1 /*
2  * Copyright (c) 2020, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <limits.h>
14 #include <math.h>
15 
16 #include "config/aom_dsp_rtcd.h"
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_scale/yv12config.h"
19 #include "aom/aom_integer.h"
20 #include "av1/common/reconinter.h"
21 #include "av1/encoder/reconinter_enc.h"
22 #include "av1/encoder/context_tree.h"
23 #include "av1/encoder/av1_temporal_denoiser.h"
24 #include "av1/encoder/encoder.h"
25 
26 #ifdef OUTPUT_YUV_DENOISED
27 static void make_grayscale(YV12_BUFFER_CONFIG *yuv);
28 #endif
29 
absdiff_thresh(BLOCK_SIZE bs,int increase_denoising)30 static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) {
31   (void)bs;
32   return 3 + (increase_denoising ? 1 : 0);
33 }
34 
delta_thresh(BLOCK_SIZE bs,int increase_denoising)35 static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) {
36   (void)bs;
37   (void)increase_denoising;
38   return 4;
39 }
40 
noise_motion_thresh(BLOCK_SIZE bs,int increase_denoising)41 static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) {
42   (void)bs;
43   (void)increase_denoising;
44   return 625;
45 }
46 
sse_thresh(BLOCK_SIZE bs,int increase_denoising)47 static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) {
48   return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 80 : 40);
49 }
50 
sse_diff_thresh(BLOCK_SIZE bs,int increase_denoising,int motion_magnitude)51 static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising,
52                            int motion_magnitude) {
53   if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) {
54     if (increase_denoising)
55       return (1 << num_pels_log2_lookup[bs]) << 2;
56     else
57       return 0;
58   } else {
59     return (1 << num_pels_log2_lookup[bs]) << 4;
60   }
61 }
62 
total_adj_weak_thresh(BLOCK_SIZE bs,int increase_denoising)63 static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) {
64   return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2);
65 }
66 
67 // TODO(kyslov): If increase_denoising is enabled in the future,
68 // we might need to update the code for calculating 'total_adj' in
69 // case the C code is not bit-exact with corresponding sse2 code.
av1_denoiser_filter_c(const uint8_t * sig,int sig_stride,const uint8_t * mc_avg,int mc_avg_stride,uint8_t * avg,int avg_stride,int increase_denoising,BLOCK_SIZE bs,int motion_magnitude)70 int av1_denoiser_filter_c(const uint8_t *sig, int sig_stride,
71                           const uint8_t *mc_avg, int mc_avg_stride,
72                           uint8_t *avg, int avg_stride, int increase_denoising,
73                           BLOCK_SIZE bs, int motion_magnitude) {
74   int r, c;
75   const uint8_t *sig_start = sig;
76   const uint8_t *mc_avg_start = mc_avg;
77   uint8_t *avg_start = avg;
78   int diff, adj, absdiff, delta;
79   int adj_val[] = { 3, 4, 6 };
80   int total_adj = 0;
81   int shift_inc = 1;
82 
83   // If motion_magnitude is small, making the denoiser more aggressive by
84   // increasing the adjustment for each level. Add another increment for
85   // blocks that are labeled for increase denoising.
86   if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) {
87     if (increase_denoising) {
88       shift_inc = 2;
89     }
90     adj_val[0] += shift_inc;
91     adj_val[1] += shift_inc;
92     adj_val[2] += shift_inc;
93   }
94 
95   // First attempt to apply a strong temporal denoising filter.
96   for (r = 0; r < block_size_high[bs]; ++r) {
97     for (c = 0; c < block_size_wide[bs]; ++c) {
98       diff = mc_avg[c] - sig[c];
99       absdiff = abs(diff);
100 
101       if (absdiff <= absdiff_thresh(bs, increase_denoising)) {
102         avg[c] = mc_avg[c];
103         total_adj += diff;
104       } else {
105         switch (absdiff) {
106           case 4:
107           case 5:
108           case 6:
109           case 7: adj = adj_val[0]; break;
110           case 8:
111           case 9:
112           case 10:
113           case 11:
114           case 12:
115           case 13:
116           case 14:
117           case 15: adj = adj_val[1]; break;
118           default: adj = adj_val[2];
119         }
120         if (diff > 0) {
121           avg[c] = AOMMIN(UINT8_MAX, sig[c] + adj);
122           total_adj += adj;
123         } else {
124           avg[c] = AOMMAX(0, sig[c] - adj);
125           total_adj -= adj;
126         }
127       }
128     }
129     sig += sig_stride;
130     avg += avg_stride;
131     mc_avg += mc_avg_stride;
132   }
133 
134   // If the strong filter did not modify the signal too much, we're all set.
