1# IMPORTANT:
2# Shader passes need to know details about the image in the mask_texture LUT
3# files, so set the following constants in user-cgp-constants.h accordingly:
4# 1.) mask_triads_per_tile = (number of horizontal triads in mask texture LUT's)
5# 2.) mask_texture_small_size = (texture size of mask*texture_small LUT's)
6# 3.) mask_texture_large_size = (texture size of mask*texture_large LUT's)
7# 4.) mask_grille_avg_color = (avg. brightness of mask_grille_texture* LUT's, in [0, 1])
8# 5.) mask_slot_avg_color = (avg. brightness of mask_slot_texture* LUT's, in [0, 1])
9# 6.) mask_shadow_avg_color = (avg. brightness of mask_shadow_texture* LUT's, in [0, 1])
10# Shader passes also need to know certain scales set in this .slangp, but their
11# compilation model doesn't currently allow the .slangp file to tell them.  Make
12# sure to set the following constants in user-cgp-constants.h accordingly too:
13# 1.) bloom_approx_scale_x = scale_x2
14# 2.) mask_resize_viewport_scale = float2(scale_x6, scale_y5)
15# Finally, shader passes need to know the value of geom_max_aspect_ratio used to
16# calculate scale_y5 (among other values):
17# 1.) geom_max_aspect_ratio = (geom_max_aspect_ratio used to calculate scale_y5)
18
19shaders = "14"
20
21# NTSC Shader Passes
22shader0 = "../ntsc/shaders/ntsc-adaptive/ntsc-pass1.slang"
23shader1 = "../ntsc/shaders/ntsc-adaptive/ntsc-pass2.slang"
24
25filter_linear0 = false
26filter_linear1 = false
27
28scale_type_x0 = absolute
29scale_type_y0 = source
30scale_x0 = 1536
31scale_y0 = 1.0
32frame_count_mod0 = 2
33float_framebuffer0 = true
34
35scale_type1 = source
36scale_x1 = 0.5
37scale_y1 = 1.0
38
39# Set an identifier, filename, and sampling traits for the phosphor mask texture.
40# Load an aperture grille, slot mask, and an EDP shadow mask, and load a small
41# non-mipmapped version and a large mipmapped version.
42# TODO: Test masks in other directories.
43textures = "mask_grille_texture_small;mask_grille_texture_large;mask_slot_texture_small;mask_slot_texture_large;mask_shadow_texture_small;mask_shadow_texture_large"
44mask_grille_texture_small = "shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5SpacingResizeTo64.png"
45mask_grille_texture_large = "shaders/crt-royale/TileableLinearApertureGrille15Wide8And5d5Spacing.png"
46mask_slot_texture_small = "shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacingResizeTo64.png"
47mask_slot_texture_large = "shaders/crt-royale/TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing.png"
48mask_shadow_texture_small = "shaders/crt-royale/TileableLinearShadowMaskEDPResizeTo64.png"
49mask_shadow_texture_large = "shaders/crt-royale/TileableLinearShadowMaskEDP.png"
50mask_grille_texture_small_wrap_mode = "repeat"
51mask_grille_texture_large_wrap_mode = "repeat"
52mask_slot_texture_small_wrap_mode = "repeat"
53mask_slot_texture_large_wrap_mode = "repeat"
54mask_shadow_texture_small_wrap_mode = "repeat"
55mask_shadow_texture_large_wrap_mode = "repeat"
56mask_grille_texture_small_linear = "true"
57mask_grille_texture_large_linear = "true"
58mask_slot_texture_small_linear = "true"
59mask_slot_texture_large_linear = "true"
60mask_shadow_texture_small_linear = "true"
61mask_shadow_texture_large_linear = "true"
62mask_grille_texture_small_mipmap = "false"  # Mipmapping causes artifacts with manually resized masks without tex2Dlod
63mask_grille_texture_large_mipmap = "true"   # Essential for hardware-resized masks
64mask_slot_texture_small_mipmap = "false"    # Mipmapping causes artifacts with manually resized masks without tex2Dlod
65mask_slot_texture_large_mipmap = "true"     # Essential for hardware-resized masks
66mask_shadow_texture_small_mipmap = "false"  # Mipmapping causes artifacts with manually resized masks without tex2Dlod
67mask_shadow_texture_large_mipmap = "true"   # Essential for hardware-resized masks
68
69
70# Pass2: Linearize the input based on CRT gamma and bob interlaced fields.
