1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10 
11  */
12 
13 #include <assert.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdio.h>
17 
18 #include "config/aom_dsp_rtcd.h"
19 #include "config/av1_rtcd.h"
20 
21 #include "aom_dsp/aom_dsp_common.h"
22 #include "aom_dsp/blend.h"
23 #include "aom_mem/aom_mem.h"
24 #include "aom_ports/aom_timer.h"
25 #include "aom_ports/mem.h"
26 #include "aom_ports/system_state.h"
27 
28 #include "av1/encoder/model_rd.h"
29 #include "av1/common/mvref_common.h"
30 #include "av1/common/pred_common.h"
31 #include "av1/common/reconinter.h"
32 #include "av1/common/reconintra.h"
33 
34 #include "av1/encoder/encodemv.h"
35 #include "av1/encoder/rdopt.h"
36 #include "av1/encoder/reconinter_enc.h"
37 
38 extern int g_pick_inter_mode_cnt;
39 /*!\cond */
40 typedef struct {
41   uint8_t *data;
42   int stride;
43   int in_use;
44 } PRED_BUFFER;
45 
46 typedef struct {
47   PRED_BUFFER *best_pred;
48   PREDICTION_MODE best_mode;
49   TX_SIZE best_tx_size;
50   MV_REFERENCE_FRAME best_ref_frame;
51   uint8_t best_mode_skip_txfm;
52   uint8_t best_mode_initial_skip_flag;
53   int_interpfilters best_pred_filter;
54 } BEST_PICKMODE;
55 
56 typedef struct {
57   MV_REFERENCE_FRAME ref_frame;
58   PREDICTION_MODE pred_mode;
59 } REF_MODE;
60 /*!\endcond */
61 
62 static const int pos_shift_16x16[4][4] = {
63   { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 }
64 };
65 
66 #define NUM_INTER_MODES_RT 9
67 #define NUM_INTER_MODES_REDUCED 8
68 
69 static const REF_MODE ref_mode_set_rt[NUM_INTER_MODES_RT] = {
70   { LAST_FRAME, NEARESTMV },   { LAST_FRAME, NEARMV },
71   { LAST_FRAME, NEWMV },       { GOLDEN_FRAME, NEARESTMV },
72   { GOLDEN_FRAME, NEARMV },    { GOLDEN_FRAME, NEWMV },
73   { ALTREF_FRAME, NEARESTMV }, { ALTREF_FRAME, NEARMV },
74   { ALTREF_FRAME, NEWMV }
75 };
76 
77 // GLOBALMV in the set below is in fact ZEROMV as we don't do global ME in RT
78 // mode
79 static const REF_MODE ref_mode_set_reduced[NUM_INTER_MODES_REDUCED] = {
80   { LAST_FRAME, GLOBALMV },   { LAST_FRAME, NEARESTMV },
81   { GOLDEN_FRAME, GLOBALMV }, { LAST_FRAME, NEARMV },
82   { LAST_FRAME, NEWMV },      { GOLDEN_FRAME, NEARESTMV },
83   { GOLDEN_FRAME, NEARMV },   { GOLDEN_FRAME, NEWMV }
84 };
85 
86 static const THR_MODES mode_idx[REF_FRAMES][4] = {
87   { THR_DC, THR_V_PRED, THR_H_PRED, THR_SMOOTH },
88   { THR_NEARESTMV, THR_NEARMV, THR_GLOBALMV, THR_NEWMV },
89   { THR_NEARESTL2, THR_NEARL2, THR_GLOBALL2, THR_NEWL2 },
90   { THR_NEARESTL3, THR_NEARL3, THR_GLOBALL3, THR_NEWL3 },
91   { THR_NEARESTG, THR_NEARG, THR_GLOBALMV, THR_NEWG },
92 };
93 
94 static const PREDICTION_MODE intra_mode_list[] = { DC_PRED, V_PRED, H_PRED,
95                                                    SMOOTH_PRED };
96 
mode_offset(const PREDICTION_MODE mode)97 static INLINE int mode_offset(const PREDICTION_MODE mode) {
98   if (mode >= NEARESTMV) {
99     return INTER_OFFSET(mode);
100   } else {
101     switch (mode) {
102       case DC_PRED: return 0;
103       case V_PRED: return 1;
104       case H_PRED: return 2;
105       case SMOOTH_PRED: return 3;
106       default: assert(0); return -1;
107     }
108   }
109 }
110 
111 enum {
112   //  INTER_ALL = (1 << NEARESTMV) | (1 << NEARMV) | (1 << NEWMV),
113   INTER_NEAREST = (1 << NEARESTMV),
114   INTER_NEAREST_NEW = (1 << NEARESTMV) | (1 << NEWMV),
115   INTER_NEAREST_NEAR = (1 << NEARESTMV) | (1 << NEARMV),
116   INTER_NEAR_NEW = (1 << NEARMV) | (1 << NEWMV),
117 };
118 
init_best_pickmode(BEST_PICKMODE * bp)119 static INLINE void init_best_pickmode(BEST_PICKMODE *bp) {
120   bp->best_mode = NEARESTMV;
121   bp->best_ref_frame = LAST_FRAME;
122   bp->best_tx_size = TX_8X8;
123   bp->best_pred_filter = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
124   bp->best_mode_skip_txfm = 0;
125   bp->best_mode_initial_skip_flag = 0;
126   bp->best_pred = NULL;
127 }
128 
129 /*!\brief Runs Motion Estimation for a specific block and specific ref frame.
130  *
131  * \ingroup nonrd_mode_search
132  * \callgraph
133  * \callergraph
134  * Finds the best Motion Vector by running Motion Estimation for a specific
135  * block and a specific reference frame. Exits early if RDCost of Full Pel part
136  * exceeds best RD Cost fund so far
137  * \param[in]    cpi                      Top-level encoder structure
138  * \param[in]    x                        Pointer to structure holding all the
139  *                                        data for the current macroblock
140  * \param[in]    bsize                    Current block size
141  * \param[in]    mi_row                   Row index in 4x4 units
142  * \param[in]    mi_col                   Column index in 4x4 units
143  * \param[in]    tmp_mv                   Pointer to best found New MV
144  * \param[in]    rate_mv                  Pointer to Rate of the best new MV
145  * \param[in]    best_rd_sofar            RD Cost of the best mode found so far
146  * \param[in]    use_base_mv              Flag, indicating that tmp_mv holds
147  *                                        specific MV to start the search with
148  *
149  * \return Returns 0 if ME was terminated after Full Pel Search because too
150  * high RD Cost. Otherwise returns 1. Best New MV is placed into \c tmp_mv.
151  * Rate estimation for this vector is placed to \c rate_mv
152  */
combined_motion_search(AV1_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col,int_mv * tmp_mv,int * rate_mv,int64_t best_rd_sofar,int use_base_mv)153 static int combined_motion_search(AV1_COMP *cpi, MACROBLOCK *x,
154                                   BLOCK_SIZE bsize, int mi_row, int mi_col,
155                                   int_mv *tmp_mv, int *rate_mv,
156                                   int64_t best_rd_sofar, int use_base_mv) {
157   MACROBLOCKD *xd = &x->e_mbd;
158   const AV1_COMMON *cm = &cpi->common;
159   const int num_planes = av1_num_planes(cm);
160   MB_MODE_INFO *mi = xd->mi[0];
161   struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
162   int step_param = (cpi->sf.rt_sf.fullpel_search_step_param)
163                        ? cpi->sf.rt_sf.fullpel_search_step_param
164                        : cpi->mv_search_params.mv_step_param;
165   FULLPEL_MV start_mv;
166   const int ref = mi->ref_frame[0];
167   const MV ref_mv = av1_get_ref_mv(x, mi->ref_mv_idx).as_mv;
168   MV center_mv;
169   int dis;
170   int rv = 0;
171   int cost_list[5];
172   int search_subpel = 1;
173   const YV12_BUFFER_CONFIG *scaled_ref_frame =
174       av1_get_scaled_ref_frame(cpi, ref);
175 
176   if (scaled_ref_frame) {
177     int i;
178     // Swap out the reference frame for a version that's been scaled to
179     // match the resolution of the current frame, allowing the existing
180     // motion search code to be used without additional modifications.
181     for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0];
182     av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL,
183                          num_planes);
184   }
185 
186   start_mv = get_fullmv_from_mv(&ref_mv);
187 
188   if (!use_base_mv)
189     center_mv = ref_mv;
190   else
191     center_mv = tmp_mv->as_mv;
192   const search_site_config *src_search_sites =
193       cpi->mv_search_params.search_site_cfg[SS_CFG_SRC];
194   FULLPEL_MOTION_SEARCH_PARAMS full_ms_params;
195   av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &center_mv,
196                                      src_search_sites,
197                                      /*fine_search_interval=*/0);
198 
199   av1_full_pixel_search(start_mv, &full_ms_params, step_param,
200                         cond_cost_list(cpi, cost_list), &tmp_mv->as_fullmv,
201                         NULL);
202 
203   // calculate the bit cost on motion vector
204   MV mvp_full = get_mv_from_fullmv(&tmp_mv->as_fullmv);
205 
206   *rate_mv = av1_mv_bit_cost(&mvp_full, &ref_mv, x->mv_costs->nmv_joint_cost,
207                              x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
208 
209   // TODO(kyslov) Account for Rate Mode!
210   rv = !(RDCOST(x->rdmult, (*rate_mv), 0) > best_rd_sofar);
211 
212   if (rv && search_subpel) {
213     SUBPEL_MOTION_SEARCH_PARAMS ms_params;
214     av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
215                                       cost_list);
216     MV subpel_start_mv = get_mv_from_fullmv(&tmp_mv->as_fullmv);
217     cpi->mv_search_params.find_fractional_mv_step(
218         xd, cm, &ms_params, subpel_start_mv, &tmp_mv->as_mv, &dis,
219         &x->pred_sse[ref], NULL);
220 
221     *rate_mv =
222         av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->mv_costs->nmv_joint_cost,
223                         x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
224   }
225 
226   if (scaled_ref_frame) {
227     int i;
228     for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i];
229   }
230   // Final MV can not be equal to referance MV as this will trigger assert
231   // later. This can happen if both NEAREST and NEAR modes were skipped
232   rv = (tmp_mv->as_mv.col != ref_mv.col || tmp_mv->as_mv.row != ref_mv.row);
233   return rv;
234 }
235 
236 /*!\brief Searches for the best New Motion Vector.
237  *
238  * \ingroup nonrd_mode_search
239  * \callgraph
240  * \callergraph
241  * Finds the best Motion Vector by doing Motion Estimation. Uses reduced
242  * complexity ME for non-LAST frames or calls \c combined_motion_search
243  * for LAST reference frame
244  * \param[in]    cpi                      Top-level encoder structure
245  * \param[in]    x                        Pointer to structure holding all the
246  *                                        data for the current macroblock
247  * \param[in]    frame_mv                 Array that holds MVs for all modes
248  *                                        and ref frames
249  * \param[in]    ref_frame                Reference freme for which to find
250  *                                        the best New MVs
251  * \param[in]    gf_temporal_ref          Flag, indicating temporal reference
252  *                                        for GOLDEN frame
253  * \param[in]    bsize                    Current block size
254  * \param[in]    mi_row                   Row index in 4x4 units
255  * \param[in]    mi_col                   Column index in 4x4 units
256  * \param[in]    rate_mv                  Pointer to Rate of the best new MV
257  * \param[in]    best_rdc                 Pointer to the RD Cost for the best
258  *                                        mode found so far
259  *
260  * \return Returns -1 if the search was not done, otherwise returns 0.