135   if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) {
136     return FILTER_BLOCK;
137   }
138 
139   // Otherwise, we try to dampen the filter if the delta is not too high.
140   delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >>
141            num_pels_log2_lookup[bs]) +
142           1;
143 
144   if (delta >= delta_thresh(bs, increase_denoising)) {
145     return COPY_BLOCK;
146   }
147 
148   mc_avg = mc_avg_start;
149   avg = avg_start;
150   sig = sig_start;
151   for (r = 0; r < block_size_high[bs]; ++r) {
152     for (c = 0; c < block_size_wide[bs]; ++c) {
153       diff = mc_avg[c] - sig[c];
154       adj = abs(diff);
155       if (adj > delta) {
156         adj = delta;
157       }
158       if (diff > 0) {
159         // Diff positive means we made positive adjustment above
160         // (in first try/attempt), so now make negative adjustment to bring
161         // denoised signal down.
162         avg[c] = AOMMAX(0, avg[c] - adj);
163         total_adj -= adj;
164       } else {
165         // Diff negative means we made negative adjustment above
166         // (in first try/attempt), so now make positive adjustment to bring
167         // denoised signal up.
168         avg[c] = AOMMIN(UINT8_MAX, avg[c] + adj);
169         total_adj += adj;
170       }
171     }
172     sig += sig_stride;
173     avg += avg_stride;
174     mc_avg += mc_avg_stride;
175   }
176 
177   // We can use the filter if it has been sufficiently dampened
178   if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) {
179     return FILTER_BLOCK;
180   }
181   return COPY_BLOCK;
182 }
183 
block_start(uint8_t * framebuf,int stride,int mi_row,int mi_col)184 static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row,
185                             int mi_col) {
186   return framebuf + (stride * mi_row << 2) + (mi_col << 2);
187 }
188 
perform_motion_compensation(AV1_COMMON * const cm,AV1_DENOISER * denoiser,MACROBLOCK * mb,BLOCK_SIZE bs,int increase_denoising,int mi_row,int mi_col,PICK_MODE_CONTEXT * ctx,int motion_magnitude,int * zeromv_filter,int num_spatial_layers,int width,int lst_fb_idx,int gld_fb_idx,int use_svc,int spatial_layer,int use_gf_temporal_ref)189 static AV1_DENOISER_DECISION perform_motion_compensation(
190     AV1_COMMON *const cm, AV1_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs,
191     int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx,
192     int motion_magnitude, int *zeromv_filter, int num_spatial_layers, int width,
193     int lst_fb_idx, int gld_fb_idx, int use_svc, int spatial_layer,
194     int use_gf_temporal_ref) {
195   const int sse_diff = (ctx->newmv_sse == UINT_MAX)
196                            ? 0
197                            : ((int)ctx->zeromv_sse - (int)ctx->newmv_sse);
198   int frame;
199   int denoise_layer_idx = 0;
200   MACROBLOCKD *filter_mbd = &mb->e_mbd;
201   MB_MODE_INFO *mi = filter_mbd->mi[0];
202   MB_MODE_INFO saved_mi;
203   int i;
204   struct buf_2d saved_dst[MAX_MB_PLANE];
205   struct buf_2d saved_pre[MAX_MB_PLANE];
206   // const RefBuffer *saved_block_refs[2];
207   MV_REFERENCE_FRAME saved_frame;
208 
209   frame = ctx->best_reference_frame;
210 
211   saved_mi = *mi;
212 
213   // Avoid denoising small blocks. When noise > kDenLow or frame width > 480,
214   // denoise 16x16 blocks.
215   if (bs == BLOCK_8X8 || bs == BLOCK_8X16 || bs == BLOCK_16X8 ||
216       (bs == BLOCK_16X16 && width > 480 &&
217        denoiser->denoising_level <= kDenLow))
218     return COPY_BLOCK;
219 
220   // If the best reference frame uses inter-prediction and there is enough of a
221   // difference in sum-squared-error, use it.
222   if (frame != INTRA_FRAME && frame != ALTREF_FRAME && frame != GOLDEN_FRAME &&
223       sse_diff > sse_diff_thresh(bs, increase_denoising, motion_magnitude)) {
224     mi->ref_frame[0] = ctx->best_reference_frame;
225     mi->mode = ctx->best_sse_inter_mode;
226     mi->mv[0] = ctx->best_sse_mv;
227   } else {
228     // Otherwise, use the zero reference frame.
229     frame = ctx->best_zeromv_reference_frame;
230     ctx->newmv_sse = ctx->zeromv_sse;
231     // Bias to last reference.
