1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software Foundation,
14 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
15 */
16
17 /** \file
18 * \ingroup bli
19 */
20
21 #include <algorithm>
22 #include <fstream>
23 #include <iostream>
24 #include <sstream>
25
26 #include "BLI_array.hh"
27 #include "BLI_double2.hh"
28 #include "BLI_linklist.h"
29 #include "BLI_math_boolean.hh"
30 #include "BLI_math_mpq.hh"
31 #include "BLI_mpq2.hh"
32 #include "BLI_vector.hh"
33
34 #include "BLI_delaunay_2d.h"
35
36 namespace blender::meshintersect {
37
38 /* Throughout this file, template argument T will be an
39 * arithmetic-like type, like float, double, or mpq_class. */
40
math_abs(const T v)41 template<typename T> T math_abs(const T v)
42 {
43 return (v < 0) ? -v : v;
44 }
45
46 #ifdef WITH_GMP
math_abs(const mpq_class v)47 template<> mpq_class math_abs<mpq_class>(const mpq_class v)
48 {
49 return abs(v);
50 }
51 #endif
52
math_abs(const double v)53 template<> double math_abs<double>(const double v)
54 {
55 return fabs(v);
56 }
57
math_to_double(const T UNUSED (v))58 template<typename T> double math_to_double(const T UNUSED(v))
59 {
60 BLI_assert(false); /* Need implementation for other type. */
61 return 0.0;
62 }
63
64 #ifdef WITH_GMP
math_to_double(const mpq_class v)65 template<> double math_to_double<mpq_class>(const mpq_class v)
66 {
67 return v.get_d();
68 }
69 #endif
70
math_to_double(const double v)71 template<> double math_to_double<double>(const double v)
72 {
73 return v;
74 }
75
76 /**
77 * Define a templated 2D arrangement of vertices, edges, and faces.
78 * The #SymEdge data structure is the basis for a structure that allows
79 * easy traversal to neighboring (by topology) geometric elements.
80 * Each of #CDTVert, #CDTEdge, and #CDTFace have an input_id linked list,
81 * whose nodes contain integers that keep track of which input verts, edges,
82 * and faces, respectively, that the element was derived from.
83 *
84 * While this could be cleaned up some, it is usable by other routines in Blender
85 * that need to keep track of a 2D arrangement, with topology.
86 */
87 template<typename Arith_t> struct CDTVert;
88 template<typename Arith_t> struct CDTEdge;
89 template<typename Arith_t> struct CDTFace;
90
91 template<typename Arith_t> struct SymEdge {
92 /** Next #SymEdge in face, doing CCW traversal of face. */
93 SymEdge<Arith_t> *next{nullptr};
94 /** Next #SymEdge CCW around vert. */
95 SymEdge<Arith_t> *rot{nullptr};
96 /** Vert at origin. */
97 CDTVert<Arith_t> *vert{nullptr};
98 /** Un-directed edge this is for. */
99 CDTEdge<Arith_t> *edge{nullptr};
100 /** Face on left side. */
101 CDTFace<Arith_t> *face{nullptr};
102
103 SymEdge() = default;
104 };
105
106 /**
107 * Return other #SymEdge for same #CDTEdge as \a se.
108 */
sym(const SymEdge<T> * se)109 template<typename T> inline SymEdge<T> *sym(const SymEdge<T> *se)
110 {
111 return se->next->rot;
112 }
113
114 /** Return #SymEdge whose next is \a se. */
prev(const SymEdge<T> * se)115 template<typename T> inline SymEdge<T> *prev(const SymEdge<T> *se)
116 {
117 return se->rot->next->rot;
118 }
119
120 template<typename Arith_t> struct CDTVert {
121 /** Coordinate. */
122 vec2<Arith_t> co;
123 /** Some edge attached to it. */
124 SymEdge<Arith_t> *symedge{nullptr};
125 /** List of corresponding vertex input ids. */
126 LinkNode *input_ids{nullptr};
127 /** Index into array that #CDTArrangement keeps. */
128 int index{-1};
129 /** Index of a CDTVert that this has merged to. -1 if no merge. */
130 int merge_to_index{-1};
131 /** Used by algorithms operating on CDT structures. */
132 int visit_index{0};
133
134 CDTVert() = default;
135 explicit CDTVert(const vec2<Arith_t> &pt);
136 };
137
138 template<typename Arith_t> struct CDTEdge {
139 /** List of input edge ids that this is part of. */
140 LinkNode *input_ids{nullptr};
141 /** The directed edges for this edge. */
142 SymEdge<Arith_t> symedges[2]{SymEdge<Arith_t>(), SymEdge<Arith_t>()};
143
144 CDTEdge() = default;
145 };
146
147 template<typename Arith_t> struct CDTFace {
148 /** A symedge in face; only used during output, so only valid then. */
149 SymEdge<Arith_t> *symedge{nullptr};
150 /** List of input face ids that this is part of. */
151 LinkNode *input_ids{nullptr};
152 /** Used by algorithms operating on CDT structures. */
153 int visit_index{0};
154 /** Marks this face no longer used. */
155 bool deleted{false};
156
157 CDTFace() = default;
158 };
159
160 template<typename Arith_t> struct CDTArrangement {
161 /* The arrangement owns the memory pointed to by the pointers in these vectors.
162 * They are pointers instead of actual structures because these vectors may be resized and
163 * other elements refer to the elements by pointer. */
164
165 /** The verts. Some may be merged to others (see their merge_to_index). */
166 Vector<CDTVert<Arith_t> *> verts;
167 /** The edges. Some may be deleted (SymEdge next and rot pointers are null). */
168 Vector<CDTEdge<Arith_t> *> edges;
169 /** The faces. Some may be deleted (see their delete member). */
170 Vector<CDTFace<Arith_t> *> faces;
171 /** Which CDTFace is the outer face. */
172 CDTFace<Arith_t> *outer_face{nullptr};
173
174 CDTArrangement() = default;
175 ~CDTArrangement();
176
177 /** Hint to how much space to reserve in the Vectors of the arrangement,
178 * based on these counts of input elements. */
179 void reserve(int num_verts, int num_edges, int num_faces);
180
181 /**
182 * Add a new vertex to the arrangement, with the given 2D coordinate.
183 * It will not be connected to anything yet.
184 */
185 CDTVert<Arith_t> *add_vert(const vec2<Arith_t> &pt);
186
187 /**
188 * Add an edge from v1 to v2. The edge will have a left face and a right face,
189 * specified by \a fleft and \a fright. The edge will not be connected to anything yet.
190 * If the vertices do not yet have a #SymEdge pointer,
191 * their pointer is set to the #SymEdge in this new edge.
192 */
193 CDTEdge<Arith_t> *add_edge(CDTVert<Arith_t> *v1,
194 CDTVert<Arith_t> *v2,
195 CDTFace<Arith_t> *fleft,
196 CDTFace<Arith_t> *fright);
197
198 /**
199 * Add a new face. It is disconnected until an add_edge makes it the
200 * left or right face of an edge.
201 */
202 CDTFace<Arith_t> *add_face();
203
204 /** Make a new edge from v to se->vert, splicing it in. */
205 CDTEdge<Arith_t> *add_vert_to_symedge_edge(CDTVert<Arith_t> *v, SymEdge<Arith_t> *se);
206
207 /**
208 * Assuming s1 and s2 are both #SymEdge's in a face with > 3 sides and one is not the next of the
209 * other, Add an edge from `s1->v` to `s2->v`, splitting the face in two. The original face will
210 * be the one that s1 has as left face, and a new face will be added and made s2 and its
211 * next-cycle's left face.
212 */
213 CDTEdge<Arith_t> *add_diagonal(SymEdge<Arith_t> *s1, SymEdge<Arith_t> *s2);
214
215 /**
216 * Connect the verts of se1 and se2, assuming that currently those two #SymEdge's are on the
217 * outer boundary (have face == outer_face) of two components that are isolated from each other.
218 */
219 CDTEdge<Arith_t> *connect_separate_parts(SymEdge<Arith_t> *se1, SymEdge<Arith_t> *se2);
220
221 /**
222 * Split se at fraction lambda, and return the new #CDTEdge that is the new second half.
223 * Copy the edge input_ids into the new one.
224 */
225 CDTEdge<Arith_t> *split_edge(SymEdge<Arith_t> *se, Arith_t lambda);
226
227 /**
228 * Delete an edge. The new combined face on either side of the deleted edge will be the one that
229 * was e's face. There will now be an unused face, which will be marked deleted, and an unused
230 * #CDTEdge, marked by setting the next and rot pointers of its #SymEdge's to #nullptr.
231 */
232 void delete_edge(SymEdge<Arith_t> *se);
233
234 /**
235 * If the vertex with index i in the vert array has not been merge, return it.
236 * Else return the one that it has merged to.
237 */
get_vert_resolve_mergeblender::meshintersect::CDTArrangement238 CDTVert<Arith_t> *get_vert_resolve_merge(int i)
239 {
240 CDTVert<Arith_t> *v = this->verts[i];
241 if (v->merge_to_index != -1) {
242 v = this->verts[v->merge_to_index];
243 }
244 return v;
245 }
246 };
247
248 template<typename T> class CDT_state {
249 public:
250 CDTArrangement<T> cdt;
251 /** How many verts were in input (will be first in vert_array). */
252 int input_vert_tot;
253 /** Used for visiting things without having to initialized their visit fields. */
254 int visit_count;
255 /**
256 * Edge ids for face start with this, and each face gets this much index space
257 * to encode positions within the face.
258 */
259 int face_edge_offset;
260 /** How close before coords considered equal. */
261 T epsilon;
262
263 explicit CDT_state(int num_input_verts, int num_input_edges, int num_input_faces, T epsilon);
~CDT_state()264 ~CDT_state()
265 {
266 }
267 };
268
~CDTArrangement()269 template<typename T> CDTArrangement<T>::~CDTArrangement()
270 {
271 for (int i : this->verts.index_range()) {
272 CDTVert<T> *v = this->verts[i];
273 BLI_linklist_free(v->input_ids, nullptr);
274 delete v;
275 this->verts[i] = nullptr;
276 }
277 for (int i : this->edges.index_range()) {
278 CDTEdge<T> *e = this->edges[i];
279 BLI_linklist_free(e->input_ids, nullptr);
280 delete e;
281 this->edges[i] = nullptr;
282 }
283 for (int i : this->faces.index_range()) {
284 CDTFace<T> *f = this->faces[i];
285 BLI_linklist_free(f->input_ids, nullptr);
286 delete f;
287 this->faces[i] = nullptr;
288 }
289 }
290
291 #define DEBUG_CDT
292 #ifdef DEBUG_CDT
293 /* Some functions to aid in debugging. */
vertname(const CDTVert<T> * v)294 template<typename T> std::string vertname(const CDTVert<T> *v)
295 {
296 std::stringstream ss;
297 ss << "[" << v->index << "]";
298 return ss.str();
299 }
300
301 /* Abbreviated pointer value is easier to read in dumps. */
trunc_ptr(const void * p)302 static std::string trunc_ptr(const void *p)
303 {
304 constexpr int TRUNC_PTR_MASK = 0xFFFF;
305 std::stringstream ss;
306 ss << std::hex << (POINTER_AS_INT(p) & TRUNC_PTR_MASK);
307 return ss.str();
308 }
309
sename(const SymEdge<T> * se)310 template<typename T> std::string sename(const SymEdge<T> *se)
311 {
312 std::stringstream ss;
313 ss << "{" << trunc_ptr(se) << "}";
314 return ss.str();
315 }
316
operator <<(std::ostream & os,const SymEdge<T> & se)317 template<typename T> std::ostream &operator<<(std::ostream &os, const SymEdge<T> &se)
318 {
319 if (se.next) {
320 os << vertname(se.vert) << "(" << se.vert->co << "->" << se.next->vert->co << ")"
321 << vertname(se.next->vert);
322 }
323 else {
324 os << vertname(se.vert) << "(" << se.vert->co << "->NULL)";
325 }
326 return os;
327 }
328
operator <<(std::ostream & os,const SymEdge<T> * se)329 template<typename T> std::ostream &operator<<(std::ostream &os, const SymEdge<T> *se)
330 {
331 os << *se;
332 return os;
333 }
334
short_se_dump(const SymEdge<T> * se)335 template<typename T> std::string short_se_dump(const SymEdge<T> *se)
336 {
337 if (se == nullptr) {
338 return std::string("NULL");
339 }
340 return vertname(se->vert) +
341 (se->next == nullptr ? std::string("[NULL]") : vertname(se->next->vert));
342 }
343
operator <<(std::ostream & os,const CDT_state<T> & cdt_state)344 template<typename T> std::ostream &operator<<(std::ostream &os, const CDT_state<T> &cdt_state)
345 {
346 os << "\nCDT\n\nVERTS\n";
347 for (const CDTVert<T> *v : cdt_state.cdt.verts) {
348 os << vertname(v) << " " << trunc_ptr(v) << ": " << v->co
349 << " symedge=" << trunc_ptr(v->symedge);
350 if (v->merge_to_index == -1) {
351 os << "\n";
352 }
353 else {
354 os << " merge to " << vertname(cdt_state.cdt.verts[v->merge_to_index]) << "\n";
355 }
356 const SymEdge<T> *se = v->symedge;
357 int cnt = 0;
358 constexpr int print_count_limit = 25;
359 if (se) {
360 os << " edges out:\n";
361 do {
362 if (se->next == NULL) {
363 os << " [NULL] next/rot symedge, se=" << trunc_ptr(se) << "\n";
364 break;
365 }
366 if (se->next->next == NULL) {
367 os << " [NULL] next-next/rot symedge, se=" << trunc_ptr(se) << "\n";
368 break;
369 }
370 const CDTVert<T> *vother = sym(se)->vert;
371 os << " " << vertname(vother) << "(e=" << trunc_ptr(se->edge)
372 << ", se=" << trunc_ptr(se) << ")\n";
373 se = se->rot;
374 cnt++;
375 } while (se != v->symedge && cnt < print_count_limit);
376 os << "\n";
377 }
378 }
379 os << "\nEDGES\n";
380 for (const CDTEdge<T> *e : cdt_state.cdt.edges) {
381 if (e->symedges[0].next == nullptr) {
382 continue;
383 }
384 os << trunc_ptr(&e) << ":\n";
385 for (int i = 0; i < 2; ++i) {
386 const SymEdge<T> *se = &e->symedges[i];
387 os << " se[" << i << "] @" << trunc_ptr(se) << " next=" << trunc_ptr(se->next)
388 << ", rot=" << trunc_ptr(se->rot) << ", vert=" << trunc_ptr(se->vert) << " "
389 << vertname(se->vert) << " " << se->vert->co << ", edge=" << trunc_ptr(se->edge)
390 << ", face=" << trunc_ptr(se->face) << "\n";
391 }
392 }
393 os << "\nFACES\n";
394 os << "outer_face=" << trunc_ptr(cdt_state.cdt.outer_face) << "\n";
395 /* Only after prepare_output do faces have non-null symedges. */
396 if (cdt_state.cdt.outer_face->symedge != nullptr) {
397 for (const CDTFace<T> *f : cdt_state.cdt.faces) {
398 if (!f->deleted) {
399 os << trunc_ptr(f) << " symedge=" << trunc_ptr(f->symedge) << "\n";
400 }
401 }
402 }
403 return os;
404 }
405
cdt_draw(const std::string & label,const CDTArrangement<T> & cdt)406 template<typename T> void cdt_draw(const std::string &label, const CDTArrangement<T> &cdt)
407 {
408 static bool append = false; /* Will be set to true after first call. */
409
410 /* Would like to use #BKE_tempdir_base() here, but that brings in dependence on kernel library.
