1 #include "Air.h"
2
3 #include <cmath>
4 #include <algorithm>
5
6 #include "Simulation.h"
7 #include "ElementClasses.h"
8 #include "common/tpt-rand.h"
9
10 /*float kernel[9];
11
12 float vx[YRES/CELL][XRES/CELL], ovx[YRES/CELL][XRES/CELL];
13 float vy[YRES/CELL][XRES/CELL], ovy[YRES/CELL][XRES/CELL];
14 float pv[YRES/CELL][XRES/CELL], opv[YRES/CELL][XRES/CELL];
15 unsigned char bmap_blockair[YRES/CELL][XRES/CELL];
16
17 float cb_vx[YRES/CELL][XRES/CELL];
18 float cb_vy[YRES/CELL][XRES/CELL];
19 float cb_pv[YRES/CELL][XRES/CELL];
20 float cb_hv[YRES/CELL][XRES/CELL];
21
22 float fvx[YRES/CELL][XRES/CELL], fvy[YRES/CELL][XRES/CELL];
23
24 float hv[YRES/CELL][XRES/CELL], ohv[YRES/CELL][XRES/CELL]; // For Ambient Heat */
25
make_kernel(void)26 void Air::make_kernel(void) //used for velocity
27 {
28 int i, j;
29 float s = 0.0f;
30 for (j=-1; j<2; j++)
31 for (i=-1; i<2; i++)
32 {
33 kernel[(i+1)+3*(j+1)] = expf(-2.0f*(i*i+j*j));
34 s += kernel[(i+1)+3*(j+1)];
35 }
36 s = 1.0f / s;
37 for (j=-1; j<2; j++)
38 for (i=-1; i<2; i++)
39 kernel[(i+1)+3*(j+1)] *= s;
40 }
41
Clear()42 void Air::Clear()
43 {
44 std::fill(&pv[0][0], &pv[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
45 std::fill(&vy[0][0], &vy[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
46 std::fill(&vx[0][0], &vx[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
47 }
48
ClearAirH()49 void Air::ClearAirH()
50 {
51 std::fill(&hv[0][0], &hv[0][0]+((XRES/CELL)*(YRES/CELL)), ambientAirTemp);
52 }
53
update_airh(void)54 void Air::update_airh(void)
55 {
56 int x, y, i, j;
57 float odh, dh, dx, dy, f, tx, ty;
58 for (i=0; i<YRES/CELL; i++) //reduces pressure/velocity on the edges every frame
59 {
60 hv[i][0] = ambientAirTemp;
61 hv[i][1] = ambientAirTemp;
62 hv[i][XRES/CELL-3] = ambientAirTemp;
63 hv[i][XRES/CELL-2] = ambientAirTemp;
64 hv[i][XRES/CELL-1] = ambientAirTemp;
65 }
66 for (i=0; i<XRES/CELL; i++) //reduces pressure/velocity on the edges every frame
67 {
68 hv[0][i] = ambientAirTemp;
69 hv[1][i] = ambientAirTemp;
70 hv[YRES/CELL-3][i] = ambientAirTemp;
71 hv[YRES/CELL-2][i] = ambientAirTemp;
72 hv[YRES/CELL-1][i] = ambientAirTemp;
73 }
74 for (y=0; y<YRES/CELL; y++) //update velocity and pressure
75 {
76 for (x=0; x<XRES/CELL; x++)
77 {
78 dh = 0.0f;
79 dx = 0.0f;
80 dy = 0.0f;
81 for (j=-1; j<2; j++)
82 {
83 for (i=-1; i<2; i++)
84 {
85 if (y+j>0 && y+j<YRES/CELL-2 &&
86 x+i>0 && x+i<XRES/CELL-2 &&
87 !(bmap_blockairh[y+j][x+i]&0x8))
88 {
89 f = kernel[i+1+(j+1)*3];
90 dh += hv[y+j][x+i]*f;
91 dx += vx[y+j][x+i]*f;
92 dy += vy[y+j][x+i]*f;
93 }
94 else
95 {
96 f = kernel[i+1+(j+1)*3];
97 dh += hv[y][x]*f;
98 dx += vx[y][x]*f;
99 dy += vy[y][x]*f;
100 }
101 }
102 }
103 tx = x - dx*0.7f;
104 ty = y - dy*0.7f;
105 i = (int)tx;
106 j = (int)ty;
107 tx -= i;
108 ty -= j;
109 if (i>=2 && i<XRES/CELL-3 && j>=2 && j<YRES/CELL-3)
110 {