232     if ((num_spatial_layers > 1 && !use_gf_temporal_ref) ||
233         frame == ALTREF_FRAME ||
234         (frame == GOLDEN_FRAME && use_gf_temporal_ref) ||
235         (frame != LAST_FRAME &&
236          ((ctx->zeromv_lastref_sse<(5 * ctx->zeromv_sse)>> 2) ||
237           denoiser->denoising_level >= kDenHigh))) {
238       frame = LAST_FRAME;
239       ctx->newmv_sse = ctx->zeromv_lastref_sse;
240     }
241     mi->ref_frame[0] = frame;
242     mi->mode = GLOBALMV;
243     mi->mv[0].as_int = 0;
244     ctx->best_sse_inter_mode = GLOBALMV;
245     ctx->best_sse_mv.as_int = 0;
246     *zeromv_filter = 1;
247     if (denoiser->denoising_level > kDenMedium) {
248       motion_magnitude = 0;
249     }
250   }
251 
252   saved_frame = frame;
253   // When using SVC, we need to map REF_FRAME to the frame buffer index.
254   if (use_svc) {
255     if (frame == LAST_FRAME)
256       frame = lst_fb_idx + 1;
257     else if (frame == GOLDEN_FRAME)
258       frame = gld_fb_idx + 1;
259     // Shift for the second spatial layer.
260     if (num_spatial_layers - spatial_layer == 2)
261       frame = frame + denoiser->num_ref_frames;
262     denoise_layer_idx = num_spatial_layers - spatial_layer - 1;
263   }
264 
265   // Force copy (no denoise, copy source in denoised buffer) if
266   // running_avg_y[frame] is NULL.
267   if (denoiser->running_avg_y[frame].buffer_alloc == NULL) {
268     // Restore everything to its original state
269     *mi = saved_mi;
270     return COPY_BLOCK;
271   }
272 
273   if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) {
274     // Restore everything to its original state
275     *mi = saved_mi;
276     return COPY_BLOCK;
277   }
278   if (motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) {
279     // Restore everything to its original state
280     *mi = saved_mi;
281     return COPY_BLOCK;
282   }
283 
284   // We will restore these after motion compensation.
285   for (i = 0; i < MAX_MB_PLANE; ++i) {
286     saved_pre[i] = filter_mbd->plane[i].pre[0];
287     saved_dst[i] = filter_mbd->plane[i].dst;
288   }
289 
290   // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser
291   // struct.
292   set_ref_ptrs(cm, filter_mbd, saved_frame, NONE);
293   av1_setup_pre_planes(filter_mbd, 0, &(denoiser->running_avg_y[frame]), mi_row,
294                        mi_col, filter_mbd->block_ref_scale_factors[0], 1);
295   av1_setup_dst_planes(filter_mbd->plane, bs,
296                        &(denoiser->mc_running_avg_y[denoise_layer_idx]), mi_row,
297                        mi_col, 0, 1);
298 
299   av1_enc_build_inter_predictor_y(filter_mbd, mi_row, mi_col);
300 
301   // Restore everything to its original state
302   *mi = saved_mi;
303   for (i = 0; i < MAX_MB_PLANE; ++i) {
304     filter_mbd->plane[i].pre[0] = saved_pre[i];
305     filter_mbd->plane[i].dst = saved_dst[i];
306   }
307 
308   return FILTER_BLOCK;
309 }
310 
av1_denoiser_denoise(AV1_COMP * cpi,MACROBLOCK * mb,int mi_row,int mi_col,BLOCK_SIZE bs,PICK_MODE_CONTEXT * ctx,AV1_DENOISER_DECISION * denoiser_decision,int use_gf_temporal_ref)311 void av1_denoiser_denoise(AV1_COMP *cpi, MACROBLOCK *mb, int mi_row, int mi_col,
312                           BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx,
313                           AV1_DENOISER_DECISION *denoiser_decision,
314                           int use_gf_temporal_ref) {
315   int mv_col, mv_row;
316   int motion_magnitude = 0;
317   int zeromv_filter = 0;
318   AV1_DENOISER *denoiser = &cpi->denoiser;
319   AV1_DENOISER_DECISION decision = COPY_BLOCK;
320 
321   const int shift =
322       cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id == 2
323           ? denoiser->num_ref_frames
324           : 0;
325   YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME + shift];
326   const int denoise_layer_index =
327       cpi->svc.number_spatial_layers - cpi->svc.spatial_layer_id - 1;
328   YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y[denoise_layer_index];
329   uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col);
330 
331   uint8_t *mc_avg_start =
332       block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col);
333   struct buf_2d src = mb->plane[0].src;
334   int increase_denoising = 0;
335   int last_is_reference = cpi->ref_frame_flags & AOM_LAST_FLAG;
336   mv_col = ctx->best_sse_mv.as_mv.col;
337   mv_row = ctx->best_sse_mv.as_mv.row;
338   motion_magnitude = mv_row * mv_row + mv_col * mv_col;
339 
340   if (denoiser->denoising_level == kDenHigh) increase_denoising = 1;
341 
342   // Copy block if LAST_FRAME is not a reference.