261  * Best New MV is placed into \c frame_mv array, Rate estimation for this
262  * vector is placed to \c rate_mv
263  */
search_new_mv(AV1_COMP * cpi,MACROBLOCK * x,int_mv frame_mv[][REF_FRAMES],MV_REFERENCE_FRAME ref_frame,int gf_temporal_ref,BLOCK_SIZE bsize,int mi_row,int mi_col,int * rate_mv,RD_STATS * best_rdc)264 static int search_new_mv(AV1_COMP *cpi, MACROBLOCK *x,
265                          int_mv frame_mv[][REF_FRAMES],
266                          MV_REFERENCE_FRAME ref_frame, int gf_temporal_ref,
267                          BLOCK_SIZE bsize, int mi_row, int mi_col, int *rate_mv,
268                          RD_STATS *best_rdc) {
269   MACROBLOCKD *const xd = &x->e_mbd;
270   MB_MODE_INFO *const mi = xd->mi[0];
271   AV1_COMMON *cm = &cpi->common;
272   if (ref_frame > LAST_FRAME && cpi->oxcf.rc_cfg.mode == AOM_CBR &&
273       gf_temporal_ref) {
274     int tmp_sad;
275     int dis;
276     int cost_list[5] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX, INT_MAX };
277 
278     if (bsize < BLOCK_16X16) return -1;
279 
280     tmp_sad = av1_int_pro_motion_estimation(
281         cpi, x, bsize, mi_row, mi_col,
282         &x->mbmi_ext.ref_mv_stack[ref_frame][0].this_mv.as_mv);
283 
284     if (tmp_sad > x->pred_mv_sad[LAST_FRAME]) return -1;
285 
286     frame_mv[NEWMV][ref_frame].as_int = mi->mv[0].as_int;
287     int_mv best_mv = mi->mv[0];
288     best_mv.as_mv.row >>= 3;
289     best_mv.as_mv.col >>= 3;
290     MV ref_mv = av1_get_ref_mv(x, 0).as_mv;
291 
292     *rate_mv = av1_mv_bit_cost(&frame_mv[NEWMV][ref_frame].as_mv, &ref_mv,
293                                x->mv_costs->nmv_joint_cost,
294                                x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
295     frame_mv[NEWMV][ref_frame].as_mv.row >>= 3;
296     frame_mv[NEWMV][ref_frame].as_mv.col >>= 3;
297 
298     SUBPEL_MOTION_SEARCH_PARAMS ms_params;
299     av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv,
300                                       cost_list);
301     MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv);
302     cpi->mv_search_params.find_fractional_mv_step(
303         xd, cm, &ms_params, start_mv, &best_mv.as_mv, &dis,
304         &x->pred_sse[ref_frame], NULL);
305     frame_mv[NEWMV][ref_frame].as_int = best_mv.as_int;
306   } else if (!combined_motion_search(cpi, x, bsize, mi_row, mi_col,
307                                      &frame_mv[NEWMV][ref_frame], rate_mv,
308                                      best_rdc->rdcost, 0)) {
309     return -1;
310   }
311 
312   return 0;
313 }
314 
315 /*!\brief Finds predicted motion vectors for a block.
316  *
317  * \ingroup nonrd_mode_search
318  * \callgraph
319  * \callergraph
320  * Finds predicted motion vectors for a block from a certain reference frame.
321  * First, it fills reference MV stack, then picks the test from the stack and
322  * predicts the final MV for a block for each mode.
323  * \param[in]    cpi                      Top-level encoder structure
324  * \param[in]    x                        Pointer to structure holding all the
325  *                                        data for the current macroblock
326  * \param[in]    ref_frame                Reference freme for which to find
327  *                                        ref MVs
328  * \param[in]    frame_mv                 Predicted MVs for a block
329  * \param[in]    tile_data                Pointer to struct holding adaptive
330  *                                        data/contexts/models for the tile
331  *                                        during encoding
332  * \param[in]    yv12_mb                  Buffer to hold predicted block
333  * \param[in]    bsize                    Current block size
334  * \param[in]    force_skip_low_temp_var  Flag indicating possible mode search
335  *                                        prune for low temporal variace  block
336  *
337  * \return Nothing is returned. Instead, predicted MVs are placed into
338  * \c frame_mv array
339  */
find_predictors(AV1_COMP * cpi,MACROBLOCK * x,MV_REFERENCE_FRAME ref_frame,int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],TileDataEnc * tile_data,struct buf_2d yv12_mb[8][MAX_MB_PLANE],BLOCK_SIZE bsize,int force_skip_low_temp_var)340 static INLINE void find_predictors(AV1_COMP *cpi, MACROBLOCK *x,
341                                    MV_REFERENCE_FRAME ref_frame,
342                                    int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES],
343                                    TileDataEnc *tile_data,
344                                    struct buf_2d yv12_mb[8][MAX_MB_PLANE],
345                                    BLOCK_SIZE bsize,
346                                    int force_skip_low_temp_var) {
347   AV1_COMMON *const cm = &cpi->common;
348   MACROBLOCKD *const xd = &x->e_mbd;
349   MB_MODE_INFO *const mbmi = xd->mi[0];
350   MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
351   const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
352   const int num_planes = av1_num_planes(cm);
353   (void)tile_data;
354 
355   x->pred_mv_sad[ref_frame] = INT_MAX;
356   frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
357   // TODO(kyslov) this needs various further optimizations. to be continued..
358   assert(yv12 != NULL);
359   if (yv12 != NULL) {
360     const struct scale_factors *const sf =
361         get_ref_scale_factors_const(cm, ref_frame);
362     av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
363     av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
364                      xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
365                      mbmi_ext->mode_context);
366     // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
367     // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
368     av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
369     av1_find_best_ref_mvs_from_stack(
370         cm->features.allow_high_precision_mv, mbmi_ext, ref_frame,
371         &frame_mv[NEARESTMV][ref_frame], &frame_mv[NEARMV][ref_frame], 0);
372     frame_mv[GLOBALMV][ref_frame] = mbmi_ext->global_mvs[ref_frame];
373     // Early exit for non-LAST frame if force_skip_low_temp_var is set.
374     if (!av1_is_scaled(sf) && bsize >= BLOCK_8X8 &&
375         !(force_skip_low_temp_var && ref_frame != LAST_FRAME)) {
376       av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
377                   bsize);
378     }
379   }
380   av1_count_overlappable_neighbors(cm, xd);
381   mbmi->num_proj_ref = 1;
382 }
383 
estimate_single_ref_frame_costs(const AV1_COMMON * cm,const MACROBLOCKD * xd,const ModeCosts * mode_costs,int segment_id,unsigned int * ref_costs_single)384 static void estimate_single_ref_frame_costs(const AV1_COMMON *cm,
385                                             const MACROBLOCKD *xd,
386                                             const ModeCosts *mode_costs,
387                                             int segment_id,
388                                             unsigned int *ref_costs_single) {
389   int seg_ref_active =
390       segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
391   if (seg_ref_active) {
392     memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
393   } else {
394     int intra_inter_ctx = av1_get_intra_inter_context(xd);
395     ref_costs_single[INTRA_FRAME] =
396         mode_costs->intra_inter_cost[intra_inter_ctx][0];
397     unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
398     ref_costs_single[LAST_FRAME] = base_cost;
399     ref_costs_single[GOLDEN_FRAME] = base_cost;
400     ref_costs_single[ALTREF_FRAME] = base_cost;
401     // add cost for last, golden, altref
402     ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[0][0][0];
403     ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][0][1];
404     ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[0][1][0];
405     ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][0][1];
406     ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[0][2][0];
407   }
408 }
409 
estimate_comp_ref_frame_costs(const AV1_COMMON * cm,const MACROBLOCKD * xd,const ModeCosts * mode_costs,int segment_id,unsigned int (* ref_costs_comp)[REF_FRAMES])410 static void estimate_comp_ref_frame_costs(
411     const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs,
412     int segment_id, unsigned int (*ref_costs_comp)[REF_FRAMES]) {
413   if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
414     for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
415       memset(ref_costs_comp[ref_frame], 0,
416              REF_FRAMES * sizeof((*ref_costs_comp)[0]));
417   } else {
418     int intra_inter_ctx = av1_get_intra_inter_context(xd);
419     unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
420 
421     if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
422       // Similar to single ref, determine cost of compound ref frames.
423       // cost_compound_refs = cost_first_ref + cost_second_ref
424       const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
425       const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
426       const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
427       const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
428       const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
429 
430       const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
431       unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
432 
433       ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
434           ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
435               base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
436       ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
437       ref_bicomp_costs[ALTREF_FRAME] = 0;
438 
439       // cost of first ref frame
440       ref_bicomp_costs[LAST_FRAME] +=
441           mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
442       ref_bicomp_costs[LAST2_FRAME] +=
443           mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
444       ref_bicomp_costs[LAST3_FRAME] +=
445           mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
446       ref_bicomp_costs[GOLDEN_FRAME] +=
447           mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
448 
449       ref_bicomp_costs[LAST_FRAME] +=
450           mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0];
451       ref_bicomp_costs[LAST2_FRAME] +=
452           mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1];
453 
454       ref_bicomp_costs[LAST3_FRAME] +=
455           mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0];
456       ref_bicomp_costs[GOLDEN_FRAME] +=
457           mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1];
458 
459       // cost of second ref frame
460       ref_bicomp_costs[BWDREF_FRAME] +=
461           mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
462       ref_bicomp_costs[ALTREF2_FRAME] +=
463           mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
464       ref_bicomp_costs[ALTREF_FRAME] +=
465           mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
466 
467       ref_bicomp_costs[BWDREF_FRAME] +=
468           mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
469       ref_bicomp_costs[ALTREF2_FRAME] +=
470           mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
471 
472       // cost: if one ref frame is forward ref, the other ref is backward ref
473       for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
474         for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
475           ref_costs_comp[ref0][ref1] =
476               ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
477         }
478       }
479 
480       // cost: if both ref frames are the same side.