411 * This is just for developer debugging anyway, and should never be called in production Blender.
412 */
413 # ifdef _WIN32
414 const char *drawfile = "./debug_draw.html";
415 # else
416 const char *drawfile = "/tmp/debug_draw.html";
417 # endif
418 constexpr int max_draw_width = 1800;
419 constexpr int max_draw_height = 1600;
420 constexpr double margin_expand = 0.05;
421 constexpr int thin_line = 1;
422 constexpr int thick_line = 4;
423 constexpr int vert_radius = 3;
424 constexpr bool draw_vert_labels = true;
425 constexpr bool draw_edge_labels = false;
426
427 if (cdt.verts.size() == 0) {
428 return;
429 }
430 vec2<double> vmin(DBL_MAX, DBL_MAX);
431 vec2<double> vmax(-DBL_MAX, -DBL_MAX);
432 for (const CDTVert<T> *v : cdt.verts) {
433 for (int i = 0; i < 2; ++i) {
434 double dvi = math_to_double(v->co[i]);
435 if (dvi < vmin[i]) {
436 vmin[i] = dvi;
437 }
438 if (dvi > vmax[i]) {
439 vmax[i] = dvi;
440 }
441 }
442 }
443 double draw_margin = ((vmax.x - vmin.x) + (vmax.y - vmin.y)) * margin_expand;
444 double minx = vmin.x - draw_margin;
445 double maxx = vmax.x + draw_margin;
446 double miny = vmin.y - draw_margin;
447 double maxy = vmax.y + draw_margin;
448
449 double width = maxx - minx;
450 double height = maxy - miny;
451 double aspect = height / width;
452 int view_width = max_draw_width;
453 int view_height = static_cast<int>(view_width * aspect);
454 if (view_height > max_draw_height) {
455 view_height = max_draw_height;
456 view_width = static_cast<int>(view_height / aspect);
457 }
458 double scale = view_width / width;
459
460 # define SX(x) ((math_to_double(x) - minx) * scale)
461 # define SY(y) ((maxy - math_to_double(y)) * scale)
462
463 std::ofstream f;
464 if (append) {
465 f.open(drawfile, std::ios_base::app);
466 }
467 else {
468 f.open(drawfile);
469 }
470 if (!f) {
471 std::cout << "Could not open file " << drawfile << "\n";
472 return;
473 }
474
475 f << "<div>" << label << "</div>\n<div>\n"
476 << "<svg version=\"1.1\" "
477 "xmlns=\"http://www.w3.org/2000/svg\" "
478 "xmlns:xlink=\"http://www.w3.org/1999/xlink\" "
479 "xml:space=\"preserve\"\n"
480 << "width=\"" << view_width << "\" height=\"" << view_height << "\">n";
481
482 for (const CDTEdge<T> *e : cdt.edges) {
483 if (e->symedges[0].next == nullptr) {
484 continue;
485 }
486 const CDTVert<T> *u = e->symedges[0].vert;
487 const CDTVert<T> *v = e->symedges[1].vert;
488 const vec2<T> &uco = u->co;
489 const vec2<T> &vco = v->co;
490 int strokew = e->input_ids == nullptr ? thin_line : thick_line;
491 f << "<line fill=\"none\" stroke=\"black\" stroke-width=\"" << strokew << "\" x1=\""
492 << SX(uco[0]) << "\" y1=\"" << SY(uco[1]) << "\" x2=\"" << SX(vco[0]) << "\" y2=\""
493 << SY(vco[1]) << "\">\n";
494 f << " <title>" << vertname(u) << vertname(v) << "</title>\n";
495 f << "</line>\n";
496 if (draw_edge_labels) {
497 f << "<text x=\"" << SX((uco[0] + vco[0]) / 2) << "\" y=\"" << SY((uco[1] + vco[1]) / 2)
498 << "\" font-size=\"small\">";
499 f << vertname(u) << vertname(v) << sename(&e->symedges[0]) << sename(&e->symedges[1])
500 << "</text>\n";
501 }
502 }
503
504 int i = 0;
505 for (const CDTVert<T> *v : cdt.verts) {
506 f << "<circle fill=\"black\" cx=\"" << SX(v->co[0]) << "\" cy=\"" << SY(v->co[1]) << "\" r=\""
507 << vert_radius << "\">\n";
508 f << " <title>[" << i << "]" << v->co << "</title>\n";
509 f << "</circle>\n";
510 if (draw_vert_labels) {
511 f << "<text x=\"" << SX(v->co[0]) + vert_radius << "\" y=\"" << SY(v->co[1]) - vert_radius
512 << "\" font-size=\"small\">[" << i << "]</text>\n";
513 }
514 ++i;
515 }
516
517 append = true;
518 # undef SX
519 # undef SY
520 }
521 #endif
522
523 /**
524 * Return true if `a -- b -- c` are in that order, assuming they are on a straight line according
525 * to #orient2d and we know the order is either `abc` or `bac`.
526 * This means `ab . ac` and `bc . ac` must both be non-negative.
527 */
in_line(const vec2<T> & a,const vec2<T> & b,const vec2<T> & c)528 template<typename T> bool in_line(const vec2<T> &a, const vec2<T> &b, const vec2<T> &c)
529 {
530 vec2<T> ab = b - a;
531 vec2<T> bc = c - b;
532 vec2<T> ac = c - a;
533 if (vec2<T>::dot(ab, ac) < 0) {
534 return false;
535 }
536 return vec2<T>::dot(bc, ac) >= 0;
537 }
538
CDTVert(const vec2<T> & pt)539 template<typename T> CDTVert<T>::CDTVert(const vec2<T> &pt)
540 {
541 this->co = pt;
542 this->input_ids = nullptr;
543 this->symedge = nullptr;
544 this->index = -1;
545 this->merge_to_index = -1;
546 this->visit_index = 0;
547 }
548
add_vert(const vec2<T> & pt)549 template<typename T> CDTVert<T> *CDTArrangement<T>::add_vert(const vec2<T> &pt)
550 {
551 CDTVert<T> *v = new CDTVert<T>(pt);
552 int index = this->verts.append_and_get_index(v);
553 v->index = index;
554 return v;
555 }
556
557 template<typename T>
add_edge(CDTVert<T> * v1,CDTVert<T> * v2,CDTFace<T> * fleft,CDTFace<T> * fright)558 CDTEdge<T> *CDTArrangement<T>::add_edge(CDTVert<T> *v1,
559 CDTVert<T> *v2,
560 CDTFace<T> *fleft,
561 CDTFace<T> *fright)
562 {
563 CDTEdge<T> *e = new CDTEdge<T>();
564 this->edges.append(e);
565 SymEdge<T> *se = &e->symedges[0];
566 SymEdge<T> *sesym = &e->symedges[1];
567 se->edge = sesym->edge = e;
568 se->face = fleft;
569 sesym->face = fright;
570 se->vert = v1;
571 if (v1->symedge == nullptr) {
572 v1->symedge = se;
573 }
574 sesym->vert = v2;
575 if (v2->symedge == nullptr) {
576 v2->symedge = sesym;
577 }
578 se->next = sesym->next = se->rot = sesym->rot = nullptr;
579 return e;
580 }
581
add_face()582 template<typename T> CDTFace<T> *CDTArrangement<T>::add_face()
583 {
584 CDTFace<T> *f = new CDTFace<T>();
585 this->faces.append(f);
586 return f;
587 }
588
reserve(int num_verts,int num_edges,int num_faces)589 template<typename T> void CDTArrangement<T>::reserve(int num_verts, int num_edges, int num_faces)
590 {
591 /* These reserves are just guesses; OK if they aren't exactly right since vectors will resize. */
592 this->verts.reserve(2 * num_verts);
593 this->edges.reserve(3 * num_verts + 2 * num_edges + 3 * 2 * num_faces);
594 this->faces.reserve(2 * num_verts + 2 * num_edges + 2 * num_faces);
595 }
596
597 template<typename T>
CDT_state(int num_input_verts,int num_input_edges,int num_input_faces,T epsilon)598 CDT_state<T>::CDT_state(int num_input_verts, int num_input_edges, int num_input_faces, T epsilon)
599 {
600 this->input_vert_tot = num_input_verts;
601 this->cdt.reserve(num_input_verts, num_input_edges, num_input_faces);
602 this->cdt.outer_face = this->cdt.add_face();
603 this->epsilon = epsilon;
604 this->visit_count = 0;
605 }
606
id_in_list(const LinkNode * id_list,int id)607 static bool id_in_list(const LinkNode *id_list, int id)
608 {
609 const LinkNode *ln;
610
611 for (ln = id_list; ln != nullptr; ln = ln->next) {
612 if (POINTER_AS_INT(ln->link) == id) {
613 return true;
614 }
615 }
616 return false;
617 }
618
619 /* Is any id in (range_start, range_start+1, ... , range_end) in id_list? */
id_range_in_list(const LinkNode * id_list,int range_start,int range_end)620 static bool id_range_in_list(const LinkNode *id_list, int range_start, int range_end)
621 {
622 const LinkNode *ln;
623 int id;
624
625 for (ln = id_list; ln != nullptr; ln = ln->next) {
626 id = POINTER_AS_INT(ln->link);
627 if (id >= range_start && id <= range_end) {
628 return true;
629 }
630 }
631 return false;
632 }
633
add_to_input_ids(LinkNode ** dst,int input_id)634 static void add_to_input_ids(LinkNode **dst, int input_id)
635 {
636 if (!id_in_list(*dst, input_id)) {
637 BLI_linklist_prepend(dst, POINTER_FROM_INT(input_id));
638 }
639 }
640
add_list_to_input_ids(LinkNode ** dst,const LinkNode * src)641 static void add_list_to_input_ids(LinkNode **dst, const LinkNode *src)
642 {
643 const LinkNode *ln;
644
645 for (ln = src; ln != nullptr; ln = ln->next) {
646 add_to_input_ids(dst, POINTER_AS_INT(ln->link));
647 }
648 }
649
is_border_edge(const CDTEdge<T> * e,const CDT_state<T> * cdt)650 template<typename T> inline bool is_border_edge(const CDTEdge<T> *e, const CDT_state<T> *cdt)
651 {
652 return e->symedges[0].face == cdt->outer_face || e->symedges[1].face == cdt->outer_face;
653 }
654
is_constrained_edge(const CDTEdge<T> * e)655 template<typename T> inline bool is_constrained_edge(const CDTEdge<T> *e)
656 {
657 return e->input_ids != NULL;
658 }
659
is_deleted_edge(const CDTEdge<T> * e)660 template<typename T> inline bool is_deleted_edge(const CDTEdge<T> *e)
661 {
662 return e->symedges[0].next == NULL;
663 }
664
is_original_vert(const CDTVert<T> * v,CDT_state<T> * cdt)665 template<typename T> inline bool is_original_vert(const CDTVert<T> *v, CDT_state<T> *cdt)
666 {
667 return (v->index < cdt->input_vert_tot);
668 }
669
670 /* Return the Symedge that goes from v1 to v2, if it exists, else return nullptr. */
671 template<typename T>
find_symedge_between_verts(const CDTVert<T> * v1,const CDTVert<T> * v2)672 SymEdge<T> *find_symedge_between_verts(const CDTVert<T> *v1, const CDTVert<T> *v2)
673 {
674 SymEdge<T> *t = v1->symedge;
675 SymEdge<T> *tstart = t;
676 do {
677 if (t->next->vert == v2) {
678 return t;
679 }
680 } while ((t = t->rot) != tstart);
681 return nullptr;
682 }
683
684 /**
685 * Return the SymEdge attached to v that has face f, if it exists, else return nullptr.
