1 #ifndef TEX2DANTIALIAS_H
2 #define TEX2DANTIALIAS_H
3 
4 /////////////////////////////  GPL LICENSE NOTICE  /////////////////////////////
5 
6 //  crt-royale: A full-featured CRT shader, with cheese.
7 //  Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
8 //
9 //  This program is free software; you can redistribute it and/or modify it
10 //  under the terms of the GNU General Public License as published by the Free
11 //  Software Foundation; either version 2 of the License, or any later version.
12 //
13 //  This program is distributed in the hope that it will be useful, but WITHOUT
14 //  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 //  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 //  more details.
17 //
18 //  You should have received a copy of the GNU General Public License along with
19 //  this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20 //  Place, Suite 330, Boston, MA 02111-1307 USA
21 
22 
23 /////////////////////////////////  DESCRIPTION  ////////////////////////////////
24 
25 //  This file provides antialiased and subpixel-aware tex2D lookups.
26 //  Requires:   All functions share these requirements:
27 //              1.) All requirements of gamma-management.h must be satisfied!
28 //              2.) pixel_to_tex_uv must be a 2x2 matrix that transforms pixe-
29 //                  space offsets to texture uv offsets.  You can get this with:
30 //                      const float2 duv_dx = ddx(tex_uv);
31 //                      const float2 duv_dy = ddy(tex_uv);
32 //                      const float2x2 pixel_to_tex_uv = float2x2(
33 //                          duv_dx.x, duv_dy.x,
34 //                          duv_dx.y, duv_dy.y);
35 //                  This is left to the user in case the current Cg profile
36 //                  doesn't support ddx()/ddy().  Ideally, the user could find
37 //                  calculate a distorted tangent-space mapping analytically.
38 //                  If not, a simple flat mapping can be obtained with:
39 //                      const float2 xy_to_uv_scale = IN.output_size *
40 //                          IN.video_size/IN.texture_size;
41 //                      const float2x2 pixel_to_tex_uv = float2x2(
42 //                          xy_to_uv_scale.x, 0.0,
43 //                          0.0, xy_to_uv_scale.y);
44 //  Optional:   To set basic AA settings, #define ANTIALIAS_OVERRIDE_BASICS and:
45 //              1.) Set an antialiasing level:
46 //                      static const float aa_level = {0 (none),
47 //                          1 (sample subpixels), 4, 5, 6, 7, 8, 12, 16, 20, 24}
48 //              2.) Set a filter type:
49 //                      static const float aa_filter = {
50 //                          0 (Box, Separable), 1 (Box, Cylindrical),
51 //                          2 (Tent, Separable), 3 (Tent, Cylindrical)
52 //                          4 (Gaussian, Separable), 5 (Gaussian, Cylindrical)
53 //                          6 (Cubic, Separable), 7 (Cubic, Cylindrical)
54 //                          8 (Lanczos Sinc, Separable),
55 //                          9 (Lanczos Jinc, Cylindrical)}
56 //                  If the input is unknown, a separable box filter is used.
57 //                  Note: Lanczos Jinc is terrible for sparse sampling, and
58 //                  using aa_axis_importance (see below) defeats the purpose.
59 //              3.) Mirror the sample pattern on odd frames?
60 //                      static const bool aa_temporal = {true, false]
61 //                  This helps rotational invariance but can look "fluttery."
62 //              The user may #define ANTIALIAS_OVERRIDE_PARAMETERS to override
63 //              (all of) the following default parameters with static or uniform
64 //              constants (or an accessor function for subpixel offsets):
65 //              1.) Cubic parameters:
66 //                      static const float aa_cubic_c = 0.5;
67 //                  See http://www.imagemagick.org/Usage/filter/#mitchell
68 //              2.) Gaussian parameters:
69 //                      static const float aa_gauss_sigma =
70 //                          0.5/aa_pixel_diameter;
71 //              3.) Set subpixel offsets.  This requires an accessor function
72 //                  for compatibility with scalar runtime shader params.  Return
73 //                  a float2 pixel offset in [-0.5, 0.5] for the red subpixel:
74 //                      float2 get_aa_subpixel_r_offset()
75 //              The user may also #define ANTIALIAS_OVERRIDE_STATIC_CONSTANTS to
76 //              override (all of) the following default static values.  However,
77 //              the file's structure requires them to be declared static const:
78 //              1.) static const float aa_lanczos_lobes = 3.0;
79 //              2.) static const float aa_gauss_support = 1.0/aa_pixel_diameter;
80 //                  Note the default tent/Gaussian support radii may appear
81 //                  arbitrary, but extensive testing found them nearly optimal
82 //                  for tough cases like strong distortion at low AA levels.
83 //                  (The Gaussian default is only best for practical gauss_sigma
84 //                  values; much larger gauss_sigmas ironically prefer slightly
85 //                  smaller support given sparse sampling, and vice versa.)
86 //              3.) static const float aa_tent_support = 1.0 / aa_pixel_diameter;
87 //              4.) static const float2 aa_xy_axis_importance:
88 //                  The sparse N-queens sampling grid interacts poorly with
89 //                  negative-lobed 2D filters.  However, if aliasing is much
90 //                  stronger in one direction (e.g. horizontally with a phosphor
91 //                  mask), it can be useful to downplay sample offsets along the
92 //                  other axis.  The support radius in each direction scales with
93 //                  aa_xy_axis_importance down to a minimum of 0.5 (box support),
94 //                  after which point only the offsets used for calculating
95 //                  weights continue to scale downward.  This works as follows:
96 //                  If aa_xy_axis_importance = float2(1.0, 1.0/support_radius),
97 //                  the vertical support radius will drop to 1.0, and we'll just
98 //                  filter vertical offsets with the first filter lobe, while
99 //                  horizontal offsets go through the full multi-lobe filter.
100 //                  If aa_xy_axis_importance = float2(1.0, 0.0), the vertical
101 //                  support radius will drop to box support, and the vertical
102 //                  offsets will be ignored entirely (essentially giving us a
103 //                  box filter vertically).  The former is potentially smoother
104 //                  (but less predictable) and the default behavior of Lanczos
105 //                  jinc, whereas the latter is sharper and the default behavior
106 //                  of cubics and Lanczos sinc.
107 //              5.) static const float aa_pixel_diameter: You can expand the
108 //                  pixel diameter to e.g. sqrt(2.0), which may be a better
109 //                  support range for cylindrical filters (they don't
110 //                  currently discard out-of-circle samples though).
111 //              Finally, there are two miscellaneous options:
112 //              1.) If you want to antialias a manually tiled texture, you can
113 //                  #define ANTIALIAS_DISABLE_ANISOTROPIC to use tex2Dlod() to
114 //                  fix incompatibilities with anisotropic filtering.  This is
115 //                  slower, and the Cg profile must support tex2Dlod().
116 //              2.) If aa_cubic_c is a runtime uniform, you can #define
117 //                  RUNTIME_ANTIALIAS_WEIGHTS to evaluate cubic weights once per
118 //                  fragment instead of at the usage site (which is used by
119 //                  default, because it enables static evaluation).
120 //  Description:
121 //  Each antialiased lookup follows these steps:
122 //  1.) Define a sample pattern of pixel offsets in the range of [-0.5, 0.5]
123 //      pixels, spanning the diameter of a rectangular box filter.
124 //  2.) Scale these offsets by the support diameter of the user's chosen filter.
125 //  3.) Using these pixel offsets from the pixel center, compute the offsets to
126 //      predefined subpixel locations.
127 //  4.) Compute filter weights based on subpixel offsets.
128 //  Much of that can often be done at compile-time.  At runtime:
129 //  1.) Project pixel-space offsets into uv-space with a matrix multiplication
130 //      to get the uv offsets for each sample.  Rectangular pixels have a
131 //      diameter of 1.0.  Circular pixels are not currently supported, but they
132 //      might be better with a diameter of sqrt(2.0) to ensure there are no gaps
133 //      between them.
134 //  2.) Load, weight, and sum samples.
135 //  We use a sparse bilinear sampling grid, so there are two major implications:
136 //  1.) We can directly project the pixel-space support box into uv-space even
137 //      if we're upsizing.  This wouldn't be the case for nearest neighbor,
138 //      where we'd have to expand the uv-space diameter to at least the support
139 //      size to ensure sufficient filter support.  In our case, this allows us
140 //      to treat upsizing the same as downsizing and use static weighting. :)
141 //  2.) For decent results, negative-lobed filters must be computed based on
142 //      separable weights, not radial distances, because the sparse sampling
143 //      makes no guarantees about radial distributions.  Even then, it's much
144 //      better to set aa_xy_axis_importance to e.g. float2(1.0, 0.0) to use e.g.