481       const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
482       const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
483       const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
484       ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
485           base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
486           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
487           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
488       ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
489           base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
490           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
491           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
492           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
493       ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
494           base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
495           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
496           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
497           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
498       ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
499           base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
500           mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
501     } else {
502       for (int ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
503         for (int ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
504           ref_costs_comp[ref0][ref1] = 512;
505       }
506       ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
507       ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
508       ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
509       ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
510     }
511   }
512 }
513 
calculate_tx_size(const AV1_COMP * const cpi,BLOCK_SIZE bsize,MACROBLOCK * const x,unsigned int var,unsigned int sse)514 static TX_SIZE calculate_tx_size(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
515                                  MACROBLOCK *const x, unsigned int var,
516                                  unsigned int sse) {
517   MACROBLOCKD *const xd = &x->e_mbd;
518   TX_SIZE tx_size;
519   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
520   if (txfm_params->tx_mode_search_type == TX_MODE_SELECT) {
521     if (sse > (var << 2))
522       tx_size =
523           AOMMIN(max_txsize_lookup[bsize],
524                  tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
525     else
526       tx_size = TX_8X8;
527 
528     if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
529         cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id))
530       tx_size = TX_8X8;
531     else if (tx_size > TX_16X16)
532       tx_size = TX_16X16;
533   } else {
534     tx_size =
535         AOMMIN(max_txsize_lookup[bsize],
536                tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
537   }
538 
539   if (txfm_params->tx_mode_search_type != ONLY_4X4 && bsize > BLOCK_32X32)
540     tx_size = TX_16X16;
541 
542   return AOMMIN(tx_size, TX_16X16);
543 }
544 
545 static const uint8_t b_width_log2_lookup[BLOCK_SIZES] = { 0, 0, 1, 1, 1, 2,
546                                                           2, 2, 3, 3, 3, 4,
547                                                           4, 4, 5, 5 };
548 static const uint8_t b_height_log2_lookup[BLOCK_SIZES] = { 0, 1, 0, 1, 2, 1,
549                                                            2, 3, 2, 3, 4, 3,
550                                                            4, 5, 4, 5 };
551 
block_variance(const uint8_t * src,int src_stride,const uint8_t * ref,int ref_stride,int w,int h,unsigned int * sse,int * sum,int block_size,uint32_t * sse8x8,int * sum8x8,uint32_t * var8x8)552 static void block_variance(const uint8_t *src, int src_stride,
553                            const uint8_t *ref, int ref_stride, int w, int h,
554                            unsigned int *sse, int *sum, int block_size,
555                            uint32_t *sse8x8, int *sum8x8, uint32_t *var8x8) {
556   int i, j, k = 0;
557 
558   *sse = 0;
559   *sum = 0;
560 
561   for (i = 0; i < h; i += block_size) {
562     for (j = 0; j < w; j += block_size) {
563       aom_get8x8var(src + src_stride * i + j, src_stride,
564                     ref + ref_stride * i + j, ref_stride, &sse8x8[k],
565                     &sum8x8[k]);
566       *sse += sse8x8[k];
567       *sum += sum8x8[k];
568       var8x8[k] = sse8x8[k] - (uint32_t)(((int64_t)sum8x8[k] * sum8x8[k]) >> 6);
569       k++;
570     }
571   }
572 }
573 
calculate_variance(int bw,int bh,TX_SIZE tx_size,unsigned int * sse_i,int * sum_i,unsigned int * var_o,unsigned int * sse_o,int * sum_o)574 static void calculate_variance(int bw, int bh, TX_SIZE tx_size,
575                                unsigned int *sse_i, int *sum_i,
576                                unsigned int *var_o, unsigned int *sse_o,
577                                int *sum_o) {
578   const BLOCK_SIZE unit_size = txsize_to_bsize[tx_size];
579   const int nw = 1 << (bw - b_width_log2_lookup[unit_size]);
580   const int nh = 1 << (bh - b_height_log2_lookup[unit_size]);
581   int i, j, k = 0;
582 
583   for (i = 0; i < nh; i += 2) {
584     for (j = 0; j < nw; j += 2) {
585       sse_o[k] = sse_i[i * nw + j] + sse_i[i * nw + j + 1] +
586                  sse_i[(i + 1) * nw + j] + sse_i[(i + 1) * nw + j + 1];
587       sum_o[k] = sum_i[i * nw + j] + sum_i[i * nw + j + 1] +
588                  sum_i[(i + 1) * nw + j] + sum_i[(i + 1) * nw + j + 1];
589       var_o[k] = sse_o[k] - (uint32_t)(((int64_t)sum_o[k] * sum_o[k]) >>
590                                        (b_width_log2_lookup[unit_size] +
591                                         b_height_log2_lookup[unit_size] + 6));
592       k++;
593     }
594   }
595 }
596 
597 // Adjust the ac_thr according to speed, width, height and normalized sum
ac_thr_factor(const int speed,const int width,const int height,const int norm_sum)598 static int ac_thr_factor(const int speed, const int width, const int height,
599                          const int norm_sum) {
600   if (speed >= 8 && norm_sum < 5) {
601     if (width <= 640 && height <= 480)
602       return 4;
603     else
604       return 2;
605   }
606   return 1;
607 }
608 
model_skip_for_sb_y_large(AV1_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,MACROBLOCK * x,MACROBLOCKD * xd,RD_STATS * rd_stats,int * early_term,int calculate_rd)609 static void model_skip_for_sb_y_large(AV1_COMP *cpi, BLOCK_SIZE bsize,
610                                       int mi_row, int mi_col, MACROBLOCK *x,
611                                       MACROBLOCKD *xd, RD_STATS *rd_stats,
612                                       int *early_term, int calculate_rd) {
613   // Note our transform coeffs are 8 times an orthogonal transform.
614   // Hence quantizer step is also 8 times. To get effective quantizer
615   // we need to divide by 8 before sending to modeling function.
616   unsigned int sse;
617   struct macroblock_plane *const p = &x->plane[0];
618   struct macroblockd_plane *const pd = &xd->plane[0];
619   const uint32_t dc_quant = p->dequant_QTX[0];
620   const uint32_t ac_quant = p->dequant_QTX[1];
621   const int64_t dc_thr = dc_quant * dc_quant >> 6;
622   int64_t ac_thr = ac_quant * ac_quant >> 6;
623   unsigned int var;
624   int sum;
625 
626   const int bw = b_width_log2_lookup[bsize];
627   const int bh = b_height_log2_lookup[bsize];
628   const int num8x8 = 1 << (bw + bh - 2);
629   unsigned int sse8x8[256] = { 0 };
630   int sum8x8[256] = { 0 };
631   unsigned int var8x8[256] = { 0 };
632   TX_SIZE tx_size;
633   int k;
634   // Calculate variance for whole partition, and also save 8x8 blocks' variance
635   // to be used in following transform skipping test.
636   block_variance(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
637                  4 << bw, 4 << bh, &sse, &sum, 8, sse8x8, sum8x8, var8x8);
638   var = sse - (unsigned int)(((int64_t)sum * sum) >> (bw + bh + 4));
639 
640   rd_stats->sse = sse;
641 
642 #if CONFIG_AV1_TEMPORAL_DENOISING
643   if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
644       cpi->oxcf.speed > 5)
645     ac_thr = av1_scale_acskip_thresh(ac_thr, cpi->denoiser.denoising_level,
646                                      (abs(sum) >> (bw + bh)),
647                                      cpi->svc.temporal_layer_id);
648   else
649     ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
650                             cpi->common.height, abs(sum) >> (bw + bh));
651 #else
652   ac_thr *= ac_thr_factor(cpi->oxcf.speed, cpi->common.width,
653                           cpi->common.height, abs(sum) >> (bw + bh));
654 
655 #endif
656   tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
657   // The code below for setting skip flag assumes tranform size of at least 8x8,
658   // so force this lower limit on transform.
659   if (tx_size < TX_8X8) tx_size = TX_8X8;
660   xd->mi[0]->tx_size = tx_size;
661 
662   // Evaluate if the partition block is a skippable block in Y plane.
663   {
664     unsigned int sse16x16[64] = { 0 };
665     int sum16x16[64] = { 0 };
666     unsigned int var16x16[64] = { 0 };
667     const int num16x16 = num8x8 >> 2;
668 
669     unsigned int sse32x32[16] = { 0 };
670     int sum32x32[16] = { 0 };
671     unsigned int var32x32[16] = { 0 };
672     const int num32x32 = num8x8 >> 4;
673 
674     int ac_test = 1;
675     int dc_test = 1;
676     const int num = (tx_size == TX_8X8)
677                         ? num8x8
678                         : ((tx_size == TX_16X16) ? num16x16 : num32x32);
679     const unsigned int *sse_tx =
680         (tx_size == TX_8X8) ? sse8x8
681                             : ((tx_size == TX_16X16) ? sse16x16 : sse32x32);
682     const unsigned int *var_tx =
683         (tx_size == TX_8X8) ? var8x8
684                             : ((tx_size == TX_16X16) ? var16x16 : var32x32);
685 
686     // Calculate variance if tx_size > TX_8X8
687     if (tx_size >= TX_16X16)
688       calculate_variance(bw, bh, TX_8X8, sse8x8, sum8x8, var16x16, sse16x16,
689                          sum16x16);
690     if (tx_size == TX_32X32)
691       calculate_variance(bw, bh, TX_16X16, sse16x16, sum16x16, var32x32,
692                          sse32x32, sum32x32);
693 
694     // Skipping test
695     *early_term = 0;
696     for (k = 0; k < num; k++)
697       // Check if all ac coefficients can be quantized to zero.
698       if (!(var_tx[k] < ac_thr || var == 0)) {
699         ac_test = 0;
700         break;
701       }
702 
703     for (k = 0; k < num; k++)
704       // Check if dc coefficient can be quantized to zero.
705       if (!(sse_tx[k] - var_tx[k] < dc_thr || sse == var)) {
706         dc_test = 0;
707         break;
708       }
709 
710     if (ac_test && dc_test) {
711       int skip_uv[2] = { 0 };
712       unsigned int var_uv[2];
713       unsigned int sse_uv[2];
714       AV1_COMMON *const cm = &cpi->common;
715       // Transform skipping test in UV planes.
716       for (int i = 1; i <= 2; i++) {
717         int j = i - 1;
718         skip_uv[j] = 1;
719         if (x->color_sensitivity[j]) {
720           skip_uv[j] = 0;
721           struct macroblock_plane *const puv = &x->plane[i];
722           struct macroblockd_plane *const puvd = &xd->plane[i];
723           const BLOCK_SIZE uv_bsize = get_plane_block_size(
724               bsize, puvd->subsampling_x, puvd->subsampling_y);
725           // Adjust these thresholds for UV.
726           const int64_t uv_dc_thr =
727               (puv->dequant_QTX[0] * puv->dequant_QTX[0]) >> 3;
728           const int64_t uv_ac_thr =
729               (puv->dequant_QTX[1] * puv->dequant_QTX[1]) >> 3;
730           av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, i,
731                                         i);
732           var_uv[j] = cpi->fn_ptr[uv_bsize].vf(puv->src.buf, puv->src.stride,
733                                                puvd->dst.buf, puvd->dst.stride,
734                                                &sse_uv[j]);
735           if ((var_uv[j] < uv_ac_thr || var_uv[j] == 0) &&
736               (sse_uv[j] - var_uv[j] < uv_dc_thr || sse_uv[j] == var_uv[j]))
737             skip_uv[j] = 1;
738           else
739             break;
740         }
741       }
742       if (skip_uv[0] & skip_uv[1]) {
743         *early_term = 1;
744       }
745     }
746   }
747   if (calculate_rd) {
748     if (!*early_term) {
749       const int bwide = block_size_wide[bsize];
750       const int bhigh = block_size_high[bsize];
751 
752       model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh,
753                             &rd_stats->rate, &rd_stats->dist);
754     }
755 
756     if (*early_term) {
757       rd_stats->rate = 0;
758       rd_stats->dist = sse << 4;
759     }
760   }
761 }
762 
model_rd_for_sb_y(const AV1_COMP * const cpi,BLOCK_SIZE bsize,MACROBLOCK * x,MACROBLOCKD * xd,RD_STATS * rd_stats,int calculate_rd)763 static void model_rd_for_sb_y(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
764                               MACROBLOCK *x, MACROBLOCKD *xd,
765                               RD_STATS *rd_stats, int calculate_rd) {
766   // Note our transform coeffs are 8 times an orthogonal transform.