686 */
find_symedge_with_face(const CDTVert<T> * v,const CDTFace<T> * f)687 template<typename T> SymEdge<T> *find_symedge_with_face(const CDTVert<T> *v, const CDTFace<T> *f)
688 {
689 SymEdge<T> *t = v->symedge;
690 SymEdge<T> *tstart = t;
691 do {
692 if (t->face == f) {
693 return t;
694 }
695 } while ((t = t->rot) != tstart);
696 return nullptr;
697 }
698
699 /**
700 * Is there already an edge between a and b?
701 */
exists_edge(const CDTVert<T> * v1,const CDTVert<T> * v2)702 template<typename T> inline bool exists_edge(const CDTVert<T> *v1, const CDTVert<T> *v2)
703 {
704 return find_symedge_between_verts(v1, v2) != nullptr;
705 }
706
707 /**
708 * Is the vertex v incident on face f?
709 */
vert_touches_face(const CDTVert<T> * v,const CDTFace<T> * f)710 template<typename T> bool vert_touches_face(const CDTVert<T> *v, const CDTFace<T> *f)
711 {
712 SymEdge<T> *se = v->symedge;
713 do {
714 if (se->face == f) {
715 return true;
716 }
717 } while ((se = se->rot) != v->symedge);
718 return false;
719 }
720
721 /**
722 * Assume s1 and s2 are both #SymEdges in a face with > 3 sides,
723 * and one is not the next of the other.
724 * Add an edge from `s1->v` to `s2->v`, splitting the face in two.
725 * The original face will continue to be associated with the sub-face
726 * that has s1, and a new face will be made for s2's new face.
727 * Return the new diagonal's #CDTEdge pointer.
728 */
add_diagonal(SymEdge<T> * s1,SymEdge<T> * s2)729 template<typename T> CDTEdge<T> *CDTArrangement<T>::add_diagonal(SymEdge<T> *s1, SymEdge<T> *s2)
730 {
731 CDTFace<T> *fold = s1->face;
732 CDTFace<T> *fnew = this->add_face();
733 SymEdge<T> *s1prev = prev(s1);
734 SymEdge<T> *s1prevsym = sym(s1prev);
735 SymEdge<T> *s2prev = prev(s2);
736 SymEdge<T> *s2prevsym = sym(s2prev);
737 CDTEdge<T> *ediag = this->add_edge(s1->vert, s2->vert, fnew, fold);
738 SymEdge<T> *sdiag = &ediag->symedges[0];
739 SymEdge<T> *sdiagsym = &ediag->symedges[1];
740 sdiag->next = s2;
741 sdiagsym->next = s1;
742 s2prev->next = sdiagsym;
743 s1prev->next = sdiag;
744 s1->rot = sdiag;
745 sdiag->rot = s1prevsym;
746 s2->rot = sdiagsym;
747 sdiagsym->rot = s2prevsym;
748 for (SymEdge<T> *se = s2; se != sdiag; se = se->next) {
749 se->face = fnew;
750 }
751 add_list_to_input_ids(&fnew->input_ids, fold->input_ids);
752 return ediag;
753 }
754
755 template<typename T>
add_vert_to_symedge_edge(CDTVert<T> * v,SymEdge<T> * se)756 CDTEdge<T> *CDTArrangement<T>::add_vert_to_symedge_edge(CDTVert<T> *v, SymEdge<T> *se)
757 {
758 SymEdge<T> *se_rot = se->rot;
759 SymEdge<T> *se_rotsym = sym(se_rot);
760 /* TODO: check: I think last arg in next should be sym(se)->face. */
761 CDTEdge<T> *e = this->add_edge(v, se->vert, se->face, se->face);
762 SymEdge<T> *new_se = &e->symedges[0];
763 SymEdge<T> *new_se_sym = &e->symedges[1];
764 new_se->next = se;
765 new_se_sym->next = new_se;
766 new_se->rot = new_se;
767 new_se_sym->rot = se_rot;
768 se->rot = new_se_sym;
769 se_rotsym->next = new_se_sym;
770 return e;
771 }
772
773 /**
774 * Connect the verts of se1 and se2, assuming that currently those two #SymEdge's are on
775 * the outer boundary (have face == outer_face) of two components that are isolated from
776 * each other.
777 */
778 template<typename T>
connect_separate_parts(SymEdge<T> * se1,SymEdge<T> * se2)779 CDTEdge<T> *CDTArrangement<T>::connect_separate_parts(SymEdge<T> *se1, SymEdge<T> *se2)
780 {
781 BLI_assert(se1->face == this->outer_face && se2->face == this->outer_face);
782 SymEdge<T> *se1_rot = se1->rot;
783 SymEdge<T> *se1_rotsym = sym(se1_rot);
784 SymEdge<T> *se2_rot = se2->rot;
785 SymEdge<T> *se2_rotsym = sym(se2_rot);
786 CDTEdge<T> *e = this->add_edge(se1->vert, se2->vert, this->outer_face, this->outer_face);
787 SymEdge<T> *new_se = &e->symedges[0];
788 SymEdge<T> *new_se_sym = &e->symedges[1];
789 new_se->next = se2;
790 new_se_sym->next = se1;
791 new_se->rot = se1_rot;
792 new_se_sym->rot = se2_rot;
793 se1->rot = new_se;
794 se2->rot = new_se_sym;
795 se1_rotsym->next = new_se;
796 se2_rotsym->next = new_se_sym;
797 return e;
798 }
799
800 /**
801 * Split se at fraction lambda,
802 * and return the new #CDTEdge that is the new second half.
803 * Copy the edge input_ids into the new one.
804 */
split_edge(SymEdge<T> * se,T lambda)805 template<typename T> CDTEdge<T> *CDTArrangement<T>::split_edge(SymEdge<T> *se, T lambda)
806 {
807 /* Split e at lambda. */
808 const vec2<T> *a = &se->vert->co;
809 const vec2<T> *b = &se->next->vert->co;
810 SymEdge<T> *sesym = sym(se);
811 SymEdge<T> *sesymprev = prev(sesym);
812 SymEdge<T> *sesymprevsym = sym(sesymprev);
813 SymEdge<T> *senext = se->next;
814 CDTVert<T> *v = this->add_vert(vec2<T>::interpolate(*a, *b, lambda));
815 CDTEdge<T> *e = this->add_edge(v, se->next->vert, se->face, sesym->face);
816 sesym->vert = v;
817 SymEdge<T> *newse = &e->symedges[0];
818 SymEdge<T> *newsesym = &e->symedges[1];
819 se->next = newse;
820 newsesym->next = sesym;
821 newse->next = senext;
822 newse->rot = sesym;
823 sesym->rot = newse;
824 senext->rot = newsesym;
825 newsesym->rot = sesymprevsym;
826 sesymprev->next = newsesym;
827 if (newsesym->vert->symedge == sesym) {
828 newsesym->vert->symedge = newsesym;
829 }
830 add_list_to_input_ids(&e->input_ids, se->edge->input_ids);
831 return e;
832 }
833
834 /**
835 * Delete an edge from the structure. The new combined face on either side of
836 * the deleted edge will be the one that was e's face.
837 * There will be now an unused face, marked by setting its deleted flag,
838 * and an unused #CDTEdge, marked by setting the next and rot pointers of
839 * its #SymEdges to #nullptr.
840 * <pre>
841 * . v2 .
842 * / \ / \
843 * /f|j\ / \
844 * / | \ / \
845 * |
846 * A | B A
847 * \ e| / \ /
848 * \ | / \ /
849 * \h|i/ \ /
850 * . v1 .
851 * </pre>
852 * Also handle variant cases where one or both ends
853 * are attached only to e.
854 */
delete_edge(SymEdge<T> * se)855 template<typename T> void CDTArrangement<T>::delete_edge(SymEdge<T> *se)
856 {
857 SymEdge<T> *sesym = sym(se);
858 CDTVert<T> *v1 = se->vert;
859 CDTVert<T> *v2 = sesym->vert;
860 CDTFace<T> *aface = se->face;
861 CDTFace<T> *bface = sesym->face;
862 SymEdge<T> *f = se->next;
863 SymEdge<T> *h = prev(se);
864 SymEdge<T> *i = sesym->next;
865 SymEdge<T> *j = prev(sesym);
866 SymEdge<T> *jsym = sym(j);
867 SymEdge<T> *hsym = sym(h);
868 bool v1_isolated = (i == se);
869 bool v2_isolated = (f == sesym);
870
871 if (!v1_isolated) {
872 h->next = i;
873 i->rot = hsym;
874 }
875 if (!v2_isolated) {
876 j->next = f;
877 f->rot = jsym;
878 }
879 if (!v1_isolated && !v2_isolated && aface != bface) {
880 for (SymEdge<T> *k = i; k != f; k = k->next) {
881 k->face = aface;
882 }
883 }
884
885 /* If e was representative symedge for v1 or v2, fix that. */
886 if (v1_isolated) {
887 v1->symedge = nullptr;
888 }
889 else if (v1->symedge == se) {
890 v1->symedge = i;
891 }
892 if (v2_isolated) {
893 v2->symedge = nullptr;
894 }
895 else if (v2->symedge == sesym) {
896 v2->symedge = f;
897 }
898
899 /* Mark SymEdge as deleted by setting all its pointers to NULL. */
900 se->next = se->rot = nullptr;
901 sesym->next = sesym->rot = nullptr;
902 if (!v1_isolated && !v2_isolated && aface != bface) {
903 bface->deleted = true;
904 if (this->outer_face == bface) {
905 this->outer_face = aface;
906 }
907 }
908 }
909
910 template<typename T> class SiteInfo {
911 public:
912 CDTVert<T> *v;
913 int orig_index;
914 };
915
916 /**
917 * Compare function for lexicographic sort: x, then y, then index.
918 */
site_lexicographic_sort(const SiteInfo<T> & a,const SiteInfo<T> & b)919 template<typename T> bool site_lexicographic_sort(const SiteInfo<T> &a, const SiteInfo<T> &b)
920 {
921 const vec2<T> &co_a = a.v->co;
922 const vec2<T> &co_b = b.v->co;
923 if (co_a[0] < co_b[0]) {
924 return true;
925 }
926 if (co_a[0] > co_b[0]) {
927 return false;
928 }
929 if (co_a[1] < co_b[1]) {
930 return true;
931 }
932 if (co_a[1] > co_b[1]) {
933 return false;
934 }
935 return a.orig_index < b.orig_index;
936 }
937
938 /**
939 * Find series of equal vertices in the sorted sites array
940 * and use the vertices merge_to_index to indicate that
941 * all vertices after the first merge to the first.
942 */
find_site_merges(Array<SiteInfo<T>> & sites)943 template<typename T> void find_site_merges(Array<SiteInfo<T>> &sites)
944 {
945 int n = sites.size();
946 for (int i = 0; i < n - 1; ++i) {
947 int j = i + 1;
948 while (j < n && sites[j].v->co == sites[i].v->co) {
949 sites[j].v->merge_to_index = sites[i].orig_index;
950 ++j;
951 }
952 if (j - i > 1) {
953 i = j - 1; /* j-1 because loop head will add another 1. */
954 }
955 }
956 }
957
vert_left_of_symedge(CDTVert<T> * v,SymEdge<T> * se)958 template<typename T> inline bool vert_left_of_symedge(CDTVert<T> *v, SymEdge<T> *se)
959 {
960 return orient2d(v->co, se->vert->co, se->next->vert->co) > 0;
961 }
962
vert_right_of_symedge(CDTVert<T> * v,SymEdge<T> * se)963 template<typename T> inline bool vert_right_of_symedge(CDTVert<T> *v, SymEdge<T> *se)
964 {
965 return orient2d(v->co, se->next->vert->co, se->vert->co) > 0;
966 }
967
968 /* Is se above basel? */
969 template<typename T>
dc_tri_valid(SymEdge<T> * se,SymEdge<T> * basel,SymEdge<T> * basel_sym)970 inline bool dc_tri_valid(SymEdge<T> *se, SymEdge<T> *basel, SymEdge<T> *basel_sym)
971 {
972 return orient2d(se->next->vert->co, basel_sym->vert->co, basel->vert->co) > 0;
973 }
974
975 /**
976 * Delaunay triangulate sites[start} to sites[end-1].
977 * Assume sites are lexicographically sorted by coordinate.
978 * Return #SymEdge of CCW convex hull at left-most point in *r_le
979 * and that of right-most point of cw convex null in *r_re.