145 //      Lanczos2 horizontally and a box filter vertically.  This is mainly due
146 //      to the sparse N-queens sampling and a statistically enormous positive or
147 //      negative covariance between horizontal and vertical weights.
148 //
149 //  Design Decision Comments:
150 //  "aa_temporal" mirrors the sample pattern on odd frames along the axis that
151 //  keeps subpixel weights constant.  This helps with rotational invariance, but
152 //  it can cause distracting fluctuations, and horizontal and vertical edges
153 //  will look the same.  Using a different pattern on a shifted grid would
154 //  exploit temporal AA better, but it would require a dynamic branch or a lot
155 //  of conditional moves, so it's prohibitively slow for the minor benefit.
156 
157 
158 /////////////////////////////  SETTINGS MANAGEMENT  ////////////////////////////
159 
160 #ifndef ANTIALIAS_OVERRIDE_BASICS
161     //  The following settings must be static constants:
162     static const float aa_level = 12.0;
163     static const float aa_filter = 0.0;
164     static const bool aa_temporal = false;
165 #endif
166 
167 #ifndef ANTIALIAS_OVERRIDE_STATIC_CONSTANTS
168     //  Users may override these parameters, but the file structure requires
169     //  them to be static constants; see the descriptions above.
170     static const float aa_pixel_diameter = 1.0;
171     static const float aa_lanczos_lobes = 3.0;
172     static const float aa_gauss_support = 1.0 / aa_pixel_diameter;
173     static const float aa_tent_support = 1.0 / aa_pixel_diameter;
174 
175     //  If we're using a negative-lobed filter, default to using it horizontally
176     //  only, and use only the first lobe vertically or a box filter, over a
177     //  correspondingly smaller range.  This compensates for the sparse sampling
178     //  grid's typically large positive/negative x/y covariance.
179     static const float2 aa_xy_axis_importance =
180         aa_filter < 5.5 ? float2(1.0) :         //  Box, tent, Gaussian
181         aa_filter < 8.5 ? float2(1.0, 0.0) :    //  Cubic and Lanczos sinc
182         aa_filter < 9.5 ? float2(1.0, 1.0/aa_lanczos_lobes) :   //  Lanczos jinc
183         float2(1.0);                            //  Default to box
184 #endif
185 
186 #ifndef ANTIALIAS_OVERRIDE_PARAMETERS
187     //  Users may override these values with their own uniform or static consts.
188     //  Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
189     //  1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
190     //  2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
191     //  3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
192     //  4.) C = 0.0 is a soft spline filter.
193     static const float aa_cubic_c = 0.5;
194     static const float aa_gauss_sigma = 0.5 / aa_pixel_diameter;
195     //  Users may override the subpixel offset accessor function with their own.
196     //  A function is used for compatibility with scalar runtime shader params.
get_aa_subpixel_r_offset()197     inline float2 get_aa_subpixel_r_offset()
198     {
199         return float2(0.0, 0.0);
200     }
201 #endif
202 
203 
204 //////////////////////////////////  INCLUDES  //////////////////////////////////
205 
206 #include "../../../../include/gamma-management.h"
207 
208 
209 //////////////////////////////////  CONSTANTS  /////////////////////////////////
210 
211 static const float aa_box_support = 0.5;
212 static const float aa_cubic_support = 2.0;
213 
214 
215 ////////////////////////////  GLOBAL NON-CONSTANTS  ////////////////////////////
216 
217 //  We'll want to define these only once per fragment at most.
218 #ifdef RUNTIME_ANTIALIAS_WEIGHTS
219     float aa_cubic_b;
220     float cubic_branch1_x3_coeff;
221     float cubic_branch1_x2_coeff;
222     float cubic_branch1_x0_coeff;
223     float cubic_branch2_x3_coeff;
224     float cubic_branch2_x2_coeff;
225     float cubic_branch2_x1_coeff;
226     float cubic_branch2_x0_coeff;
227 #endif
228 
229 
230 ///////////////////////////////////  HELPERS  //////////////////////////////////
231 
assign_aa_cubic_constants()232 void assign_aa_cubic_constants()
233 {
234     //  Compute cubic coefficients on demand at runtime, and save them to global
235     //  uniforms.  The B parameter is computed from C, because "Keys cubics"
236     //  with B = 1 - 2C are considered the highest quality.
237     #ifdef RUNTIME_ANTIALIAS_WEIGHTS
238         if(aa_filter > 5.5 && aa_filter < 7.5)
239         {
240             aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
241             cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
242             cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
243             cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
244             cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
245             cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
246             cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
247             cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
248         }
249     #endif
250 }
251 
get_subpixel_support_diam_and_final_axis_importance()252 inline float4 get_subpixel_support_diam_and_final_axis_importance()
253 {
254     //  Statically select the base support radius:
255     static const float base_support_radius =
256         aa_filter < 1.5 ? aa_box_support :
257         aa_filter < 3.5 ? aa_tent_support :
258         aa_filter < 5.5 ? aa_gauss_support :
259         aa_filter < 7.5 ? aa_cubic_support :
260         aa_filter < 9.5 ? aa_lanczos_lobes :
261         aa_box_support; //  Default to box
262     //  Expand the filter support for subpixel filtering.
263     const float2 subpixel_support_radius_raw =
264         float2(base_support_radius) + abs(get_aa_subpixel_r_offset());
265     if(aa_filter < 1.5)
266     {
267         //  Ignore aa_xy_axis_importance for box filtering.
268         const float2 subpixel_support_diam =
269             2.0 * subpixel_support_radius_raw;
270         const float2 final_axis_importance = float2(1.0);
271         return float4(subpixel_support_diam, final_axis_importance);
272     }
273     else
274     {
275         //  Scale the support window by aa_xy_axis_importance, but don't narrow
276         //  it further than box support.  This allows decent vertical AA without
277         //  messing up horizontal weights or using something silly like Lanczos4
278         //  horizontally with a huge vertical average over an 8-pixel radius.
279         const float2 subpixel_support_radius = max(float2(aa_box_support, aa_box_support),
280             subpixel_support_radius_raw * aa_xy_axis_importance);
281         //  Adjust aa_xy_axis_importance to compensate for what's already done:
282         const float2 final_axis_importance = aa_xy_axis_importance *
283             subpixel_support_radius_raw/subpixel_support_radius;
284         const float2 subpixel_support_diam = 2.0 * subpixel_support_radius;
285         return float4(subpixel_support_diam, final_axis_importance);
286     }
287 }
288 
289 
290 ///////////////////////////  FILTER WEIGHT FUNCTIONS  //////////////////////////
291 
eval_box_filter(const float dist)292 inline float eval_box_filter(const float dist)
293 {
294     return float(abs(dist) <= aa_box_support);
295 }
296 
eval_separable_box_filter(const float2 offset)297 inline float eval_separable_box_filter(const float2 offset)
298 {
299     return float(all(bool2((abs(offset.x) <= aa_box_support), (abs(offset.y) <= aa_box_support))));
300 }
301 
eval_tent_filter(const float dist)302 inline float eval_tent_filter(const float dist)
303 {
304     return clamp((aa_tent_support - dist)/
305         aa_tent_support, 0.0, 1.0);
306 }
307 
eval_gaussian_filter(const float dist)308 inline float eval_gaussian_filter(const float dist)
309 {
310     return exp(-(dist*dist) / (2.0*aa_gauss_sigma*aa_gauss_sigma));
311 }
312 
eval_cubic_filter(const float dist)313 inline float eval_cubic_filter(const float dist)
314 {
315     //  Compute coefficients like assign_aa_cubic_constants(), but statically.
316     #ifndef RUNTIME_ANTIALIAS_WEIGHTS
317         //  When runtime weights are used, these values are instead written to
318         //  global uniforms at the beginning of each tex2Daa* call.
319         const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
320         const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
321         const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
322         const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
323         const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
324         const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
325         const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
326         const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
327     #endif
328     const float abs_dist = abs(dist);
329     //  Compute the cubic based on the Horner's method formula in:
330     //  http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
331     return (abs_dist < 1.0 ?
332         (cubic_branch1_x3_coeff*abs_dist +
333             cubic_branch1_x2_coeff)*abs_dist*abs_dist +
334             cubic_branch1_x0_coeff :
335         abs_dist < 2.0 ?
