1 /*
2  * Copyright © 2006, 2009 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  */
27 
28 #ifndef CAIRO_DRM_I915_PRIVATE_H
29 #define CAIRO_DRM_I915_PRIVATE_H
30 
31 #include "cairo-types-private.h"
32 
33 #include "cairo-drm-private.h"
34 #include "cairo-drm-intel-private.h"
35 #include "cairo-drm-intel-command-private.h"
36 #include "cairo-drm-intel-ioctl-private.h"
37 #include "cairo-freelist-private.h"
38 
39 #include <setjmp.h>
40 
41 #define I915_VERBOSE 1
42 
43 #define I915_MAX_TEX_INDIRECT 4
44 #define I915_MAX_TEX_INSN     32
45 #define I915_MAX_ALU_INSN     64
46 #define I915_MAX_DECL_INSN    27
47 #define I915_MAX_TEMPORARY    16
48 
49 /* Each instruction is 3 dwords long, though most don't require all
50  * this space.  Maximum of 123 instructions.  Smaller maxes per insn
51  * type.
52  */
53 #define _3DSTATE_PIXEL_SHADER_PROGRAM    (CMD_3D|(0x1d<<24)|(0x5<<16))
54 
55 #define REG_TYPE_R                 0 /* temporary regs, no need to
56 				      * dcl, must be written before
57 				      * read -- Preserved between
58 				      * phases.
59 				      */
60 #define REG_TYPE_T                 1 /* Interpolated values, must be
61 				      * dcl'ed before use.
62 				      *
63 				      * 0..7: texture coord,
64 				      * 8: diffuse spec,
65 				      * 9: specular color,
66 				      * 10: fog parameter in w.
67 				      */
68 #define REG_TYPE_CONST             2 /* Restriction: only one const
69 				      * can be referenced per
70 				      * instruction, though it may be
71 				      * selected for multiple inputs.
72 				      * Constants not initialized
73 				      * default to zero.
74 				      */
75 #define REG_TYPE_S                 3 /* sampler */
76 #define REG_TYPE_OC                4 /* output color (rgba) */
77 #define REG_TYPE_OD                5 /* output depth (w), xyz are
78 				      * temporaries.  If not written,
79 				      * interpolated depth is used?
80 				      */
81 #define REG_TYPE_U                 6 /* unpreserved temporaries */
82 #define REG_TYPE_MASK              0x7
83 #define REG_TYPE_SHIFT		   4
84 #define REG_NR_MASK                0xf
85 
86 /* REG_TYPE_T:
87  */
88 #define T_TEX0     0
89 #define T_TEX1     1
90 #define T_TEX2     2
91 #define T_TEX3     3
92 #define T_TEX4     4
93 #define T_TEX5     5
94 #define T_TEX6     6
95 #define T_TEX7     7
96 #define T_DIFFUSE  8
97 #define T_SPECULAR 9
98 #define T_FOG_W    10		/* interpolated fog is in W coord */
99 
100 /* Arithmetic instructions */
101 
102 /* .replicate_swizzle == selection and replication of a particular
103  * scalar channel, ie., .xxxx, .yyyy, .zzzz or .wwww
104  */
105 #define A0_NOP    (0x0<<24)		/* no operation */
106 #define A0_ADD    (0x1<<24)		/* dst = src0 + src1 */
107 #define A0_MOV    (0x2<<24)		/* dst = src0 */
108 #define A0_MUL    (0x3<<24)		/* dst = src0 * src1 */
109 #define A0_MAD    (0x4<<24)		/* dst = src0 * src1 + src2 */
110 #define A0_DP2ADD (0x5<<24)		/* dst.xyzw = src0.xy dot src1.xy + src2.replicate_swizzle */
111 #define A0_DP3    (0x6<<24)		/* dst.xyzw = src0.xyz dot src1.xyz */
112 #define A0_DP4    (0x7<<24)		/* dst.xyzw = src0.xyzw dot src1.xyzw */
113 #define A0_FRC    (0x8<<24)		/* dst = src0 - floor(src0) */
114 #define A0_RCP    (0x9<<24)		/* dst.xyzw = 1/(src0.replicate_swizzle) */
115 #define A0_RSQ    (0xa<<24)		/* dst.xyzw = 1/(sqrt(abs(src0.replicate_swizzle))) */
116 #define A0_EXP    (0xb<<24)		/* dst.xyzw = exp2(src0.replicate_swizzle) */
117 #define A0_LOG    (0xc<<24)		/* dst.xyzw = log2(abs(src0.replicate_swizzle)) */
118 #define A0_CMP    (0xd<<24)		/* dst = (src0 >= 0.0) ? src1 : src2 */
119 #define A0_MIN    (0xe<<24)		/* dst = (src0 < src1) ? src0 : src1 */
120 #define A0_MAX    (0xf<<24)		/* dst = (src0 >= src1) ? src0 : src1 */
121 #define A0_FLR    (0x10<<24)		/* dst = floor(src0) */
122 #define A0_MOD    (0x11<<24)		/* dst = src0 fmod 1.0 */
123 #define A0_TRC    (0x12<<24)		/* dst = int(src0) */
124 #define A0_SGE    (0x13<<24)		/* dst = src0 >= src1 ? 1.0 : 0.0 */
125 #define A0_SLT    (0x14<<24)		/* dst = src0 < src1 ? 1.0 : 0.0 */
126 #define A0_DEST_SATURATE                 (1<<22)
127 #define A0_DEST_TYPE_SHIFT                19
128 /* Allow: R, OC, OD, U */
129 #define A0_DEST_NR_SHIFT                 14
130 /* Allow R: 0..15, OC,OD: 0..0, U: 0..2 */
131 #define A0_DEST_CHANNEL_X                (1<<10)
132 #define A0_DEST_CHANNEL_Y                (2<<10)
133 #define A0_DEST_CHANNEL_Z                (4<<10)
134 #define A0_DEST_CHANNEL_W                (8<<10)
135 #define A0_DEST_CHANNEL_ALL              (0xf<<10)
136 #define A0_DEST_CHANNEL_SHIFT            10
137 #define A0_SRC0_TYPE_SHIFT               7
138 #define A0_SRC0_NR_SHIFT                 2
139 
140 #define A0_DEST_CHANNEL_XY              (A0_DEST_CHANNEL_X|A0_DEST_CHANNEL_Y)
141 #define A0_DEST_CHANNEL_XYZ             (A0_DEST_CHANNEL_XY|A0_DEST_CHANNEL_Z)
142 
143 #define SRC_X        0
144 #define SRC_Y        1
145 #define SRC_Z        2
146 #define SRC_W        3
147 #define SRC_ZERO     4
148 #define SRC_ONE      5
149 
150 #define A1_SRC0_CHANNEL_X_NEGATE         (1<<31)
151 #define A1_SRC0_CHANNEL_X_SHIFT          28
152 #define A1_SRC0_CHANNEL_Y_NEGATE         (1<<27)
153 #define A1_SRC0_CHANNEL_Y_SHIFT          24
154 #define A1_SRC0_CHANNEL_Z_NEGATE         (1<<23)
155 #define A1_SRC0_CHANNEL_Z_SHIFT          20
156 #define A1_SRC0_CHANNEL_W_NEGATE         (1<<19)
157 #define A1_SRC0_CHANNEL_W_SHIFT          16
158 #define A1_SRC1_TYPE_SHIFT               13
159 #define A1_SRC1_NR_SHIFT                 8
160 #define A1_SRC1_CHANNEL_X_NEGATE         (1<<7)
