 
120 	return FALSE;
121 }
122 
123 //! TO BE DOCUMENTED
124 #define NEWCOMPUTE_INTERVALS(VV0, VV1, VV2, D0, D1, D2, D0D1, D0D2, A, B, C, X0, X1)	\
125 {																						\
126 	if(D0D1>0.0f)																		\
127 	{																					\
128 		/* here we know that D0D2<=0.0 */												\
129 		/* that is D0, D1 are on the same side, D2 on the other or on the plane */		\
130 		A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1;				\
131 	}																					\
132 	else if(D0D2>0.0f)																	\
133 	{																					\
134 		/* here we know that d0d1<=0.0 */												\
135 		A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2;				\
136 	}																					\
137 	else if(D1*D2>0.0f || D0!=0.0f)														\
138 	{																					\
139 		/* here we know that d0d1<=0.0 or that D0!=0.0 */								\
140 		A=VV0; B=(VV1 - VV0)*D0; C=(VV2 - VV0)*D0; X0=D0 - D1; X1=D0 - D2;				\
141 	}																					\
142 	else if(D1!=0.0f)																	\
143 	{																					\
144 		A=VV1; B=(VV0 - VV1)*D1; C=(VV2 - VV1)*D1; X0=D1 - D0; X1=D1 - D2;				\
145 	}																					\
146 	else if(D2!=0.0f)																	\
147 	{																					\
148 		A=VV2; B=(VV0 - VV2)*D2; C=(VV1 - VV2)*D2; X0=D2 - D0; X1=D2 - D1;				\
149 	}																					\
150 	else																				\
151 	{																					\
152 		/* triangles are coplanar */													\
153 		return CoplanarTriTri(N1, V0, V1, V2, U0, U1, U2);								\
154 	}																					\
155 }
156 
157 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
158 /**
159  *	Triangle/triangle intersection test routine,
160  *	by Tomas Moller, 1997.
161  *	See article "A Fast Triangle-Triangle Intersection Test",
162  *	Journal of Graphics Tools, 2(2), 1997
163  *
164  *	Updated June 1999: removed the divisions -- a little faster now!
165  *	Updated October 1999: added {} to CROSS and SUB macros
166  *
167  *	int NoDivTriTriIsect(float V0[3],float V1[3],float V2[3],
168  *                      float U0[3],float U1[3],float U2[3])
169  *
170  *	\param		V0		[in] triangle 0, vertex 0
171  *	\param		V1		[in] triangle 0, vertex 1
172  *	\param		V2		[in] triangle 0, vertex 2
173  *	\param		U0		[in] triangle 1, vertex 0
174  *	\param		U1		[in] triangle 1, vertex 1
175  *	\param		U2		[in] triangle 1, vertex 2
176  *	\return		true if triangles overlap
177  */
178 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TriTriOverlap(const Point & V0,const Point & V1,const Point & V2,const Point & U0,const Point & U1,const Point & U2)179 inline_ BOOL AABBTreeCollider::TriTriOverlap(const Point& V0, const Point& V1, const Point& V2, const Point& U0, const Point& U1, const Point& U2)
180 {
181 	// Stats
182 	mNbPrimPrimTests++;
183 
184 	// Compute plane equation of triangle(V0,V1,V2)
185 	Point E1 = V1 - V0;
186 	Point E2 = V2 - V0;
187 	const Point N1 = E1 ^ E2;
188 	const float d1 =-N1 | V0;
189 	// Plane equation 1: N1.X+d1=0
190 
191 	// Put U0,U1,U2 into plane equation 1 to compute signed distances to the plane
192 	float du0 = (N1|U0) + d1;
193 	float du1 = (N1|U1) + d1;
194 	float du2 = (N1|U2) + d1;
195 
196 	// Coplanarity robustness check
197 #ifdef OPC_TRITRI_EPSILON_TEST
198     float absd1 = FastFabs(d1), sqmagN1 = N1.SquareMagnitude();
199     if (absd1>=sqmagN1)
200     {
201 		if(FastFabs(du0)<=LOCAL_EPSILON*absd1) du0 = 0.0f;
202 		if(FastFabs(du1)<=LOCAL_EPSILON*absd1) du1 = 0.0f;
203 		if(FastFabs(du2)<=LOCAL_EPSILON*absd1) du2 = 0.0f;
204 	}
205 	else
206 	{
207 		if(FastFabs(du0)<=LOCAL_EPSILON*FCMax2(absd1, FCMin2(sqmagN1, U0.SquareMagnitude()))) du0 = 0.0f;
208 		if(FastFabs(du1)<=LOCAL_EPSILON*FCMax2(absd1, FCMin2(sqmagN1, U1.SquareMagnitude()))) du1 = 0.0f;
209 		if(FastFabs(du2)<=LOCAL_EPSILON*FCMax2(absd1, FCMin2(sqmagN1, U2.SquareMagnitude()))) du2 = 0.0f;
210 	}
211 #endif
212 	const float du0du1 = du0 * du1;
213 	const float du0du2 = du0 * du2;
214 
215 	if(du0du1>0.0f && du0du2>0.0f)	// same sign on all of them + not equal 0 ?