336             ((cubic_branch2_x3_coeff*abs_dist +
337                 cubic_branch2_x2_coeff)*abs_dist +
338                 cubic_branch2_x1_coeff)*abs_dist + cubic_branch2_x0_coeff :
339             0.0)/6.0;
340 }
341 
eval_separable_cubic_filter(const float2 offset)342 inline float eval_separable_cubic_filter(const float2 offset)
343 {
344     //  This is faster than using a specific float2 version:
345     return eval_cubic_filter(offset.x) *
346         eval_cubic_filter(offset.y);
347 }
348 
eval_sinc_filter(const float2 offset)349 inline float2 eval_sinc_filter(const float2 offset)
350 {
351     //  It's faster to let the caller handle the zero case, or at least it
352     //  was when I used macros and the shader preset took a full minute to load.
353     const float2 pi_offset = pi * offset;
354     return sin(pi_offset)/pi_offset;
355 }
356 
eval_separable_lanczos_sinc_filter(const float2 offset_unsafe)357 inline float eval_separable_lanczos_sinc_filter(const float2 offset_unsafe)
358 {
359     //  Note: For sparse sampling, you really need to pick an axis to use
360     //  Lanczos along (e.g. set aa_xy_axis_importance = float2(1.0, 0.0)).
361     const float2 offset = FIX_ZERO(offset_unsafe);
362     const float2 xy_weights = eval_sinc_filter(offset) *
363         eval_sinc_filter(offset/aa_lanczos_lobes);
364     return xy_weights.x * xy_weights.y;
365 }
366 
eval_jinc_filter_unorm(const float x)367 inline float eval_jinc_filter_unorm(const float x)
368 {
369     //  This is a Jinc approximation for x in [0, 45).  We'll use x in range
370     //  [0, 4*pi) or so.  There are faster/closer approximations based on
371     //  piecewise cubics from [0, 45) and asymptotic approximations beyond that,
372     //  but this has a maximum absolute error < 1/512, and it's simpler/faster
373     //  for shaders...not that it's all that useful for sparse sampling anyway.
374     const float point3845_x = 0.38448566093564*x;
375     const float exp_term = exp(-(point3845_x*point3845_x));
376     const float point8154_plus_x = 0.815362332840791 + x;
377     const float cos_term = cos(point8154_plus_x);
378     return (
379         0.0264727330997042*min(x, 6.83134964622778) +
380         0.680823557250528*exp_term +
381         -0.0597255978950933*min(7.41043194481873, x)*cos_term /
382             (point8154_plus_x + 0.0646074538634482*(x*x) +
383             cos(x)*max(exp_term, cos(x) + cos_term)) -
384         0.180837503591406);
385 }
386 
eval_jinc_filter(const float dist)387 inline float eval_jinc_filter(const float dist)
388 {
389     return eval_jinc_filter_unorm(pi * dist);
390 }
391 
eval_lanczos_jinc_filter(const float dist)392 inline float eval_lanczos_jinc_filter(const float dist)
393 {
394     return eval_jinc_filter(dist) * eval_jinc_filter(dist/aa_lanczos_lobes);
395 }
396 
397 
eval_unorm_rgb_weights(const float2 offset,const float2 final_axis_importance)398 inline float3 eval_unorm_rgb_weights(const float2 offset,
399     const float2 final_axis_importance)
400 {
401     //  Requires:   1.) final_axis_impportance must be computed according to
402     //                  get_subpixel_support_diam_and_final_axis_importance().
403     //              2.) aa_filter must be a global constant.
404     //              3.) offset must be an xy pixel offset in the range:
405     //                      ([-subpixel_support_diameter.x/2,
406     //                      subpixel_support_diameter.x/2],
407     //                      [-subpixel_support_diameter.y/2,
408     //                      subpixel_support_diameter.y/2])
409     //  Returns:    Sample weights at R/G/B destination subpixels for the
410     //              given xy pixel offset.
411     const float2 offset_g = offset * final_axis_importance;
412     const float2 aa_r_offset = get_aa_subpixel_r_offset();
413     const float2 offset_r = offset_g - aa_r_offset * final_axis_importance;
414     const float2 offset_b = offset_g + aa_r_offset * final_axis_importance;
415     //  Statically select a filter:
416     if(aa_filter < 0.5)
417     {
418         return float3(eval_separable_box_filter(offset_r),
419             eval_separable_box_filter(offset_g),
420             eval_separable_box_filter(offset_b));
421     }
422     else if(aa_filter < 1.5)
423     {
424         return float3(eval_box_filter(length(offset_r)),
425             eval_box_filter(length(offset_g)),
426             eval_box_filter(length(offset_b)));
427     }
428     else if(aa_filter < 2.5)
429     {
430         return float3(
431             eval_tent_filter(offset_r.x) * eval_tent_filter(offset_r.y),
432             eval_tent_filter(offset_g.x) * eval_tent_filter(offset_g.y),
433             eval_tent_filter(offset_b.x) * eval_tent_filter(offset_b.y));
434     }
435     else if(aa_filter < 3.5)
436     {
437         return float3(eval_tent_filter(length(offset_r)),
438             eval_tent_filter(length(offset_g)),
439             eval_tent_filter(length(offset_b)));
440     }
441     else if(aa_filter < 4.5)
442     {
443         return float3(
444             eval_gaussian_filter(offset_r.x) * eval_gaussian_filter(offset_r.y),
445             eval_gaussian_filter(offset_g.x) * eval_gaussian_filter(offset_g.y),
446             eval_gaussian_filter(offset_b.x) * eval_gaussian_filter(offset_b.y));
447     }
448     else if(aa_filter < 5.5)
449     {
450         return float3(eval_gaussian_filter(length(offset_r)),
451             eval_gaussian_filter(length(offset_g)),
452             eval_gaussian_filter(length(offset_b)));
453     }
454     else if(aa_filter < 6.5)
455     {
456         return float3(
457             eval_cubic_filter(offset_r.x) * eval_cubic_filter(offset_r.y),
458             eval_cubic_filter(offset_g.x) * eval_cubic_filter(offset_g.y),
459             eval_cubic_filter(offset_b.x) * eval_cubic_filter(offset_b.y));
460     }
461     else if(aa_filter < 7.5)
462     {
463         return float3(eval_cubic_filter(length(offset_r)),
464             eval_cubic_filter(length(offset_g)),
465             eval_cubic_filter(length(offset_b)));
466     }
467     else if(aa_filter < 8.5)
468     {
469         return float3(eval_separable_lanczos_sinc_filter(offset_r),
470             eval_separable_lanczos_sinc_filter(offset_g),
471             eval_separable_lanczos_sinc_filter(offset_b));
472     }
473     else if(aa_filter < 9.5)
474     {
475         return float3(eval_lanczos_jinc_filter(length(offset_r)),
476             eval_lanczos_jinc_filter(length(offset_g)),
477             eval_lanczos_jinc_filter(length(offset_b)));
478     }
479     else
480     {
481         //  Default to a box, because Lanczos Jinc is so bad. ;)
482         return float3(eval_separable_box_filter(offset_r),
483             eval_separable_box_filter(offset_g),
484             eval_separable_box_filter(offset_b));
485     }
486 }
487 
488 
489 //////////////////////////////  HELPER FUNCTIONS  //////////////////////////////
490 
tex2Daa_tiled_linearize(const sampler2D samp,const float2 s)491 inline float4 tex2Daa_tiled_linearize(const sampler2D samp, const float2 s)
492 {
493     //  If we're manually tiling a texture, anisotropic filtering can get
494     //  confused.  This is one workaround:
495     #ifdef ANTIALIAS_DISABLE_ANISOTROPIC
496         //  TODO: Use tex2Dlod_linearize with a calculated mip level.
497         return tex2Dlod_linearize(samp, float4(s, 0.0, 0.0));
498     #else
499         return tex2D_linearize(samp, s);
500     #endif
501 }
502 
get_frame_sign(const float frame)503 inline float2 get_frame_sign(const float frame)
504 {
505     if(aa_temporal)
506     {
507         //  Mirror the sampling pattern for odd frames in a direction that
508         //  lets us keep the same subpixel sample weights:
509         const float frame_odd = float(fmod(frame, 2.0) > 0.5);
510         const float2 aa_r_offset = get_aa_subpixel_r_offset();
511         const float2 mirror = -float2(abs(aa_r_offset.x) < (FIX_ZERO(0.0)), abs(aa_r_offset.y) < (FIX_ZERO(0.0)));
512         return mirror;
513     }
514     else
515     {
516         return float2(1.0, 1.0);
517     }
518 }
519 
520 
521 /////////////////////////  ANTIALIASED TEXTURE LOOKUPS  ////////////////////////
522 
tex2Daa_subpixel_weights_only(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv)523 float3 tex2Daa_subpixel_weights_only(const sampler2D tex,
524     const float2 tex_uv, const float2x2 pixel_to_tex_uv)
525 {
526     //  This function is unlike the others: Just perform a single independent
527     //  lookup for each subpixel.  It may be very aliased.