161 #define A1_SRC1_CHANNEL_X_SHIFT          4
162 #define A1_SRC1_CHANNEL_Y_NEGATE         (1<<3)
163 #define A1_SRC1_CHANNEL_Y_SHIFT          0
164 
165 #define A2_SRC1_CHANNEL_Z_NEGATE         (1<<31)
166 #define A2_SRC1_CHANNEL_Z_SHIFT          28
167 #define A2_SRC1_CHANNEL_W_NEGATE         (1<<27)
168 #define A2_SRC1_CHANNEL_W_SHIFT          24
169 #define A2_SRC2_TYPE_SHIFT               21
170 #define A2_SRC2_NR_SHIFT                 16
171 #define A2_SRC2_CHANNEL_X_NEGATE         (1<<15)
172 #define A2_SRC2_CHANNEL_X_SHIFT          12
173 #define A2_SRC2_CHANNEL_Y_NEGATE         (1<<11)
174 #define A2_SRC2_CHANNEL_Y_SHIFT          8
175 #define A2_SRC2_CHANNEL_Z_NEGATE         (1<<7)
176 #define A2_SRC2_CHANNEL_Z_SHIFT          4
177 #define A2_SRC2_CHANNEL_W_NEGATE         (1<<3)
178 #define A2_SRC2_CHANNEL_W_SHIFT          0
179 
180 /* Texture instructions */
181 #define T0_TEXLD     (0x15<<24)	/* Sample texture using predeclared
182 				 * sampler and address, and output
183 				 * filtered texel data to destination
184 				 * register */
185 #define T0_TEXLDP    (0x16<<24)	/* Same as texld but performs a
186 				 * perspective divide of the texture
187 				 * coordinate .xyz values by .w before
188 				 * sampling. */
189 #define T0_TEXLDB    (0x17<<24)	/* Same as texld but biases the
190 				 * computed LOD by w.  Only S4.6 two's
191 				 * comp is used.  This implies that a
192 				 * float to fixed conversion is
193 				 * done. */
194 #define T0_TEXKILL   (0x18<<24)	/* Does not perform a sampling
195 				 * operation.  Simply kills the pixel
196 				 * if any channel of the address
197 				 * register is < 0.0. */
198 #define T0_DEST_TYPE_SHIFT                19
199 /* Allow: R, OC, OD, U */
200 /* Note: U (unpreserved) regs do not retain their values between
201  * phases (cannot be used for feedback)
202  *
203  * Note: oC and OD registers can only be used as the destination of a
204  * texture instruction once per phase (this is an implementation
205  * restriction).
206  */
207 #define T0_DEST_NR_SHIFT                 14
208 /* Allow R: 0..15, OC,OD: 0..0, U: 0..2 */
209 #define T0_SAMPLER_NR_SHIFT              0 /* This field ignored for TEXKILL */
210 #define T0_SAMPLER_NR_MASK               (0xf<<0)
211 
212 #define T1_ADDRESS_REG_TYPE_SHIFT        24 /* Reg to use as texture coord */
213 /* Allow R, T, OC, OD -- R, OC, OD are 'dependent' reads, new program phase */
214 #define T1_ADDRESS_REG_NR_SHIFT          17
215 #define T2_MBZ                           0
216 
217 /* Declaration instructions */
218 #define D0_DCL       (0x19<<24)	/* Declare a t (interpolated attrib)
219 				 * register or an s (sampler)
220 				 * register. */
221 #define D0_SAMPLE_TYPE_SHIFT              22
222 #define D0_SAMPLE_TYPE_2D                 (0x0<<22)
223 #define D0_SAMPLE_TYPE_CUBE               (0x1<<22)
224 #define D0_SAMPLE_TYPE_VOLUME             (0x2<<22)
225 #define D0_SAMPLE_TYPE_MASK               (0x3<<22)
226 
227 #define D0_TYPE_SHIFT                19
228 /* Allow: T, S */
229 #define D0_NR_SHIFT                  14
230 /* Allow T: 0..10, S: 0..15 */
231 #define D0_CHANNEL_X                (1<<10)
232 #define D0_CHANNEL_Y                (2<<10)
233 #define D0_CHANNEL_Z                (4<<10)
234 #define D0_CHANNEL_W                (8<<10)
235 #define D0_CHANNEL_ALL              (0xf<<10)
236 #define D0_CHANNEL_NONE             (0<<10)
237 
238 #define D0_CHANNEL_XY               (D0_CHANNEL_X|D0_CHANNEL_Y)
239 #define D0_CHANNEL_XYZ              (D0_CHANNEL_XY|D0_CHANNEL_Z)
240 
241 /* I915 Errata: Do not allow (xz), (xw), (xzw) combinations for diffuse
242  * or specular declarations.
243  *
244  * For T dcls, only allow: (x), (xy), (xyz), (w), (xyzw)
245  *
246  * Must be zero for S (sampler) dcls
247  */
248 #define D1_MBZ                          0
249 #define D2_MBZ                          0
250 
251 
252 /* MASK_* are the unshifted bitmasks of the destination mask in arithmetic
253  * operations
254  */
255 #define MASK_X			0x1
256 #define MASK_Y			0x2
257 #define MASK_Z			0x4
258 #define MASK_W			0x8
259 #define MASK_XYZ		(MASK_X | MASK_Y | MASK_Z)
260 #define MASK_XYZW		(MASK_XYZ | MASK_W)
261 #define MASK_SATURATE		0x10
262 
263 /* Temporary, undeclared regs. Preserved between phases */
264 #define FS_R0			((REG_TYPE_R << REG_TYPE_SHIFT) | 0)
265 #define FS_R1			((REG_TYPE_R << REG_TYPE_SHIFT) | 1)
266 #define FS_R2			((REG_TYPE_R << REG_TYPE_SHIFT) | 2)
267 #define FS_R3			((REG_TYPE_R << REG_TYPE_SHIFT) | 3)
268 
269 /* Texture coordinate regs.  Must be declared. */
270 #define FS_T0			((REG_TYPE_T << REG_TYPE_SHIFT) | 0)
271 #define FS_T1			((REG_TYPE_T << REG_TYPE_SHIFT) | 1)
272 #define FS_T2			((REG_TYPE_T << REG_TYPE_SHIFT) | 2)
273 #define FS_T3			((REG_TYPE_T << REG_TYPE_SHIFT) | 3)
274 #define FS_T4			((REG_TYPE_T << REG_TYPE_SHIFT) | 4)
275 #define FS_T5			((REG_TYPE_T << REG_TYPE_SHIFT) | 5)
276 #define FS_T6			((REG_TYPE_T << REG_TYPE_SHIFT) | 6)
277 #define FS_T7			((REG_TYPE_T << REG_TYPE_SHIFT) | 7)
278 #define FS_T8			((REG_TYPE_T << REG_TYPE_SHIFT) | 8)
279 #define FS_T9			((REG_TYPE_T << REG_TYPE_SHIFT) | 9)
280 #define FS_T10			((REG_TYPE_T << REG_TYPE_SHIFT) | 10)
281 
282 /* Constant values */
283 #define FS_C0			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 0)
284 #define FS_C1			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 1)
285 #define FS_C2			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 2)
286 #define FS_C3			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 3)
287 #define FS_C4			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 4)