111 odh = dh;
112 dh *= 1.0f - AIR_VADV;
113 dh += AIR_VADV*(1.0f-tx)*(1.0f-ty)*((bmap_blockairh[j][i]&0x8) ? odh : hv[j][i]);
114 dh += AIR_VADV*tx*(1.0f-ty)*((bmap_blockairh[j][i+1]&0x8) ? odh : hv[j][i+1]);
115 dh += AIR_VADV*(1.0f-tx)*ty*((bmap_blockairh[j+1][i]&0x8) ? odh : hv[j+1][i]);
116 dh += AIR_VADV*tx*ty*((bmap_blockairh[j+1][i+1]&0x8) ? odh : hv[j+1][i+1]);
117 }
118 if(!sim.gravityMode)
119 { //Vertical gravity only for the time being
120 float airdiff = hv[y-1][x]-hv[y][x];
121 if(airdiff>0 && !(bmap_blockairh[y-1][x]&0x8))
122 vy[y][x] -= airdiff/5000.0f;
123 }
124 ohv[y][x] = dh;
125 }
126 }
127 memcpy(hv, ohv, sizeof(hv));
128 }
129
update_air(void)130 void Air::update_air(void)
131 {
132 int x = 0, y = 0, i = 0, j = 0;
133 float dp = 0.0f, dx = 0.0f, dy = 0.0f, f = 0.0f, tx = 0.0f, ty = 0.0f;
134 const float advDistanceMult = 0.7f;
135 float stepX, stepY;
136 int stepLimit, step;
137
138 if (airMode != 4) { //airMode 4 is no air/pressure update
139
140 for (i=0; i<YRES/CELL; i++) //reduces pressure/velocity on the edges every frame
141 {
142 pv[i][0] = pv[i][0]*0.8f;
143 pv[i][1] = pv[i][1]*0.8f;
144 pv[i][2] = pv[i][2]*0.8f;
145 pv[i][XRES/CELL-2] = pv[i][XRES/CELL-2]*0.8f;
146 pv[i][XRES/CELL-1] = pv[i][XRES/CELL-1]*0.8f;
147 vx[i][0] = vx[i][0]*0.9f;
148 vx[i][1] = vx[i][1]*0.9f;
149 vx[i][XRES/CELL-2] = vx[i][XRES/CELL-2]*0.9f;
150 vx[i][XRES/CELL-1] = vx[i][XRES/CELL-1]*0.9f;
151 vy[i][0] = vy[i][0]*0.9f;
152 vy[i][1] = vy[i][1]*0.9f;
153 vy[i][XRES/CELL-2] = vy[i][XRES/CELL-2]*0.9f;
154 vy[i][XRES/CELL-1] = vy[i][XRES/CELL-1]*0.9f;
155 }
156 for (i=0; i<XRES/CELL; i++) //reduces pressure/velocity on the edges every frame
157 {
158 pv[0][i] = pv[0][i]*0.8f;
159 pv[1][i] = pv[1][i]*0.8f;
160 pv[2][i] = pv[2][i]*0.8f;
161 pv[YRES/CELL-2][i] = pv[YRES/CELL-2][i]*0.8f;
162 pv[YRES/CELL-1][i] = pv[YRES/CELL-1][i]*0.8f;
163 vx[0][i] = vx[0][i]*0.9f;
164 vx[1][i] = vx[1][i]*0.9f;
165 vx[YRES/CELL-2][i] = vx[YRES/CELL-2][i]*0.9f;
166 vx[YRES/CELL-1][i] = vx[YRES/CELL-1][i]*0.9f;
167 vy[0][i] = vy[0][i]*0.9f;
168 vy[1][i] = vy[1][i]*0.9f;
169 vy[YRES/CELL-2][i] = vy[YRES/CELL-2][i]*0.9f;
170 vy[YRES/CELL-1][i] = vy[YRES/CELL-1][i]*0.9f;
171 }
172
173 for (j=1; j<YRES/CELL; j++) //clear some velocities near walls
174 {
175 for (i=1; i<XRES/CELL; i++)
176 {
177 if (bmap_blockair[j][i])
178 {
179 vx[j][i] = 0.0f;
180 vx[j][i-1] = 0.0f;
181 vy[j][i] = 0.0f;
182 vy[j-1][i] = 0.0f;
183 }
184 }
185 }
186
187 for (y=1; y<YRES/CELL; y++) //pressure adjustments from velocity
188 for (x=1; x<XRES/CELL; x++)
189 {
190 dp = 0.0f;
191 dp += vx[y][x-1] - vx[y][x];
192 dp += vy[y-1][x] - vy[y][x];
193 pv[y][x] *= AIR_PLOSS;
194 pv[y][x] += dp*AIR_TSTEPP;
195 }
196
197 for (y=0; y<YRES/CELL-1; y++) //velocity adjustments from pressure
198 for (x=0; x<XRES/CELL-1; x++)
199 {
200 dx = dy = 0.0f;