528     const float2 aa_r_offset = get_aa_subpixel_r_offset();
529     const float2 aa_r_offset_uv_offset = mul(pixel_to_tex_uv, aa_r_offset);
530     const float color_g = tex2D_linearize(tex, tex_uv).g;
531     const float color_r = tex2D_linearize(tex, tex_uv + aa_r_offset_uv_offset).r;
532     const float color_b = tex2D_linearize(tex, tex_uv - aa_r_offset_uv_offset).b;
533     return float3(color_r, color_g, color_b);
534 }
535 
536 //  The tex2Daa* functions compile very slowly due to all the macros and
537 //  compile-time math, so only include the ones we'll actually use!
tex2Daa4x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)538 float3 tex2Daa4x(const sampler2D tex, const float2 tex_uv,
539     const float2x2 pixel_to_tex_uv, const float frame)
540 {
541     //  Use an RGMS4 pattern (4-queens):
542     //  . . Q .  : off =(-1.5, -1.5)/4 + (2.0, 0.0)/4
543     //  Q . . .  : off =(-1.5, -1.5)/4 + (0.0, 1.0)/4
544     //  . . . Q  : off =(-1.5, -1.5)/4 + (3.0, 2.0)/4
545     //  . Q . .  : off =(-1.5, -1.5)/4 + (1.0, 3.0)/4
546     //  Static screenspace sample offsets (compute some implicitly):
547     static const float grid_size = 4.0;
548     assign_aa_cubic_constants();
549     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
550     const float2 subpixel_support_diameter = ssd_fai.xy;
551     const float2 final_axis_importance = ssd_fai.zw;
552     const float2 xy_step = float2(1.0,1.0)/grid_size * subpixel_support_diameter;
553     const float2 xy_start_offset = float2(0.5 - grid_size*0.5,0.5 - grid_size*0.5) * xy_step;
554     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
555     const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
556     const float2 xy_offset1 = xy_start_offset + float2(0.0, 1.0) * xy_step;
557     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
558     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
559     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
560     const float3 w2 = w1.bgr;
561     const float3 w3 = w0.bgr;
562     //  Get the weight sum to normalize the total to 1.0 later:
563     const float3 half_sum = w0 + w1;
564     const float3 w_sum = half_sum + half_sum.bgr;
565     const float3 w_sum_inv = float3(1.0,1.0,1.0)/(w_sum);
566     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
567     const float2x2 true_pixel_to_tex_uv =
568         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
569     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
570     //  diagonal symmetry:
571     const float2 frame_sign = get_frame_sign(frame);
572     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
573     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
574     //  Load samples, linearizing if necessary, etc.:
575     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
576     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
577     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
578     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
579     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
580     return w_sum_inv * (w0 * sample0 + w1 * sample1 +
581         w2 * sample2 + w3 * sample3);
582 }
583 
tex2Daa5x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)584 float3 tex2Daa5x(const sampler2D tex, const float2 tex_uv,
585     const float2x2 pixel_to_tex_uv, const float frame)
586 {
587     //  Use a diagonally symmetric 5-queens pattern:
588     //  . Q . . .  : off =(-2.0, -2.0)/5 + (1.0, 0.0)/5
589     //  . . . . Q  : off =(-2.0, -2.0)/5 + (4.0, 1.0)/5
590     //  . . Q . .  : off =(-2.0, -2.0)/5 + (2.0, 2.0)/5
591     //  Q . . . .  : off =(-2.0, -2.0)/5 + (0.0, 3.0)/5
592     //  . . . Q .  : off =(-2.0, -2.0)/5 + (3.0, 4.0)/5
593     //  Static screenspace sample offsets (compute some implicitly):
594     static const float grid_size = 5.0;
595     assign_aa_cubic_constants();
596     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
597     const float2 subpixel_support_diameter = ssd_fai.xy;
598     const float2 final_axis_importance = ssd_fai.zw;
599     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
600     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
601     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
602     const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
603     const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
604     const float2 xy_offset2 = xy_start_offset + float2(2.0, 2.0) * xy_step;
605     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
606     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
607     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
608     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
609     const float3 w3 = w1.bgr;
610     const float3 w4 = w0.bgr;
611     //  Get the weight sum to normalize the total to 1.0 later:
612     const float3 w_sum_inv = float3(1.0)/(w0 + w1 + w2 + w3 + w4);
613     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
614     const float2x2 true_pixel_to_tex_uv =
615         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
616     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
617     //  diagonal symmetry:
618     const float2 frame_sign = get_frame_sign(frame);
619     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
620     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
621     //  Load samples, linearizing if necessary, etc.:
622     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
623     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
624     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv).rgb;
625     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
626     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
627     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
628     return w_sum_inv * (w0 * sample0 + w1 * sample1 +
629         w2 * sample2 + w3 * sample3 + w4 * sample4);
630 }
631 
tex2Daa6x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)632 float3 tex2Daa6x(const sampler2D tex, const float2 tex_uv,
633     const float2x2 pixel_to_tex_uv, const float frame)
634 {
635     //  Use a diagonally symmetric 6-queens pattern with a stronger horizontal
636     //  than vertical slant:
637     //  . . . . Q .  : off =(-2.5, -2.5)/6 + (4.0, 0.0)/6
638     //  . . Q . . .  : off =(-2.5, -2.5)/6 + (2.0, 1.0)/6
639     //  Q . . . . .  : off =(-2.5, -2.5)/6 + (0.0, 2.0)/6
640     //  . . . . . Q  : off =(-2.5, -2.5)/6 + (5.0, 3.0)/6
641     //  . . . Q . .  : off =(-2.5, -2.5)/6 + (3.0, 4.0)/6
642     //  . Q . . . .  : off =(-2.5, -2.5)/6 + (1.0, 5.0)/6
643     //  Static screenspace sample offsets (compute some implicitly):
644     static const float grid_size = 6.0;
645     assign_aa_cubic_constants();
646     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
647     const float2 subpixel_support_diameter = ssd_fai.xy;
648     const float2 final_axis_importance = ssd_fai.zw;
649     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
650     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
651     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
652     const float2 xy_offset0 = xy_start_offset + float2(4.0, 0.0) * xy_step;
653     const float2 xy_offset1 = xy_start_offset + float2(2.0, 1.0) * xy_step;
654     const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
655     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
656     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
657     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
658     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
659     const float3 w3 = w2.bgr;
660     const float3 w4 = w1.bgr;
661     const float3 w5 = w0.bgr;
662     //  Get the weight sum to normalize the total to 1.0 later:
663     const float3 half_sum = w0 + w1 + w2;
664     const float3 w_sum = half_sum + half_sum.bgr;
665     const float3 w_sum_inv = float3(1.0)/(w_sum);
666     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
667     const float2x2 true_pixel_to_tex_uv =
668         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
669     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
670     //  diagonal symmetry:
671     const float2 frame_sign = get_frame_sign(frame);
672     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
673     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
674     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
675     //  Load samples, linearizing if necessary, etc.:
676     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
677     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
678     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
679     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
680     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
681     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
682     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
683     return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 +
684         w3 * sample3 + w4 * sample4 + w5 * sample5);
685 }
686 
tex2Daa7x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)687 float3 tex2Daa7x(const sampler2D tex, const float2 tex_uv,
688     const float2x2 pixel_to_tex_uv, const float frame)
689 {
690     //  Use a diagonally symmetric 7-queens pattern with a queen in the center:
691     //  . Q . . . . .  : off =(-3.0, -3.0)/7 + (1.0, 0.0)/7
692     //  . . . . Q . .  : off =(-3.0, -3.0)/7 + (4.0, 1.0)/7
693     //  Q . . . . . .  : off =(-3.0, -3.0)/7 + (0.0, 2.0)/7
694     //  . . . Q . . .  : off =(-3.0, -3.0)/7 + (3.0, 3.0)/7
695     //  . . . . . . Q  : off =(-3.0, -3.0)/7 + (6.0, 4.0)/7
696     //  . . Q . . . .  : off =(-3.0, -3.0)/7 + (2.0, 5.0)/7
697     //  . . . . . Q .  : off =(-3.0, -3.0)/7 + (5.0, 6.0)/7
698     static const float grid_size = 7.0;
699     assign_aa_cubic_constants();
700     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
701     const float2 subpixel_support_diameter = ssd_fai.xy;
702     const float2 final_axis_importance = ssd_fai.zw;
703     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
704     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
705     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
706     const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
707     const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
708     const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
709     const float2 xy_offset3 = xy_start_offset + float2(3.0, 3.0) * xy_step;
710     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
711     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
712     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
713     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
714     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
715     const float3 w4 = w2.bgr;
716     const float3 w5 = w1.bgr;
717     const float3 w6 = w0.bgr;
718     //  Get the weight sum to normalize the total to 1.0 later:
719     const float3 half_sum = w0 + w1 + w2;
720     const float3 w_sum = half_sum + half_sum.bgr + w3;
721     const float3 w_sum_inv = float3(1.0)/(w_sum);
722     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
723     const float2x2 true_pixel_to_tex_uv =
724         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
725     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
726     //  diagonal symmetry:
727     const float2 frame_sign = get_frame_sign(frame);
728     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
729     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
730     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
731     //  Load samples, linearizing if necessary, etc.:
732     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
733     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
734     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
735     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv).rgb;
736     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
737     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
738     const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
739     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
740     return w_sum_inv * (
741         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
742         w4 * sample4 + w5 * sample5 + w6 * sample6);
743 }
744 
tex2Daa8x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)745 float3 tex2Daa8x(const sampler2D tex, const float2 tex_uv,
746     const float2x2 pixel_to_tex_uv, const float frame)
747 {
748     //  Use a diagonally symmetric 8-queens pattern.