767   // Hence quantizer step is also 8 times. To get effective quantizer
768   // we need to divide by 8 before sending to modeling function.
769   const int ref = xd->mi[0]->ref_frame[0];
770 
771   assert(bsize < BLOCK_SIZES_ALL);
772 
773   struct macroblock_plane *const p = &x->plane[0];
774   struct macroblockd_plane *const pd = &xd->plane[0];
775   unsigned int sse;
776   int rate;
777   int64_t dist;
778 
779   unsigned int var = cpi->fn_ptr[bsize].vf(p->src.buf, p->src.stride,
780                                            pd->dst.buf, pd->dst.stride, &sse);
781   xd->mi[0]->tx_size = calculate_tx_size(cpi, bsize, x, var, sse);
782 
783   if (calculate_rd) {
784     const int bwide = block_size_wide[bsize];
785     const int bhigh = block_size_high[bsize];
786     model_rd_with_curvfit(cpi, x, bsize, AOM_PLANE_Y, sse, bwide * bhigh, &rate,
787                           &dist);
788   } else {
789     rate = INT_MAX;  // this will be overwritten later with block_yrd
790     dist = INT_MAX;
791   }
792   rd_stats->sse = sse;
793   x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);
794 
795   assert(rate >= 0);
796 
797   rd_stats->skip_txfm = (rate == 0);
798   rate = AOMMIN(rate, INT_MAX);
799   rd_stats->rate = rate;
800   rd_stats->dist = dist;
801 }
802 
803 /*!\brief Calculates RD Cost using Hadamard transform.
804  *
805  * \ingroup nonrd_mode_search
806  * \callgraph
807  * \callergraph
808  * Calculates RD Cost using Hadamard transform. For low bit depth this function
809  * uses low-precision set of functions (16-bit) and 32 bit for high bit depth
810  * \param[in]    cpi            Top-level encoder structure
811  * \param[in]    x              Pointer to structure holding all the data for
812                                 the current macroblock
813  * \param[in]    mi_row         Row index in 4x4 units
814  * \param[in]    mi_col         Column index in 4x4 units
815  * \param[in]    this_rdc       Pointer to calculated RD Cost
816  * \param[in]    skippable      Pointer to a flag indicating possible tx skip
817  * \param[in]    bsize          Current block size
818  * \param[in]    tx_size        Transform size
819  *
820  * \return Nothing is returned. Instead, calculated RD cost is placed to
821  * \c this_rdc. \c skippable flag is set if there is no non-zero quantized
822  * coefficients for Hadamard transform
823  */
block_yrd(AV1_COMP * cpi,MACROBLOCK * x,int mi_row,int mi_col,RD_STATS * this_rdc,int * skippable,BLOCK_SIZE bsize,TX_SIZE tx_size)824 static void block_yrd(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
825                       RD_STATS *this_rdc, int *skippable, BLOCK_SIZE bsize,
826                       TX_SIZE tx_size) {
827   MACROBLOCKD *xd = &x->e_mbd;
828   const struct macroblockd_plane *pd = &xd->plane[0];
829   struct macroblock_plane *const p = &x->plane[0];
830   const int num_4x4_w = mi_size_wide[bsize];
831   const int num_4x4_h = mi_size_high[bsize];
832   const int step = 1 << (tx_size << 1);
833   const int block_step = (1 << tx_size);
834   int block = 0;
835   const int max_blocks_wide =
836       num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5);
837   const int max_blocks_high =
838       num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5);
839   int eob_cost = 0;
840   const int bw = 4 * num_4x4_w;
841   const int bh = 4 * num_4x4_h;
842 
843   (void)mi_row;
844   (void)mi_col;
845   (void)cpi;
846 
847 #if CONFIG_AV1_HIGHBITDEPTH
848   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
849     aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf,
850                               p->src.stride, pd->dst.buf, pd->dst.stride,
851                               x->e_mbd.bd);
852   } else {
853     aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
854                        pd->dst.buf, pd->dst.stride);
855   }
856 #else
857   aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
858                      pd->dst.buf, pd->dst.stride);
859 #endif
860 
861   *skippable = 1;
862   // Keep track of the row and column of the blocks we use so that we know
863   // if we are in the unrestricted motion border.
864   for (int r = 0; r < max_blocks_high; r += block_step) {
865     for (int c = 0; c < num_4x4_w; c += block_step) {
866       if (c < max_blocks_wide) {
867         const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT];
868         const int block_offset = BLOCK_OFFSET(block);
869 #if CONFIG_AV1_HIGHBITDEPTH
870         tran_low_t *const coeff = p->coeff + block_offset;
871         tran_low_t *const qcoeff = p->qcoeff + block_offset;
872         tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
873 #else
874         int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
875         int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
876         int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset;
877 #endif
878         uint16_t *const eob = &p->eobs[block];
879         const int diff_stride = bw;
880         const int16_t *src_diff;
881         src_diff = &p->src_diff[(r * diff_stride + c) << 2];
882 
883         switch (tx_size) {
884           case TX_64X64:
885             assert(0);  // Not implemented
886             break;
887           case TX_32X32:
888             assert(0);  // Not used
889             break;
890 #if CONFIG_AV1_HIGHBITDEPTH
891           case TX_16X16:
892             aom_hadamard_16x16(src_diff, diff_stride, coeff);
893             av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX,
894                             p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
895                             dqcoeff, p->dequant_QTX, eob, scan_order->scan,
896                             scan_order->iscan);
897             break;
898           case TX_8X8:
899             aom_hadamard_8x8(src_diff, diff_stride, coeff);
900             av1_quantize_fp(coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX,
901                             p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
902                             dqcoeff, p->dequant_QTX, eob, scan_order->scan,
903                             scan_order->iscan);
904             break;
905           default:
906             assert(tx_size == TX_4X4);
907             aom_fdct4x4(src_diff, coeff, diff_stride);
908             av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX,
909                             p->quant_fp_QTX, p->quant_shift_QTX, qcoeff,
910                             dqcoeff, p->dequant_QTX, eob, scan_order->scan,
911                             scan_order->iscan);
912             break;
913 #else
914           case TX_16X16:
915             aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff);
916             av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX,
917                             p->quant_fp_QTX, low_qcoeff, low_dqcoeff,
918                             p->dequant_QTX, eob, scan_order->scan);
919             break;
920           case TX_8X8:
921             aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff);
922             av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX,
923                             low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
924                             scan_order->scan);
925             break;
926           default:
927             assert(tx_size == TX_4X4);
928             aom_fdct4x4_lp(src_diff, low_coeff, diff_stride);
929             av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX,
930                             low_qcoeff, low_dqcoeff, p->dequant_QTX, eob,
931                             scan_order->scan);
932             break;
933 #endif
934         }
935         assert(*eob <= 1024);
936         *skippable &= (*eob == 0);
937         eob_cost += 1;
938       }
939       block += step;
940     }
941   }
942   this_rdc->skip_txfm = *skippable;
943   this_rdc->rate = 0;
944   if (this_rdc->sse < INT64_MAX) {
945     this_rdc->sse = (this_rdc->sse << 6) >> 2;
946     if (*skippable) {
947       this_rdc->dist = this_rdc->sse;
948       return;
949     }
950   }
951 
952   block = 0;
953   this_rdc->dist = 0;
954   for (int r = 0; r < max_blocks_high; r += block_step) {
955     for (int c = 0; c < num_4x4_w; c += block_step) {
956       if (c < max_blocks_wide) {
957         const int block_offset = BLOCK_OFFSET(block);
958         uint16_t *const eob = &p->eobs[block];
959 #if CONFIG_AV1_HIGHBITDEPTH
960         int64_t dummy;
961         tran_low_t *const coeff = p->coeff + block_offset;
962         tran_low_t *const qcoeff = p->qcoeff + block_offset;
963         tran_low_t *const dqcoeff = p->dqcoeff + block_offset;
964 
965         if (*eob == 1)
966           this_rdc->rate += (int)abs(qcoeff[0]);
967         else if (*eob > 1)
968           this_rdc->rate += aom_satd(qcoeff, step << 4);
969 
970         this_rdc->dist +=
971             av1_block_error(coeff, dqcoeff, step << 4, &dummy) >> 2;
972 #else
973         int16_t *const low_coeff = (int16_t *)p->coeff + block_offset;
974         int16_t *const low_qcoeff = (int16_t *)p->qcoeff + block_offset;
975         int16_t *const low_dqcoeff = (int16_t *)p->dqcoeff + block_offset;
976 
977         if (*eob == 1)
978           this_rdc->rate += (int)abs(low_qcoeff[0]);
979         else if (*eob > 1)
980           this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4);
981 
982         this_rdc->dist +=
983             av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2;
984 #endif
985       }
986       block += step;
987     }
988   }
989 
990   // If skippable is set, rate gets clobbered later.