288 #define FS_C5			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 5)
289 #define FS_C6			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 6)
290 #define FS_C7			((REG_TYPE_CONST << REG_TYPE_SHIFT) | 7)
291 
292 /* Sampler regs */
293 #define FS_S0			((REG_TYPE_S << REG_TYPE_SHIFT) | 0)
294 #define FS_S1			((REG_TYPE_S << REG_TYPE_SHIFT) | 1)
295 #define FS_S2			((REG_TYPE_S << REG_TYPE_SHIFT) | 2)
296 #define FS_S3			((REG_TYPE_S << REG_TYPE_SHIFT) | 3)
297 
298 /* Output color */
299 #define FS_OC			((REG_TYPE_OC << REG_TYPE_SHIFT) | 0)
300 
301 /* Output depth */
302 #define FS_OD			((REG_TYPE_OD << REG_TYPE_SHIFT) | 0)
303 
304 /* Unpreserved temporary regs */
305 #define FS_U0			((REG_TYPE_U << REG_TYPE_SHIFT) | 0)
306 #define FS_U1			((REG_TYPE_U << REG_TYPE_SHIFT) | 1)
307 #define FS_U2			((REG_TYPE_U << REG_TYPE_SHIFT) | 2)
308 #define FS_U3			((REG_TYPE_U << REG_TYPE_SHIFT) | 3)
309 
310 #define X_CHANNEL_SHIFT (REG_TYPE_SHIFT + 3)
311 #define Y_CHANNEL_SHIFT (X_CHANNEL_SHIFT + 4)
312 #define Z_CHANNEL_SHIFT (Y_CHANNEL_SHIFT + 4)
313 #define W_CHANNEL_SHIFT (Z_CHANNEL_SHIFT + 4)
314 
315 #define REG_CHANNEL_MASK 0xf
316 
317 #define REG_NR(reg)		((reg) & REG_NR_MASK)
318 #define REG_TYPE(reg)		(((reg) >> REG_TYPE_SHIFT) & REG_TYPE_MASK)
319 #define REG_X(reg)		(((reg) >> X_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
320 #define REG_Y(reg)		(((reg) >> Y_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
321 #define REG_Z(reg)		(((reg) >> Z_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
322 #define REG_W(reg)		(((reg) >> W_CHANNEL_SHIFT) & REG_CHANNEL_MASK)
323 
324 enum i915_fs_channel {
325     X_CHANNEL_VAL = 0,
326     Y_CHANNEL_VAL,
327     Z_CHANNEL_VAL,
328     W_CHANNEL_VAL,
329     ZERO_CHANNEL_VAL,
330     ONE_CHANNEL_VAL,
331 
332     NEG_X_CHANNEL_VAL = X_CHANNEL_VAL | 0x8,
333     NEG_Y_CHANNEL_VAL = Y_CHANNEL_VAL | 0x8,
334     NEG_Z_CHANNEL_VAL = Z_CHANNEL_VAL | 0x8,
335     NEG_W_CHANNEL_VAL = W_CHANNEL_VAL | 0x8,
336     NEG_ONE_CHANNEL_VAL = ONE_CHANNEL_VAL | 0x8
337 };
338 
339 #define i915_fs_operand(reg, x, y, z, w) \
340     (reg) | \
341     (x##_CHANNEL_VAL << X_CHANNEL_SHIFT) | \
342     (y##_CHANNEL_VAL << Y_CHANNEL_SHIFT) | \
343     (z##_CHANNEL_VAL << Z_CHANNEL_SHIFT) | \
344     (w##_CHANNEL_VAL << W_CHANNEL_SHIFT)
345 
346 /*
347  * Construct an operand description for using a register with no swizzling
348  */
349 #define i915_fs_operand_reg(reg)					\
350     i915_fs_operand(reg, X, Y, Z, W)
351 
352 #define i915_fs_operand_reg_negate(reg)					\
353     i915_fs_operand(reg, NEG_X, NEG_Y, NEG_Z, NEG_W)
354 
355 /*
356  * Returns an operand containing (0.0, 0.0, 0.0, 0.0).
357  */
358 #define i915_fs_operand_zero() i915_fs_operand(FS_R0, ZERO, ZERO, ZERO, ZERO)
359 
360 /*
361  * Returns an unused operand
362  */
363 #define i915_fs_operand_none() i915_fs_operand_zero()
364 
365 /*
366  * Returns an operand containing (1.0, 1.0, 1.0, 1.0).
367  */
368 #define i915_fs_operand_one() i915_fs_operand(FS_R0, ONE, ONE, ONE, ONE)
369 
370 #define i915_get_hardware_channel_val(val, shift, negate) \
371     (((val & 0x7) << shift) | ((val & 0x8) ? negate : 0))
372 
373 /*
374  * Outputs a fragment shader command to declare a sampler or texture register.
375  */
376 #define i915_fs_dcl(reg)						\
377 do {									\
378     OUT_DWORD (D0_DCL | \
379 	       (REG_TYPE(reg) << D0_TYPE_SHIFT) | \
380 	       (REG_NR(reg) << D0_NR_SHIFT) | \
381                ((REG_TYPE(reg) != REG_TYPE_S) ? D0_CHANNEL_ALL : 0)); \
382     OUT_DWORD (0); \
383     OUT_DWORD (0); \
384 } while (0)
385 
386 #define i915_fs_texld(dest_reg, sampler_reg, address_reg)		\
387 do {									\
388     OUT_DWORD (T0_TEXLD | \
389                (REG_TYPE(dest_reg) << T0_DEST_TYPE_SHIFT) | \
390                (REG_NR(dest_reg) << T0_DEST_NR_SHIFT) | \
391                (REG_NR(sampler_reg) << T0_SAMPLER_NR_SHIFT)); \
392     OUT_DWORD((REG_TYPE(address_reg) << T1_ADDRESS_REG_TYPE_SHIFT) | \
393               (REG_NR(address_reg) << T1_ADDRESS_REG_NR_SHIFT)); \
394     OUT_DWORD (0); \
395 } while (0)
396 
397 #define i915_fs_arith_masked(op, dest_reg, dest_mask, operand0, operand1, operand2)	\
398     _i915_fs_arith_masked(A0_##op, dest_reg, dest_mask, operand0, operand1, operand2)
399 
400 #define i915_fs_arith(op, dest_reg, operand0, operand1, operand2)	\
401     _i915_fs_arith(A0_##op, dest_reg, operand0, operand1, operand2)
402 
403 #define _i915_fs_arith_masked(cmd, dest_reg, dest_mask, operand0, operand1, operand2) \
404 do { \
405     /* Set up destination register and write mask */ \
406     OUT_DWORD (cmd | \
407                (REG_TYPE(dest_reg) << A0_DEST_TYPE_SHIFT) | \
408 	       (REG_NR(dest_reg) << A0_DEST_NR_SHIFT) | \
409                (((dest_mask) & ~MASK_SATURATE) << A0_DEST_CHANNEL_SHIFT) | \
410                (((dest_mask) & MASK_SATURATE) ? A0_DEST_SATURATE : 0) | \
411                /* Set up operand 0 */ \
412 	       (REG_TYPE(operand0) << A0_SRC0_TYPE_SHIFT) | \
413 	       (REG_NR(operand0) << A0_SRC0_NR_SHIFT)); \
414     OUT_DWORD (i915_get_hardware_channel_val(REG_X(operand0), \
415 					      A1_SRC0_CHANNEL_X_SHIFT, \
416 					      A1_SRC0_CHANNEL_X_NEGATE) | \
417                i915_get_hardware_channel_val(REG_Y(operand0), \
418 					      A1_SRC0_CHANNEL_Y_SHIFT, \
419 					      A1_SRC0_CHANNEL_Y_NEGATE) | \
420                i915_get_hardware_channel_val(REG_Z(operand0), \
421 					      A1_SRC0_CHANNEL_Z_SHIFT, \
422 					      A1_SRC0_CHANNEL_Z_NEGATE) | \
423                i915_get_hardware_channel_val(REG_W(operand0), \
424 					      A1_SRC0_CHANNEL_W_SHIFT, \