749     //  . . Q . . . . .  : off =(-3.5, -3.5)/8 + (2.0, 0.0)/8
750     //  . . . . Q . . .  : off =(-3.5, -3.5)/8 + (4.0, 1.0)/8
751     //  . Q . . . . . .  : off =(-3.5, -3.5)/8 + (1.0, 2.0)/8
752     //  . . . . . . . Q  : off =(-3.5, -3.5)/8 + (7.0, 3.0)/8
753     //  Q . . . . . . .  : off =(-3.5, -3.5)/8 + (0.0, 4.0)/8
754     //  . . . . . . Q .  : off =(-3.5, -3.5)/8 + (6.0, 5.0)/8
755     //  . . . Q . . . .  : off =(-3.5, -3.5)/8 + (3.0, 6.0)/8
756     //  . . . . . Q . .  : off =(-3.5, -3.5)/8 + (5.0, 7.0)/8
757     static const float grid_size = 8.0;
758     assign_aa_cubic_constants();
759     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
760     const float2 subpixel_support_diameter = ssd_fai.xy;
761     const float2 final_axis_importance = ssd_fai.zw;
762     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
763     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
764     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
765     const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
766     const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
767     const float2 xy_offset2 = xy_start_offset + float2(1.0, 2.0) * xy_step;
768     const float2 xy_offset3 = xy_start_offset + float2(7.0, 3.0) * xy_step;
769     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
770     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
771     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
772     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
773     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
774     const float3 w4 = w3.bgr;
775     const float3 w5 = w2.bgr;
776     const float3 w6 = w1.bgr;
777     const float3 w7 = w0.bgr;
778     //  Get the weight sum to normalize the total to 1.0 later:
779     const float3 half_sum = w0 + w1 + w2 + w3;
780     const float3 w_sum = half_sum + half_sum.bgr;
781     const float3 w_sum_inv = float3(1.0)/(w_sum);
782     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
783     const float2x2 true_pixel_to_tex_uv =
784         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
785     //  Get uv sample offsets, and mirror on odd frames if directed:
786     const float2 frame_sign = get_frame_sign(frame);
787     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
788     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
789     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
790     const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
791     //  Load samples, linearizing if necessary, etc.:
792     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
793     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
794     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
795     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
796     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
797     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
798     const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
799     const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
800     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
801     return w_sum_inv * (
802         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
803         w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7);
804 }
805 
tex2Daa12x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)806 float3 tex2Daa12x(const sampler2D tex, const float2 tex_uv,
807     const float2x2 pixel_to_tex_uv, const float frame)
808 {
809     //  Use a diagonally symmetric 12-superqueens pattern where no 3 points are
810     //  exactly collinear.
811     //  . . . Q . . . . . . . .  : off =(-5.5, -5.5)/12 + (3.0, 0.0)/12
812     //  . . . . . . . . . Q . .  : off =(-5.5, -5.5)/12 + (9.0, 1.0)/12
813     //  . . . . . . Q . . . . .  : off =(-5.5, -5.5)/12 + (6.0, 2.0)/12
814     //  . Q . . . . . . . . . .  : off =(-5.5, -5.5)/12 + (1.0, 3.0)/12
815     //  . . . . . . . . . . . Q  : off =(-5.5, -5.5)/12 + (11.0, 4.0)/12
816     //  . . . . Q . . . . . . .  : off =(-5.5, -5.5)/12 + (4.0, 5.0)/12
817     //  . . . . . . . Q . . . .  : off =(-5.5, -5.5)/12 + (7.0, 6.0)/12
818     //  Q . . . . . . . . . . .  : off =(-5.5, -5.5)/12 + (0.0, 7.0)/12
819     //  . . . . . . . . . . Q .  : off =(-5.5, -5.5)/12 + (10.0, 8.0)/12
820     //  . . . . . Q . . . . . .  : off =(-5.5, -5.5)/12 + (5.0, 9.0)/12
821     //  . . Q . . . . . . . . .  : off =(-5.5, -5.5)/12 + (2.0, 10.0)/12
822     //  . . . . . . . . Q . . .  : off =(-5.5, -5.5)/12 + (8.0, 11.0)/12
823     static const float grid_size = 12.0;
824     assign_aa_cubic_constants();
825     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
826     const float2 subpixel_support_diameter = ssd_fai.xy;
827     const float2 final_axis_importance = ssd_fai.zw;
828     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
829     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
830     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
831     const float2 xy_offset0 = xy_start_offset + float2(3.0, 0.0) * xy_step;
832     const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
833     const float2 xy_offset2 = xy_start_offset + float2(6.0, 2.0) * xy_step;
834     const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
835     const float2 xy_offset4 = xy_start_offset + float2(11.0, 4.0) * xy_step;
836     const float2 xy_offset5 = xy_start_offset + float2(4.0, 5.0) * xy_step;
837     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
838     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
839     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
840     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
841     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
842     const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
843     const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
844     const float3 w6 = w5.bgr;
845     const float3 w7 = w4.bgr;
846     const float3 w8 = w3.bgr;
847     const float3 w9 = w2.bgr;
848     const float3 w10 = w1.bgr;
849     const float3 w11 = w0.bgr;
850     //  Get the weight sum to normalize the total to 1.0 later:
851     const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5;
852     const float3 w_sum = half_sum + half_sum.bgr;
853     const float3 w_sum_inv = float3(1.0)/w_sum;
854     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
855     const float2x2 true_pixel_to_tex_uv =
856         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
857     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
858     //  diagonal symmetry:
859     const float2 frame_sign = get_frame_sign(frame);
860     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
861     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
862     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
863     const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
864     const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
865     const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
866     //  Load samples, linearizing if necessary, etc.:
867     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
868     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
869     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
870     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
871     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
872     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
873     const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
874     const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
875     const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
876     const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
877     const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
878     const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
879     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
880     return w_sum_inv * (
881         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
882         w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
883         w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11);
884 }
885 
tex2Daa16x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)886 float3 tex2Daa16x(const sampler2D tex, const float2 tex_uv,
887     const float2x2 pixel_to_tex_uv, const float frame)
888 {
889     //  Use a diagonally symmetric 16-superqueens pattern where no 3 points are
890     //  exactly collinear.