991   this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT);
992   this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT);
993 }
994 
init_mbmi(MB_MODE_INFO * mbmi,PREDICTION_MODE pred_mode,MV_REFERENCE_FRAME ref_frame0,MV_REFERENCE_FRAME ref_frame1,const AV1_COMMON * cm)995 static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE pred_mode,
996                              MV_REFERENCE_FRAME ref_frame0,
997                              MV_REFERENCE_FRAME ref_frame1,
998                              const AV1_COMMON *cm) {
999   PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
1000   mbmi->ref_mv_idx = 0;
1001   mbmi->mode = pred_mode;
1002   mbmi->uv_mode = UV_DC_PRED;
1003   mbmi->ref_frame[0] = ref_frame0;
1004   mbmi->ref_frame[1] = ref_frame1;
1005   pmi->palette_size[0] = 0;
1006   pmi->palette_size[1] = 0;
1007   mbmi->filter_intra_mode_info.use_filter_intra = 0;
1008   mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
1009   mbmi->motion_mode = SIMPLE_TRANSLATION;
1010   mbmi->num_proj_ref = 1;
1011   mbmi->interintra_mode = 0;
1012   set_default_interp_filters(mbmi, cm->features.interp_filter);
1013 }
1014 
1015 #if CONFIG_INTERNAL_STATS
store_coding_context(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx,int mode_index)1016 static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
1017                                  int mode_index) {
1018 #else
1019 static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1020 #endif  // CONFIG_INTERNAL_STATS
1021   MACROBLOCKD *const xd = &x->e_mbd;
1022   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
1023 
1024   // Take a snapshot of the coding context so it can be
1025   // restored if we decide to encode this way
1026   ctx->rd_stats.skip_txfm = txfm_info->skip_txfm;
1027 
1028   memset(ctx->blk_skip, 0, sizeof(ctx->blk_skip[0]) * ctx->num_4x4_blk);
1029   memset(ctx->tx_type_map, DCT_DCT,
1030          sizeof(ctx->tx_type_map[0]) * ctx->num_4x4_blk);
1031   ctx->skippable = txfm_info->skip_txfm;
1032 #if CONFIG_INTERNAL_STATS
1033   ctx->best_mode_index = mode_index;
1034 #endif  // CONFIG_INTERNAL_STATS
1035   ctx->mic = *xd->mi[0];
1036   ctx->skippable = txfm_info->skip_txfm;
1037   av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
1038                                       av1_ref_frame_type(xd->mi[0]->ref_frame));
1039   ctx->comp_pred_diff = 0;
1040   ctx->hybrid_pred_diff = 0;
1041   ctx->single_pred_diff = 0;
1042 }
1043 
1044 static int get_pred_buffer(PRED_BUFFER *p, int len) {
1045   for (int i = 0; i < len; i++) {
1046     if (!p[i].in_use) {
1047       p[i].in_use = 1;
1048       return i;
1049     }
1050   }
1051   return -1;
1052 }
1053 
1054 static void free_pred_buffer(PRED_BUFFER *p) {
1055   if (p != NULL) p->in_use = 0;
1056 }
1057 
1058 static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
1059                        int16_t mode_context) {
1060   if (is_inter_compound_mode(mode)) {
1061     return mode_costs
1062         ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
1063   }
1064 
1065   int mode_cost = 0;
1066   int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
1067 
1068   assert(is_inter_mode(mode));
1069 
1070   if (mode == NEWMV) {
1071     mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
1072     return mode_cost;
1073   } else {
1074     mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
1075     mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
1076 
1077     if (mode == GLOBALMV) {
1078       mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
1079       return mode_cost;
1080     } else {
1081       mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
1082       mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
1083       mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
1084       return mode_cost;
1085     }
1086   }
1087 }
1088 
1089 static void newmv_diff_bias(MACROBLOCKD *xd, PREDICTION_MODE this_mode,
1090                             RD_STATS *this_rdc, BLOCK_SIZE bsize, int mv_row,
1091                             int mv_col, int speed, uint32_t spatial_variance,
1092                             CONTENT_STATE_SB content_state_sb) {
1093   // Bias against MVs associated with NEWMV mode that are very different from
1094   // top/left neighbors.
1095   if (this_mode == NEWMV) {
1096     int al_mv_average_row;
1097     int al_mv_average_col;
1098     int left_row, left_col;
1099     int row_diff, col_diff;
1100     int above_mv_valid = 0;
1101     int left_mv_valid = 0;
1102     int above_row = 0;
1103     int above_col = 0;
1104     if (bsize >= BLOCK_64X64 && content_state_sb.source_sad != kHighSad &&
1105         spatial_variance < 300 &&
1106         (mv_row > 16 || mv_row < -16 || mv_col > 16 || mv_col < -16)) {
1107       this_rdc->rdcost = this_rdc->rdcost << 2;
1108       return;
1109     }
1110     if (xd->above_mbmi) {
1111       above_mv_valid = xd->above_mbmi->mv[0].as_int != INVALID_MV;
1112       above_row = xd->above_mbmi->mv[0].as_mv.row;
1113       above_col = xd->above_mbmi->mv[0].as_mv.col;
1114     }
1115     if (xd->left_mbmi) {
1116       left_mv_valid = xd->left_mbmi->mv[0].as_int != INVALID_MV;
1117       left_row = xd->left_mbmi->mv[0].as_mv.row;
1118       left_col = xd->left_mbmi->mv[0].as_mv.col;
1119     }
1120     if (above_mv_valid && left_mv_valid) {
1121       al_mv_average_row = (above_row + left_row + 1) >> 1;
1122       al_mv_average_col = (above_col + left_col + 1) >> 1;
1123     } else if (above_mv_valid) {
1124       al_mv_average_row = above_row;
1125       al_mv_average_col = above_col;
1126     } else if (left_mv_valid) {
1127       al_mv_average_row = left_row;
1128       al_mv_average_col = left_col;
1129     } else {
1130       al_mv_average_row = al_mv_average_col = 0;
1131     }
1132     row_diff = al_mv_average_row - mv_row;
1133     col_diff = al_mv_average_col - mv_col;
1134     if (row_diff > 80 || row_diff < -80 || col_diff > 80 || col_diff < -80) {
1135       if (bsize >= BLOCK_32X32)
1136         this_rdc->rdcost = this_rdc->rdcost << 1;
1137       else
1138         this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
1139     }
1140   } else {
1141     // Bias for speed >= 8 for low spatial variance.
1142     if (speed >= 8 && spatial_variance < 150 &&
1143         (mv_row > 64 || mv_row < -64 || mv_col > 64 || mv_col < -64))
1144       this_rdc->rdcost = 5 * this_rdc->rdcost >> 2;
1145   }
1146 }
1147 
1148 static void model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize,
1149                                MACROBLOCK *x, MACROBLOCKD *xd,
1150                                RD_STATS *this_rdc, int64_t *sse_y,
1151                                int start_plane, int stop_plane) {
1152   // Note our transform coeffs are 8 times an orthogonal transform.
1153   // Hence quantizer step is also 8 times. To get effective quantizer
1154   // we need to divide by 8 before sending to modeling function.
1155   unsigned int sse;
1156   int rate;
1157   int64_t dist;
1158   int i;
1159   int64_t tot_sse = *sse_y;
1160 
1161   this_rdc->rate = 0;
1162   this_rdc->dist = 0;
1163   this_rdc->skip_txfm = 0;
1164 
1165   for (i = start_plane; i <= stop_plane; ++i) {
1166     struct macroblock_plane *const p = &x->plane[i];
1167     struct macroblockd_plane *const pd = &xd->plane[i];
1168     const uint32_t dc_quant = p->dequant_QTX[0];
1169     const uint32_t ac_quant = p->dequant_QTX[1];
1170     const BLOCK_SIZE bs = plane_bsize;
1171     unsigned int var;
1172     if (!x->color_sensitivity[i - 1]) continue;
1173 
1174     var = cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
1175                              pd->dst.stride, &sse);
1176     assert(sse >= var);
1177     tot_sse += sse;
1178 
1179     av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs],
1180                                  dc_quant >> 3, &rate, &dist);
1181 
1182     this_rdc->rate += rate >> 1;
1183     this_rdc->dist += dist << 3;
1184 
1185     av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3,
1186                                  &rate, &dist);
1187 
1188     this_rdc->rate += rate;
1189     this_rdc->dist += dist << 4;
1190   }
1191 
1192   if (this_rdc->rate == 0) {
1193     this_rdc->skip_txfm = 1;
1194   }
1195 
1196   if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >=
1197       RDCOST(x->rdmult, 0, tot_sse << 4)) {
1198     this_rdc->rate = 0;
1199     this_rdc->dist = tot_sse << 4;
1200     this_rdc->skip_txfm = 1;
1201   }
1202 
1203   *sse_y = tot_sse;
1204 }
1205 
1206 /*!\cond */
1207 struct estimate_block_intra_args {
1208   AV1_COMP *cpi;
1209   MACROBLOCK *x;
1210   PREDICTION_MODE mode;
1211   int skippable;
1212   RD_STATS *rdc;
1213 };
1214 /*!\endcond */
1215 
1216 /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case.
1217  *
1218  * \ingroup nonrd_mode_search
1219  * \callgraph
1220  * \callergraph
1221  * Calculates RD Cost for an intra mode for a single TX block using Hadamard
1222  * transform.
1223  * \param[in]    plane          Color plane
1224  * \param[in]    block          Index of a TX block in a prediction block
1225  * \param[in]    row            Row of a current TX block
1226  * \param[in]    col            Column of a current TX block
1227  * \param[in]    plane_bsize    Block size of a current prediction block
1228  * \param[in]    tx_size        Transform size
1229  * \param[in]    arg            Pointer to a structure that holds paramaters
1230  *                              for intra mode search
1231  *
1232  * \return Nothing is returned. Instead, best mode and RD Cost of the best mode
1233  * are set in \c args->rdc and \c args->mode
1234  */
1235 static void estimate_block_intra(int plane, int block, int row, int col,
1236                                  BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1237                                  void *arg) {
1238   struct estimate_block_intra_args *const args = arg;
1239   AV1_COMP *const cpi = args->cpi;
1240   AV1_COMMON *const cm = &cpi->common;
1241   MACROBLOCK *const x = args->x;
1242   MACROBLOCKD *const xd = &x->e_mbd;
1243   struct macroblock_plane *const p = &x->plane[plane];
1244   struct macroblockd_plane *const pd = &xd->plane[plane];
1245   const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size];
1246   uint8_t *const src_buf_base = p->src.buf;
1247   uint8_t *const dst_buf_base = pd->dst.buf;
1248   const int64_t src_stride = p->src.stride;
1249   const int64_t dst_stride = pd->dst.stride;
1250   RD_STATS this_rdc;
1251 
1252   (void)block;
1253 
1254   p->src.buf = &src_buf_base[4 * (row * src_stride + col)];
1255   pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)];
1256 
1257   av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
1258   av1_invalid_rd_stats(&this_rdc);
1259 
1260   if (plane == 0) {
1261     block_yrd(cpi, x, 0, 0, &this_rdc, &args->skippable, bsize_tx,
1262               AOMMIN(tx_size, TX_16X16));
1263   } else {
1264     int64_t sse = 0;
1265     model_rd_for_sb_uv(cpi, plane_bsize, x, xd, &this_rdc, &sse, plane, plane);
1266   }
1267 
1268   p->src.buf = src_buf_base;
1269   pd->dst.buf = dst_buf_base;
1270   args->rdc->rate += this_rdc.rate;
1271   args->rdc->dist += this_rdc.dist;
1272 }
1273 
1274 static INLINE void update_thresh_freq_fact(AV1_COMP *cpi, MACROBLOCK *x,
1275                                            BLOCK_SIZE bsize,
1276                                            MV_REFERENCE_FRAME ref_frame,
1277                                            THR_MODES best_mode_idx,
1278                                            PREDICTION_MODE mode) {
1279   const THR_MODES thr_mode_idx = mode_idx[ref_frame][mode_offset(mode)];
1280   const BLOCK_SIZE min_size = AOMMAX(bsize - 3, BLOCK_4X4);
1281   const BLOCK_SIZE max_size = AOMMIN(bsize + 6, BLOCK_128X128);
1282   for (BLOCK_SIZE bs = min_size; bs <= max_size; bs += 3) {
1283     int *freq_fact = &x->thresh_freq_fact[bs][thr_mode_idx];
1284     if (thr_mode_idx == best_mode_idx) {
1285       *freq_fact -= (*freq_fact >> 4);
1286     } else {
1287       *freq_fact =
1288           AOMMIN(*freq_fact + RD_THRESH_INC,
1289                  cpi->sf.inter_sf.adaptive_rd_thresh * RD_THRESH_MAX_FACT);
1290     }
1291   }
1292 }
1293 
1294 #if CONFIG_AV1_TEMPORAL_DENOISING
1295 static void av1_pickmode_ctx_den_update(
1296     AV1_PICKMODE_CTX_DEN *ctx_den, int64_t zero_last_cost_orig,
1297     unsigned int ref_frame_cost[REF_FRAMES],
1298     int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES], int reuse_inter_pred,
1299     BEST_PICKMODE *bp) {
1300   ctx_den->zero_last_cost_orig = zero_last_cost_orig;
1301   ctx_den->ref_frame_cost = ref_frame_cost;
1302   ctx_den->frame_mv = frame_mv;
1303   ctx_den->reuse_inter_pred = reuse_inter_pred;
1304   ctx_den->best_tx_size = bp->best_tx_size;
1305   ctx_den->best_mode = bp->best_mode;
1306   ctx_den->best_ref_frame = bp->best_ref_frame;
1307   ctx_den->best_pred_filter = bp->best_pred_filter;
1308   ctx_den->best_mode_skip_txfm = bp->best_mode_skip_txfm;
1309 }
1310 
1311 static void recheck_zeromv_after_denoising(
1312     AV1_COMP *cpi, MB_MODE_INFO *const mi, MACROBLOCK *x, MACROBLOCKD *const xd,
1313     AV1_DENOISER_DECISION decision, AV1_PICKMODE_CTX_DEN *ctx_den,
1314     struct buf_2d yv12_mb[4][MAX_MB_PLANE], RD_STATS *best_rdc,
1315     BEST_PICKMODE *best_pickmode, BLOCK_SIZE bsize, int mi_row, int mi_col) {
1316   // If INTRA or GOLDEN reference was selected, re-evaluate ZEROMV on
1317   // denoised result. Only do this under noise conditions, and if rdcost of
1318   // ZEROMV onoriginal source is not significantly higher than rdcost of best
1319   // mode.