425 					      A1_SRC0_CHANNEL_W_NEGATE) | \
426                /* Set up operand 1 */ \
427                (REG_TYPE(operand1) << A1_SRC1_TYPE_SHIFT) | \
428                (REG_NR(operand1) << A1_SRC1_NR_SHIFT) | \
429                i915_get_hardware_channel_val(REG_X(operand1), \
430 					      A1_SRC1_CHANNEL_X_SHIFT, \
431 					      A1_SRC1_CHANNEL_X_NEGATE) | \
432                i915_get_hardware_channel_val(REG_Y(operand1), \
433 					      A1_SRC1_CHANNEL_Y_SHIFT, \
434 					      A1_SRC1_CHANNEL_Y_NEGATE)); \
435     OUT_DWORD (i915_get_hardware_channel_val(REG_Z(operand1), \
436 					      A2_SRC1_CHANNEL_Z_SHIFT, \
437 					      A2_SRC1_CHANNEL_Z_NEGATE) | \
438 	       i915_get_hardware_channel_val(REG_W(operand1), \
439 		                             A2_SRC1_CHANNEL_W_SHIFT, \
440 					     A2_SRC1_CHANNEL_W_NEGATE) | \
441                /* Set up operand 2 */ \
442                (REG_TYPE(operand2) << A2_SRC2_TYPE_SHIFT) | \
443                (REG_NR(operand2) << A2_SRC2_NR_SHIFT) | \
444                i915_get_hardware_channel_val(REG_X(operand2), \
445 					      A2_SRC2_CHANNEL_X_SHIFT, \
446 					      A2_SRC2_CHANNEL_X_NEGATE) | \
447                i915_get_hardware_channel_val(REG_Y(operand2), \
448 					      A2_SRC2_CHANNEL_Y_SHIFT, \
449 					      A2_SRC2_CHANNEL_Y_NEGATE) | \
450                i915_get_hardware_channel_val(REG_Z(operand2), \
451 					      A2_SRC2_CHANNEL_Z_SHIFT, \
452 					      A2_SRC2_CHANNEL_Z_NEGATE) | \
453                i915_get_hardware_channel_val(REG_W(operand2), \
454 					       A2_SRC2_CHANNEL_W_SHIFT, \
455 					       A2_SRC2_CHANNEL_W_NEGATE)); \
456 } while (0)
457 
458 #define _i915_fs_arith(cmd, dest_reg, operand0, operand1, operand2) do {\
459     /* Set up destination register and write mask */ \
460     OUT_DWORD (cmd | \
461                (REG_TYPE(dest_reg) << A0_DEST_TYPE_SHIFT) | \
462 	       (REG_NR(dest_reg) << A0_DEST_NR_SHIFT) | \
463 	       (A0_DEST_CHANNEL_ALL) | \
464                /* Set up operand 0 */ \
465 	       (REG_TYPE(operand0) << A0_SRC0_TYPE_SHIFT) | \
466 	       (REG_NR(operand0) << A0_SRC0_NR_SHIFT)); \
467     OUT_DWORD (i915_get_hardware_channel_val(REG_X(operand0), \
468 					      A1_SRC0_CHANNEL_X_SHIFT, \
469 					      A1_SRC0_CHANNEL_X_NEGATE) | \
470                i915_get_hardware_channel_val(REG_Y(operand0), \
471 					      A1_SRC0_CHANNEL_Y_SHIFT, \
472 					      A1_SRC0_CHANNEL_Y_NEGATE) | \
473                i915_get_hardware_channel_val(REG_Z(operand0), \
474 					      A1_SRC0_CHANNEL_Z_SHIFT, \
475 					      A1_SRC0_CHANNEL_Z_NEGATE) | \
476                i915_get_hardware_channel_val(REG_W(operand0), \
477 					      A1_SRC0_CHANNEL_W_SHIFT, \
478 					      A1_SRC0_CHANNEL_W_NEGATE) | \
479                /* Set up operand 1 */ \
480                (REG_TYPE(operand1) << A1_SRC1_TYPE_SHIFT) | \
481                (REG_NR(operand1) << A1_SRC1_NR_SHIFT) | \
482                i915_get_hardware_channel_val(REG_X(operand1), \
483 					      A1_SRC1_CHANNEL_X_SHIFT, \
484 					      A1_SRC1_CHANNEL_X_NEGATE) | \
485                i915_get_hardware_channel_val(REG_Y(operand1), \
486 					      A1_SRC1_CHANNEL_Y_SHIFT, \
487 					      A1_SRC1_CHANNEL_Y_NEGATE)); \
488     OUT_DWORD (i915_get_hardware_channel_val(REG_Z(operand1), \
489 					      A2_SRC1_CHANNEL_Z_SHIFT, \
490 					      A2_SRC1_CHANNEL_Z_NEGATE) | \
491 	       i915_get_hardware_channel_val(REG_W(operand1), \
492 		                             A2_SRC1_CHANNEL_W_SHIFT, \
493 					     A2_SRC1_CHANNEL_W_NEGATE) | \
494                /* Set up operand 2 */ \
495                (REG_TYPE(operand2) << A2_SRC2_TYPE_SHIFT) | \
496                (REG_NR(operand2) << A2_SRC2_NR_SHIFT) | \
497                i915_get_hardware_channel_val(REG_X(operand2), \
498 					      A2_SRC2_CHANNEL_X_SHIFT, \
499 					      A2_SRC2_CHANNEL_X_NEGATE) | \
500                i915_get_hardware_channel_val(REG_Y(operand2), \
501 					      A2_SRC2_CHANNEL_Y_SHIFT, \
502 					      A2_SRC2_CHANNEL_Y_NEGATE) | \
503                i915_get_hardware_channel_val(REG_Z(operand2), \
504 					      A2_SRC2_CHANNEL_Z_SHIFT, \
505 					      A2_SRC2_CHANNEL_Z_NEGATE) | \
506                i915_get_hardware_channel_val(REG_W(operand2), \
507 					       A2_SRC2_CHANNEL_W_SHIFT, \
508 					       A2_SRC2_CHANNEL_W_NEGATE)); \
509 } while (0)
510 
511 #define i915_fs_mov(dest_reg, operand0)					\
512     i915_fs_arith(MOV, dest_reg, \
513 	          operand0,			\
514 	          i915_fs_operand_none(),			\
515 	          i915_fs_operand_none())
516 
517 #define i915_fs_mov_masked(dest_reg, dest_mask, operand0)		\
518     i915_fs_arith_masked (MOV, dest_reg, dest_mask, \
519 	                  operand0, \
520 	                  i915_fs_operand_none(), \
521 	                  i915_fs_operand_none())
522 
523 
524 #define i915_fs_frc(dest_reg, operand0)					\
525     i915_fs_arith (FRC, dest_reg, \
526 	           operand0,			\
527 	           i915_fs_operand_none(),			\
528 	           i915_fs_operand_none())
529 
530 /* Add operand0 and operand1 and put the result in dest_reg */
531 #define i915_fs_add(dest_reg, operand0, operand1)			\
532     i915_fs_arith (ADD, dest_reg, \
533 	           operand0, operand1,	\
534 		   i915_fs_operand_none())
535 
536 /* Multiply operand0 and operand1 and put the result in dest_reg */
537 #define i915_fs_mul(dest_reg, operand0, operand1)			\
538     i915_fs_arith (MUL, dest_reg, \
539 	           operand0, operand1,	\
540 		   i915_fs_operand_none())
541 
542 /* Computes 1/sqrt(operand0.replicate_swizzle) puts the result in dest_reg */