980 */
981 template<typename T>
dc_tri(CDTArrangement<T> * cdt,Array<SiteInfo<T>> & sites,int start,int end,SymEdge<T> ** r_le,SymEdge<T> ** r_re)982 void dc_tri(CDTArrangement<T> *cdt,
983 Array<SiteInfo<T>> &sites,
984 int start,
985 int end,
986 SymEdge<T> **r_le,
987 SymEdge<T> **r_re)
988 {
989 constexpr int dbg_level = 0;
990 if (dbg_level > 0) {
991 std::cout << "DC_TRI start=" << start << " end=" << end << "\n";
992 }
993 int n = end - start;
994 if (n <= 1) {
995 *r_le = nullptr;
996 *r_re = nullptr;
997 return;
998 }
999
1000 /* Base case: if n <= 3, triangulate directly. */
1001 if (n <= 3) {
1002 CDTVert<T> *v1 = sites[start].v;
1003 CDTVert<T> *v2 = sites[start + 1].v;
1004 CDTEdge<T> *ea = cdt->add_edge(v1, v2, cdt->outer_face, cdt->outer_face);
1005 ea->symedges[0].next = &ea->symedges[1];
1006 ea->symedges[1].next = &ea->symedges[0];
1007 ea->symedges[0].rot = &ea->symedges[0];
1008 ea->symedges[1].rot = &ea->symedges[1];
1009 if (n == 2) {
1010 *r_le = &ea->symedges[0];
1011 *r_re = &ea->symedges[1];
1012 return;
1013 }
1014 CDTVert<T> *v3 = sites[start + 2].v;
1015 CDTEdge<T> *eb = cdt->add_vert_to_symedge_edge(v3, &ea->symedges[1]);
1016 int orient = orient2d(v1->co, v2->co, v3->co);
1017 if (orient > 0) {
1018 cdt->add_diagonal(&eb->symedges[0], &ea->symedges[0]);
1019 *r_le = &ea->symedges[0];
1020 *r_re = &eb->symedges[0];
1021 }
1022 else if (orient < 0) {
1023 cdt->add_diagonal(&ea->symedges[0], &eb->symedges[0]);
1024 *r_le = ea->symedges[0].rot;
1025 *r_re = eb->symedges[0].rot;
1026 }
1027 else {
1028 /* Collinear points. Just return a line. */
1029 *r_le = &ea->symedges[0];
1030 *r_re = &eb->symedges[0];
1031 }
1032 return;
1033 }
1034 /* Recursive case. Do left (L) and right (R) halves separately, then join. */
1035 int n2 = n / 2;
1036 BLI_assert(n2 >= 2 && end - (start + n2) >= 2);
1037 SymEdge<T> *ldo;
1038 SymEdge<T> *ldi;
1039 SymEdge<T> *rdi;
1040 SymEdge<T> *rdo;
1041 dc_tri(cdt, sites, start, start + n2, &ldo, &ldi);
1042 dc_tri(cdt, sites, start + n2, end, &rdi, &rdo);
1043 if (dbg_level > 0) {
1044 std::cout << "\nDC_TRI merge step for start=" << start << ", end=" << end << "\n";
1045 std::cout << "ldo " << ldo << "\n"
1046 << "ldi " << ldi << "\n"
1047 << "rdi " << rdi << "\n"
1048 << "rdo " << rdo << "\n";
1049 if (dbg_level > 1) {
1050 std::string lab = "dc_tri (" + std::to_string(start) + "," + std::to_string(start + n2) +
1051 ")(" + std::to_string(start + n2) + "," + std::to_string(end) + ")";
1052 cdt_draw(lab, *cdt);
1053 }
1054 }
1055 /* Find lower common tangent of L and R. */
1056 for (;;) {
1057 if (vert_left_of_symedge(rdi->vert, ldi)) {
1058 ldi = ldi->next;
1059 }
1060 else if (vert_right_of_symedge(ldi->vert, rdi)) {
1061 rdi = sym(rdi)->rot; /* Previous edge to rdi with same right face. */
1062 }
1063 else {
1064 break;
1065 }
1066 }
1067 if (dbg_level > 0) {
1068 std::cout << "common lower tangent in between\n"
1069 << "rdi " << rdi << "\n"
1070 << "ldi" << ldi << "\n";
1071 }
1072
1073 CDTEdge<T> *ebasel = cdt->connect_separate_parts(sym(rdi)->next, ldi);
1074 SymEdge<T> *basel = &ebasel->symedges[0];
1075 SymEdge<T> *basel_sym = &ebasel->symedges[1];
1076 if (dbg_level > 1) {
1077 std::cout << "basel " << basel;
1078 cdt_draw("after basel made", *cdt);
1079 }
1080 if (ldi->vert == ldo->vert) {
1081 ldo = basel_sym;
1082 }
1083 if (rdi->vert == rdo->vert) {
1084 rdo = basel;
1085 }
1086
1087 /* Merge loop. */
1088 for (;;) {
1089 /* Locate the first point lcand->next->vert encountered by rising bubble,
1090 * and delete L edges out of basel->next->vert that fail the circle test. */
1091 SymEdge<T> *lcand = basel_sym->rot;
1092 SymEdge<T> *rcand = basel_sym->next;
1093 if (dbg_level > 1) {
1094 std::cout << "\ntop of merge loop\n";
1095 std::cout << "lcand " << lcand << "\n"
1096 << "rcand " << rcand << "\n"
1097 << "basel " << basel << "\n";
1098 }
1099 if (dc_tri_valid(lcand, basel, basel_sym)) {
1100 if (dbg_level > 1) {
1101 std::cout << "found valid lcand\n";
1102 std::cout << " lcand" << lcand << "\n";
1103 }
1104 while (incircle(basel_sym->vert->co,
1105 basel->vert->co,
1106 lcand->next->vert->co,
1107 lcand->rot->next->vert->co) > 0.0) {
1108 if (dbg_level > 1) {
1109 std::cout << "incircle says to remove lcand\n";
1110 std::cout << " lcand" << lcand << "\n";
1111 }
1112 SymEdge<T> *t = lcand->rot;
1113 cdt->delete_edge(sym(lcand));
1114 lcand = t;
1115 }
1116 }
1117 /* Symmetrically, locate first R point to be hit and delete R edges. */
1118 if (dc_tri_valid(rcand, basel, basel_sym)) {
1119 if (dbg_level > 1) {
1120 std::cout << "found valid rcand\n";
1121 std::cout << " rcand" << rcand << "\n";
1122 }
1123 while (incircle(basel_sym->vert->co,
1124 basel->vert->co,
1125 rcand->next->vert->co,
1126 sym(rcand)->next->next->vert->co) > 0.0) {
1127 if (dbg_level > 0) {
1128 std::cout << "incircle says to remove rcand\n";
1129 std::cout << " rcand" << rcand << "\n";
1130 }
1131 SymEdge<T> *t = sym(rcand)->next;
1132 cdt->delete_edge(rcand);
1133 rcand = t;
1134 }
1135 }
1136 /* If both lcand and rcand are invalid, then basel is the common upper tangent. */
1137 bool valid_lcand = dc_tri_valid(lcand, basel, basel_sym);
1138 bool valid_rcand = dc_tri_valid(rcand, basel, basel_sym);
1139 if (dbg_level > 0) {
1140 std::cout << "after bubbling up, valid_lcand=" << valid_lcand
1141 << ", valid_rand=" << valid_rcand << "\n";
1142 std::cout << "lcand" << lcand << "\n"
1143 << "rcand" << rcand << "\n";
1144 }
1145 if (!valid_lcand && !valid_rcand) {
1146 break;
1147 }
1148 /* The next cross edge to be connected is to either `lcand->next->vert` or `rcand->next->vert`;
1149 * if both are valid, choose the appropriate one using the #incircle test. */
1150 if (!valid_lcand ||
1151 (valid_rcand &&
1152 incircle(lcand->next->vert->co, lcand->vert->co, rcand->vert->co, rcand->next->vert->co) >
1153 0)) {
1154 if (dbg_level > 0) {
1155 std::cout << "connecting rcand\n";
1156 std::cout << " se1=basel_sym" << basel_sym << "\n";
1157 std::cout << " se2=rcand->next" << rcand->next << "\n";
1158 }
1159 ebasel = cdt->add_diagonal(rcand->next, basel_sym);
1160 }
1161 else {
1162 if (dbg_level > 0) {
1163 std::cout << "connecting lcand\n";
1164 std::cout << " se1=sym(lcand)" << sym(lcand) << "\n";
1165 std::cout << " se2=basel_sym->next" << basel_sym->next << "\n";
1166 }
1167 ebasel = cdt->add_diagonal(basel_sym->next, sym(lcand));
1168 }
1169 basel = &ebasel->symedges[0];
1170 basel_sym = &ebasel->symedges[1];
1171 BLI_assert(basel_sym->face == cdt->outer_face);
1172 if (dbg_level > 2) {
1173 cdt_draw("after adding new crossedge", *cdt);
1174 }
1175 }
1176 *r_le = ldo;
1177 *r_re = rdo;
1178 BLI_assert(sym(ldo)->face == cdt->outer_face && rdo->face == cdt->outer_face);
1179 }
1180
1181 /* Guibas-Stolfi Divide-and_Conquer algorithm. */
dc_triangulate(CDTArrangement<T> * cdt,Array<SiteInfo<T>> & sites)1182 template<typename T> void dc_triangulate(CDTArrangement<T> *cdt, Array<SiteInfo<T>> &sites)
1183 {
1184 /* Compress sites in place to eliminted verts that merge to others. */
1185 int i = 0;
1186 int j = 0;
1187 int nsites = sites.size();
1188 while (j < nsites) {
1189 /* Invariante: sites[0..i-1] have non-merged verts from 0..(j-1) in them. */
1190 sites[i] = sites[j++];
1191 if (sites[i].v->merge_to_index < 0) {
1192 i++;
1193 }
1194 }
1195 int n = i;
1196 if (n == 0) {
1197 return;
1198 }
1199 SymEdge<T> *le;
1200 SymEdge<T> *re;
1201 dc_tri(cdt, sites, 0, n, &le, &re);
1202 }
1203
1204 /**
1205 * Do a Delaunay Triangulation of the points in cdt.verts.
1206 * This is only a first step in the Constrained Delaunay triangulation,
1207 * because it doesn't yet deal with the segment constraints.
1208 * The algorithm used is the Divide & Conquer algorithm from the
1209 * Guibas-Stolfi "Primitives for the Manipulation of General Subdivision
1210 * and the Computation of Voronoi Diagrams" paper.
1211 * The data structure here is similar to but not exactly the same as
1212 * the quad-edge structure described in that paper.
1213 * If T is not exact arithmetic, incircle and CCW tests are done using
1214 * Shewchuk's exact primitives, so that this routine is robust.
1215 *
1216 * As a preprocessing step, we want to merge all vertices that the same.
1217 * This is accomplished by lexicographically
1218 * sorting the coordinates first (which is needed anyway for the D&C algorithm).
1219 * The CDTVerts with merge_to_index not equal to -1 are after this regarded
1220 * as having been merged into the vertex with the corresponding index.
1221 */
initial_triangulation(CDTArrangement<T> * cdt)1222 template<typename T> void initial_triangulation(CDTArrangement<T> *cdt)
1223 {
1224 int n = cdt->verts.size();
1225 if (n <= 1) {
1226 return;
1227 }
1228 Array<SiteInfo<T>> sites(n);
1229 for (int i = 0; i < n; ++i) {
1230 sites[i].v = cdt->verts[i];
1231 sites[i].orig_index = i;
1232 }
1233 std::sort(sites.begin(), sites.end(), site_lexicographic_sort<T>);
1234 find_site_merges(sites);
1235 dc_triangulate(cdt, sites);
1236 }
1237
1238 /**
1239 * Re-triangulates, assuring constrained delaunay condition,
1240 * the pseudo-polygon that cycles from se.
1241 * "pseudo" because a vertex may be repeated.
1242 * See Anglada paper, "An Improved incremental algorithm
1243 * for constructing restricted Delaunay triangulations".
1244 */
re_delaunay_triangulate(CDTArrangement<T> * cdt,SymEdge<T> * se)1245 template<typename T> static void re_delaunay_triangulate(CDTArrangement<T> *cdt, SymEdge<T> *se)
1246 {
1247 if (se->face == cdt->outer_face || sym(se)->face == cdt->outer_face) {
1248 return;
1249 }
1250 /* 'se' is a diagonal just added, and it is base of area to retriangulate (face on its left) */
1251 int count = 1;
1252 for (SymEdge<T> *ss = se->next; ss != se; ss = ss->next) {
1253 count++;
1254 }
1255 if (count <= 3) {
1256 return;
1257 }
1258 /* First and last are the SymEdges whose verts are first and last off of base,
1259 * continuing from 'se'. */
1260 SymEdge<T> *first = se->next->next;
1261 /* We want to make a triangle with 'se' as base and some other c as 3rd vertex. */
1262 CDTVert<T> *a = se->vert;
1263 CDTVert<T> *b = se->next->vert;
1264 CDTVert<T> *c = first->vert;
1265 SymEdge<T> *cse = first;
1266 for (SymEdge<T> *ss = first->next; ss != se; ss = ss->next) {
1267 CDTVert<T> *v = ss->vert;
1268 if (incircle(a->co, b->co, c->co, v->co) > 0) {
1269 c = v;
1270 cse = ss;
1271 }
1272 }
1273 /* Add diagonals necessary to make abc a triangle. */
1274 CDTEdge<T> *ebc = nullptr;
1275 CDTEdge<T> *eca = nullptr;
1276 if (!exists_edge(b, c)) {
1277 ebc = cdt->add_diagonal(se->next, cse);
1278 }
1279 if (!exists_edge(c, a)) {
1280 eca = cdt->add_diagonal(cse, se);
1281 }
1282 /* Now recurse. */
1283 if (ebc) {
1284 re_delaunay_triangulate(cdt, &ebc->symedges[1]);
1285 }
1286 if (eca) {
1287 re_delaunay_triangulate(cdt, &eca->symedges[1]);
1288 }
1289 }
1290
tri_orient(const SymEdge<T> * t)1291 template<typename T> inline int tri_orient(const SymEdge<T> *t)
1292 {
1293 return orient2d(t->vert->co, t->next->vert->co, t->next->next->vert->co);
1294 }
1295
1296 /**
1297 * The #CrossData class defines either an endpoint or an intermediate point
1298 * in the path we will take to insert an edge constraint.