891     //  . . Q . . . . . . . . . . . . .  : off =(-7.5, -7.5)/16 + (2.0, 0.0)/16
892     //  . . . . . . . . . Q . . . . . .  : off =(-7.5, -7.5)/16 + (9.0, 1.0)/16
893     //  . . . . . . . . . . . . Q . . .  : off =(-7.5, -7.5)/16 + (12.0, 2.0)/16
894     //  . . . . Q . . . . . . . . . . .  : off =(-7.5, -7.5)/16 + (4.0, 3.0)/16
895     //  . . . . . . . . Q . . . . . . .  : off =(-7.5, -7.5)/16 + (8.0, 4.0)/16
896     //  . . . . . . . . . . . . . . Q .  : off =(-7.5, -7.5)/16 + (14.0, 5.0)/16
897     //  Q . . . . . . . . . . . . . . .  : off =(-7.5, -7.5)/16 + (0.0, 6.0)/16
898     //  . . . . . . . . . . Q . . . . .  : off =(-7.5, -7.5)/16 + (10.0, 7.0)/16
899     //  . . . . . Q . . . . . . . . . .  : off =(-7.5, -7.5)/16 + (5.0, 8.0)/16
900     //  . . . . . . . . . . . . . . . Q  : off =(-7.5, -7.5)/16 + (15.0, 9.0)/16
901     //  . Q . . . . . . . . . . . . . .  : off =(-7.5, -7.5)/16 + (1.0, 10.0)/16
902     //  . . . . . . . Q . . . . . . . .  : off =(-7.5, -7.5)/16 + (7.0, 11.0)/16
903     //  . . . . . . . . . . . Q . . . .  : off =(-7.5, -7.5)/16 + (11.0, 12.0)/16
904     //  . . . Q . . . . . . . . . . . .  : off =(-7.5, -7.5)/16 + (3.0, 13.0)/16
905     //  . . . . . . Q . . . . . . . . .  : off =(-7.5, -7.5)/16 + (6.0, 14.0)/16
906     //  . . . . . . . . . . . . . Q . .  : off =(-7.5, -7.5)/16 + (13.0, 15.0)/16
907     static const float grid_size = 16.0;
908     assign_aa_cubic_constants();
909     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
910     const float2 subpixel_support_diameter = ssd_fai.xy;
911     const float2 final_axis_importance = ssd_fai.zw;
912     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
913     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
914     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
915     const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
916     const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
917     const float2 xy_offset2 = xy_start_offset + float2(12.0, 2.0) * xy_step;
918     const float2 xy_offset3 = xy_start_offset + float2(4.0, 3.0) * xy_step;
919     const float2 xy_offset4 = xy_start_offset + float2(8.0, 4.0) * xy_step;
920     const float2 xy_offset5 = xy_start_offset + float2(14.0, 5.0) * xy_step;
921     const float2 xy_offset6 = xy_start_offset + float2(0.0, 6.0) * xy_step;
922     const float2 xy_offset7 = xy_start_offset + float2(10.0, 7.0) * xy_step;
923     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
924     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
925     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
926     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
927     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
928     const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
929     const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
930     const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
931     const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
932     const float3 w8 = w7.bgr;
933     const float3 w9 = w6.bgr;
934     const float3 w10 = w5.bgr;
935     const float3 w11 = w4.bgr;
936     const float3 w12 = w3.bgr;
937     const float3 w13 = w2.bgr;
938     const float3 w14 = w1.bgr;
939     const float3 w15 = w0.bgr;
940     //  Get the weight sum to normalize the total to 1.0 later:
941     const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
942     const float3 w_sum = half_sum + half_sum.bgr;
943     const float3 w_sum_inv = float3(1.0)/(w_sum);
944     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
945     const float2x2 true_pixel_to_tex_uv =
946         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
947     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
948     //  diagonal symmetry:
949     const float2 frame_sign = get_frame_sign(frame);
950     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
951     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
952     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
953     const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
954     const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
955     const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
956     const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
957     const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
958     //  Load samples, linearizing if necessary, etc.:
959     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
960     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
961     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
962     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
963     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
964     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
965     const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
966     const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
967     const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
968     const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
969     const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
970     const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
971     const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
972     const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
973     const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
974     const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
975     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
976     return w_sum_inv * (
977         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
978         w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
979         w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
980         w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
981 }
982 
tex2Daa20x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)983 float3 tex2Daa20x(const sampler2D tex, const float2 tex_uv,
984     const float2x2 pixel_to_tex_uv, const float frame)
985 {
986     //  Use a diagonally symmetric 20-superqueens pattern where no 3 points are
987     //  exactly collinear and superqueens have a squared attack radius of 13.
988     //  . . . . . . . Q . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (7.0, 0.0)/20
989     //  . . . . . . . . . . . . . . . . Q . . .  : off =(-9.5, -9.5)/20 + (16.0, 1.0)/20
990     //  . . . . . . . . . . . Q . . . . . . . .  : off =(-9.5, -9.5)/20 + (11.0, 2.0)/20
991     //  . Q . . . . . . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (1.0, 3.0)/20
992     //  . . . . . Q . . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (5.0, 4.0)/20
993     //  . . . . . . . . . . . . . . . Q . . . .  : off =(-9.5, -9.5)/20 + (15.0, 5.0)/20
994     //  . . . . . . . . . . Q . . . . . . . . .  : off =(-9.5, -9.5)/20 + (10.0, 6.0)/20
995     //  . . . . . . . . . . . . . . . . . . . Q  : off =(-9.5, -9.5)/20 + (19.0, 7.0)/20
996     //  . . Q . . . . . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (2.0, 8.0)/20
997     //  . . . . . . Q . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (6.0, 9.0)/20
998     //  . . . . . . . . . . . . . Q . . . . . .  : off =(-9.5, -9.5)/20 + (13.0, 10.0)/20
999     //  . . . . . . . . . . . . . . . . . Q . .  : off =(-9.5, -9.5)/20 + (17.0, 11.0)/20
1000     //  Q . . . . . . . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (0.0, 12.0)/20
1001     //  . . . . . . . . . Q . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (9.0, 13.0)/20
1002     //  . . . . Q . . . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (4.0, 14.0)/20
1003     //  . . . . . . . . . . . . . . Q . . . . .  : off =(-9.5, -9.5)/20 + (14.0, 15.0)/20
1004     //  . . . . . . . . . . . . . . . . . . Q .  : off =(-9.5, -9.5)/20 + (18.0, 16.0)/20
1005     //  . . . . . . . . Q . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (8.0, 17.0)/20
1006     //  . . . Q . . . . . . . . . . . . . . . .  : off =(-9.5, -9.5)/20 + (3.0, 18.0)/20
1007     //  . . . . . . . . . . . . Q . . . . . . .  : off =(-9.5, -9.5)/20 + (12.0, 19.0)/20
1008     static const float grid_size = 20.0;
1009     assign_aa_cubic_constants();
1010     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
1011     const float2 subpixel_support_diameter = ssd_fai.xy;
1012     const float2 final_axis_importance = ssd_fai.zw;
1013     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
1014     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
1015     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
1016     const float2 xy_offset0 = xy_start_offset + float2(7.0, 0.0) * xy_step;
1017     const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
1018     const float2 xy_offset2 = xy_start_offset + float2(11.0, 2.0) * xy_step;
1019     const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
1020     const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
1021     const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
1022     const float2 xy_offset6 = xy_start_offset + float2(10.0, 6.0) * xy_step;
1023     const float2 xy_offset7 = xy_start_offset + float2(19.0, 7.0) * xy_step;
1024     const float2 xy_offset8 = xy_start_offset + float2(2.0, 8.0) * xy_step;
1025     const float2 xy_offset9 = xy_start_offset + float2(6.0, 9.0) * xy_step;
1026     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
1027     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
1028     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
1029     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
1030     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
1031     const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
1032     const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
1033     const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
1034     const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
1035     const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
1036     const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
1037     const float3 w10 = w9.bgr;
1038     const float3 w11 = w8.bgr;
1039     const float3 w12 = w7.bgr;
1040     const float3 w13 = w6.bgr;
1041     const float3 w14 = w5.bgr;
1042     const float3 w15 = w4.bgr;
1043     const float3 w16 = w3.bgr;
1044     const float3 w17 = w2.bgr;
1045     const float3 w18 = w1.bgr;
1046     const float3 w19 = w0.bgr;
1047     //  Get the weight sum to normalize the total to 1.0 later:
1048     const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9;
1049     const float3 w_sum = half_sum + half_sum.bgr;
1050     const float3 w_sum_inv = float3(1.0)/(w_sum);
1051     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
1052     const float2x2 true_pixel_to_tex_uv =
1053         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
1054     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
1055     //  diagonal symmetry:
1056     const float2 frame_sign = get_frame_sign(frame);
1057     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
1058     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
1059     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
1060     const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
1061     const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
1062     const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
1063     const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
1064     const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
1065     const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
1066     const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
1067     //  Load samples, linearizing if necessary, etc.:
1068     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
1069     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
1070     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
1071     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
1072     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
1073     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
1074     const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
1075     const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
1076     const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb;
1077     const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb;
1078     const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb;
1079     const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb;
1080     const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
1081     const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
1082     const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
1083     const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
1084     const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
1085     const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
1086     const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
1087     const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
1088     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
1089     return w_sum_inv * (
1090         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
1091         w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
1092         w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
1093         w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
1094         w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19);
1095 }
1096 
tex2Daa24x(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)1097 float3 tex2Daa24x(const sampler2D tex, const float2 tex_uv,
1098     const float2x2 pixel_to_tex_uv, const float frame)
1099 {
1100     //  Use a diagonally symmetric 24-superqueens pattern where no 3 points are
1101     //  exactly collinear and superqueens have a squared attack radius of 13.