543 #define i915_fs_rsq(dest_reg, dest_mask, operand0)		\
544 do {									\
545     if (dest_mask) {							\
546 	i915_fs_arith_masked (RSQ, dest_reg, dest_mask, \
547 		              operand0,			\
548 			      i915_fs_operand_none (),			\
549 			      i915_fs_operand_none ());			\
550     } else { \
551 	i915_fs_arith (RSQ, dest_reg, \
552 		       operand0, \
553 		       i915_fs_operand_none (), \
554 		       i915_fs_operand_none ()); \
555     } \
556 } while (0)
557 
558 /* Puts the minimum of operand0 and operand1 in dest_reg */
559 #define i915_fs_min(dest_reg, operand0, operand1)			\
560     i915_fs_arith (MIN, dest_reg, \
561 	           operand0, operand1, \
562 		   i915_fs_operand_none())
563 
564 /* Puts the maximum of operand0 and operand1 in dest_reg */
565 #define i915_fs_max(dest_reg, operand0, operand1)			\
566     i915_fs_arith (MAX, dest_reg, \
567 	           operand0, operand1, \
568 	           i915_fs_operand_none())
569 
570 #define i915_fs_cmp(dest_reg, operand0, operand1, operand2)		\
571     i915_fs_arith (CMP, dest_reg, operand0, operand1, operand2)
572 
573 /* Perform operand0 * operand1 + operand2 and put the result in dest_reg */
574 #define i915_fs_mad(dest_reg, dest_mask, op0, op1, op2)	\
575 do {									\
576     if (dest_mask) {							\
577 	i915_fs_arith_masked (MAD, dest_reg, dest_mask, op0, op1, op2); \
578     } else { \
579 	i915_fs_arith (MAD, dest_reg, op0, op1, op2); \
580     } \
581 } while (0)
582 
583 #define i915_fs_dp2add(dest_reg, dest_mask, op0, op1, op2)	\
584 do {									\
585     if (dest_mask) {							\
586 	i915_fs_arith_masked (DP2ADD, dest_reg, dest_mask, op0, op1, op2); \
587     } else { \
588 	i915_fs_arith (DP2ADD, dest_reg, op0, op1, op2); \
589     } \
590 } while (0)
591 
592 /*
593  * Perform a 3-component dot-product of operand0 and operand1 and put the
594  * resulting scalar in the channels of dest_reg specified by the dest_mask.
595  */
596 #define i915_fs_dp3(dest_reg, dest_mask, op0, op1)	\
597 do {									\
598     if (dest_mask) {							\
599 	i915_fs_arith_masked (DP3, dest_reg, dest_mask, \
600 		              op0, op1,\
601 		              i915_fs_operand_none());			\
602     } else { \
603 	i915_fs_arith (DP3, dest_reg, op0, op1,\
604 		       i915_fs_operand_none());			\
605     } \
606 } while (0)
607 
608 static inline uint32_t cairo_const
i915_fs_operand_pure_alpha(int pure)609 i915_fs_operand_pure_alpha (int pure)
610 {
611     if (pure & (1 << 3))
612 	return i915_fs_operand_one ();
613     else
614 	return i915_fs_operand_zero ();
615 }
616 
617 #define I915_TILING_DEFAULT I915_TILING_Y
618 #define I915_BO_CACHE_BUCKETS 13 /* cache surfaces up to 16 MiB */
619 
620 typedef struct i915_surface i915_surface_t;
621 typedef struct i915_device i915_device_t;
622 typedef struct i915_shader i915_shader_t;
623 
624 typedef void (*i915_add_rectangle_func_t) (const i915_shader_t *shader,
625 					   int x, int y,
626 					   int w, int h);
627 
628 #define IMAGE_CACHE_WIDTH 1024
629 #define IMAGE_CACHE_HEIGHT 1024
630 
631 typedef struct i915_image_private {
632     cairo_rtree_node_t node;
633     intel_buffer_cache_t *container;
634 } i915_image_private_t;
635 
636 #define I915_BATCH_SIZE (128*1024)
637 #define I915_VBO_SIZE (512*1024)
638 #define I915_MAX_RELOCS 2048
639 
640 enum {
641     I915_DEBUG_EXEC = 0x1,
642     I915_DEBUG_SYNC = 0x2,
643     I915_DEBUG_BATCH = 0x4,
644     I915_DEBUG_BUFFER = 0x8,
645     I915_DEBUG_BUFFER_CACHE = 0x10,
646     I915_DEBUG_BUFFER_ALLOC = 0x20,
647     I915_DEBUG_GLYPHS = 0x40,
648     I915_DEBUG_MAP = 0x80,
649     I915_DEBUG_THROTTLE = 0x100,
650 };
651 
652 struct i915_device {
653     intel_device_t intel;
654 
655     cairo_bool_t debug;
656 
657     i915_shader_t *shader; /* note: only valid during geometry emission */
658 
659     struct i915_batch {
660 	intel_bo_t *target_bo[I915_MAX_RELOCS];
661 	size_t gtt_avail_size;
662 	size_t est_gtt_size;
663 	size_t total_gtt_size;
664 
665 	uint16_t fences;
666 	uint16_t fences_avail;
667 	uint16_t reloc_count;
668 	uint16_t exec_count;
669 	uint16_t used;
670 
671 	struct drm_i915_gem_exec_object2 exec[I915_MAX_RELOCS];
672 	struct drm_i915_gem_relocation_entry reloc[I915_MAX_RELOCS];
673     } batch;
674 
675     uint32_t vbo;
676     uint32_t vbo_offset;
677     uint32_t vbo_used;
678     uint32_t vbo_max_index;
679     uint32_t vertex_index;
680     uint32_t vertex_count;
681     uint32_t floats_per_vertex;
682     uint32_t rectangle_size;
683     intel_bo_t *last_vbo;
684     uint32_t last_vbo_offset;
685     uint32_t last_vbo_space;
686 
687     i915_surface_t *current_target;
688     uint32_t current_size;
689     uint32_t current_diffuse;
690     uint32_t current_colorbuf;
691     uint32_t *current_source;
692     uint32_t *current_mask;
693     uint32_t *current_clip;
694     uint32_t current_program;
695     uint32_t current_texcoords;
696     uint32_t current_blend;
697     uint32_t current_constants[8*4];
698     uint32_t current_n_constants;
699     uint32_t current_samplers[2*4];
700     uint32_t current_maps[4*4];
701     uint32_t current_n_samplers;
702     uint32_t current_n_maps;
703     uint32_t last_source_fragment;
704     uint32_t clear_alpha;
705 
706     cairo_list_t image_caches[2];
707 
708     uint32_t batch_header[13];
709     uint32_t batch_base[I915_BATCH_SIZE / sizeof (uint32_t)];
710     uint8_t vbo_base[I915_VBO_SIZE];
711 };
712 
713 enum {
714     CURRENT_SOURCE = 0x1,
715     CURRENT_MASK = 0x2,
716     CURRENT_CLIP = 0x4
717 };
718 
719 typedef enum {
720     VS_ZERO,
721     VS_CONSTANT,
722     VS_LINEAR,