1299 * Each such point will either be
1300 * (a) a vertex or
1301 * (b) a fraction lambda (0 < lambda < 1) along some #SymEdge.]
1302 *
1303 * In general, lambda=0 indicates case a and lambda != 0 indicates case be.
1304 * The 'in' edge gives the destination attachment point of a diagonal from the previous crossing,
1305 * and the 'out' edge gives the origin attachment point of a diagonal to the next crossing.
1306 * But in some cases, 'in' and 'out' are undefined or not needed, and will be NULL.
1307 *
1308 * For case (a), 'vert' will be the vertex, and lambda will be 0, and 'in' will be the #SymEdge
1309 * from 'vert' that has as face the one that you go through to get to this vertex. If you go
1310 * exactly along an edge then we set 'in' to NULL, since it won't be needed. The first crossing
1311 * will have 'in' = NULL. We set 'out' to the #SymEdge that has the face we go through to get to the
1312 * next crossing, or, if the next crossing is a case (a), then it is the edge that goes to that
1313 * next vertex. 'out' will be NULL for the last one.
1314 *
1315 * For case (b), vert will be NULL at first, and later filled in with the created split vertex,
1316 * and 'in' will be the #SymEdge that we go through, and lambda will be between 0 and 1,
1317 * the fraction from in's vert to in->next's vert to put the split vertex.
1318 * 'out' is not needed in this case, since the attachment point will be the sym of the first
1319 * half of the split edge.
1320 */
1321 template<typename T> class CrossData {
1322 public:
1323 T lambda = T(0);
1324 CDTVert<T> *vert;
1325 SymEdge<T> *in;
1326 SymEdge<T> *out;
1327
CrossData()1328 CrossData() : lambda(T(0)), vert(nullptr), in(nullptr), out(nullptr)
1329 {
1330 }
CrossData(T l,CDTVert<T> * v,SymEdge<T> * i,SymEdge<T> * o)1331 CrossData(T l, CDTVert<T> *v, SymEdge<T> *i, SymEdge<T> *o) : lambda(l), vert(v), in(i), out(o)
1332 {
1333 }
CrossData(const CrossData & other)1334 CrossData(const CrossData &other)
1335 : lambda(other.lambda), vert(other.vert), in(other.in), out(other.out)
1336 {
1337 }
CrossData(CrossData && other)1338 CrossData(CrossData &&other) noexcept
1339 : lambda(std::move(other.lambda)),
1340 vert(std::move(other.vert)),
1341 in(std::move(other.in)),
1342 out(std::move(other.out))
1343 {
1344 }
1345 ~CrossData() = default;
operator =(const CrossData & other)1346 CrossData &operator=(const CrossData &other)
1347 {
1348 if (this != &other) {
1349 lambda = other.lambda;
1350 vert = other.vert;
1351 in = other.in;
1352 out = other.out;
1353 }
1354 return *this;
1355 }
operator =(CrossData && other)1356 CrossData &operator=(CrossData &&other) noexcept
1357 {
1358 lambda = std::move(other.lambda);
1359 vert = std::move(other.vert);
1360 in = std::move(other.in);
1361 out = std::move(other.out);
1362 return *this;
1363 }
1364 };
1365
1366 template<typename T>
1367 bool get_next_crossing_from_vert(CDT_state<T> *cdt_state,
1368 CrossData<T> *cd,
1369 CrossData<T> *cd_next,
1370 const CDTVert<T> *v2);
1371
1372 /**
1373 * As part of finding crossings, we found a case where the next crossing goes through vert v.
1374 * If it came from a previous vert in cd, then cd_out is the edge that leads from that to v.
1375 * Else cd_out can be NULL, because it won't be used.
1376 * Set *cd_next to indicate this. We can set 'in' but not 'out'. We can set the 'out' of the
1377 * current cd.
1378 */
1379 template<typename T>
fill_crossdata_for_through_vert(CDTVert<T> * v,SymEdge<T> * cd_out,CrossData<T> * cd,CrossData<T> * cd_next)1380 void fill_crossdata_for_through_vert(CDTVert<T> *v,
1381 SymEdge<T> *cd_out,
1382 CrossData<T> *cd,
1383 CrossData<T> *cd_next)
1384 {
1385 SymEdge<T> *se;
1386
1387 cd_next->lambda = T(0);
1388 cd_next->vert = v;
1389 cd_next->in = NULL;
1390 cd_next->out = NULL;
1391 if (cd->lambda == 0) {
1392 cd->out = cd_out;
1393 }
1394 else {
1395 /* One of the edges in the triangle with edge sym(cd->in) contains v. */
1396 se = sym(cd->in);
1397 if (se->vert != v) {
1398 se = se->next;
1399 if (se->vert != v) {
1400 se = se->next;
1401 }
1402 }
1403 BLI_assert(se->vert == v);
1404 cd_next->in = se;
1405 }
1406 }
1407
1408 /**
1409 * As part of finding crossings, we found a case where orient tests say that the next crossing
1410 * is on the #SymEdge t, while intersecting with the ray from \a curco to \a v2.
1411 * Find the intersection point and fill in the #CrossData for that point.
1412 * It may turn out that when doing the intersection, we get an answer that says that
1413 * this case is better handled as through-vertex case instead, so we may do that.
1414 * In the latter case, we want to avoid a situation where the current crossing is on an edge
1415 * and the next will be an endpoint of the same edge. When that happens, we "rewrite history"
1416 * and turn the current crossing into a vert one, and then extend from there.
1417 *
1418 * We cannot fill cd_next's 'out' edge yet, in the case that the next one ends up being a vert
1419 * case. We need to fill in cd's 'out' edge if it was a vert case.
1420 */
1421 template<typename T>
fill_crossdata_for_intersect(const vec2<T> & curco,const CDTVert<T> * v2,SymEdge<T> * t,CrossData<T> * cd,CrossData<T> * cd_next,const T epsilon)1422 void fill_crossdata_for_intersect(const vec2<T> &curco,
1423 const CDTVert<T> *v2,
1424 SymEdge<T> *t,
1425 CrossData<T> *cd,
1426 CrossData<T> *cd_next,
1427 const T epsilon)
1428 {
1429 CDTVert<T> *va = t->vert;
1430 CDTVert<T> *vb = t->next->vert;
1431 CDTVert<T> *vc = t->next->next->vert;
1432 SymEdge<T> *se_vcvb = sym(t->next);
1433 SymEdge<T> *se_vcva = t->next->next;
1434 BLI_assert(se_vcva->vert == vc && se_vcva->next->vert == va);
1435 BLI_assert(se_vcvb->vert == vc && se_vcvb->next->vert == vb);
1436 UNUSED_VARS_NDEBUG(vc);
1437 auto isect = vec2<T>::isect_seg_seg(va->co, vb->co, curco, v2->co);
1438 T &lambda = isect.lambda;
1439 switch (isect.kind) {
1440 case vec2<T>::isect_result::LINE_LINE_CROSS: {
1441 #ifdef WITH_GMP
1442 if (!std::is_same<T, mpq_class>::value) {
1443 #else
1444 if (true) {
1445 #endif
1446 T len_ab = vec2<T>::distance(va->co, vb->co);
1447 if (lambda * len_ab <= epsilon) {
1448 fill_crossdata_for_through_vert(va, se_vcva, cd, cd_next);
1449 }
1450 else if ((1 - lambda) * len_ab <= epsilon) {
1451 fill_crossdata_for_through_vert(vb, se_vcvb, cd, cd_next);
1452 }
1453 else {
1454 *cd_next = CrossData<T>(lambda, nullptr, t, nullptr);
1455 if (cd->lambda == 0) {
1456 cd->out = se_vcva;
1457 }
1458 }
1459 }
1460 else {
1461 *cd_next = CrossData<T>(lambda, nullptr, t, nullptr);
1462 if (cd->lambda == 0) {
1463 cd->out = se_vcva;
1464 }
1465 }
1466 break;
1467 }
1468 case vec2<T>::isect_result::LINE_LINE_EXACT: {
1469 if (lambda == 0) {
1470 fill_crossdata_for_through_vert(va, se_vcva, cd, cd_next);
1471 }
1472 else if (lambda == 1) {
1473 fill_crossdata_for_through_vert(vb, se_vcvb, cd, cd_next);
1474 }
1475 else {
1476 *cd_next = CrossData<T>(lambda, nullptr, t, nullptr);
1477 if (cd->lambda == 0) {
1478 cd->out = se_vcva;
1479 }
1480 }
1481 break;
1482 }
1483 case vec2<T>::isect_result::LINE_LINE_NONE: {
1484 #ifdef WITH_GMP
1485 if (std::is_same<T, mpq_class>::value) {
1486 BLI_assert(false);
1487 }
1488 #endif
1489 /* It should be very near one end or other of segment. */
1490 const T middle_lambda = 0.5;
1491 if (lambda <= middle_lambda) {
1492 fill_crossdata_for_through_vert(va, se_vcva, cd, cd_next);
1493 }
1494 else {
1495 fill_crossdata_for_through_vert(vb, se_vcvb, cd, cd_next);
1496 }
1497 break;
1498 }
1499 case vec2<T>::isect_result::LINE_LINE_COLINEAR: {
1500 if (vec2<T>::distance_squared(va->co, v2->co) <= vec2<T>::distance_squared(vb->co, v2->co)) {
1501 fill_crossdata_for_through_vert(va, se_vcva, cd, cd_next);
1502 }
1503 else {
1504 fill_crossdata_for_through_vert(vb, se_vcvb, cd, cd_next);
1505 }
1506 break;
1507 }
1508 }
1509 } // namespace blender::meshintersect
1510
1511 /**
1512 * As part of finding the crossings of a ray to v2, find the next crossing after 'cd', assuming
1513 * 'cd' represents a crossing that goes through a vertex.
1514 *
1515 * We do a rotational scan around cd's vertex, looking for the triangle where the ray from cd->vert
1516 * to v2 goes between the two arms from cd->vert, or where it goes along one of the edges.
1517 */
1518 template<typename T>
1519 bool get_next_crossing_from_vert(CDT_state<T> *cdt_state,
1520 CrossData<T> *cd,
1521 CrossData<T> *cd_next,
1522 const CDTVert<T> *v2)
1523 {
1524 SymEdge<T> *tstart = cd->vert->symedge;
1525 SymEdge<T> *t = tstart;
1526 CDTVert<T> *vcur = cd->vert;
1527 bool ok = false;
1528 do {
1529 /* The ray from `vcur` to v2 has to go either between two successive
1530 * edges around `vcur` or exactly along them. This time through the
1531 * loop, check to see if the ray goes along `vcur-va`
1532 * or between `vcur-va` and `vcur-vb`, where va is the end of t
1533 * and vb is the next vertex (on the next rot edge around vcur, but
1534 * should also be the next vert of triangle starting with `vcur-va`. */
1535 if (t->face != cdt_state->cdt.outer_face && tri_orient(t) < 0) {
1536 BLI_assert(false); /* Shouldn't happen. */
1537 }
1538 CDTVert<T> *va = t->next->vert;
1539 CDTVert<T> *vb = t->next->next->vert;
1540 int orient1 = orient2d(t->vert->co, va->co, v2->co);
1541 if (orient1 == 0 && in_line<T>(vcur->co, va->co, v2->co)) {
1542 fill_crossdata_for_through_vert(va, t, cd, cd_next);
1543 ok = true;
1544 break;
1545 }
1546 if (t->face != cdt_state->cdt.outer_face) {
1547 int orient2 = orient2d(vcur->co, vb->co, v2->co);
1548 /* Don't handle orient2 == 0 case here: next rotation will get it. */
1549 if (orient1 > 0 && orient2 < 0) {
1550 /* Segment intersection. */
1551 t = t->next;
1552 fill_crossdata_for_intersect(vcur->co, v2, t, cd, cd_next, cdt_state->epsilon);
1553 ok = true;
1554 break;
1555 }
1556 }
1557 } while ((t = t->rot) != tstart);
1558 return ok;
1559 }
1560
1561 /**
1562 * As part of finding the crossings of a ray to `v2`, find the next crossing after 'cd', assuming
1563 * 'cd' represents a crossing that goes through a an edge, not at either end of that edge.
1564 *
1565 * We have the triangle `vb-va-vc`, where `va` and vb are the split edge and `vc` is the third
1566 * vertex on that new side of the edge (should be closer to `v2`).
1567 * The next crossing should be through `vc` or intersecting `vb-vc` or `va-vc`.