343   // Last doesn't always exist when SVC layers are dynamically changed, e.g. top
344   // spatial layer doesn't have last reference when it's brought up for the
345   // first time on the fly.
346   if (last_is_reference && denoiser->denoising_level >= kDenLow &&
347       !ctx->sb_skip_denoising)
348     decision = perform_motion_compensation(
349         &cpi->common, denoiser, mb, bs, increase_denoising, mi_row, mi_col, ctx,
350         motion_magnitude, &zeromv_filter, cpi->svc.number_spatial_layers,
351         cpi->source->y_width, cpi->svc.ref_idx[0], cpi->svc.ref_idx[3],
352         cpi->use_svc, cpi->svc.spatial_layer_id, use_gf_temporal_ref);
353 
354   if (decision == FILTER_BLOCK) {
355     decision = av1_denoiser_filter(src.buf, src.stride, mc_avg_start,
356                                    mc_avg.y_stride, avg_start, avg.y_stride,
357                                    increase_denoising, bs, motion_magnitude);
358   }
359 
360   if (decision == FILTER_BLOCK) {
361     aom_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride,
362                       block_size_wide[bs], block_size_high[bs]);
363   } else {  // COPY_BLOCK
364     aom_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride,
365                       block_size_wide[bs], block_size_high[bs]);
366   }
367   *denoiser_decision = decision;
368   if (decision == FILTER_BLOCK && zeromv_filter == 1)
369     *denoiser_decision = FILTER_ZEROMV_BLOCK;
370 }
371 
copy_frame(YV12_BUFFER_CONFIG * const dest,const YV12_BUFFER_CONFIG * const src)372 static void copy_frame(YV12_BUFFER_CONFIG *const dest,
373                        const YV12_BUFFER_CONFIG *const src) {
374   int r;
375   const uint8_t *srcbuf = src->y_buffer;
376   uint8_t *destbuf = dest->y_buffer;
377 
378   assert(dest->y_width == src->y_width);
379   assert(dest->y_height == src->y_height);
380 
381   for (r = 0; r < dest->y_height; ++r) {
382     memcpy(destbuf, srcbuf, dest->y_width);
383     destbuf += dest->y_stride;
384     srcbuf += src->y_stride;
385   }
386 }
387 
swap_frame_buffer(YV12_BUFFER_CONFIG * const dest,YV12_BUFFER_CONFIG * const src)388 static void swap_frame_buffer(YV12_BUFFER_CONFIG *const dest,
389                               YV12_BUFFER_CONFIG *const src) {
390   uint8_t *tmp_buf = dest->y_buffer;
391   assert(dest->y_width == src->y_width);
392   assert(dest->y_height == src->y_height);
393   dest->y_buffer = src->y_buffer;
394   src->y_buffer = tmp_buf;
395 }
396 
av1_denoiser_update_frame_info(AV1_DENOISER * denoiser,YV12_BUFFER_CONFIG src,struct SVC * svc,FRAME_TYPE frame_type,int refresh_alt_ref_frame,int refresh_golden_frame,int refresh_last_frame,int alt_fb_idx,int gld_fb_idx,int lst_fb_idx,int resized,int svc_refresh_denoiser_buffers,int second_spatial_layer)397 void av1_denoiser_update_frame_info(
398     AV1_DENOISER *denoiser, YV12_BUFFER_CONFIG src, struct SVC *svc,
399     FRAME_TYPE frame_type, int refresh_alt_ref_frame, int refresh_golden_frame,
400     int refresh_last_frame, int alt_fb_idx, int gld_fb_idx, int lst_fb_idx,
401     int resized, int svc_refresh_denoiser_buffers, int second_spatial_layer) {
402   const int shift = second_spatial_layer ? denoiser->num_ref_frames : 0;
403   // Copy source into denoised reference buffers on KEY_FRAME or
404   // if the just encoded frame was resized. For SVC, copy source if the base
405   // spatial layer was key frame.
406   if (frame_type == KEY_FRAME || resized != 0 || denoiser->reset ||
407       svc_refresh_denoiser_buffers) {
408     int i;
409     // Start at 1 so as not to overwrite the INTRA_FRAME
410     for (i = 1; i < denoiser->num_ref_frames; ++i) {
411       if (denoiser->running_avg_y[i + shift].buffer_alloc != NULL)
412         copy_frame(&denoiser->running_avg_y[i + shift], &src);
413     }
414     denoiser->reset = 0;
415     return;
416   }
417 
418   if (svc->external_ref_frame_config) {
419     int i;
420     for (i = 0; i < REF_FRAMES; i++) {
421       if (svc->refresh[svc->spatial_layer_id] & (1 << i))
422         copy_frame(&denoiser->running_avg_y[i + 1 + shift],
423                    &denoiser->running_avg_y[INTRA_FRAME + shift]);
424     }
425   } else {
426     // If more than one refresh occurs, must copy frame buffer.