216 		return FALSE;				// no intersection occurs
217 
218 	// Compute plane of triangle (U0,U1,U2)
219 	E1 = U1 - U0;
220 	E2 = U2 - U0;
221 	const Point N2 = E1 ^ E2;
222 	const float d2=-N2 | U0;
223 	// plane equation 2: N2.X+d2=0
224 
225 	// put V0,V1,V2 into plane equation 2
226 	float dv0 = (N2|V0) + d2;
227 	float dv1 = (N2|V1) + d2;
228 	float dv2 = (N2|V2) + d2;
229 
230 #ifdef OPC_TRITRI_EPSILON_TEST
231     float absd2 = FastFabs(d2), sqmagN2 = N2.SquareMagnitude();
232     if (absd2>=sqmagN2)
233     {
234 		if(FastFabs(dv0)<=LOCAL_EPSILON*absd2) dv0 = 0.0f;
235 		if(FastFabs(dv1)<=LOCAL_EPSILON*absd2) dv1 = 0.0f;
236 		if(FastFabs(dv2)<=LOCAL_EPSILON*absd2) dv2 = 0.0f;
237 	}
238 	else
239 	{
240 		if(FastFabs(dv0)<=LOCAL_EPSILON*FCMax2(absd2, FCMin2(sqmagN2, V0.SquareMagnitude()))) dv0 = 0.0f;
241 		if(FastFabs(dv1)<=LOCAL_EPSILON*FCMax2(absd2, FCMin2(sqmagN2, V1.SquareMagnitude()))) dv1 = 0.0f;
242 		if(FastFabs(dv2)<=LOCAL_EPSILON*FCMax2(absd2, FCMin2(sqmagN2, V2.SquareMagnitude()))) dv2 = 0.0f;
243 	}
244 #endif
245 
246 	const float dv0dv1 = dv0 * dv1;
247 	const float dv0dv2 = dv0 * dv2;
248 
249 	if(dv0dv1>0.0f && dv0dv2>0.0f)	// same sign on all of them + not equal 0 ?
250 		return FALSE;				// no intersection occurs
251 
252 	// Compute direction of intersection line
253 	const Point D = N1^N2;
254 
255 	// Compute and index to the largest component of D
256 	float max=fabsf(D[0]);
257 	short index=0;
258 	float bb=fabsf(D[1]);
259 	float cc=fabsf(D[2]);
260 	if(bb>max) max=bb,index=1;
261 	if(cc>max) max=cc,index=2;
262 
263 	// This is the simplified projection onto L
264 	const float vp0 = V0[index];
265 	const float vp1 = V1[index];
266 	const float vp2 = V2[index];
267 
268 	const float up0 = U0[index];
269 	const float up1 = U1[index];
270 	const float up2 = U2[index];
271 
272 	// Compute interval for triangle 1
273 	float a,b,c,x0,x1;
274 	NEWCOMPUTE_INTERVALS(vp0,vp1,vp2,dv0,dv1,dv2,dv0dv1,dv0dv2,a,b,c,x0,x1);
275 
276 	// Compute interval for triangle 2
277 	float d,e,f,y0,y1;
278 	NEWCOMPUTE_INTERVALS(up0,up1,up2,du0,du1,du2,du0du1,du0du2,d,e,f,y0,y1);
279 
280 	const float xx=x0*x1;
281 	const float yy=y0*y1;
282 	const float xxyy=xx*yy;
283 
284 	float isect1[2], isect2[2];
285 
286 	float tmp=a*xxyy;
287 	isect1[0]=tmp+b*x1*yy;
288 	isect1[1]=tmp+c*x0*yy;
289 
290 	tmp=d*xxyy;
291 	isect2[0]=tmp+e*xx*y1;
292 	isect2[1]=tmp+f*xx*y0;
293 
294 	SORT(isect1[0],isect1[1]);
295 	SORT(isect2[0],isect2[1]);
296 
297 	if(isect1[1]<isect2[0] || isect2[1]<isect1[0]) return FALSE;
298 	return TRUE;
299 }
300