1568 */
1569 template<typename T>
1570 void get_next_crossing_from_edge(CrossData<T> *cd,
1571 CrossData<T> *cd_next,
1572 const CDTVert<T> *v2,
1573 const T epsilon)
1574 {
1575 CDTVert<T> *va = cd->in->vert;
1576 CDTVert<T> *vb = cd->in->next->vert;
1577 vec2<T> curco = vec2<T>::interpolate(va->co, vb->co, cd->lambda);
1578 SymEdge<T> *se_ac = sym(cd->in)->next;
1579 CDTVert<T> *vc = se_ac->next->vert;
1580 int orient = orient2d(curco, v2->co, vc->co);
1581 if (orient < 0) {
1582 fill_crossdata_for_intersect<T>(curco, v2, se_ac->next, cd, cd_next, epsilon);
1583 }
1584 else if (orient > 0.0) {
1585 fill_crossdata_for_intersect(curco, v2, se_ac, cd, cd_next, epsilon);
1586 }
1587 else {
1588 *cd_next = CrossData<T>{0.0, vc, se_ac->next, nullptr};
1589 }
1590 }
1591
1592 constexpr int inline_crossings_size = 128;
1593 template<typename T>
1594 void dump_crossings(const Vector<CrossData<T>, inline_crossings_size> &crossings)
1595 {
1596 std::cout << "CROSSINGS\n";
1597 for (int i = 0; i < crossings.size(); ++i) {
1598 std::cout << i << ": ";
1599 const CrossData<T> &cd = crossings[i];
1600 if (cd.lambda == 0) {
1601 std::cout << "v" << cd.vert->index;
1602 }
1603 else {
1604 std::cout << "lambda=" << cd.lambda;
1605 }
1606 if (cd.in != nullptr) {
1607 std::cout << " in=" << short_se_dump(cd.in);
1608 std::cout << " out=" << short_se_dump(cd.out);
1609 }
1610 std::cout << "\n";
1611 }
1612 }
1613
1614 /**
1615 * Add a constrained edge between v1 and v2 to cdt structure.
1616 * This may result in a number of #CDTEdges created, due to intersections
1617 * and partial overlaps with existing cdt vertices and edges.
1618 * Each created #CDTEdge will have input_id added to its input_ids list.
1619 *
1620 * If \a r_edges is not NULL, the #CDTEdges generated or found that go from
1621 * v1 to v2 are put into that linked list, in order.
1622 *
1623 * Assumes that #blender_constrained_delaunay_get_output has not been called yet.
1624 */
1625 template<typename T>
1626 void add_edge_constraint(
1627 CDT_state<T> *cdt_state, CDTVert<T> *v1, CDTVert<T> *v2, int input_id, LinkNode **r_edges)
1628 {
1629 constexpr int dbg_level = 0;
1630 if (dbg_level > 0) {
1631 std::cout << "\nADD EDGE CONSTRAINT\n" << vertname(v1) << " " << vertname(v2) << "\n";
1632 }
1633 LinkNodePair edge_list = {NULL, NULL};
1634
1635 if (r_edges) {
1636 *r_edges = NULL;
1637 }
1638
1639 /*
1640 * Handle two special cases first:
1641 * 1) The two end vertices are the same (can happen because of merging).
1642 * 2) There is already an edge between v1 and v2.
1643 */
1644 if (v1 == v2) {
1645 return;
1646 }
1647 SymEdge<T> *t = find_symedge_between_verts(v1, v2);
1648 if (t != nullptr) {
1649 /* Segment already there. */
1650 add_to_input_ids(&t->edge->input_ids, input_id);
1651 if (r_edges != NULL) {
1652 BLI_linklist_append(&edge_list, t->edge);
1653 *r_edges = edge_list.list;
1654 }
1655 return;
1656 }
1657
1658 /*
1659 * Fill crossings array with CrossData points for intersection path from v1 to v2.
1660 *
1661 * At every point, the crossings array has the path so far, except that
1662 * the .out field of the last element of it may not be known yet -- if that
1663 * last element is a vertex, then we won't know the output edge until we
1664 * find the next crossing.
1665 *
1666 * To protect against infinite loops, we keep track of which vertices
1667 * we have visited by setting their visit_index to a new visit epoch.
1668 *
1669 * We check a special case first: where the segment is already there in
1670 * one hop. Saves a bunch of orient2d tests in that common case.
1671 */
1672 int visit = ++cdt_state->visit_count;
1673 Vector<CrossData<T>, inline_crossings_size> crossings;
1674 crossings.append(CrossData<T>(T(0), v1, nullptr, nullptr));
1675 int n;
1676 while (!((n = crossings.size()) > 0 && crossings[n - 1].vert == v2)) {
1677 crossings.append(CrossData<T>());
1678 CrossData<T> *cd = &crossings[n - 1];
1679 CrossData<T> *cd_next = &crossings[n];
1680 bool ok;
1681 if (crossings[n - 1].lambda == 0) {
1682 ok = get_next_crossing_from_vert(cdt_state, cd, cd_next, v2);
1683 }
1684 else {
1685 get_next_crossing_from_edge(cd, cd_next, v2, cdt_state->epsilon);
1686 ok = true;
1687 }
1688 constexpr int unreasonably_large_crossings = 100000;
1689 if (!ok || crossings.size() == unreasonably_large_crossings) {
1690 /* Shouldn't happen but if does, just bail out. */
1691 BLI_assert(false);
1692 return;
1693 }
1694 if (crossings[n].lambda == 0) {
1695 if (crossings[n].vert->visit_index == visit) {
1696 /* Shouldn't happen but if it does, just bail out. */
1697 BLI_assert(false);
1698 return;
1699 }
1700 crossings[n].vert->visit_index = visit;
1701 }
1702 }
1703
1704 if (dbg_level > 0) {
1705 dump_crossings(crossings);
1706 }
1707
1708 /*
1709 * Post-process crossings.
1710 * Some crossings may have an intersection crossing followed
1711 * by a vertex crossing that is on the same edge that was just
1712 * intersected. We prefer to go directly from the previous
1713 * crossing directly to the vertex. This may chain backwards.
1714 *
1715 * This loop marks certain crossings as "deleted", by setting
1716 * their lambdas to -1.0.
1717 */
1718 int ncrossings = crossings.size();
1719 for (int i = 2; i < ncrossings; ++i) {
1720 CrossData<T> *cd = &crossings[i];
1721 if (cd->lambda == 0.0) {
1722 CDTVert<T> *v = cd->vert;
1723 int j;
1724 CrossData<T> *cd_prev;
1725 for (j = i - 1; j > 0; --j) {
1726 cd_prev = &crossings[j];
1727 if ((cd_prev->lambda == 0.0 && cd_prev->vert != v) ||
1728 (cd_prev->lambda != 0.0 && cd_prev->in->vert != v && cd_prev->in->next->vert != v)) {
1729 break;
1730 }
1731 cd_prev->lambda = -1.0; /* Mark cd_prev as 'deleted'. */
1732 }
1733 if (j < i - 1) {
1734 /* Some crossings were deleted. Fix the in and out edges across gap. */
1735 cd_prev = &crossings[j];
1736 SymEdge<T> *se;
1737 if (cd_prev->lambda == 0.0) {
1738 se = find_symedge_between_verts(cd_prev->vert, v);
1739 if (se == NULL) {
1740 return;
1741 }
1742 cd_prev->out = se;
1743 cd->in = NULL;
1744 }
1745 else {
1746 se = find_symedge_with_face(v, sym(cd_prev->in)->face);
1747 if (se == NULL) {
1748 return;
1749 }
1750 cd->in = se;
1751 }
1752 }
1753 }
1754 }
1755
1756 /*
1757 * Insert all intersection points on constrained edges.
1758 */
1759 for (int i = 0; i < ncrossings; ++i) {
1760 CrossData<T> *cd = &crossings[i];
1761 if (cd->lambda != 0.0 && cd->lambda != -1.0 && is_constrained_edge(cd->in->edge)) {
1762 CDTEdge<T> *edge = cdt_state->cdt.split_edge(cd->in, cd->lambda);
1763 cd->vert = edge->symedges[0].vert;
1764 }
1765 }
1766
1767 /*
1768 * Remove any crossed, non-intersected edges.
1769 */
1770 for (int i = 0; i < ncrossings; ++i) {
1771 CrossData<T> *cd = &crossings[i];
1772 if (cd->lambda != 0.0 && cd->lambda != -1.0 && !is_constrained_edge(cd->in->edge)) {
1773 cdt_state->cdt.delete_edge(cd->in);
1774 }
1775 }
1776
1777 /*
1778 * Insert segments for v1->v2.
1779 */
1780 SymEdge<T> *tstart = crossings[0].out;
1781 for (int i = 1; i < ncrossings; i++) {
1782 CrossData<T> *cd = &crossings[i];
1783 if (cd->lambda == -1.0) {
1784 continue; /* This crossing was deleted. */
1785 }
1786 t = NULL;
1787 SymEdge<T> *tnext = t;
1788 CDTEdge<T> *edge;
1789 if (cd->lambda != 0.0) {
1790 if (is_constrained_edge(cd->in->edge)) {
1791 t = cd->vert->symedge;
1792 tnext = sym(t)->next;
1793 }
1794 }
1795 else if (cd->lambda == 0.0) {
1796 t = cd->in;
1797 tnext = cd->out;
1798 if (t == NULL) {
1799 /* Previous non-deleted crossing must also have been a vert, and segment should exist. */
1800 int j;
1801 CrossData<T> *cd_prev;
1802 for (j = i - 1; j >= 0; j--) {
1803 cd_prev = &crossings[j];
1804 if (cd_prev->lambda != -1.0) {
1805 break;
1806 }
1807 }
1808 BLI_assert(cd_prev->lambda == 0.0);
1809 BLI_assert(cd_prev->out->next->vert == cd->vert);
1810 edge = cd_prev->out->edge;
1811 add_to_input_ids(&edge->input_ids, input_id);
1812 if (r_edges != NULL) {
1813 BLI_linklist_append(&edge_list, edge);
1814 }
1815 }
1816 }
1817 if (t != NULL) {
1818 if (tstart->next->vert == t->vert) {
1819 edge = tstart->edge;
1820 }
1821 else {
1822 edge = cdt_state->cdt.add_diagonal(tstart, t);
1823 }
1824 add_to_input_ids(&edge->input_ids, input_id);
1825 if (r_edges != NULL) {
1826 BLI_linklist_append(&edge_list, edge);
1827 }
1828 /* Now retriangulate upper and lower gaps. */
1829 re_delaunay_triangulate(&cdt_state->cdt, &edge->symedges[0]);
1830 re_delaunay_triangulate(&cdt_state->cdt, &edge->symedges[1]);
1831 }
1832 if (i < ncrossings - 1) {
1833 if (tnext != NULL) {
1834 tstart = tnext;
1835 }
1836 }
1837 }
1838
1839 if (r_edges) {
1840 *r_edges = edge_list.list;
1841 }
1842 }
1843
1844 /**
1845 * Incrementally add edge input edge as a constraint. This may cause the graph structure
1846 * to change, in cases where the constraints intersect existing edges.
1847 * The code will ensure that #CDTEdge's created will have ids that tie them back
1848 * to the original edge constraint index.
1849 */
1850 template<typename T> void add_edge_constraints(CDT_state<T> *cdt_state, const CDT_input<T> &input)
1851 {
1852 int ne = input.edge.size();
1853 int nv = input.vert.size();
1854 for (int i = 0; i < ne; i++) {
1855 int iv1 = input.edge[i].first;
1856 int iv2 = input.edge[i].second;
1857 if (iv1 < 0 || iv1 >= nv || iv2 < 0 || iv2 >= nv) {
1858 /* Ignore invalid indices in edges. */
1859 continue;
1860 }
1861 CDTVert<T> *v1 = cdt_state->cdt.get_vert_resolve_merge(iv1);
1862 CDTVert<T> *v2 = cdt_state->cdt.get_vert_resolve_merge(iv2);
1863 add_edge_constraint(cdt_state, v1, v2, i, nullptr);
1864 }
1865 cdt_state->face_edge_offset = ne;
1866 }
1867
1868 /**
1869 * Add face_id to the input_ids lists of all #CDTFace's on the interior of the input face with that
1870 * id. face_symedge is on edge of the boundary of the input face, with assumption that interior is
1871 * on the left of that #SymEdge.
1872 *
1873 * The algorithm is: starting from the #CDTFace for face_symedge, add the face_id and then
1874 * process all adjacent faces where the adjacency isn't across an edge that was a constraint added
1875 * for the boundary of the input face.
1876 * fedge_start..fedge_end is the inclusive range of edge input ids that are for the given face.
1877 *
1878 * Note: if the input face is not CCW oriented, we'll be labeling the outside, not the inside.
1879 * Note 2: if the boundary has self-crossings, this method will arbitrarily pick one of the
1880 * contiguous set of faces enclosed by parts of the boundary, leaving the other such un-tagged.
1881 * This may be a feature instead of a bug if the first contiguous section is most of the face and
1882 * the others are tiny self-crossing triangles at some parts of the boundary.
1883 * On the other hand, if decide we want to handle these in full generality, then will need a more
1884 * complicated algorithm (using "inside" tests and a parity rule) to decide on the interior.