427     if ((refresh_alt_ref_frame + refresh_golden_frame + refresh_last_frame) >
428         1) {
429       if (refresh_alt_ref_frame) {
430         copy_frame(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
431                    &denoiser->running_avg_y[INTRA_FRAME + shift]);
432       }
433       if (refresh_golden_frame) {
434         copy_frame(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
435                    &denoiser->running_avg_y[INTRA_FRAME + shift]);
436       }
437       if (refresh_last_frame) {
438         copy_frame(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
439                    &denoiser->running_avg_y[INTRA_FRAME + shift]);
440       }
441     } else {
442       if (refresh_alt_ref_frame) {
443         swap_frame_buffer(&denoiser->running_avg_y[alt_fb_idx + 1 + shift],
444                           &denoiser->running_avg_y[INTRA_FRAME + shift]);
445       }
446       if (refresh_golden_frame) {
447         swap_frame_buffer(&denoiser->running_avg_y[gld_fb_idx + 1 + shift],
448                           &denoiser->running_avg_y[INTRA_FRAME + shift]);
449       }
450       if (refresh_last_frame) {
451         swap_frame_buffer(&denoiser->running_avg_y[lst_fb_idx + 1 + shift],
452                           &denoiser->running_avg_y[INTRA_FRAME + shift]);
453       }
454     }
455   }
456 }
457 
av1_denoiser_reset_frame_stats(PICK_MODE_CONTEXT * ctx)458 void av1_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) {
459   ctx->zeromv_sse = INT64_MAX;
460   ctx->newmv_sse = INT64_MAX;
461   ctx->zeromv_lastref_sse = INT64_MAX;
462   ctx->best_sse_mv.as_int = 0;
463 }
464 
av1_denoiser_update_frame_stats(MB_MODE_INFO * mi,int64_t sse,PREDICTION_MODE mode,PICK_MODE_CONTEXT * ctx)465 void av1_denoiser_update_frame_stats(MB_MODE_INFO *mi, int64_t sse,
466                                      PREDICTION_MODE mode,
467                                      PICK_MODE_CONTEXT *ctx) {
468   if (mi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) {
469     ctx->zeromv_sse = sse;
470     ctx->best_zeromv_reference_frame = mi->ref_frame[0];
471     if (mi->ref_frame[0] == LAST_FRAME) ctx->zeromv_lastref_sse = sse;
472   }
473 
474   if (mi->mv[0].as_int != 0 && sse < ctx->newmv_sse) {
475     ctx->newmv_sse = sse;
476     ctx->best_sse_inter_mode = mode;
477     ctx->best_sse_mv = mi->mv[0];
478     ctx->best_reference_frame = mi->ref_frame[0];
479   }
480 }
481 
av1_denoiser_realloc_svc_helper(AV1_COMMON * cm,AV1_DENOISER * denoiser,int fb_idx)482 static int av1_denoiser_realloc_svc_helper(AV1_COMMON *cm,
483                                            AV1_DENOISER *denoiser, int fb_idx) {
484   int fail = 0;
485   if (denoiser->running_avg_y[fb_idx].buffer_alloc == NULL) {
486     fail = aom_alloc_frame_buffer(
487         &denoiser->running_avg_y[fb_idx], cm->width, cm->height,
488         cm->seq_params.subsampling_x, cm->seq_params.subsampling_y,
489         cm->seq_params.use_highbitdepth, AOM_BORDER_IN_PIXELS,
490         cm->features.byte_alignment);
491     if (fail) {
492       av1_denoiser_free(denoiser);
493       return 1;
494     }
495   }
496   return 0;
497 }
498 
av1_denoiser_realloc_svc(AV1_COMMON * cm,AV1_DENOISER * denoiser,struct SVC * svc,int svc_buf_shift,int refresh_alt,int refresh_gld,int refresh_lst,int alt_fb_idx,int gld_fb_idx,int lst_fb_idx)499 int av1_denoiser_realloc_svc(AV1_COMMON *cm, AV1_DENOISER *denoiser,
500                              struct SVC *svc, int svc_buf_shift,
501                              int refresh_alt, int refresh_gld, int refresh_lst,
502                              int alt_fb_idx, int gld_fb_idx, int lst_fb_idx) {
503   int fail = 0;
504   if (svc->external_ref_frame_config) {
505     int i;
506     for (i = 0; i < REF_FRAMES; i++) {
507       if (cm->current_frame.frame_type == KEY_FRAME ||
508           svc->refresh[svc->spatial_layer_id] & (1 << i)) {
509         fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
510                                                i + 1 + svc_buf_shift);
511       }
512     }
513   } else {
514     if (refresh_alt) {
515       // Increase the frame buffer index by 1 to map it to the buffer index in
516       // the denoiser.