201 dx += pv[y][x] - pv[y][x+1];
202 dy += pv[y][x] - pv[y+1][x];
203 vx[y][x] *= AIR_VLOSS;
204 vy[y][x] *= AIR_VLOSS;
205 vx[y][x] += dx*AIR_TSTEPV;
206 vy[y][x] += dy*AIR_TSTEPV;
207 if (bmap_blockair[y][x] || bmap_blockair[y][x+1])
208 vx[y][x] = 0;
209 if (bmap_blockair[y][x] || bmap_blockair[y+1][x])
210 vy[y][x] = 0;
211 }
212
213 for (y=0; y<YRES/CELL; y++) //update velocity and pressure
214 for (x=0; x<XRES/CELL; x++)
215 {
216 dx = 0.0f;
217 dy = 0.0f;
218 dp = 0.0f;
219 for (j=-1; j<2; j++)
220 for (i=-1; i<2; i++)
221 if (y+j>0 && y+j<YRES/CELL-1 &&
222 x+i>0 && x+i<XRES/CELL-1 &&
223 !bmap_blockair[y+j][x+i])
224 {
225 f = kernel[i+1+(j+1)*3];
226 dx += vx[y+j][x+i]*f;
227 dy += vy[y+j][x+i]*f;
228 dp += pv[y+j][x+i]*f;
229 }
230 else
231 {
232 f = kernel[i+1+(j+1)*3];
233 dx += vx[y][x]*f;
234 dy += vy[y][x]*f;
235 dp += pv[y][x]*f;
236 }
237
238 tx = x - dx*advDistanceMult;
239 ty = y - dy*advDistanceMult;
240 if ((dx*advDistanceMult>1.0f || dy*advDistanceMult>1.0f) && (tx>=2 && tx<XRES/CELL-2 && ty>=2 && ty<YRES/CELL-2))
241 {
242 // Trying to take velocity from far away, check whether there is an intervening wall. Step from current position to desired source location, looking for walls, with either the x or y step size being 1 cell
243 if (std::abs(dx)>std::abs(dy))
244 {
245 stepX = (dx<0.0f) ? 1 : -1;
246 stepY = -dy/fabsf(dx);
247 stepLimit = (int)(fabsf(dx*advDistanceMult));
248 }
249 else
250 {
251 stepY = (dy<0.0f) ? 1 : -1;
252 stepX = -dx/fabsf(dy);
253 stepLimit = (int)(fabsf(dy*advDistanceMult));
254 }
255 tx = x;
256 ty = y;
257 for (step=0; step<stepLimit; ++step)
258 {
259 tx += stepX;
260 ty += stepY;
261 if (bmap_blockair[(int)(ty+0.5f)][(int)(tx+0.5f)])
262 {
263 tx -= stepX;
264 ty -= stepY;
265 break;
266 }
267 }
268 if (step==stepLimit)
269 {
270 // No wall found
271 tx = x - dx*advDistanceMult;
272 ty = y - dy*advDistanceMult;
273 }
274 }
275 i = (int)tx;
276 j = (int)ty;
277 tx -= i;
278 ty -= j;
279 if (!bmap_blockair[y][x] && i>=2 && i<=XRES/CELL-3 &&
280 j>=2 && j<=YRES/CELL-3)
281 {
282 dx *= 1.0f - AIR_VADV;
283 dy *= 1.0f - AIR_VADV;
284
285 dx += AIR_VADV*(1.0f-tx)*(1.0f-ty)*vx[j][i];
286 dy += AIR_VADV*(1.0f-tx)*(1.0f-ty)*vy[j][i];
287
288 dx += AIR_VADV*tx*(1.0f-ty)*vx[j][i+1];
289 dy += AIR_VADV*tx*(1.0f-ty)*vy[j][i+1];
290
291 dx += AIR_VADV*(1.0f-tx)*ty*vx[j+1][i];
292 dy += AIR_VADV*(1.0f-tx)*ty*vy[j+1][i];
293
294 dx += AIR_VADV*tx*ty*vx[j+1][i+1];
295 dy += AIR_VADV*tx*ty*vy[j+1][i+1];
296 }
297
298 if (bmap[y][x] == WL_FAN)
299 {
300 dx += fvx[y][x];
301 dy += fvy[y][x];
302 }
303 // pressure/velocity caps
304 if (dp > 256.0f) dp = 256.0f;
305 if (dp < -256.0f) dp = -256.0f;
306 if (dx > 256.0f) dx = 256.0f;
307 if (dx < -256.0f) dx = -256.0f;
308 if (dy > 256.0f) dy = 256.0f;
309 if (dy < -256.0f) dy = -256.0f;
310
311
312 switch (airMode)
313 {
314 default:
315 case 0: //Default
316 break;
317 case 1: //0 Pressure
318 dp = 0.0f;
319 break;
320 case 2: //0 Velocity
321 dx = 0.0f;
322 dy = 0.0f;
323 break;
324 case 3: //0 Air
325 dx = 0.0f;
326 dy = 0.0f;
327 dp = 0.0f;
328 break;
329 case 4: //No Update
330 break;
331 }
332
333 ovx[y][x] = dx;
334 ovy[y][x] = dy;
335 opv[y][x] = dp;
336 }
337 memcpy(vx, ovx, sizeof(vx));
338 memcpy(vy, ovy, sizeof(vy));
339 memcpy(pv, opv, sizeof(pv));
340 }
341 }
342
Invert()343 void Air::Invert()
344 {
345 int nx, ny;
346 for (nx = 0; nx<XRES/CELL; nx++)
347 for (ny = 0; ny<YRES/CELL; ny++)
348 {
349 pv[ny][nx] = -pv[ny][nx];
350 vx[ny][nx] = -vx[ny][nx];
351 vy[ny][nx] = -vy[ny][nx];
352 }
353 }
354
355 // called when loading saves / stamps to ensure nothing "leaks" the first frame
RecalculateBlockAirMaps()356 void Air::RecalculateBlockAirMaps()
357 {
358 for (int i = 0; i <= sim.parts_lastActiveIndex; i++)
359 {
360 int type = sim.parts[i].type;
361 if (!type)
362 continue;
363 // Real TTAN would only block if there was enough TTAN
364 // but it would be more expensive and complicated to actually check that
365 // so just block for a frame, if it wasn't supposed to block it will continue allowing air next frame
366 if (type == PT_TTAN)
367 {
368 int x = ((int)(sim.parts[i].x+0.5f))/CELL, y = ((int)(sim.parts[i].y+0.5f))/CELL;
369 if (sim.InBounds(x, y))
370 {
371 bmap_blockair[y][x] = 1;
372 bmap_blockairh[y][x] = 0x8;
373 }
374 }
375 // mostly accurate insulator blocking, besides checking GEL
376 else if ((type == PT_HSWC && sim.parts[i].life != 10) || sim.elements[type].HeatConduct <= (random_gen()%250))
377 {
378 int x = ((int)(sim.parts[i].x+0.5f))/CELL, y = ((int)(sim.parts[i].y+0.5f))/CELL;
379 if (sim.InBounds(x, y) && !(bmap_blockairh[y][x]&0x8))
380 bmap_blockairh[y][x]++;
381 }
382 }
383 }
384
Air(Simulation & simulation)385 Air::Air(Simulation & simulation):
386 sim(simulation),
387 airMode(0),
388 ambientAirTemp(295.15f)
389 {
390 //Simulation should do this.
391 make_kernel();
392 std::fill(&bmap_blockair[0][0], &bmap_blockair[0][0]+((XRES/CELL)*(YRES/CELL)), 0);
393 std::fill(&bmap_blockairh[0][0], &bmap_blockairh[0][0]+((XRES/CELL)*(YRES/CELL)), 0);
394 std::fill(&vx[0][0], &vx[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
395 std::fill(&ovx[0][0], &ovx[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
396 std::fill(&vy[0][0], &vy[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
397 std::fill(&ovy[0][0], &ovy[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
398 std::fill(&hv[0][0], &hv[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
399 std::fill(&ohv[0][0], &ohv[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
400 std::fill(&pv[0][0], &pv[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
401 std::fill(&opv[0][0], &opv[0][0]+((XRES/CELL)*(YRES/CELL)), 0.0f);
402 }
403