1885 */
1886 template<typename T>
1887 void add_face_ids(
1888 CDT_state<T> *cdt_state, SymEdge<T> *face_symedge, int face_id, int fedge_start, int fedge_end)
1889 {
1890 /* Can't loop forever since eventually would visit every face. */
1891 cdt_state->visit_count++;
1892 int visit = cdt_state->visit_count;
1893 Vector<SymEdge<T> *> stack;
1894 stack.append(face_symedge);
1895 while (!stack.is_empty()) {
1896 SymEdge<T> *se = stack.pop_last();
1897 CDTFace<T> *face = se->face;
1898 if (face->visit_index == visit) {
1899 continue;
1900 }
1901 face->visit_index = visit;
1902 add_to_input_ids(&face->input_ids, face_id);
1903 SymEdge<T> *se_start = se;
1904 for (se = se->next; se != se_start; se = se->next) {
1905 if (!id_range_in_list(se->edge->input_ids, fedge_start, fedge_end)) {
1906 SymEdge<T> *se_sym = sym(se);
1907 CDTFace<T> *face_other = se_sym->face;
1908 if (face_other->visit_index != visit) {
1909 stack.append(se_sym);
1910 }
1911 }
1912 }
1913 }
1914 }
1915
1916 /* Return a power of 10 that is greater than or equal to x. */
1917 static int power_of_10_greater_equal_to(int x)
1918 {
1919 if (x <= 0) {
1920 return 1;
1921 }
1922 int ans = 1;
1923 BLI_assert(x < INT_MAX / 10);
1924 while (ans < x) {
1925 ans *= 10;
1926 }
1927 return ans;
1928 }
1929
1930 /**
1931 Incrementally each edge of each input face as an edge constraint.
1932 * The code will ensure that the #CDTEdge's created will have ids that tie them
1933 * back to the original face edge (using a numbering system for those edges
1934 * that starts with cdt->face_edge_offset, and continues with the edges in
1935 * order around each face in turn. And then the next face starts at
1936 * cdt->face_edge_offset beyond the start for the previous face.
1937 */
1938 template<typename T> void add_face_constraints(CDT_state<T> *cdt_state, const CDT_input<T> &input)
1939 {
1940 int nv = input.vert.size();
1941 int nf = input.face.size();
1942 int fstart = 0;
1943 SymEdge<T> *face_symedge0 = nullptr;
1944 CDTArrangement<T> *cdt = &cdt_state->cdt;
1945 int maxflen = 0;
1946 for (int f = 0; f < nf; f++) {
1947 maxflen = max_ii(maxflen, input.face[f].size());
1948 }
1949 /* For convenience in debugging, make face_edge_offset be a power of 10. */
1950 cdt_state->face_edge_offset = power_of_10_greater_equal_to(
1951 max_ii(maxflen, cdt_state->face_edge_offset));
1952 /* The original_edge encoding scheme doesn't work if the following is false.
1953 * If we really have that many faces and that large a max face length that when multiplied
1954 * together the are >= INT_MAX, then the Delaunay calculation will take unreasonably long anyway.
1955 */
1956 BLI_assert(INT_MAX / cdt_state->face_edge_offset > nf);
1957 for (int f = 0; f < nf; f++) {
1958 int flen = input.face[f].size();
1959 if (flen <= 2) {
1960 /* Ignore faces with fewer than 3 vertices. */
1961 fstart += flen;
1962 continue;
1963 }
1964 int fedge_start = (f + 1) * cdt_state->face_edge_offset;
1965 for (int i = 0; i < flen; i++) {
1966 int face_edge_id = fedge_start + i;
1967 int iv1 = input.face[f][i];
1968 int iv2 = input.face[f][(i + 1) % flen];
1969 if (iv1 < 0 || iv1 >= nv || iv2 < 0 || iv2 >= nv) {
1970 /* Ignore face edges with invalid vertices. */
1971 continue;
1972 }
1973 CDTVert<T> *v1 = cdt->get_vert_resolve_merge(iv1);
1974 CDTVert<T> *v2 = cdt->get_vert_resolve_merge(iv2);
1975 LinkNode *edge_list;
1976 add_edge_constraint(cdt_state, v1, v2, face_edge_id, &edge_list);
1977 /* Set a new face_symedge0 each time since earlier ones may not
1978 * survive later symedge splits. Really, just want the one when
1979 * i == flen -1, but this code guards against that one somehow
1980 * being null.
1981 */
1982 if (edge_list != nullptr) {
1983 CDTEdge<T> *face_edge = static_cast<CDTEdge<T> *>(edge_list->link);
1984 face_symedge0 = &face_edge->symedges[0];
1985 if (face_symedge0->vert != v1) {
1986 face_symedge0 = &face_edge->symedges[1];
1987 BLI_assert(face_symedge0->vert == v1);
1988 }
1989 }
1990 BLI_linklist_free(edge_list, nullptr);
1991 }
1992 int fedge_end = fedge_start + flen - 1;
1993 if (face_symedge0 != nullptr) {
1994 add_face_ids(cdt_state, face_symedge0, f, fedge_start, fedge_end);
1995 }
1996 fstart += flen;
1997 }
1998 }
1999
2000 /* Delete_edge but try not to mess up outer face.
2001 * Also faces have symedges now, so make sure not
2002 * to mess those up either. */
2003 template<typename T> void dissolve_symedge(CDT_state<T> *cdt_state, SymEdge<T> *se)
2004 {
2005 CDTArrangement<T> *cdt = &cdt_state->cdt;
2006 SymEdge<T> *symse = sym(se);
2007 if (symse->face == cdt->outer_face) {
2008 se = sym(se);
2009 symse = sym(se);
2010 }
2011 if (cdt->outer_face->symedge == se || cdt->outer_face->symedge == symse) {
2012 /* Advancing by 2 to get past possible 'sym(se)'. */
2013 if (se->next->next == se) {
2014 cdt->outer_face->symedge = NULL;
2015 }
2016 else {
2017 cdt->outer_face->symedge = se->next->next;
2018 }
2019 }
2020 else {
2021 if (se->face->symedge == se) {
2022 se->face->symedge = se->next;
2023 }
2024 if (symse->face->symedge == symse) {
2025 symse->face->symedge = symse->next;
2026 }
2027 }
2028 cdt->delete_edge(se);
2029 }
2030
2031 /**
2032 * Remove all non-constraint edges.
2033 */
2034 template<typename T> void remove_non_constraint_edges(CDT_state<T> *cdt_state)
2035 {
2036 for (CDTEdge<T> *e : cdt_state->cdt.edges) {
2037 SymEdge<T> *se = &e->symedges[0];
2038 if (!is_deleted_edge(e) && !is_constrained_edge(e)) {
2039 dissolve_symedge(cdt_state, se);
2040 }
2041 }
2042 }
2043
2044 /*
2045 * Remove the non-constraint edges, but leave enough of them so that all of the
2046 * faces that would be #BMesh faces (that is, the faces that have some input representative)
2047 * are valid: they can't have holes, they can't have repeated vertices, and they can't have
2048 * repeated edges.
2049 *
2050 * Not essential, but to make the result look more aesthetically nice,
2051 * remove the edges in order of decreasing length, so that it is more likely that the
2052 * final remaining support edges are short, and therefore likely to make a fairly
2053 * direct path from an outer face to an inner hole face.
2054 */
2055
2056 /**
2057 * For sorting edges by decreasing length (squared).
2058 */
2059 template<typename T> struct EdgeToSort {
2060 T len_squared = T(0);
2061 CDTEdge<T> *e{nullptr};
2062
2063 EdgeToSort() = default;
2064 EdgeToSort(const EdgeToSort &other) : len_squared(other.len_squared), e(other.e)
2065 {
2066 }
2067 EdgeToSort(EdgeToSort &&other) noexcept : len_squared(std::move(other.len_squared)), e(other.e)
2068 {
2069 }
2070 ~EdgeToSort() = default;
2071 EdgeToSort &operator=(const EdgeToSort &other)
2072 {
2073 if (this != &other) {
2074 len_squared = other.len_squared;
2075 e = other.e;
2076 }
2077 return *this;
2078 }
2079 EdgeToSort &operator=(EdgeToSort &&other)
2080 {
2081 len_squared = std::move(other.len_squared);
2082 e = other.e;
2083 return *this;
2084 }
2085 };
2086
2087 template<typename T> void remove_non_constraint_edges_leave_valid_bmesh(CDT_state<T> *cdt_state)
2088 {
2089 CDTArrangement<T> *cdt = &cdt_state->cdt;
2090 size_t nedges = cdt->edges.size();
2091 if (nedges == 0) {
2092 return;
2093 }
2094 Vector<EdgeToSort<T>> dissolvable_edges;
2095 dissolvable_edges.reserve(cdt->edges.size());
2096 int i = 0;
2097 for (CDTEdge<T> *e : cdt->edges) {
2098 if (!is_deleted_edge(e) && !is_constrained_edge(e)) {
2099 dissolvable_edges.append(EdgeToSort<T>());
2100 dissolvable_edges[i].e = e;
2101 const vec2<T> &co1 = e->symedges[0].vert->co;
2102 const vec2<T> &co2 = e->symedges[1].vert->co;
2103 dissolvable_edges[i].len_squared = vec2<T>::distance_squared(co1, co2);
2104 i++;
2105 }
2106 }
2107 std::sort(dissolvable_edges.begin(),
2108 dissolvable_edges.end(),
2109 [](const EdgeToSort<T> &a, const EdgeToSort<T> &b) -> bool {
2110 return (a.len_squared < b.len_squared);
2111 });
2112 for (EdgeToSort<T> &ets : dissolvable_edges) {
2113 CDTEdge<T> *e = ets.e;
2114 SymEdge<T> *se = &e->symedges[0];
2115 bool dissolve = true;
2116 CDTFace<T> *fleft = se->face;
2117 CDTFace<T> *fright = sym(se)->face;
2118 if (fleft != cdt->outer_face && fright != cdt->outer_face &&
2119 (fleft->input_ids != nullptr || fright->input_ids != nullptr)) {
2120 /* Is there another #SymEdge with same left and right faces?
2121 * Or is there a vertex not part of e touching the same left and right faces? */
2122 for (SymEdge<T> *se2 = se->next; dissolve && se2 != se; se2 = se2->next) {
2123 if (sym(se2)->face == fright ||
2124 (se2->vert != se->next->vert && vert_touches_face(se2->vert, fright))) {
2125 dissolve = false;
2126 }
2127 }
2128 }
2129
2130 if (dissolve) {
2131 dissolve_symedge(cdt_state, se);
2132 }
2133 }
2134 }
2135
2136 template<typename T> void remove_outer_edges_until_constraints(CDT_state<T> *cdt_state)
2137 {
2138 // LinkNode *fstack = NULL;
2139 // SymEdge *se, *se_start;
2140 // CDTFace *f, *fsym;
2141 int visit = ++cdt_state->visit_count;
2142
2143 cdt_state->cdt.outer_face->visit_index = visit;
2144 /* Walk around outer face, adding faces on other side of dissolvable edges to stack. */
2145 Vector<CDTFace<T> *> fstack;
2146 SymEdge<T> *se_start = cdt_state->cdt.outer_face->symedge;
2147 SymEdge<T> *se = se_start;
2148 do {
2149 if (!is_constrained_edge(se->edge)) {
2150 CDTFace<T> *fsym = sym(se)->face;
2151 if (fsym->visit_index != visit) {
2152 fstack.append(fsym);
2153 }
2154 }
2155 } while ((se = se->next) != se_start);
2156
2157 while (!fstack.is_empty()) {
2158 LinkNode *to_dissolve = nullptr;
2159 bool dissolvable;
2160 CDTFace<T> *f = fstack.pop_last();
2161 if (f->visit_index == visit) {
2162 continue;
2163 }
2164 BLI_assert(f != cdt_state->cdt.outer_face);
2165 f->visit_index = visit;
2166 se_start = se = f->symedge;
2167 do {
2168 dissolvable = !is_constrained_edge(se->edge);
2169 if (dissolvable) {
2170 CDTFace<T> *fsym = sym(se)->face;
2171 if (fsym->visit_index != visit) {
2172 fstack.append(fsym);
2173 }
2174 else {
2175 BLI_linklist_prepend(&to_dissolve, se);
2176 }
2177 }
2178 se = se->next;
2179 } while (se != se_start);
2180 while (to_dissolve != NULL) {
2181 se = static_cast<SymEdge<T> *>(BLI_linklist_pop(&to_dissolve));
2182 if (se->next != NULL) {
2183 dissolve_symedge(cdt_state, se);
2184 }
2185 }
2186 }
2187 }
2188
2189 /**
2190 * Remove edges and merge faces to get desired output, as per options.
2191 * \note the cdt cannot be further changed after this.
2192 */
2193 template<typename T>
2194 void prepare_cdt_for_output(CDT_state<T> *cdt_state, const CDT_output_type output_type)
2195 {
2196 CDTArrangement<T> *cdt = &cdt_state->cdt;
2197 if (cdt->edges.is_empty()) {
2198 return;
2199 }
2200
2201 /* Make sure all non-deleted faces have a symedge. */
2202 for (CDTEdge<T> *e : cdt->edges) {
2203 if (!is_deleted_edge(e)) {
2204 if (e->symedges[0].face->symedge == nullptr) {
2205 e->symedges[0].face->symedge = &e->symedges[0];
2206 }
2207 if (e->symedges[1].face->symedge == nullptr) {
2208 e->symedges[1].face->symedge = &e->symedges[1];
2209 }
2210 }
2211 }
2212
2213 if (output_type == CDT_CONSTRAINTS) {
2214 remove_non_constraint_edges(cdt_state);
2215 }
2216 else if (output_type == CDT_CONSTRAINTS_VALID_BMESH) {
2217 remove_non_constraint_edges_leave_valid_bmesh(cdt_state);
2218 }
2219 else if (output_type == CDT_INSIDE) {
2220 remove_outer_edges_until_constraints(cdt_state);
2221 }
2222 }
2223
2224 template<typename T>
2225 CDT_result<T> get_cdt_output(CDT_state<T> *cdt_state,
2226 const CDT_input<T> UNUSED(input),
2227 CDT_output_type output_type)
2228 {
2229 prepare_cdt_for_output(cdt_state, output_type);
2230 CDT_result<T> result;
2231 CDTArrangement<T> *cdt = &cdt_state->cdt;
2232 result.face_edge_offset = cdt_state->face_edge_offset;
2233
2234 /* All verts without a merge_to_index will be output.