723     VS_TEXTURE,
724     VS_TEXTURE_16,
725 } i915_vertex_shader_t;
726 
727 typedef enum {
728     FS_ZERO,
729     FS_ONE,
730     FS_PURE,
731     FS_CONSTANT,
732     FS_DIFFUSE,
733     FS_LINEAR,
734     FS_RADIAL,
735     FS_TEXTURE,
736     FS_YUV,
737     FS_SPANS,
738 } i915_fragment_shader_t;
739 
740 #define FS_DETAILS_SHIFT 4
741 
742 typedef enum {
743     PATTERN_BASE,
744     PATTERN_CONSTANT,
745     PATTERN_LINEAR,
746     PATTERN_RADIAL,
747     PATTERN_TEXTURE,
748 } i915_shader_channel_t;
749 
750 struct i915_surface {
751     intel_surface_t intel;
752 
753     uint32_t map0, map1;
754     uint32_t colorbuf;
755 
756     cairo_bool_t deferred_clear;
757     uint32_t offset;
758     uint32_t is_current_texture;
759 
760     i915_image_private_t *cache;
761 
762     intel_bo_t *stencil;
763     uint32_t stencil_stride;
764     uint32_t stencil_offset;
765 };
766 
767 typedef enum {
768     NONE = 0,
769     YUV_I420,
770     /* XXX */
771     YUV_YV12,
772     YUV_YUY2,
773     YUV_UYVY,
774 } i915_packed_pixel_t;
775 
776 /* read-only container */
777 #define I915_PACKED_PIXEL_SURFACE_TYPE 0x1000
778 typedef struct i915_packed_pixel_surface {
779     cairo_surface_t base;
780 
781     i915_packed_pixel_t pixel;
782 
783     i915_device_t *device;
784     intel_bo_t *bo;
785     uint32_t is_current_texture;
786 
787     uint32_t offset[4];
788     uint32_t stride[4];
789     uint32_t width[4];
790     uint32_t height[4];
791     uint32_t map0[4], map1[4];
792 } i915_packed_pixel_surface_t;
793 
794 struct i915_shader {
795     i915_device_t *device;
796     i915_surface_t *target;
797 
798     cairo_operator_t op;
799     uint32_t blend;
800     float opacity;
801     cairo_content_t content;
802 
803     cairo_bool_t committed;
804     cairo_bool_t need_combine;
805 
806     i915_add_rectangle_func_t add_rectangle;
807 
808     union i915_shader_channel {
809 	struct {
810 	    i915_vertex_shader_t vertex;
811 	    i915_fragment_shader_t fragment;
812 	    i915_shader_channel_t pattern;
813 	} type;
814 	struct i915_shader_base {
815 	    i915_vertex_shader_t vertex;
816 	    i915_fragment_shader_t fragment;
817 	    i915_shader_channel_t pattern;
818 	    uint32_t texfmt;
819 	    cairo_content_t content;
820 	    uint32_t mode;
821 	    intel_bo_t *bo;
822 	    uint32_t n_samplers;
823 	    uint32_t offset[4];
824 	    uint32_t map[2*4];
825 	    uint32_t sampler[2];
826 	    cairo_matrix_t matrix;
827 	} base;
828 	struct i915_shader_solid {
829 	    struct i915_shader_base base;
830 	    cairo_color_t color;
831 	    int pure;
832 	} solid;
833 	struct i915_shader_linear {
834 	    struct i915_shader_base base;
835 	    struct {
836 		float red, green, blue, alpha;
837 	    } color0, color1;
838 	    float dx, dy, offset;
839 	} linear;
840 	struct i915_shader_radial {
841 	    struct i915_shader_base base;
842 	    float constants[8];
843 	} radial;
844 	struct i915_shader_surface {
845 	    struct i915_shader_base base;
846 	    i915_packed_pixel_t pixel;
847 	} surface;
848     } source, mask, clip, dst;
849 
850     jmp_buf unwind;
851 };
852 
853 enum i915_shader_linear_mode {
854     /* XXX REFLECT */
855     LINEAR_TEXTURE,
856     LINEAR_NONE,
857     LINEAR_REPEAT,
858     LINEAR_PAD,
859 };
860 
861 enum i915_shader_radial_mode {
862     RADIAL_ONE,
863     RADIAL_TWO
864 };
865 
866 typedef cairo_status_t
867 (*i915_spans_func_t) (void			*closure,
868 		      cairo_span_renderer_t	*renderer,
869 		      const cairo_rectangle_int_t	*extents);
870 
871 cairo_private cairo_status_t
872 i915_clip_and_composite_spans (i915_surface_t		*dst,
873 			       cairo_operator_t		 op,
874 			       const cairo_pattern_t	*pattern,
875 			       cairo_antialias_t	 antialias,
876 			       i915_spans_func_t	 draw_func,
877 			       void			*draw_closure,
878 			       const cairo_composite_rectangles_t*extents,
879 			       cairo_clip_t		*clip,
880 			       double			 opacity);
881 
882 cairo_private cairo_surface_t *
883 i915_surface_create_internal (cairo_drm_device_t *base_dev,
884 		              cairo_format_t format,
885 			      int width, int height,
886 			      uint32_t tiling,
887 			      cairo_bool_t gpu_target);
888 
889 cairo_private i915_surface_t *
890 i915_surface_create_from_cacheable_image_internal (i915_device_t *device,
891 						   cairo_image_surface_t *image);
892 
893 cairo_private void
894 i915_surface_scaled_font_fini (cairo_scaled_font_t *scaled_font);
895 
896 cairo_private cairo_int_status_t
897 i915_surface_glyphs (void			*abstract_surface,
898 		     cairo_operator_t		 op,
899 		     const cairo_pattern_t	*source,
900 		     cairo_glyph_t		*glyphs,
901 		     int			 num_glyphs,
902 		     cairo_scaled_font_t	*scaled_font,
903 		     cairo_clip_t		*clip,
904 		     int *num_remaining);
905 
906 static inline int cairo_const
i915_tiling_height(uint32_t tiling,int height)907 i915_tiling_height (uint32_t tiling, int height)
908 {
909     switch (tiling) {
910     default:
911     case I915_TILING_NONE: return (height + 1) & -2;
912     case I915_TILING_X: return (height + 7) & -8;
913     case I915_TILING_Y: return (height + 31) & -32;
914     }
915 }
916 
917 static inline uint32_t cairo_const
i915_tiling_stride(int format,uint32_t stride)918 i915_tiling_stride (int format, uint32_t stride)
919 {
920     uint32_t tile_width;
921 
922     /* use 64B alignment so that the buffer may be used as a scanout */
923     if (format == I915_TILING_NONE)
924 	return (stride + 63) & -64;
925 
926     tile_width = 512;
927     /* XXX Currently the kernel enforces a tile_width of 512 for TILING_Y.
