1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
5 // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_MATHFUNCTIONSIMPL_H
12 #define EIGEN_MATHFUNCTIONSIMPL_H
13 
14 namespace Eigen {
15 
16 namespace internal {
17 
18 /** \internal \returns the hyperbolic tan of \a a (coeff-wise)
19     Doesn't do anything fancy, just a 13/6-degree rational interpolant which
20     is accurate up to a couple of ulp in the range [-9, 9], outside of which
21     the tanh(x) = +/-1.
22 
23     This implementation works on both scalars and packets.
24 */
25 template<typename T>
generic_fast_tanh_float(const T & a_x)26 T generic_fast_tanh_float(const T& a_x)
27 {
28   // Clamp the inputs to the range [-9, 9] since anything outside
29   // this range is +/-1.0f in single-precision.
30   const T plus_9 = pset1<T>(9.f);
31   const T minus_9 = pset1<T>(-9.f);
32   // NOTE GCC prior to 6.3 might improperly optimize this max/min
33   //      step such that if a_x is nan, x will be either 9 or -9,
34   //      and tanh will return 1 or -1 instead of nan.
35   //      This is supposed to be fixed in gcc6.3,
36   //      see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
37   const T x = pmax(minus_9,pmin(plus_9,a_x));
38   // The monomial coefficients of the numerator polynomial (odd).
39   const T alpha_1 = pset1<T>(4.89352455891786e-03f);
40   const T alpha_3 = pset1<T>(6.37261928875436e-04f);
41   const T alpha_5 = pset1<T>(1.48572235717979e-05f);
42   const T alpha_7 = pset1<T>(5.12229709037114e-08f);
43   const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
44   const T alpha_11 = pset1<T>(2.00018790482477e-13f);
45   const T alpha_13 = pset1<T>(-2.76076847742355e-16f);
46 
47   // The monomial coefficients of the denominator polynomial (even).
48   const T beta_0 = pset1<T>(4.89352518554385e-03f);
49   const T beta_2 = pset1<T>(2.26843463243900e-03f);
50   const T beta_4 = pset1<T>(1.18534705686654e-04f);
51   const T beta_6 = pset1<T>(1.19825839466702e-06f);
52 
53   // Since the polynomials are odd/even, we need x^2.
54   const T x2 = pmul(x, x);
55 
56   // Evaluate the numerator polynomial p.
57   T p = pmadd(x2, alpha_13, alpha_11);
58   p = pmadd(x2, p, alpha_9);
59   p = pmadd(x2, p, alpha_7);
60   p = pmadd(x2, p, alpha_5);
61   p = pmadd(x2, p, alpha_3);
62   p = pmadd(x2, p, alpha_1);
63   p = pmul(x, p);
64 
65   // Evaluate the denominator polynomial p.
66   T q = pmadd(x2, beta_6, beta_4);
67   q = pmadd(x2, q, beta_2);
68   q = pmadd(x2, q, beta_0);
69 
70   // Divide the numerator by the denominator.
71   return pdiv(p, q);
72 }
73 
74 template<typename RealScalar>
75 EIGEN_STRONG_INLINE
positive_real_hypot(const RealScalar & x,const RealScalar & y)76 RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
77 {
78   EIGEN_USING_STD_MATH(sqrt);
79   RealScalar p, qp;
80   p = numext::maxi(x,y);
81   if(p==RealScalar(0)) return RealScalar(0);
82   qp = numext::mini(y,x) / p;
83   return p * sqrt(RealScalar(1) + qp*qp);
84 }
85 
86 template<typename Scalar>
87 struct hypot_impl
88 {
89   typedef typename NumTraits<Scalar>::Real RealScalar;
runhypot_impl90   static inline RealScalar run(const Scalar& x, const Scalar& y)
91   {
92     EIGEN_USING_STD_MATH(abs);
93     return positive_real_hypot<RealScalar>(abs(x), abs(y));
94   }
95 };
96 
97 } // end namespace internal
98 
99 } // end namespace Eigen
100 
101 #endif // EIGEN_MATHFUNCTIONSIMPL_H
102