1320   if (cpi->noise_estimate.enabled && cpi->noise_estimate.level > kLow &&
1321       ctx_den->zero_last_cost_orig < (best_rdc->rdcost << 3) &&
1322       ((ctx_den->best_ref_frame == INTRA_FRAME && decision >= FILTER_BLOCK) ||
1323        (ctx_den->best_ref_frame == GOLDEN_FRAME &&
1324         cpi->svc.number_spatial_layers == 1 &&
1325         decision == FILTER_ZEROMV_BLOCK))) {
1326     // Check if we should pick ZEROMV on denoised signal.
1327     AV1_COMMON *const cm = &cpi->common;
1328     RD_STATS this_rdc;
1329     const ModeCosts *mode_costs = &x->mode_costs;
1330     TxfmSearchInfo *txfm_info = &x->txfm_search_info;
1331     MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
1332 
1333     mi->mode = GLOBALMV;
1334     mi->ref_frame[0] = LAST_FRAME;
1335     mi->ref_frame[1] = NONE_FRAME;
1336     set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
1337     mi->mv[0].as_int = 0;
1338     mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
1339     xd->plane[0].pre[0] = yv12_mb[LAST_FRAME][0];
1340     av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1341     model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1);
1342 
1343     const int16_t mode_ctx =
1344         av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
1345     this_rdc.rate += cost_mv_ref(mode_costs, GLOBALMV, mode_ctx);
1346 
1347     this_rdc.rate += ctx_den->ref_frame_cost[LAST_FRAME];
1348     this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
1349     txfm_info->skip_txfm = this_rdc.skip_txfm;
1350     // Don't switch to ZEROMV if the rdcost for ZEROMV on denoised source
1351     // is higher than best_ref mode (on original source).
1352     if (this_rdc.rdcost > best_rdc->rdcost) {
1353       this_rdc = *best_rdc;
1354       mi->mode = best_pickmode->best_mode;
1355       mi->ref_frame[0] = best_pickmode->best_ref_frame;
1356       set_ref_ptrs(cm, xd, mi->ref_frame[0], NONE_FRAME);
1357       mi->interp_filters = best_pickmode->best_pred_filter;
1358       if (best_pickmode->best_ref_frame == INTRA_FRAME) {
1359         mi->mv[0].as_int = INVALID_MV;
1360       } else {
1361         mi->mv[0].as_int = ctx_den
1362                                ->frame_mv[best_pickmode->best_mode]
1363                                          [best_pickmode->best_ref_frame]
1364                                .as_int;
1365         if (ctx_den->reuse_inter_pred) {
1366           xd->plane[0].pre[0] = yv12_mb[GOLDEN_FRAME][0];
1367           av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1368         }
1369       }
1370       mi->tx_size = best_pickmode->best_tx_size;
1371       txfm_info->skip_txfm = best_pickmode->best_mode_skip_txfm;
1372     } else {
1373       ctx_den->best_ref_frame = LAST_FRAME;
1374       *best_rdc = this_rdc;
1375     }
1376   }
1377 }
1378 #endif  // CONFIG_AV1_TEMPORAL_DENOISING
1379 
1380 static INLINE int get_force_skip_low_temp_var_small_sb(uint8_t *variance_low,
1381                                                        int mi_row, int mi_col,
1382                                                        BLOCK_SIZE bsize) {
1383   // Relative indices of MB inside the superblock.
1384   const int mi_x = mi_row & 0xF;
1385   const int mi_y = mi_col & 0xF;
1386   // Relative indices of 16x16 block inside the superblock.
1387   const int i = mi_x >> 2;
1388   const int j = mi_y >> 2;
1389   int force_skip_low_temp_var = 0;
1390   // Set force_skip_low_temp_var based on the block size and block offset.
1391   switch (bsize) {
1392     case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break;
1393     case BLOCK_64X32:
1394       if (!mi_y && !mi_x) {
1395         force_skip_low_temp_var = variance_low[1];
1396       } else if (!mi_y && mi_x) {
1397         force_skip_low_temp_var = variance_low[2];
1398       }
1399       break;
1400     case BLOCK_32X64:
1401       if (!mi_y && !mi_x) {
1402         force_skip_low_temp_var = variance_low[3];
1403       } else if (mi_y && !mi_x) {
1404         force_skip_low_temp_var = variance_low[4];
1405       }
1406       break;
1407     case BLOCK_32X32:
1408       if (!mi_y && !mi_x) {
1409         force_skip_low_temp_var = variance_low[5];
1410       } else if (mi_y && !mi_x) {
1411         force_skip_low_temp_var = variance_low[6];
1412       } else if (!mi_y && mi_x) {
1413         force_skip_low_temp_var = variance_low[7];
1414       } else if (mi_y && mi_x) {
1415         force_skip_low_temp_var = variance_low[8];
1416       }
1417       break;
1418     case BLOCK_32X16:
1419     case BLOCK_16X32:
1420     case BLOCK_16X16:
1421       force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]];
1422       break;
1423     default: break;
1424   }
1425 
1426   return force_skip_low_temp_var;
1427 }
1428 
1429 static INLINE int get_force_skip_low_temp_var(uint8_t *variance_low, int mi_row,
1430                                               int mi_col, BLOCK_SIZE bsize) {
1431   int force_skip_low_temp_var = 0;
1432   int x, y;
1433   x = (mi_col & 0x1F) >> 4;
1434   // y = (mi_row & 0x1F) >> 4;
1435   // const int idx64 = (y << 1) + x;
1436   y = (mi_row & 0x17) >> 3;
1437   const int idx64 = y + x;
1438 
1439   x = (mi_col & 0xF) >> 3;
1440   // y = (mi_row & 0xF) >> 3;
1441   // const int idx32 = (y << 1) + x;
1442   y = (mi_row & 0xB) >> 2;
1443   const int idx32 = y + x;
1444 
1445   x = (mi_col & 0x7) >> 2;
1446   // y = (mi_row & 0x7) >> 2;
1447   // const int idx16 = (y << 1) + x;
1448   y = (mi_row & 0x5) >> 1;
1449   const int idx16 = y + x;
1450   // Set force_skip_low_temp_var based on the block size and block offset.
1451   switch (bsize) {
1452     case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break;
1453     case BLOCK_128X64:
1454       assert((mi_col & 0x1F) == 0);
1455       force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)];
1456       break;
1457     case BLOCK_64X128:
1458       assert((mi_row & 0x1F) == 0);
1459       force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)];
1460       break;
1461     case BLOCK_64X64:
1462       // Location of this 64x64 block inside the 128x128 superblock
1463       force_skip_low_temp_var = variance_low[5 + idx64];
1464       break;
1465     case BLOCK_64X32:
1466       x = (mi_col & 0x1F) >> 4;
1467       y = (mi_row & 0x1F) >> 3;
1468       /*
1469       .---------------.---------------.