928 
929        <jbarnes> the docs are a bit confused on that front
930        <jbarnes> once we enable it on 915 we'll find out what the tile width size should be in the fence setup
931        <jbarnes> it could be that 915 has y tiling but that the minimum width is 512 or something
932        <jbarnes> yeah it's probably 128 on 915 also
933        <jbarnes> it's just that we haven't tested
934        <jbarnes> but I wasn't thinking that the tile widths were the same
935        <jbarnes> only that in order to fence y tiles on 915 you needed pitch to be a multiple of 4 y tiles (or something like that)
936 
937        tile_width = format == I915_TILING_Y ? 128 : 512;
938     */
939 
940     /* needs a pot tile width */
941     while (tile_width < stride)
942 	tile_width <<= 1;
943 
944     return tile_width;
945 }
946 
947 static inline uint32_t cairo_const
i915_tiling_size(uint32_t tiling,uint32_t size)948 i915_tiling_size (uint32_t tiling, uint32_t size)
949 {
950     uint32_t fence;
951 
952     if (tiling == I915_TILING_NONE)
953 	return (size + 4095) & -4096;
954 
955     fence = 1024 * 1024; /* 1 MiB */
956     while (fence < size)
957 	fence <<= 1;
958 
959     return fence;
960 }
961 
962 static inline cairo_bool_t cairo_const
i915_texture_filter_is_nearest(cairo_filter_t filter)963 i915_texture_filter_is_nearest (cairo_filter_t filter)
964 {
965     switch (filter) {
966     case CAIRO_FILTER_BEST:
967     case CAIRO_FILTER_GOOD:
968     case CAIRO_FILTER_BILINEAR:
969     case CAIRO_FILTER_GAUSSIAN:
970 	return FALSE;
971     default:
972     case CAIRO_FILTER_FAST:
973     case CAIRO_FILTER_NEAREST:
974 	return TRUE;
975     }
976 }
977 
978 static inline uint32_t cairo_const
i915_texture_filter(cairo_filter_t filter)979 i915_texture_filter (cairo_filter_t filter)
980 {
981     switch (filter) {
982     case CAIRO_FILTER_BEST:
983     case CAIRO_FILTER_GOOD:
984     case CAIRO_FILTER_BILINEAR:
985     case CAIRO_FILTER_GAUSSIAN:
986         return
987 	    (FILTER_LINEAR << SS2_MAG_FILTER_SHIFT) |
988 	    (FILTER_LINEAR << SS2_MIN_FILTER_SHIFT);
989     default:
990     case CAIRO_FILTER_FAST:
991     case CAIRO_FILTER_NEAREST:
992 	return
993 	    (FILTER_NEAREST << SS2_MAG_FILTER_SHIFT) |
994 	    (FILTER_NEAREST << SS2_MIN_FILTER_SHIFT);
995     }
996 }
997 
998 static inline uint32_t cairo_const
i915_texture_extend(cairo_extend_t extend)999 i915_texture_extend (cairo_extend_t extend)
1000 {
1001     switch (extend) {
1002     default:
1003     case CAIRO_EXTEND_NONE:
1004 	return
1005 	    (TEXCOORDMODE_CLAMP_BORDER << SS3_TCX_ADDR_MODE_SHIFT) |
1006 	    (TEXCOORDMODE_CLAMP_BORDER << SS3_TCY_ADDR_MODE_SHIFT);
1007     case CAIRO_EXTEND_REPEAT:
1008 	return
1009 	    (TEXCOORDMODE_WRAP << SS3_TCX_ADDR_MODE_SHIFT) |
1010 	    (TEXCOORDMODE_WRAP << SS3_TCY_ADDR_MODE_SHIFT);
1011     case CAIRO_EXTEND_PAD:
1012 	return
1013 	    (TEXCOORDMODE_CLAMP_EDGE << SS3_TCX_ADDR_MODE_SHIFT) |
1014 	    (TEXCOORDMODE_CLAMP_EDGE << SS3_TCY_ADDR_MODE_SHIFT);
1015     case CAIRO_EXTEND_REFLECT:
1016 	return
1017 	    (TEXCOORDMODE_MIRROR << SS3_TCX_ADDR_MODE_SHIFT) |
1018 	    (TEXCOORDMODE_MIRROR << SS3_TCY_ADDR_MODE_SHIFT);
1019     }
1020 }
1021 
1022 static inline uint32_t cairo_const
BUF_tiling(uint32_t tiling)1023 BUF_tiling (uint32_t tiling)
1024 {
1025     switch (tiling) {
1026     default:
1027     case I915_TILING_NONE: return 0;
1028     case I915_TILING_X: return BUF_3D_TILED_SURFACE | BUF_3D_TILE_WALK_X;
1029     case I915_TILING_Y: return BUF_3D_TILED_SURFACE | BUF_3D_TILE_WALK_Y;
1030     }
1031 }
1032 
1033 #define OUT_DWORD(dword) i915_batch_emit_dword (device, dword)
1034 #define OUT_RELOC(surface, read, write) i915_batch_emit_reloc (device, to_intel_bo (surface->intel.drm.bo), surface->offset, read, write, FALSE)
1035 #define OUT_RELOC_FENCED(surface, read, write) i915_batch_emit_reloc (device, to_intel_bo (surface->intel.drm.bo), surface->offset, read, write, TRUE)
1036 
1037 #define FS_LOCALS							\
1038     uint32_t *_shader_start
1039 
1040 #define FS_BEGIN()							\
1041 do {									\
1042     _shader_start = BATCH_PTR (device);					\
1043     OUT_DWORD (_3DSTATE_PIXEL_SHADER_PROGRAM);				\
1044 } while (0)
1045 
1046 #define FS_END()							\
1047 do {									\
1048     *_shader_start |= BATCH_PTR (device) - _shader_start - 2;		\
1049 } while (0);
1050 
1051 static inline int32_t
i915_batch_space(i915_device_t * device)1052 i915_batch_space (i915_device_t *device)
1053 {
1054     /* leave room for RECTLIST(4) + MI_BUFFER_END + MI_NOOP */
1055     return sizeof (device->batch_base) - (device->batch.used << 2) - 32;
1056 }
1057 
1058 static inline cairo_bool_t
i915_check_aperture_size(const i915_device_t * device,int relocs,size_t est_size,size_t size)1059 i915_check_aperture_size (const i915_device_t *device, int relocs, size_t est_size, size_t size)
1060 {
1061     return device->batch.reloc_count + relocs < I915_MAX_RELOCS - 2 &&
1062 	   device->batch.est_gtt_size + est_size <= device->batch.gtt_avail_size &&
1063 	   device->batch.total_gtt_size + size <= device->intel.gtt_avail_size;
1064 }
1065 
1066 static inline cairo_bool_t
i915_check_aperture(const i915_device_t * device,intel_bo_t ** bo_array,int count)1067 i915_check_aperture (const i915_device_t *device, intel_bo_t **bo_array, int count)
1068 {
1069     uint32_t relocs = 0, est_size = 0, size = 0;
1070 
1071     while (count--) {
1072 	const intel_bo_t *bo = *bo_array++;
1073 	if (bo->exec == NULL) {
1074 	    relocs++;
1075 	    size += bo->base.size;
1076 	    if (!bo->busy)
1077 		est_size += bo->base.size;
1078 	}
1079     }
1080 
1081     return i915_check_aperture_size (device, relocs, est_size, size);
1082 }
1083 
1084 static inline cairo_bool_t
i915_check_aperture_and_fences(const i915_device_t * device,intel_bo_t ** bo_array,int count)1085 i915_check_aperture_and_fences (const i915_device_t *device, intel_bo_t **bo_array, int count)
1086 {
1087     uint32_t relocs = 0, est_size = 0, size = 0;
1088     uint32_t fences = 0;
1089 
1090     while (count--) {
1091 	const intel_bo_t *bo = *bo_array++;