71# (Bobbing ensures we can immediately blur without getting artifacts.)
72shader2 = "shaders/crt-royale/src/crt-royale-first-pass-linearize-crt-gamma-bob-fields.slang"
73alias2 = "ORIG_LINEARIZED"
74filter_linear2 = "false"
75scale_type2 = "source"
76scale2 = "1.0"
77srgb_framebuffer2 = "true"
78
79# Pass3: Resample interlaced (and misconverged) scanlines vertically.
80# Separating vertical/horizontal scanline sampling is faster: It lets us
81# consider more scanlines while calculating weights for fewer pixels, and
82# it reduces our samples from vertical*horizontal to vertical+horizontal.
83# This has to come right after ORIG_LINEARIZED, because there's no
84# "original_source" scale_type we can use later.
85shader3 = "shaders/crt-royale/src/crt-royale-scanlines-vertical-interlacing.slang"
86alias3 = "VERTICAL_SCANLINES"
87filter_linear3 = "true"
88scale_type_x3 = "source"
89scale_x3 = "1.0"
90scale_type_y3 = "viewport"
91scale_y3 = "1.0"
92#float_framebuffer3 = "true"
93srgb_framebuffer3 = "true"
94
95# Pass4: Do a small resize blur of ORIG_LINEARIZED at an absolute size, and
96# account for convergence offsets.  We want to blur a predictable portion of the
97# screen to match the phosphor bloom, and absolute scale works best for
98# reliable results with a fixed-size bloom.  Picking a scale is tricky:
99# a.) 400x300 is a good compromise for the "fake-bloom" version: It's low enough
100#     to blur high-res/interlaced sources but high enough that resampling
101#     doesn't smear low-res sources too much.
102# b.) 320x240 works well for the "real bloom" version: It's 1-1.5% faster, and
103#     the only noticeable visual difference is a larger halation spread (which
104#     may be a good thing for people who like to crank it up).
105# Note the 4:3 aspect ratio assumes the input has cropped geom_overscan (so it's
106# *intended* for an ~4:3 aspect ratio).
107shader4 = "shaders/crt-royale/src/crt-royale-bloom-approx.slang"
108alias4 = "BLOOM_APPROX"
109filter_linear4 = "true"
110scale_type4 = "absolute"
111scale_x4 = "320"
112scale_y4 = "240"
113srgb_framebuffer4 = "true"
114
115# Pass5: Vertically blur the input for halation and refractive diffusion.
116# Base this on BLOOM_APPROX: This blur should be small and fast, and blurring
117# a constant portion of the screen is probably physically correct if the
118# viewport resolution is proportional to the simulated CRT size.
119shader5 = "../blurs/blur9fast-vertical.slang"
120filter_linear5 = "true"
121scale_type5 = "source"
122scale5 = "1.0"
123srgb_framebuffer5 = "true"
124
125# Pass6: Horizontally blur the input for halation and refractive diffusion.
126# Note: Using a one-pass 9x9 blur is about 1% slower.
127shader6 = "../blurs/blur9fast-horizontal.slang"
128alias6 = "HALATION_BLUR"
129filter_linear6 = "true"
130scale_type6 = "source"
131scale6 = "1.0"
132srgb_framebuffer6 = "true"
133
134# Pass7: Lanczos-resize the phosphor mask vertically.  Set the absolute
135# scale_x7 == mask_texture_small_size.x (see IMPORTANT above).  Larger scales
136# will blur, and smaller scales could get nasty.  The vertical size must be
137# based on the viewport size and calculated carefully to avoid artifacts later.
138# First calculate the minimum number of mask tiles we need to draw.
139# Since curvature is computed after the scanline masking pass:
140#   num_resized_mask_tiles = 2.0;
141# If curvature were computed in the scanline masking pass (it's not):
142#   max_mask_texel_border = ~3.0 * (1/3.0 + 4.0*sqrt(2.0) + 0.5 + 1.0);
143#   max_mask_tile_border = max_mask_texel_border/
144#       (min_resized_phosphor_triad_size * mask_triads_per_tile);
145#   num_resized_mask_tiles = max(2.0, 1.0 + max_mask_tile_border * 2.0);
146#   At typical values (triad_size >= 2.0, mask_triads_per_tile == 8):
147#       num_resized_mask_tiles = ~3.8
148# Triad sizes are given in horizontal terms, so we need geom_max_aspect_ratio
149# to relate them to vertical resolution.  The widest we expect is:
150#   geom_max_aspect_ratio = 4.0/3.0  # Note: Shader passes need to know this!