517       fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
518                                              alt_fb_idx + 1 + svc_buf_shift);
519       if (fail) return 1;
520     }
521     if (refresh_gld) {
522       fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
523                                              gld_fb_idx + 1 + svc_buf_shift);
524       if (fail) return 1;
525     }
526     if (refresh_lst) {
527       fail = av1_denoiser_realloc_svc_helper(cm, denoiser,
528                                              lst_fb_idx + 1 + svc_buf_shift);
529       if (fail) return 1;
530     }
531   }
532   return 0;
533 }
534 
av1_denoiser_alloc(AV1_COMMON * cm,struct SVC * svc,AV1_DENOISER * denoiser,int use_svc,int noise_sen,int width,int height,int ssx,int ssy,int use_highbitdepth,int border)535 int av1_denoiser_alloc(AV1_COMMON *cm, struct SVC *svc, AV1_DENOISER *denoiser,
536                        int use_svc, int noise_sen, int width, int height,
537                        int ssx, int ssy, int use_highbitdepth, int border) {
538   int i, layer, fail, init_num_ref_frames;
539   const int legacy_byte_alignment = 0;
540   int num_layers = 1;
541   int scaled_width = width;
542   int scaled_height = height;
543   if (use_svc) {
544     LAYER_CONTEXT *lc = &svc->layer_context[svc->spatial_layer_id *
545                                                 svc->number_temporal_layers +
546                                             svc->temporal_layer_id];
547     av1_get_layer_resolution(width, height, lc->scaling_factor_num,
548                              lc->scaling_factor_den, &scaled_width,
549                              &scaled_height);
550     // For SVC: only denoise at most 2 spatial (highest) layers.
551     if (noise_sen >= 2)
552       // Denoise from one spatial layer below the top.
553       svc->first_layer_denoise = AOMMAX(svc->number_spatial_layers - 2, 0);
554     else
555       // Only denoise the top spatial layer.
556       svc->first_layer_denoise = AOMMAX(svc->number_spatial_layers - 1, 0);
557     num_layers = svc->number_spatial_layers - svc->first_layer_denoise;
558   }
559   assert(denoiser != NULL);
560   denoiser->num_ref_frames = use_svc ? SVC_REF_FRAMES : NONSVC_REF_FRAMES;
561   init_num_ref_frames = use_svc ? REF_FRAMES : NONSVC_REF_FRAMES;
562   denoiser->num_layers = num_layers;
563   CHECK_MEM_ERROR(cm, denoiser->running_avg_y,
564                   aom_calloc(denoiser->num_ref_frames * num_layers,
565                              sizeof(denoiser->running_avg_y[0])));
566   CHECK_MEM_ERROR(
567       cm, denoiser->mc_running_avg_y,
568       aom_calloc(num_layers, sizeof(denoiser->mc_running_avg_y[0])));
569 
570   for (layer = 0; layer < num_layers; ++layer) {
571     const int denoise_width = (layer == 0) ? width : scaled_width;
572     const int denoise_height = (layer == 0) ? height : scaled_height;
573     for (i = 0; i < init_num_ref_frames; ++i) {
574       fail = aom_alloc_frame_buffer(
575           &denoiser->running_avg_y[i + denoiser->num_ref_frames * layer],
576           denoise_width, denoise_height, ssx, ssy, use_highbitdepth, border,
577           legacy_byte_alignment);
578       if (fail) {
579         av1_denoiser_free(denoiser);
580         return 1;
581       }
582 #ifdef OUTPUT_YUV_DENOISED
583       make_grayscale(&denoiser->running_avg_y[i]);
584 #endif
585     }
586 
587     fail = aom_alloc_frame_buffer(
588         &denoiser->mc_running_avg_y[layer], denoise_width, denoise_height, ssx,
589         ssy, use_highbitdepth, border, legacy_byte_alignment);
590     if (fail) {
591       av1_denoiser_free(denoiser);
592       return 1;
593     }
594   }
595 
596   // denoiser->last_source only used for noise_estimation, so only for top
597   // layer.