1470       | x=0,y=0,idx=0 | x=0,y=0,idx=2 |
1471       :---------------+---------------:
1472       | x=0,y=1,idx=1 | x=1,y=1,idx=3 |
1473       :---------------+---------------:
1474       | x=0,y=2,idx=4 | x=1,y=2,idx=6 |
1475       :---------------+---------------:
1476       | x=0,y=3,idx=5 | x=1,y=3,idx=7 |
1477       '---------------'---------------'
1478       */
1479       const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2);
1480       force_skip_low_temp_var = variance_low[9 + idx64x32];
1481       break;
1482     case BLOCK_32X64:
1483       x = (mi_col & 0x1F) >> 3;
1484       y = (mi_row & 0x1F) >> 4;
1485       const int idx32x64 = (y << 2) + x;
1486       force_skip_low_temp_var = variance_low[17 + idx32x64];
1487       break;
1488     case BLOCK_32X32:
1489       force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32];
1490       break;
1491     case BLOCK_32X16:
1492     case BLOCK_16X32:
1493     case BLOCK_16X16:
1494       force_skip_low_temp_var =
1495           variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16];
1496       break;
1497     default: break;
1498   }
1499   return force_skip_low_temp_var;
1500 }
1501 
1502 #define FILTER_SEARCH_SIZE 2
1503 /*!\brief Searches for the best intrpolation filter
1504  *
1505  * \ingroup nonrd_mode_search
1506  * \callgraph
1507  * \callergraph
1508  * Iterates through subset of possible interpolation filters (currently
1509  * only EIGHTTAP_REGULAR and EIGTHTAP_SMOOTH in both directions) and selects
1510  * the one that gives lowest RD cost. RD cost is calculated using curvfit model
1511  *
1512  * \param[in]    cpi                  Top-level encoder structure
1513  * \param[in]    x                    Pointer to structure holding all the
1514  *                                    data for the current macroblock
1515  * \param[in]    this_rdc             Pointer to calculated RD Cost
1516  * \param[in]    mi_row               Row index in 4x4 units
1517  * \param[in]    mi_col               Column index in 4x4 units
1518  * \param[in]    tmp                  Pointer to a temporary buffer for
1519  *                                    prediction re-use
1520  * \param[in]    bsize                Current block size
1521  * \param[in]    reuse_inter_pred     Flag, indicating prediction re-use
1522  * \param[out]   this_mode_pred       Pointer to store prediction buffer
1523  *                                    for prediction re-use
1524  * \param[out]   this_early_term      Flag, indicating that transform can be
1525  *                                    skipped
1526  * \param[in]    use_model_yrd_large  Flag, indicating special logic to handle
1527  *                                    large blocks
1528  *
1529  * \return Nothing is returned. Instead, calculated RD cost is placed to
1530  * \c this_rdc and best filter is placed to \c mi->interp_filters. In case
1531  * \c reuse_inter_pred flag is set, this function also ouputs
1532  * \c this_mode_pred. Also \c this_early_temp is set if transform can be
1533  * skipped
1534  */
1535 static void search_filter_ref(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *this_rdc,
1536                               int mi_row, int mi_col, PRED_BUFFER *tmp,
1537                               BLOCK_SIZE bsize, int reuse_inter_pred,
1538                               PRED_BUFFER **this_mode_pred,
1539                               int *this_early_term, int use_model_yrd_large) {
1540   AV1_COMMON *const cm = &cpi->common;
1541   MACROBLOCKD *const xd = &x->e_mbd;
1542   struct macroblockd_plane *const pd = &xd->plane[0];
1543   MB_MODE_INFO *const mi = xd->mi[0];
1544   const int bw = block_size_wide[bsize];
1545   RD_STATS pf_rd_stats[FILTER_SEARCH_SIZE] = { 0 };
1546   TX_SIZE pf_tx_size[FILTER_SEARCH_SIZE] = { 0 };
1547   PRED_BUFFER *current_pred = *this_mode_pred;
1548   int best_skip = 0;
1549   int best_early_term = 0;
1550   int64_t best_cost = INT64_MAX;
1551   int best_filter_index = -1;
1552   InterpFilter filters[FILTER_SEARCH_SIZE] = { EIGHTTAP_REGULAR,
1553                                                EIGHTTAP_SMOOTH };
1554   for (int i = 0; i < FILTER_SEARCH_SIZE; ++i) {
1555     int64_t cost;
1556     InterpFilter filter = filters[i];
1557     mi->interp_filters = av1_broadcast_interp_filter(filter);
1558     av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1559     if (use_model_yrd_large)
1560       model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd,
1561                                 &pf_rd_stats[i], this_early_term, 1);
1562     else
1563       model_rd_for_sb_y(cpi, bsize, x, xd, &pf_rd_stats[i], 1);
1564     pf_rd_stats[i].rate += av1_get_switchable_rate(
1565         x, xd, cm->features.interp_filter, cm->seq_params.enable_dual_filter);
1566     cost = RDCOST(x->rdmult, pf_rd_stats[i].rate, pf_rd_stats[i].dist);
1567     pf_tx_size[i] = mi->tx_size;
1568     if (cost < best_cost) {
1569       best_filter_index = i;
1570       best_cost = cost;
1571       best_skip = pf_rd_stats[i].skip_txfm;
1572       best_early_term = *this_early_term;
1573       if (reuse_inter_pred) {
1574         if (*this_mode_pred != current_pred) {
1575           free_pred_buffer(*this_mode_pred);
1576           *this_mode_pred = current_pred;
1577         }
1578         current_pred = &tmp[get_pred_buffer(tmp, 3)];
1579         pd->dst.buf = current_pred->data;
1580         pd->dst.stride = bw;
1581       }
1582     }
1583   }
1584   assert(best_filter_index >= 0 && best_filter_index < FILTER_SEARCH_SIZE);
1585   if (reuse_inter_pred && *this_mode_pred != current_pred)
1586     free_pred_buffer(current_pred);
1587 
1588   mi->interp_filters = av1_broadcast_interp_filter(filters[best_filter_index]);
1589   mi->tx_size = pf_tx_size[best_filter_index];
1590   this_rdc->rate = pf_rd_stats[best_filter_index].rate;
1591   this_rdc->dist = pf_rd_stats[best_filter_index].dist;
1592   this_rdc->sse = pf_rd_stats[best_filter_index].sse;
1593   this_rdc->skip_txfm = (best_skip || best_early_term);
1594   *this_early_term = best_early_term;
1595   if (reuse_inter_pred) {
1596     pd->dst.buf = (*this_mode_pred)->data;
1597     pd->dst.stride = (*this_mode_pred)->stride;
1598   } else if (best_filter_index < FILTER_SEARCH_SIZE - 1) {
1599     av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
1600   }
1601 }
1602 
1603 #define COLLECT_PICK_MODE_STAT 0
1604 
1605 #if COLLECT_PICK_MODE_STAT
1606 typedef struct _mode_search_stat {
1607   int32_t num_blocks[BLOCK_SIZES];
1608   int64_t avg_block_times[BLOCK_SIZES];
1609   int32_t num_searches[BLOCK_SIZES][MB_MODE_COUNT];
1610   int32_t num_nonskipped_searches[BLOCK_SIZES][MB_MODE_COUNT];
1611   int64_t search_times[BLOCK_SIZES][MB_MODE_COUNT];
1612   int64_t nonskipped_search_times[BLOCK_SIZES][MB_MODE_COUNT];
1613   struct aom_usec_timer timer1;
1614   struct aom_usec_timer timer2;
1615 } mode_search_stat;
1616 #endif  // COLLECT_PICK_MODE_STAT
1617 
1618 static void compute_intra_yprediction(const AV1_COMMON *cm,
1619                                       PREDICTION_MODE mode, BLOCK_SIZE bsize,
1620                                       MACROBLOCK *x, MACROBLOCKD *xd) {
1621   struct macroblockd_plane *const pd = &xd->plane[0];
1622   struct macroblock_plane *const p = &x->plane[0];
1623   uint8_t *const src_buf_base = p->src.buf;
1624   uint8_t *const dst_buf_base = pd->dst.buf;
1625   const int src_stride = p->src.stride;
1626   const int dst_stride = pd->dst.stride;
1627   int plane = 0;
1628   int row, col;
1629   // block and transform sizes, in number of 4x4 blocks log 2 ("*_b")
1630   // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8
1631   // transform size varies per plane, look it up in a common way.
1632   const TX_SIZE tx_size = max_txsize_lookup[bsize];
1633   const BLOCK_SIZE plane_bsize =
1634       get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
1635   // If mb_to_right_edge is < 0 we are in a situation in which
1636   // the current block size extends into the UMV and we won't
1637   // visit the sub blocks that are wholly within the UMV.
1638   const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
1639   const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
1640   // Keep track of the row and column of the blocks we use so that we know
1641   // if we are in the unrestricted motion border.
1642   for (row = 0; row < max_blocks_high; row += (1 << tx_size)) {
1643     // Skip visiting the sub blocks that are wholly within the UMV.
1644     for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) {
1645       p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)];
1646       pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)];
1647       av1_predict_intra_block(cm, xd, block_size_wide[bsize],
1648                               block_size_high[bsize], tx_size, mode, 0, 0,
1649                               FILTER_INTRA_MODES, pd->dst.buf, dst_stride,
1650                               pd->dst.buf, dst_stride, 0, 0, plane);
1651     }
1652   }
1653   p->src.buf = src_buf_base;
1654   pd->dst.buf = dst_buf_base;
1655 }
1656 
1657 void av1_nonrd_pick_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost,
1658                                BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
1659   AV1_COMMON *const cm = &cpi->common;
1660   MACROBLOCKD *const xd = &x->e_mbd;
1661   MB_MODE_INFO *const mi = xd->mi[0];
1662   RD_STATS this_rdc, best_rdc;
1663   struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
1664   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1665   const TX_SIZE intra_tx_size =
1666       AOMMIN(max_txsize_lookup[bsize],
1667              tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]);
1668   int *bmode_costs;
1669   const MB_MODE_INFO *above_mi = xd->above_mbmi;
1670   const MB_MODE_INFO *left_mi = xd->left_mbmi;
1671   const PREDICTION_MODE A = av1_above_block_mode(above_mi);
1672   const PREDICTION_MODE L = av1_left_block_mode(left_mi);
1673   bmode_costs = x->mode_costs.y_mode_costs[A][L];
1674 
1675   av1_invalid_rd_stats(&best_rdc);
1676   av1_invalid_rd_stats(&this_rdc);
1677 
1678   init_mbmi(mi, DC_PRED, INTRA_FRAME, NONE_FRAME, cm);
1679   mi->mv[0].as_int = mi->mv[1].as_int = INVALID_MV;
1680 
1681   // Change the limit of this loop to add other intra prediction
1682   // mode tests.
1683   for (int i = 0; i < 4; ++i) {
1684     PREDICTION_MODE this_mode = intra_mode_list[i];
1685     this_rdc.dist = this_rdc.rate = 0;
1686     args.mode = this_mode;
1687     args.skippable = 1;
1688     args.rdc = &this_rdc;
1689     mi->tx_size = intra_tx_size;
1690     av1_foreach_transformed_block_in_plane(xd, bsize, 0, estimate_block_intra,
1691                                            &args);
1692     if (args.skippable) {
1693       this_rdc.rate = av1_cost_symbol(av1_get_skip_txfm_cdf(xd)[1]);
1694     } else {
1695       this_rdc.rate += av1_cost_symbol(av1_get_skip_txfm_cdf(xd)[0]);
1696     }
1697     this_rdc.rate += bmode_costs[this_mode];
1698     this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
1699 
1700     if (this_rdc.rdcost < best_rdc.rdcost) {
1701       best_rdc = this_rdc;
1702       mi->mode = this_mode;
1703     }
1704   }
1705 
1706   *rd_cost = best_rdc;
1707 
1708 #if CONFIG_INTERNAL_STATS
1709   store_coding_context(x, ctx, mi->mode);
1710 #else
1711   store_coding_context(x, ctx);
1712 #endif  // CONFIG_INTERNAL_STATS
1713 }
1714 
1715 static AOM_INLINE int is_same_gf_and_last_scale(AV1_COMMON *cm) {
1716   struct scale_factors *const sf_last = get_ref_scale_factors(cm, LAST_FRAME);
1717   struct scale_factors *const sf_golden =
1718       get_ref_scale_factors(cm, GOLDEN_FRAME);
1719   return ((sf_last->x_scale_fp == sf_golden->x_scale_fp) &&
1720           (sf_last->y_scale_fp == sf_golden->y_scale_fp));
1721 }
1722 
1723 static AOM_INLINE void get_ref_frame_use_mask(AV1_COMP *cpi, MACROBLOCK *x,
1724                                               MB_MODE_INFO *mi, int mi_row,
1725                                               int mi_col, int bsize,
1726                                               int gf_temporal_ref,
1727                                               int use_ref_frame[],
1728                                               int *force_skip_low_temp_var) {
1729   AV1_COMMON *const cm = &cpi->common;
1730   const struct segmentation *const seg = &cm->seg;
1731   const int is_small_sb = (cm->seq_params.sb_size == BLOCK_64X64);
1732 
1733   // For SVC the usage of alt_ref is determined by the ref_frame_flags.
1734   int use_alt_ref_frame = cpi->use_svc || cpi->sf.rt_sf.use_nonrd_altref_frame;
1735   int use_golden_ref_frame = 1;
1736 
1737   use_ref_frame[LAST_FRAME] = 1;  // we never skip LAST
1738 
1739   if (cpi->rc.frames_since_golden == 0 && gf_temporal_ref) {
1740     use_golden_ref_frame = 0;
1741   }
1742 
1743   if (cpi->sf.rt_sf.short_circuit_low_temp_var &&
1744       x->nonrd_prune_ref_frame_search) {
1745     if (is_small_sb)
1746       *force_skip_low_temp_var = get_force_skip_low_temp_var_small_sb(
1747           &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
1748     else
1749       *force_skip_low_temp_var = get_force_skip_low_temp_var(
1750           &x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
1751     // If force_skip_low_temp_var is set, skip golden reference.