151# The fewer triads we tile across the screen, the larger each triad will be as a
152# fraction of the viewport size, and the larger scale_y5 must be to draw a full
153# num_resized_mask_tiles.  Therefore, we must decide the smallest number of
154# triads we'll guarantee can be displayed on screen.  We'll set this according
155# to 3-pixel triads at 768p resolution (the lowest anyone's likely to use):
156#   min_allowed_viewport_triads = 768.0*geom_max_aspect_ratio / 3.0 = 341.333333
157# Now calculate the viewport scale that ensures we can draw resized_mask_tiles:
158#   min_scale_x = resized_mask_tiles * mask_triads_per_tile /
159#       min_allowed_viewport_triads
160#   scale_y7 = geom_max_aspect_ratio * min_scale_x
161#   # Some code might depend on equal scales:
162#   scale_x8 = scale_y7
163# Given our default geom_max_aspect_ratio and min_allowed_viewport_triads:
164#   scale_y7 = 4.0/3.0 * 2.0/(341.33333 / 8.0) = 0.0625
165# IMPORTANT: The scales MUST be calculated in this way.  If you wish to change
166# geom_max_aspect_ratio, update that constant in user-cgp-constants.h!
167shader7 = "shaders/crt-royale/src/crt-royale-mask-resize-vertical.slang"
168filter_linear7 = "true"
169scale_type_x7 = "absolute"
170scale_x7 = "64"
171scale_type_y7 = "viewport"
172scale_y7 = "0.0625" # Safe for >= 341.333 horizontal triads at viewport size
173#srgb_framebuffer7 = "false" # mask_texture is already assumed linear
174
175# Pass8: Lanczos-resize the phosphor mask horizontally.  scale_x8 = scale_y7.
176# TODO: Check again if the shaders actually require equal scales.
177shader8 = "shaders/crt-royale/src/crt-royale-mask-resize-horizontal.slang"
178alias8 = "MASK_RESIZE"
179filter_linear8 = "false"
180scale_type_x8 = "viewport"
181scale_x8 = "0.0625"
182scale_type_y8 = "source"
183scale_y8 = "1.0"
184#srgb_framebuffer8 = "false" # mask_texture is already assumed linear
185
186# Pass9: Resample (misconverged) scanlines horizontally, apply halation, and
187# apply the phosphor mask.
188shader9 = "shaders/crt-royale/src/crt-royale-scanlines-horizontal-apply-mask.slang"
189alias9 = "MASKED_SCANLINES"
190filter_linear9 = "true" # This could just as easily be nearest neighbor.
191scale_type9 = "viewport"
192scale9 = "1.0"
193#float_framebuffer9 = "true"
194srgb_framebuffer9 = "true"
195
196# Pass 10: Compute a brightpass.  This will require reading the final mask.
197shader10 = "shaders/crt-royale/src/crt-royale-brightpass.slang"
198alias10 = "BRIGHTPASS"
199filter_linear10 = "true" # This could just as easily be nearest neighbor.
200scale_type10 = "viewport"
201scale10 = "1.0"
202srgb_framebuffer10 = "true"
203
204# Pass 11: Blur the brightpass vertically
205shader11 = "shaders/crt-royale/src/crt-royale-bloom-vertical.slang"
206filter_linear11 = "true" # This could just as easily be nearest neighbor.
207scale_type11 = "source"
208scale11 = "1.0"
209srgb_framebuffer11 = "true"
210
211# Pass 12: Blur the brightpass horizontally and combine it with the dimpass:
212shader12 = "shaders/crt-royale/src/crt-royale-bloom-horizontal-reconstitute.slang"
213filter_linear12 = "true"
214scale_type12 = "source"
215scale12 = "1.0"
216srgb_framebuffer12 = "true"
217
218# Pass 13: Compute curvature/AA:
219shader13 = "shaders/crt-royale/src/crt-royale-geometry-aa-last-pass.slang"
220filter_linear13 = "true"
221scale_type13 = "viewport"
222mipmap_input13 = "true"
223texture_wrap_mode13 = "clamp_to_edge"
224
225parameters = "quality"
226quality = 1.0
227
228