2235 * vert_to_output_map[i] will hold the output vertex index
2236 * corresponding to the vert in position i in cdt->verts.
2237 * This first loop sets vert_to_output_map for un-merged verts. */
2238 int verts_size = cdt->verts.size();
2239 Array<int> vert_to_output_map(verts_size);
2240 int nv = 0;
2241 for (int i = 0; i < verts_size; ++i) {
2242 CDTVert<T> *v = cdt->verts[i];
2243 if (v->merge_to_index == -1) {
2244 vert_to_output_map[i] = nv;
2245 ++nv;
2246 }
2247 }
2248 if (nv <= 0) {
2249 return result;
2250 }
2251 /* Now we can set vert_to_output_map for merged verts,
2252 * and also add the input indices of merged verts to the input_ids
2253 * list of the merge target if they were an original input id. */
2254 if (nv < verts_size) {
2255 for (int i = 0; i < verts_size; ++i) {
2256 CDTVert<T> *v = cdt->verts[i];
2257 if (v->merge_to_index != -1) {
2258 if (i < cdt_state->input_vert_tot) {
2259 add_to_input_ids(&cdt->verts[v->merge_to_index]->input_ids, i);
2260 }
2261 vert_to_output_map[i] = vert_to_output_map[v->merge_to_index];
2262 }
2263 }
2264 }
2265 result.vert = Array<vec2<T>>(nv);
2266 result.vert_orig = Array<Vector<int>>(nv);
2267 int i_out = 0;
2268 for (int i = 0; i < verts_size; ++i) {
2269 CDTVert<T> *v = cdt->verts[i];
2270 if (v->merge_to_index == -1) {
2271 result.vert[i_out] = v->co;
2272 if (i < cdt_state->input_vert_tot) {
2273 result.vert_orig[i_out].append(i);
2274 }
2275 for (LinkNode *ln = v->input_ids; ln; ln = ln->next) {
2276 result.vert_orig[i_out].append(POINTER_AS_INT(ln->link));
2277 }
2278 ++i_out;
2279 }
2280 }
2281
2282 /* All non-deleted edges will be output. */
2283 int ne = std::count_if(cdt->edges.begin(), cdt->edges.end(), [](const CDTEdge<T> *e) -> bool {
2284 return !is_deleted_edge(e);
2285 });
2286 result.edge = Array<std::pair<int, int>>(ne);
2287 result.edge_orig = Array<Vector<int>>(ne);
2288 int e_out = 0;
2289 for (const CDTEdge<T> *e : cdt->edges) {
2290 if (!is_deleted_edge(e)) {
2291 int vo1 = vert_to_output_map[e->symedges[0].vert->index];
2292 int vo2 = vert_to_output_map[e->symedges[1].vert->index];
2293 result.edge[e_out] = std::pair<int, int>(vo1, vo2);
2294 for (LinkNode *ln = e->input_ids; ln; ln = ln->next) {
2295 result.edge_orig[e_out].append(POINTER_AS_INT(ln->link));
2296 }
2297 ++e_out;
2298 }
2299 }
2300
2301 /* All non-deleted, non-outer faces will be output. */
2302 int nf = std::count_if(cdt->faces.begin(), cdt->faces.end(), [=](const CDTFace<T> *f) -> bool {
2303 return !f->deleted && f != cdt->outer_face;
2304 });
2305 result.face = Array<Vector<int>>(nf);
2306 result.face_orig = Array<Vector<int>>(nf);
2307 int f_out = 0;
2308 for (const CDTFace<T> *f : cdt->faces) {
2309 if (!f->deleted && f != cdt->outer_face) {
2310 SymEdge<T> *se = f->symedge;
2311 BLI_assert(se != nullptr);
2312 SymEdge<T> *se_start = se;
2313 do {
2314 result.face[f_out].append(vert_to_output_map[se->vert->index]);
2315 se = se->next;
2316 } while (se != se_start);
2317 for (LinkNode *ln = f->input_ids; ln; ln = ln->next) {
2318 result.face_orig[f_out].append(POINTER_AS_INT(ln->link));
2319 }
2320 ++f_out;
2321 }
2322 }
2323 return result;
2324 }
2325
2326 /**
2327 * Add all the input verts into cdt. This will deduplicate,
2328 * setting vertices merge_to_index to show merges.
2329 */
2330 template<typename T> void add_input_verts(CDT_state<T> *cdt_state, const CDT_input<T> &input)
2331 {
2332 for (int i = 0; i < cdt_state->input_vert_tot; ++i) {
2333 cdt_state->cdt.add_vert(input.vert[i]);
2334 }
2335 }
2336
2337 template<typename T>
2338 CDT_result<T> delaunay_calc(const CDT_input<T> &input, CDT_output_type output_type)
2339 {
2340 int nv = input.vert.size();
2341 int ne = input.edge.size();
2342 int nf = input.face.size();
2343 CDT_state<T> cdt_state(nv, ne, nf, input.epsilon);
2344 add_input_verts(&cdt_state, input);
2345 initial_triangulation(&cdt_state.cdt);
2346 add_edge_constraints(&cdt_state, input);
2347 add_face_constraints(&cdt_state, input);
2348 return get_cdt_output(&cdt_state, input, output_type);
2349 }
2350
2351 blender::meshintersect::CDT_result<double> delaunay_2d_calc(const CDT_input<double> &input,
2352 CDT_output_type output_type)
2353 {
2354 return delaunay_calc(input, output_type);
2355 }
2356
2357 #ifdef WITH_GMP
2358 blender::meshintersect::CDT_result<mpq_class> delaunay_2d_calc(const CDT_input<mpq_class> &input,
2359 CDT_output_type output_type)
2360 {
2361 return delaunay_calc(input, output_type);
2362 }
2363 #endif
2364
2365 } /* namespace blender::meshintersect */
2366
2367 /* C interface. */
2368
2369 /**
2370 This function uses the double version of #CDT::delaunay_calc.
2371 * Almost all of the work here is to convert between C++ #Arrays<Vector<int>>
2372 * and a C version that linearizes all the elements and uses a "start"
2373 * and "len" array to say where the individual vectors start and how
2374 * long they are.
2375 */
BLI_delaunay_2d_cdt_calc(const::CDT_input * input,const CDT_output_type output_type)2376 extern "C" ::CDT_result *BLI_delaunay_2d_cdt_calc(const ::CDT_input *input,
2377 const CDT_output_type output_type)
2378 {
2379 blender::meshintersect::CDT_input<double> in;
2380 in.vert = blender::Array<blender::meshintersect::vec2<double>>(input->verts_len);
2381 in.edge = blender::Array<std::pair<int, int>>(input->edges_len);
2382 in.face = blender::Array<blender::Vector<int>>(input->faces_len);
2383 for (int v = 0; v < input->verts_len; ++v) {
2384 double x = static_cast<double>(input->vert_coords[v][0]);
2385 double y = static_cast<double>(input->vert_coords[v][1]);
2386 in.vert[v] = blender::meshintersect::vec2<double>(x, y);
2387 }
2388 for (int e = 0; e < input->edges_len; ++e) {
2389 in.edge[e] = std::pair<int, int>(input->edges[e][0], input->edges[e][1]);
2390 }
2391 for (int f = 0; f < input->faces_len; ++f) {
2392 in.face[f] = blender::Vector<int>(input->faces_len_table[f]);
2393 int fstart = input->faces_start_table[f];
2394 for (int j = 0; j < input->faces_len_table[f]; ++j) {
2395 in.face[f][j] = input->faces[fstart + j];
2396 }
2397 }
2398 in.epsilon = static_cast<double>(input->epsilon);
2399
2400 blender::meshintersect::CDT_result<double> res = blender::meshintersect::delaunay_2d_calc(
2401 in, output_type);
2402
2403 ::CDT_result *output = static_cast<::CDT_result *>(MEM_mallocN(sizeof(*output), __func__));
2404 int nv = output->verts_len = res.vert.size();
2405 int ne = output->edges_len = res.edge.size();
2406 int nf = output->faces_len = res.face.size();
2407 int tot_v_orig = 0;
2408 int tot_e_orig = 0;
2409 int tot_f_orig = 0;
2410 int tot_f_lens = 0;
2411 for (int v = 0; v < nv; ++v) {
2412 tot_v_orig += res.vert_orig[v].size();
2413 }
2414 for (int e = 0; e < ne; ++e) {
2415 tot_e_orig += res.edge_orig[e].size();
2416 }
2417 for (int f = 0; f < nf; ++f) {
2418 tot_f_orig += res.face_orig[f].size();
2419 tot_f_lens += res.face[f].size();
2420 }
2421
2422 output->vert_coords = static_cast<decltype(output->vert_coords)>(
2423 MEM_malloc_arrayN(nv, sizeof(output->vert_coords[0]), __func__));
2424 output->verts_orig = static_cast<int *>(MEM_malloc_arrayN(tot_v_orig, sizeof(int), __func__));
2425 output->verts_orig_start_table = static_cast<int *>(
2426 MEM_malloc_arrayN(nv, sizeof(int), __func__));
2427 output->verts_orig_len_table = static_cast<int *>(MEM_malloc_arrayN(nv, sizeof(int), __func__));
2428 output->edges = static_cast<decltype(output->edges)>(
2429 MEM_malloc_arrayN(ne, sizeof(output->edges[0]), __func__));
2430 output->edges_orig = static_cast<int *>(MEM_malloc_arrayN(tot_e_orig, sizeof(int), __func__));
2431 output->edges_orig_start_table = static_cast<int *>(
2432 MEM_malloc_arrayN(ne, sizeof(int), __func__));
2433 output->edges_orig_len_table = static_cast<int *>(MEM_malloc_arrayN(ne, sizeof(int), __func__));
2434 output->faces = static_cast<int *>(MEM_malloc_arrayN(tot_f_lens, sizeof(int), __func__));
2435 output->faces_start_table = static_cast<int *>(MEM_malloc_arrayN(nf, sizeof(int), __func__));
2436 output->faces_len_table = static_cast<int *>(MEM_malloc_arrayN(nf, sizeof(int), __func__));
2437 output->faces_orig = static_cast<int *>(MEM_malloc_arrayN(tot_f_orig, sizeof(int), __func__));
2438 output->faces_orig_start_table = static_cast<int *>(
2439 MEM_malloc_arrayN(nf, sizeof(int), __func__));
2440 output->faces_orig_len_table = static_cast<int *>(MEM_malloc_arrayN(nf, sizeof(int), __func__));
2441
2442 int v_orig_index = 0;
2443 for (int v = 0; v < nv; ++v) {
2444 output->vert_coords[v][0] = static_cast<float>(res.vert[v][0]);
2445 output->vert_coords[v][1] = static_cast<float>(res.vert[v][1]);
2446 int this_start = v_orig_index;
2447 output->verts_orig_start_table[v] = this_start;
2448 for (int j : res.vert_orig[v].index_range()) {
2449 output->verts_orig[v_orig_index++] = res.vert_orig[v][j];
2450 }
2451 output->verts_orig_len_table[v] = v_orig_index - this_start;
2452 }
2453 int e_orig_index = 0;
2454 for (int e = 0; e < ne; ++e) {
2455 output->edges[e][0] = res.edge[e].first;
2456 output->edges[e][1] = res.edge[e].second;
2457 int this_start = e_orig_index;
2458 output->edges_orig_start_table[e] = this_start;
2459 for (int j : res.edge_orig[e].index_range()) {
2460 output->edges_orig[e_orig_index++] = res.edge_orig[e][j];
2461 }
2462 output->edges_orig_len_table[e] = e_orig_index - this_start;
2463 }
2464 int f_orig_index = 0;
2465 int f_index = 0;
2466 for (int f = 0; f < nf; ++f) {
2467 output->faces_start_table[f] = f_index;
2468 int flen = res.face[f].size();
2469 output->faces_len_table[f] = flen;
2470 for (int j = 0; j < flen; ++j) {
2471 output->faces[f_index++] = res.face[f][j];
2472 }
2473 int this_start = f_orig_index;
2474 output->faces_orig_start_table[f] = this_start;
2475 for (int k : res.face_orig[f].index_range()) {
2476 output->faces_orig[f_orig_index++] = res.face_orig[f][k];
2477 }
2478 output->faces_orig_len_table[f] = f_orig_index - this_start;
2479 }
2480 return output;
2481 }
2482
BLI_delaunay_2d_cdt_free(::CDT_result * result)2483 extern "C" void BLI_delaunay_2d_cdt_free(::CDT_result *result)
2484 {
2485 MEM_freeN(result->vert_coords);
2486 MEM_freeN(result->edges);
2487 MEM_freeN(result->faces);
2488 MEM_freeN(result->faces_start_table);
2489 MEM_freeN(result->faces_len_table);
2490 MEM_freeN(result->verts_orig);
2491 MEM_freeN(result->verts_orig_start_table);
2492 MEM_freeN(result->verts_orig_len_table);
2493 MEM_freeN(result->edges_orig);
2494 MEM_freeN(result->edges_orig_start_table);
2495 MEM_freeN(result->edges_orig_len_table);
2496 MEM_freeN(result->faces_orig);
2497 MEM_freeN(result->faces_orig_start_table);
2498 MEM_freeN(result->faces_orig_len_table);
2499 MEM_freeN(result);
2500 }
2501