1102     //  . . . . . . Q . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (6.0, 0.0)/24
1103     //  . . . . . . . . . . . . . . . . Q . . . . . . .  : off =(-11.5, -11.5)/24 + (16.0, 1.0)/24
1104     //  . . . . . . . . . . Q . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (10.0, 2.0)/24
1105     //  . . . . . . . . . . . . . . . . . . . . . Q . .  : off =(-11.5, -11.5)/24 + (21.0, 3.0)/24
1106     //  . . . . . Q . . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (5.0, 4.0)/24
1107     //  . . . . . . . . . . . . . . . Q . . . . . . . .  : off =(-11.5, -11.5)/24 + (15.0, 5.0)/24
1108     //  . Q . . . . . . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (1.0, 6.0)/24
1109     //  . . . . . . . . . . . Q . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (11.0, 7.0)/24
1110     //  . . . . . . . . . . . . . . . . . . . Q . . . .  : off =(-11.5, -11.5)/24 + (19.0, 8.0)/24
1111     //  . . . . . . . . . . . . . . . . . . . . . . . Q  : off =(-11.5, -11.5)/24 + (23.0, 9.0)/24
1112     //  . . . Q . . . . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (3.0, 10.0)/24
1113     //  . . . . . . . . . . . . . . Q . . . . . . . . .  : off =(-11.5, -11.5)/24 + (14.0, 11.0)/24
1114     //  . . . . . . . . . Q . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (9.0, 12.0)/24
1115     //  . . . . . . . . . . . . . . . . . . . . Q . . .  : off =(-11.5, -11.5)/24 + (20.0, 13.0)/24
1116     //  Q . . . . . . . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (0.0, 14.0)/24
1117     //  . . . . Q . . . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (4.0, 15.0)/24
1118     //  . . . . . . . . . . . . Q . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (12.0, 16.0)/24
1119     //  . . . . . . . . . . . . . . . . . . . . . . Q .  : off =(-11.5, -11.5)/24 + (22.0, 17.0)/24
1120     //  . . . . . . . . Q . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (8.0, 18.0)/24
1121     //  . . . . . . . . . . . . . . . . . . Q . . . . .  : off =(-11.5, -11.5)/24 + (18.0, 19.0)/24
1122     //  . . Q . . . . . . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (2.0, 20.0)/24
1123     //  . . . . . . . . . . . . . Q . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (13.0, 21.0)/24
1124     //  . . . . . . . Q . . . . . . . . . . . . . . . .  : off =(-11.5, -11.5)/24 + (7.0, 22.0)/24
1125     //  . . . . . . . . . . . . . . . . . Q . . . . . .  : off =(-11.5, -11.5)/24 + (17.0, 23.0)/24
1126     static const float grid_size = 24.0;
1127     assign_aa_cubic_constants();
1128     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
1129     const float2 subpixel_support_diameter = ssd_fai.xy;
1130     const float2 final_axis_importance = ssd_fai.zw;
1131     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
1132     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
1133     //  Get the xy offset of each sample.  Exploit diagonal symmetry:
1134     const float2 xy_offset0 = xy_start_offset + float2(6.0, 0.0) * xy_step;
1135     const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
1136     const float2 xy_offset2 = xy_start_offset + float2(10.0, 2.0) * xy_step;
1137     const float2 xy_offset3 = xy_start_offset + float2(21.0, 3.0) * xy_step;
1138     const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
1139     const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
1140     const float2 xy_offset6 = xy_start_offset + float2(1.0, 6.0) * xy_step;
1141     const float2 xy_offset7 = xy_start_offset + float2(11.0, 7.0) * xy_step;
1142     const float2 xy_offset8 = xy_start_offset + float2(19.0, 8.0) * xy_step;
1143     const float2 xy_offset9 = xy_start_offset + float2(23.0, 9.0) * xy_step;
1144     const float2 xy_offset10 = xy_start_offset + float2(3.0, 10.0) * xy_step;
1145     const float2 xy_offset11 = xy_start_offset + float2(14.0, 11.0) * xy_step;
1146     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
1147     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
1148     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
1149     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
1150     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
1151     const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
1152     const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
1153     const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
1154     const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
1155     const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
1156     const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
1157     const float3 w10 = eval_unorm_rgb_weights(xy_offset10, final_axis_importance);
1158     const float3 w11 = eval_unorm_rgb_weights(xy_offset11, final_axis_importance);
1159     const float3 w12 = w11.bgr;
1160     const float3 w13 = w10.bgr;
1161     const float3 w14 = w9.bgr;
1162     const float3 w15 = w8.bgr;
1163     const float3 w16 = w7.bgr;
1164     const float3 w17 = w6.bgr;
1165     const float3 w18 = w5.bgr;
1166     const float3 w19 = w4.bgr;
1167     const float3 w20 = w3.bgr;
1168     const float3 w21 = w2.bgr;
1169     const float3 w22 = w1.bgr;
1170     const float3 w23 = w0.bgr;
1171     //  Get the weight sum to normalize the total to 1.0 later:
1172     const float3 half_sum = w0 + w1 + w2 + w3 + w4 +
1173         w5 + w6 + w7 + w8 + w9 + w10 + w11;
1174     const float3 w_sum = half_sum + half_sum.bgr;
1175     const float3 w_sum_inv = float3(1.0)/(w_sum);
1176     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
1177     const float2x2 true_pixel_to_tex_uv =
1178         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
1179     //  Get uv sample offsets, mirror on odd frames if directed, and exploit
1180     //  diagonal symmetry:
1181     const float2 frame_sign = get_frame_sign(frame);
1182     const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
1183     const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
1184     const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
1185     const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
1186     const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
1187     const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
1188     const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
1189     const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
1190     const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
1191     const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
1192     const float2 uv_offset10 = mul(true_pixel_to_tex_uv, xy_offset10 * frame_sign);
1193     const float2 uv_offset11 = mul(true_pixel_to_tex_uv, xy_offset11 * frame_sign);
1194     //  Load samples, linearizing if necessary, etc.:
1195     const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
1196     const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
1197     const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
1198     const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
1199     const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
1200     const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
1201     const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
1202     const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
1203     const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb;
1204     const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb;
1205     const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset10).rgb;
1206     const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset11).rgb;
1207     const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset11).rgb;
1208     const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset10).rgb;
1209     const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb;
1210     const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb;
1211     const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
1212     const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
1213     const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
1214     const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
1215     const float3 sample20 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
1216     const float3 sample21 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
1217     const float3 sample22 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
1218     const float3 sample23 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
1219     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
1220     return w_sum_inv * (
1221         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
1222         w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
1223         w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
1224         w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
1225         w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19 +
1226         w20 * sample20 + w21 * sample21 + w22 * sample22 + w23 * sample23);
1227 }
1228 
tex2Daa_debug_16x_regular(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)1229 float3 tex2Daa_debug_16x_regular(const sampler2D tex, const float2 tex_uv,
1230     const float2x2 pixel_to_tex_uv, const float frame)
1231 {
1232     //  Sample on a regular 4x4 grid.  This is mainly for testing.
1233     static const float grid_size = 4.0;
1234     assign_aa_cubic_constants();
1235     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
1236     const float2 subpixel_support_diameter = ssd_fai.xy;
1237     const float2 final_axis_importance = ssd_fai.zw;
1238     const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
1239     const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
1240     //  Get the xy offset of each sample:
1241     const float2 xy_offset0 = xy_start_offset + float2(0.0, 0.0) * xy_step;
1242     const float2 xy_offset1 = xy_start_offset + float2(1.0, 0.0) * xy_step;
1243     const float2 xy_offset2 = xy_start_offset + float2(2.0, 0.0) * xy_step;
1244     const float2 xy_offset3 = xy_start_offset + float2(3.0, 0.0) * xy_step;
1245     const float2 xy_offset4 = xy_start_offset + float2(0.0, 1.0) * xy_step;
1246     const float2 xy_offset5 = xy_start_offset + float2(1.0, 1.0) * xy_step;
1247     const float2 xy_offset6 = xy_start_offset + float2(2.0, 1.0) * xy_step;
1248     const float2 xy_offset7 = xy_start_offset + float2(3.0, 1.0) * xy_step;
1249     //  Compute subpixel weights, and exploit diagonal symmetry for speed.