598   fail =
599       aom_alloc_frame_buffer(&denoiser->last_source, width, height, ssx, ssy,
600                              use_highbitdepth, border, legacy_byte_alignment);
601   if (fail) {
602     av1_denoiser_free(denoiser);
603     return 1;
604   }
605 #ifdef OUTPUT_YUV_DENOISED
606   make_grayscale(&denoiser->running_avg_y[i]);
607 #endif
608   denoiser->frame_buffer_initialized = 1;
609   denoiser->denoising_level = kDenMedium;
610   denoiser->prev_denoising_level = kDenMedium;
611   denoiser->reset = 0;
612   denoiser->current_denoiser_frame = 0;
613   return 0;
614 }
615 
av1_denoiser_free(AV1_DENOISER * denoiser)616 void av1_denoiser_free(AV1_DENOISER *denoiser) {
617   int i;
618   if (denoiser == NULL) {
619     return;
620   }
621   denoiser->frame_buffer_initialized = 0;
622   for (i = 0; i < denoiser->num_ref_frames * denoiser->num_layers; ++i) {
623     aom_free_frame_buffer(&denoiser->running_avg_y[i]);
624   }
625   aom_free(denoiser->running_avg_y);
626   denoiser->running_avg_y = NULL;
627 
628   for (i = 0; i < denoiser->num_layers; ++i) {
629     aom_free_frame_buffer(&denoiser->mc_running_avg_y[i]);
630   }
631 
632   aom_free(denoiser->mc_running_avg_y);
633   denoiser->mc_running_avg_y = NULL;
634   aom_free_frame_buffer(&denoiser->last_source);
635 }
636 
637 // TODO(kyslov) Enable when SVC temporal denosing is implemented
638 #if 0
639 static void force_refresh_longterm_ref(AV1_COMP *const cpi) {
640   SVC *const svc = &cpi->svc;
641   // If long term reference is used, force refresh of that slot, so
642   // denoiser buffer for long term reference stays in sync.
643   if (svc->use_gf_temporal_ref_current_layer) {
644     int index = svc->spatial_layer_id;
645     if (svc->number_spatial_layers == 3) index = svc->spatial_layer_id - 1;
646     assert(index >= 0);
647     cpi->alt_fb_idx = svc->buffer_gf_temporal_ref[index].idx;
648     cpi->refresh_alt_ref_frame = 1;
649   }
650 }
651 #endif
652 
av1_denoiser_set_noise_level(AV1_COMP * const cpi,int noise_level)653 void av1_denoiser_set_noise_level(AV1_COMP *const cpi, int noise_level) {
654   AV1_DENOISER *const denoiser = &cpi->denoiser;
655   denoiser->denoising_level = noise_level;
656   if (denoiser->denoising_level > kDenLowLow &&
657       denoiser->prev_denoising_level == kDenLowLow) {
658     denoiser->reset = 1;
659 // TODO(kyslov) Enable when SVC temporal denosing is implemented
660 #if 0
661     force_refresh_longterm_ref(cpi);
662 #endif
663   } else {
664     denoiser->reset = 0;
665   }
666   denoiser->prev_denoising_level = denoiser->denoising_level;
667 }
668 
669 // Scale/increase the partition threshold
670 // for denoiser speed-up.
av1_scale_part_thresh(int64_t threshold,AV1_DENOISER_LEVEL noise_level,CONTENT_STATE_SB content_state,int temporal_layer_id)671 int64_t av1_scale_part_thresh(int64_t threshold, AV1_DENOISER_LEVEL noise_level,
672                               CONTENT_STATE_SB content_state,
673                               int temporal_layer_id) {
674   if ((content_state.source_sad == kLowSad && content_state.low_sumdiff) ||
675       (content_state.source_sad == kHighSad && content_state.low_sumdiff) ||
676       (content_state.lighting_change && !content_state.low_sumdiff) ||
677       (noise_level == kDenHigh) || (temporal_layer_id != 0)) {
678     int64_t scaled_thr =
679         (temporal_layer_id < 2) ? (3 * threshold) >> 1 : (7 * threshold) >> 2;
680     return scaled_thr;
681   } else {
682     return (5 * threshold) >> 2;
683   }
684 }
685 
686 //  Scale/increase the ac skip threshold for
687 //  denoiser speed-up.