1092 	if (bo->exec == NULL) {
1093 	    relocs++;
1094 	    size += bo->base.size;
1095 	    if (!bo->busy)
1096 		est_size += bo->base.size;
1097 	    if (bo->tiling != I915_TILING_NONE)
1098 		fences++;
1099 	} else if (bo->tiling != I915_TILING_NONE) {
1100 	    if ((bo->exec->flags & EXEC_OBJECT_NEEDS_FENCE) == 0)
1101 		fences++;
1102 	}
1103     }
1104 
1105     return i915_check_aperture_size (device, relocs, est_size, size) &&
1106 	   device->batch.fences + fences <= device->batch.fences_avail;
1107 }
1108 
1109 #define BATCH_PTR(device) &(device)->batch_base[(device)->batch.used]
1110 static inline void
i915_batch_emit_dword(i915_device_t * device,uint32_t dword)1111 i915_batch_emit_dword (i915_device_t *device, uint32_t dword)
1112 {
1113     device->batch_base[device->batch.used++] = dword;
1114 }
1115 
1116 cairo_private void
1117 i915_batch_add_reloc (i915_device_t *device, uint32_t pos,
1118 		      intel_bo_t *bo,
1119 		      uint32_t offset,
1120 		      uint32_t read_domains,
1121 		      uint32_t write_domain,
1122 		      cairo_bool_t needs_fence);
1123 
1124 static inline void
i915_batch_fill_reloc(i915_device_t * device,uint32_t pos,intel_bo_t * bo,uint32_t offset,uint32_t read_domains,uint32_t write_domain)1125 i915_batch_fill_reloc (i915_device_t *device, uint32_t pos,
1126 		       intel_bo_t *bo,
1127 		       uint32_t offset,
1128 		       uint32_t read_domains,
1129 		       uint32_t write_domain)
1130 {
1131     i915_batch_add_reloc (device, pos,
1132 	                  bo, offset,
1133 			  read_domains, write_domain,
1134 			  FALSE);
1135     device->batch_base[pos] = bo->offset + offset;
1136 }
1137 
1138 static inline void
i915_batch_emit_reloc(i915_device_t * device,intel_bo_t * bo,uint32_t offset,uint32_t read_domains,uint32_t write_domain,cairo_bool_t needs_fence)1139 i915_batch_emit_reloc (i915_device_t *device,
1140 		       intel_bo_t *bo,
1141 		       uint32_t offset,
1142 		       uint32_t read_domains,
1143 		       uint32_t write_domain,
1144 		       cairo_bool_t needs_fence)
1145 {
1146     i915_batch_add_reloc (device, device->batch.used,
1147 	                  bo, offset,
1148 			  read_domains, write_domain,
1149 			  needs_fence);
1150     i915_batch_emit_dword (device, bo->offset + offset);
1151 }
1152 
1153 cairo_private void
1154 i915_vbo_flush (i915_device_t *device);
1155 
1156 cairo_private void
1157 i915_vbo_finish (i915_device_t *device);
1158 
1159 cairo_private  cairo_status_t
1160 i915_batch_flush (i915_device_t *device);
1161 
1162 static inline float *
i915_add_rectangle(i915_device_t * device)1163 i915_add_rectangle (i915_device_t *device)
1164 {
1165     float *vertices;
1166     uint32_t size;
1167 
1168     assert (device->floats_per_vertex);
1169     assert (device->rectangle_size == 3*device->floats_per_vertex*sizeof(float));
1170 
1171     size = device->rectangle_size;
1172     if (unlikely (device->vbo_offset + size > I915_VBO_SIZE))
1173 	i915_vbo_finish (device);
1174 
1175     vertices = (float *) (device->vbo_base + device->vbo_offset);
1176     device->vbo_used = device->vbo_offset += size;
1177     device->vertex_count += 3;
1178     return vertices;
1179 }
1180 
1181 static inline i915_device_t *
i915_device(i915_surface_t * surface)1182 i915_device (i915_surface_t *surface)
1183 {
1184     return (i915_device_t *) surface->intel.drm.base.device;
1185 }
1186 
1187 cairo_private cairo_status_t
1188 i915_surface_clear (i915_surface_t *dst);
1189 
1190 cairo_private void
1191 i915_set_dst (i915_device_t *device, i915_surface_t *dst);
1192 
1193 cairo_private void
1194 i915_shader_init (i915_shader_t *shader,
1195 		  i915_surface_t *dst,
1196 		  cairo_operator_t op,
1197 		  double opacity);
1198 
1199 cairo_private cairo_status_t
1200 i915_shader_acquire_pattern (i915_shader_t *shader,
1201 			     union i915_shader_channel *src,
1202 			     const cairo_pattern_t *pattern,
1203 			     const cairo_rectangle_int_t *extents);
1204 
1205 cairo_private void
1206 i915_shader_set_clip (i915_shader_t *shader,
1207 		      cairo_clip_t *clip);
1208 
1209 cairo_private int
1210 i915_shader_num_texcoords (const i915_shader_t *shader);
1211 
1212 static inline double cairo_const
i915_shader_linear_texcoord(const struct i915_shader_linear * l,double src_x,double src_y)1213 i915_shader_linear_texcoord (const struct i915_shader_linear *l,
1214 			     double src_x, double src_y)
1215 {
1216     return l->dx * src_x + l->dy * src_y + l->offset;
1217 }
1218 
1219 cairo_private cairo_status_t
1220 i915_shader_commit (i915_shader_t *shader,
1221 		    i915_device_t *device);
1222 
1223 cairo_private void
1224 i915_shader_fini (i915_shader_t *shader);
1225 
1226 cairo_private cairo_status_t
1227 i915_fixup_unbounded (i915_surface_t *dst,
1228 		      const cairo_composite_rectangles_t *extents,
1229 		      cairo_clip_t *clip);
1230 
1231 static inline cairo_bool_t
i915_surface_needs_tiling(i915_surface_t * dst)1232 i915_surface_needs_tiling (i915_surface_t *dst)
1233 {
1234     return dst->intel.drm.width > 2048 || dst->intel.drm.height > 2048;
1235 }
1236 
1237 cairo_private cairo_status_t
1238 i915_surface_copy_subimage (i915_device_t *device,
1239 			    i915_surface_t *src,
1240 			    const cairo_rectangle_int_t *extents,
1241 			    cairo_bool_t flush,
1242 			    i915_surface_t **clone_out);
1243 
1244 static inline uint32_t
pack_float(float f)1245 pack_float (float f)
1246 {
1247     union {
1248 	float f;
1249 	uint32_t ui;
1250     } t;
1251     t.f = f;
1252     return t.ui;
1253 }
1254 
1255 static inline cairo_status_t
i915_surface_fallback_flush(i915_surface_t * surface)1256 i915_surface_fallback_flush (i915_surface_t *surface)
1257 {
1258     cairo_status_t status;
1259 
1260     if (unlikely (surface->intel.drm.fallback != NULL))
1261 	return intel_surface_flush (&surface->intel, 0);
1262 
1263     status = CAIRO_STATUS_SUCCESS;
1264     if (unlikely (surface->deferred_clear))
1265 	status = i915_surface_clear (surface);
1266 
1267     return status;
1268 }
1269 
1270 #endif /* CAIRO_DRM_I915_PRIVATE_H */
1271