1250     //  (We can't exploit vertical or horizontal symmetry due to uncertain
1251     //  subpixel offsets.  We could fix that by rotating xy offsets with the
1252     //  subpixel structure, but...no.)
1253     const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
1254     const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
1255     const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
1256     const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
1257     const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
1258     const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
1259     const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
1260     const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
1261     const float3 w8 = w7.bgr;
1262     const float3 w9 = w6.bgr;
1263     const float3 w10 = w5.bgr;
1264     const float3 w11 = w4.bgr;
1265     const float3 w12 = w3.bgr;
1266     const float3 w13 = w2.bgr;
1267     const float3 w14 = w1.bgr;
1268     const float3 w15 = w0.bgr;
1269     //  Get the weight sum to normalize the total to 1.0 later:
1270     const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
1271     const float3 w_sum = half_sum + half_sum.bgr;
1272     const float3 w_sum_inv = float3(1.0)/(w_sum);
1273     //  Scale the pixel-space to texture offset matrix by the pixel diameter.
1274     const float2x2 true_pixel_to_tex_uv =
1275         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
1276     //  Get uv sample offsets, taking advantage of row alignment:
1277     const float2 uv_step_x = mul(true_pixel_to_tex_uv, float2(xy_step.x, 0.0));
1278     const float2 uv_step_y = mul(true_pixel_to_tex_uv, float2(0.0, xy_step.y));
1279     const float2 uv_offset0 = -1.5 * (uv_step_x + uv_step_y);
1280     const float2 sample0_uv = tex_uv + uv_offset0;
1281     const float2 sample4_uv = sample0_uv + uv_step_y;
1282     const float2 sample8_uv = sample0_uv + uv_step_y * 2.0;
1283     const float2 sample12_uv = sample0_uv + uv_step_y * 3.0;
1284     //  Load samples, linearizing if necessary, etc.:
1285     const float3 sample0 = tex2Daa_tiled_linearize(tex, sample0_uv).rgb;
1286     const float3 sample1 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x).rgb;
1287     const float3 sample2 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 2.0).rgb;
1288     const float3 sample3 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 3.0).rgb;
1289     const float3 sample4 = tex2Daa_tiled_linearize(tex, sample4_uv).rgb;
1290     const float3 sample5 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x).rgb;
1291     const float3 sample6 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 2.0).rgb;
1292     const float3 sample7 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 3.0).rgb;
1293     const float3 sample8 = tex2Daa_tiled_linearize(tex, sample8_uv).rgb;
1294     const float3 sample9 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x).rgb;
1295     const float3 sample10 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 2.0).rgb;
1296     const float3 sample11 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 3.0).rgb;
1297     const float3 sample12 = tex2Daa_tiled_linearize(tex, sample12_uv).rgb;
1298     const float3 sample13 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x).rgb;
1299     const float3 sample14 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 2.0).rgb;
1300     const float3 sample15 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 3.0).rgb;
1301     //  Sum weighted samples (weight sum must equal 1.0 for each channel):
1302     return w_sum_inv * (
1303         w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
1304         w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
1305         w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
1306         w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
1307 }
1308 
tex2Daa_debug_dynamic(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)1309 float3 tex2Daa_debug_dynamic(const sampler2D tex, const float2 tex_uv,
1310     const float2x2 pixel_to_tex_uv, const float frame)
1311 {
1312     //  This function is for testing only: Use an NxN grid with dynamic weights.
1313     static const int grid_size = 8;
1314     assign_aa_cubic_constants();
1315     const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
1316     const float2 subpixel_support_diameter = ssd_fai.xy;
1317     const float2 final_axis_importance = ssd_fai.zw;
1318     const float grid_radius_in_samples = (float(grid_size) - 1.0)/2.0;
1319     const float2 filter_space_offset_step =
1320         subpixel_support_diameter/float2(grid_size);
1321     const float2 sample0_filter_space_offset =
1322         -grid_radius_in_samples * filter_space_offset_step;
1323     //  Compute xy sample offsets and subpixel weights:
1324     float3 weights[64]; // grid_size * grid_size
1325     float3 weight_sum = float3(0.0, 0.0, 0.0);
1326     for(int i = 0; i < grid_size; ++i)
1327     {
1328         for(int j = 0; j < grid_size; ++j)
1329         {
1330             //  Weights based on xy distances:
1331             const float2 offset = sample0_filter_space_offset +
1332                 float2(j, i) * filter_space_offset_step;
1333             const float3 weight = eval_unorm_rgb_weights(offset, final_axis_importance);
1334             weights[i*grid_size + j] = weight;
1335             weight_sum += weight;
1336         }
1337     }
1338     //  Get uv offset vectors along x and y directions:
1339     const float2x2 true_pixel_to_tex_uv =
1340         float2x2((pixel_to_tex_uv * aa_pixel_diameter));
1341     const float2 uv_offset_step_x = mul(true_pixel_to_tex_uv,
1342         float2(filter_space_offset_step.x, 0.0));
1343     const float2 uv_offset_step_y = mul(true_pixel_to_tex_uv,
1344         float2(0.0, filter_space_offset_step.y));
1345     //  Get a starting sample location:
1346     const float2 sample0_uv_offset = -grid_radius_in_samples *
1347         (uv_offset_step_x + uv_offset_step_y);
1348     const float2 sample0_uv = tex_uv + sample0_uv_offset;
1349     //  Load, weight, and sum [linearized] samples:
1350     float3 sum = float3(0.0, 0.0, 0.0);
1351     const float3 weight_sum_inv = float3(1.0)/weight_sum;
1352     for(int i = 0; i < grid_size; ++i)
1353     {
1354         const float2 row_i_first_sample_uv =
1355             sample0_uv + i * uv_offset_step_y;
1356         for(int j = 0; j < grid_size; ++j)
1357         {
1358             const float2 sample_uv =
1359                 row_i_first_sample_uv + j * uv_offset_step_x;
1360             sum += weights[i*grid_size + j] *
1361                 tex2Daa_tiled_linearize(tex, sample_uv).rgb;
1362         }
1363     }
1364     return sum * weight_sum_inv;
1365 }
1366 
1367 
1368 ///////////////////////  ANTIALIASING CODEPATH SELECTION  //////////////////////
1369 
tex2Daa(const sampler2D tex,const float2 tex_uv,const float2x2 pixel_to_tex_uv,const float frame)1370 inline float3 tex2Daa(const sampler2D tex, const float2 tex_uv,
1371     const float2x2 pixel_to_tex_uv, const float frame)
1372 {
1373     //  Statically switch between antialiasing modes/levels:
1374     return (aa_level < 0.5) ? tex2D_linearize(tex, tex_uv).rgb :
1375         (aa_level < 3.5) ? tex2Daa_subpixel_weights_only(
1376             tex, tex_uv, pixel_to_tex_uv) :
1377         (aa_level < 4.5) ? tex2Daa4x(tex, tex_uv, pixel_to_tex_uv, frame) :
1378         (aa_level < 5.5) ? tex2Daa5x(tex, tex_uv, pixel_to_tex_uv, frame) :
1379         (aa_level < 6.5) ? tex2Daa6x(tex, tex_uv, pixel_to_tex_uv, frame) :
1380         (aa_level < 7.5) ? tex2Daa7x(tex, tex_uv, pixel_to_tex_uv, frame) :
1381         (aa_level < 11.5) ? tex2Daa8x(tex, tex_uv, pixel_to_tex_uv, frame) :
1382         (aa_level < 15.5) ? tex2Daa12x(tex, tex_uv, pixel_to_tex_uv, frame) :
1383         (aa_level < 19.5) ? tex2Daa16x(tex, tex_uv, pixel_to_tex_uv, frame) :
1384         (aa_level < 23.5) ? tex2Daa20x(tex, tex_uv, pixel_to_tex_uv, frame) :
1385         (aa_level < 253.5) ? tex2Daa24x(tex, tex_uv, pixel_to_tex_uv, frame) :
1386         (aa_level < 254.5) ? tex2Daa_debug_16x_regular(
1387             tex, tex_uv, pixel_to_tex_uv, frame) :
1388         tex2Daa_debug_dynamic(tex, tex_uv, pixel_to_tex_uv, frame);
1389 }
1390 
1391 
1392 #endif  //  TEX2DANTIALIAS_H
1393 
1394