av1_scale_acskip_thresh(int64_t threshold,AV1_DENOISER_LEVEL noise_level,int abs_sumdiff,int temporal_layer_id)688 int64_t av1_scale_acskip_thresh(int64_t threshold,
689                                 AV1_DENOISER_LEVEL noise_level, int abs_sumdiff,
690                                 int temporal_layer_id) {
691   if (noise_level >= kDenLow && abs_sumdiff < 5)
692     return threshold *=
693            (noise_level == kDenLow) ? 2 : (temporal_layer_id == 2) ? 10 : 6;
694   else
695     return threshold;
696 }
697 
av1_denoiser_reset_on_first_frame(AV1_COMP * const cpi)698 void av1_denoiser_reset_on_first_frame(AV1_COMP *const cpi) {
699   if (/*av1_denoise_svc_non_key(cpi) &&*/
700       cpi->denoiser.current_denoiser_frame == 0) {
701     cpi->denoiser.reset = 1;
702 // TODO(kyslov) Enable when SVC temporal denosing is implemented
703 #if 0
704     force_refresh_longterm_ref(cpi);
705 #endif
706   }
707 }
708 
av1_denoiser_update_ref_frame(AV1_COMP * const cpi)709 void av1_denoiser_update_ref_frame(AV1_COMP *const cpi) {
710   AV1_COMMON *const cm = &cpi->common;
711   SVC *const svc = &cpi->svc;
712 
713   if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
714       cpi->denoiser.denoising_level > kDenLowLow) {
715     int svc_refresh_denoiser_buffers = 0;
716     int denoise_svc_second_layer = 0;
717     FRAME_TYPE frame_type = cm->current_frame.frame_type == INTRA_ONLY_FRAME
718                                 ? KEY_FRAME
719                                 : cm->current_frame.frame_type;
720     cpi->denoiser.current_denoiser_frame++;
721     const int resize_pending =
722         (cpi->resize_pending_params.width &&
723          cpi->resize_pending_params.height &&
724          (cpi->common.width != cpi->resize_pending_params.width ||
725           cpi->common.height != cpi->resize_pending_params.height));
726 
727     if (cpi->use_svc) {
728 // TODO(kyslov) Enable when SVC temporal denosing is implemented
729 #if 0
730       const int svc_buf_shift =
731           svc->number_spatial_layers - svc->spatial_layer_id == 2
732               ? cpi->denoiser.num_ref_frames
733               : 0;
734       int layer =
735           LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id,
736                            svc->number_temporal_layers);
737       LAYER_CONTEXT *const lc = &svc->layer_context[layer];
738       svc_refresh_denoiser_buffers =
739           lc->is_key_frame || svc->spatial_layer_sync[svc->spatial_layer_id];
740       denoise_svc_second_layer =
741           svc->number_spatial_layers - svc->spatial_layer_id == 2 ? 1 : 0;
742       // Check if we need to allocate extra buffers in the denoiser
743       // for refreshed frames.
744       if (av1_denoiser_realloc_svc(cm, &cpi->denoiser, svc, svc_buf_shift,
745                                    cpi->refresh_alt_ref_frame,
746                                    cpi->refresh_golden_frame,
747                                    cpi->refresh_last_frame, cpi->alt_fb_idx,
748                                    cpi->gld_fb_idx, cpi->lst_fb_idx))
749         aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
750                            "Failed to re-allocate denoiser for SVC");
751 #endif
752     }
753     av1_denoiser_update_frame_info(
754         &cpi->denoiser, *cpi->source, svc, frame_type,
755         cpi->refresh_frame.alt_ref_frame, cpi->refresh_frame.golden_frame, 1,
756         svc->ref_idx[6], svc->ref_idx[3], svc->ref_idx[0], resize_pending,
757         svc_refresh_denoiser_buffers, denoise_svc_second_layer);
758   }
759 }
760 
761 #ifdef OUTPUT_YUV_DENOISED
make_grayscale(YV12_BUFFER_CONFIG * yuv)762 static void make_grayscale(YV12_BUFFER_CONFIG *yuv) {
763   int r, c;
764   uint8_t *u = yuv->u_buffer;
765   uint8_t *v = yuv->v_buffer;
766 
767   for (r = 0; r < yuv->uv_height; ++r) {
768     for (c = 0; c < yuv->uv_width; ++c) {
769       u[c] = UINT8_MAX / 2;
770       v[c] = UINT8_MAX / 2;
771     }
772     u += yuv->uv_stride;
773     v += yuv->uv_stride;
774   }
775 }
776 
aom_write_yuv_frame(FILE * yuv_file,YV12_BUFFER_CONFIG * s)777 void aom_write_yuv_frame(FILE *yuv_file, YV12_BUFFER_CONFIG *s) {
778   unsigned char *src = s->y_buffer;
779   int h = s->y_crop_height;
780 
781   do {
782     fwrite(src, s->y_width, 1, yuv_file);
783     src += s->y_stride;
784   } while (--h);
785 
786   src = s->u_buffer;
787   h = s->uv_crop_height;
788 
789   do {
790     fwrite(src, s->uv_width, 1, yuv_file);
791     src += s->uv_stride;
792   } while (--h);
793 
794   src = s->v_buffer;
795   h = s->uv_crop_height;
796 
797   do {
798     fwrite(src, s->uv_width, 1, yuv_file);
799     src += s->uv_stride;
800   } while (--h);
801 }
802 #endif
803