1752     if (*force_skip_low_temp_var) {
1753       use_golden_ref_frame = 0;
1754       use_alt_ref_frame = 0;
1755     }
1756   }
1757 
1758   if (segfeature_active(seg, mi->segment_id, SEG_LVL_REF_FRAME) &&
1759       get_segdata(seg, mi->segment_id, SEG_LVL_REF_FRAME) == GOLDEN_FRAME) {
1760     use_golden_ref_frame = 1;
1761     use_alt_ref_frame = 0;
1762   }
1763 
1764   use_alt_ref_frame =
1765       cpi->ref_frame_flags & AOM_ALT_FLAG ? use_alt_ref_frame : 0;
1766   use_golden_ref_frame =
1767       cpi->ref_frame_flags & AOM_GOLD_FLAG ? use_golden_ref_frame : 0;
1768 
1769   use_ref_frame[ALTREF_FRAME] = use_alt_ref_frame;
1770   use_ref_frame[GOLDEN_FRAME] = use_golden_ref_frame;
1771 }
1772 
1773 /*!\brief Estimates best intra mode for inter mode search
1774  *
1775  * \ingroup nonrd_mode_search
1776  * \callgraph
1777  * \callergraph
1778  *
1779  * Using heuristics based on best inter mode, block size, and other decides
1780  * whether to check intra modes. If so, estimates and selects best intra mode
1781  * from the reduced set of intra modes (max 4 intra modes checked)
1782  *
1783  * \param[in]    cpi                      Top-level encoder structure
1784  * \param[in]    x                        Pointer to structure holding all the
1785  *                                        data for the current macroblock
1786  * \param[in]    bsize                    Current block size
1787  * \param[in]    use_modeled_non_rd_cost  Flag, indicating usage of curvfit
1788  *                                        model for RD cost
1789  * \param[in]    best_early_term          Flag, indicating that TX for the
1790  *                                        best inter mode was skipped
1791  * \param[in]    ref_cost_intra           Cost of signalling intra mode
1792  * \param[in]    reuse_prediction         Flag, indicating prediction re-use
1793  * \param[in]    orig_dst                 Original destination buffer
1794  * \param[in]    tmp_buffers              Pointer to a temporary buffers for
1795  *                                        prediction re-use
1796  * \param[out]   this_mode_pred           Pointer to store prediction buffer
1797  *                                        for prediction re-use
1798  * \param[in]    best_rdc                 Pointer to RD cost for the best
1799  *                                        selected intra mode
1800  * \param[in]    best_pickmode            Pointer to a structure containing
1801  *                                        best mode picked so far
1802  *
1803  * \return Nothing is returned. Instead, calculated RD cost is placed to
1804  * \c best_rdc and best selected mode is placed to \c best_pickmode
1805  */
1806 static void estimate_intra_mode(
1807     AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int use_modeled_non_rd_cost,
1808     int best_early_term, unsigned int ref_cost_intra, int reuse_prediction,
1809     struct buf_2d *orig_dst, PRED_BUFFER *tmp_buffers,
1810     PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc,
1811     BEST_PICKMODE *best_pickmode) {
1812   AV1_COMMON *const cm = &cpi->common;
1813   MACROBLOCKD *const xd = &x->e_mbd;
1814   MB_MODE_INFO *const mi = xd->mi[0];
1815   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
1816   const unsigned char segment_id = mi->segment_id;
1817   const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
1818   const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
1819   const int mi_row = xd->mi_row;
1820   const int mi_col = xd->mi_col;
1821   struct macroblockd_plane *const pd = &xd->plane[0];
1822 
1823   const CommonQuantParams *quant_params = &cm->quant_params;
1824 
1825   RD_STATS this_rdc;
1826 
1827   int intra_cost_penalty = av1_get_intra_cost_penalty(
1828       quant_params->base_qindex, quant_params->y_dc_delta_q,
1829       cm->seq_params.bit_depth);
1830   int64_t inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
1831   int perform_intra_pred = cpi->sf.rt_sf.check_intra_pred_nonrd;
1832   // For spatial enhancemanent layer: turn off intra prediction if the
1833   // previous spatial layer as golden ref is not chosen as best reference.
1834   // only do this for temporal enhancement layer and on non-key frames.
1835   if (cpi->svc.spatial_layer_id > 0 &&
1836       best_pickmode->best_ref_frame != GOLDEN_FRAME &&
1837       cpi->svc.temporal_layer_id > 0 &&
1838       !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
1839     perform_intra_pred = 0;
1840 
1841   int do_early_exit_rdthresh = 1;
1842 
1843   uint32_t spatial_var_thresh = 50;
1844   int motion_thresh = 32;
1845   // Adjust thresholds to make intra mode likely tested if the other
1846   // references (golden, alt) are skipped/not checked. For now always
1847   // adjust for svc mode.
1848   if (cpi->use_svc || (cpi->sf.rt_sf.use_nonrd_altref_frame == 0 &&
1849                        cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0)) {
1850     spatial_var_thresh = 150;
1851     motion_thresh = 0;
1852   }
1853 
1854   // Some adjustments to checking intra mode based on source variance.
1855   if (x->source_variance < spatial_var_thresh) {
1856     // If the best inter mode is large motion or non-LAST ref reduce intra cost
1857     // penalty, so intra mode is more likely tested.
1858     if (best_pickmode->best_ref_frame != LAST_FRAME ||
1859         abs(mi->mv[0].as_mv.row) >= motion_thresh ||
1860         abs(mi->mv[0].as_mv.col) >= motion_thresh) {
1861       intra_cost_penalty = intra_cost_penalty >> 2;
1862       inter_mode_thresh = RDCOST(x->rdmult, intra_cost_penalty, 0);
1863       do_early_exit_rdthresh = 0;
1864     }
1865     // For big blocks worth checking intra (since only DC will be checked),
1866     // even if best_early_term is set.
1867     if (bsize >= BLOCK_32X32) best_early_term = 0;
1868   } else if (cpi->sf.rt_sf.source_metrics_sb_nonrd &&
1869              x->content_state_sb.source_sad == kLowSad) {
1870     perform_intra_pred = 0;
1871   }
1872 
1873   if (cpi->sf.rt_sf.skip_intra_pred_if_tx_skip && best_rdc->skip_txfm &&
1874       best_pickmode->best_mode_initial_skip_flag) {
1875     perform_intra_pred = 0;
1876   }
1877 
1878   if (!(best_rdc->rdcost == INT64_MAX ||
1879         (perform_intra_pred && !best_early_term &&
1880          best_rdc->rdcost > inter_mode_thresh &&
1881          bsize <= cpi->sf.part_sf.max_intra_bsize))) {
1882     return;
1883   }
1884 
1885   struct estimate_block_intra_args args = { cpi, x, DC_PRED, 1, 0 };
1886   TX_SIZE intra_tx_size = AOMMIN(
1887       AOMMIN(max_txsize_lookup[bsize],
1888              tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
1889       TX_16X16);
1890 
1891   PRED_BUFFER *const best_pred = best_pickmode->best_pred;
1892   if (reuse_prediction && best_pred != NULL) {
1893     const int bh = block_size_high[bsize];
1894     const int bw = block_size_wide[bsize];
1895     if (best_pred->data == orig_dst->buf) {
1896       *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)];
1897       aom_convolve_copy(best_pred->data, best_pred->stride,
1898                         (*this_mode_pred)->data, (*this_mode_pred)->stride, bw,
1899                         bh);
1900       best_pickmode->best_pred = *this_mode_pred;
1901     }
1902   }
1903   pd->dst = *orig_dst;
1904 
1905   for (int i = 0; i < 4; ++i) {
1906     const PREDICTION_MODE this_mode = intra_mode_list[i];
1907     const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)];
1908     const int64_t mode_rd_thresh = rd_threshes[mode_index];
1909 
1910     if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize]))
1911       continue;
1912 
1913     if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh,
1914                             rd_thresh_freq_fact[mode_index]) &&
1915         (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) {
1916       continue;
1917     }
1918     const BLOCK_SIZE uv_bsize = get_plane_block_size(
1919         bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
1920 
1921     mi->mode = this_mode;
1922     mi->ref_frame[0] = INTRA_FRAME;
1923     mi->ref_frame[1] = NONE_FRAME;
1924 
1925     av1_invalid_rd_stats(&this_rdc);
1926     args.mode = this_mode;
1927     args.skippable = 1;
1928     args.rdc = &this_rdc;
1929     mi->tx_size = intra_tx_size;
1930     compute_intra_yprediction(cm, this_mode, bsize, x, xd);
1931     // Look into selecting tx_size here, based on prediction residual.
1932     if (use_modeled_non_rd_cost)
1933       model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc, 1);
1934     else
1935       block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &args.skippable, bsize,
1936                 mi->tx_size);
1937     // TODO(kyslov@) Need to account for skippable
1938     if (x->color_sensitivity[0]) {
1939       av1_foreach_transformed_block_in_plane(xd, uv_bsize, 1,
1940                                              estimate_block_intra, &args);
1941     }
1942     if (x->color_sensitivity[1]) {
1943       av1_foreach_transformed_block_in_plane(xd, uv_bsize, 2,
1944                                              estimate_block_intra, &args);
1945     }
1946 
1947     int mode_cost = 0;
1948     if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) {
1949       mode_cost +=
1950           x->mode_costs.angle_delta_cost[this_mode - V_PRED]
1951                                         [MAX_ANGLE_DELTA +
1952                                          mi->angle_delta[PLANE_TYPE_Y]];
1953     }
1954     if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
1955       mode_cost += x->mode_costs.filter_intra_cost[bsize][0];
1956     }
1957     this_rdc.rate += ref_cost_intra;
1958     this_rdc.rate += intra_cost_penalty;
1959     this_rdc.rate += mode_cost;
1960     this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
1961 
1962     if (this_rdc.rdcost < best_rdc->rdcost) {
1963       *best_rdc = this_rdc;
1964       best_pickmode->best_mode = this_mode;
1965       best_pickmode->best_tx_size = mi->tx_size;
1966       best_pickmode->best_ref_frame = INTRA_FRAME;
1967       mi->uv_mode = this_mode;
1968       mi->mv[0].as_int = INVALID_MV;
1969       mi->mv[1].as_int = INVALID_MV;
1970     }
1971   }
1972   mi->tx_size = best_pickmode->best_tx_size;
1973 }
1974 
1975 static AOM_INLINE int is_filter_search_enabled(const AV1_COMP *cpi, int mi_row,
1976                                                int mi_col, BLOCK_SIZE bsize) {
1977   const AV1_COMMON *const cm = &cpi->common;
1978   int enable_filter_search = 0;
1979 
1980   if (cpi->sf.rt_sf.use_nonrd_filter_search) {
1981     enable_filter_search = 1;
1982     if (cpi->sf.interp_sf.cb_pred_filter_search) {
1983       const int bsl = mi_size_wide_log2[bsize];
1984       enable_filter_search =
1985           (((mi_row + mi_col) >> bsl) +
1986            get_chessboard_index(cm->current_frame.frame_number)) &
1987           0x1;
1988     }
1989   }
1990   return enable_filter_search;
1991 }
1992 
1993 static AOM_INLINE int skip_mode_by_threshold(
1994     PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, int_mv mv,
1995     int frames_since_golden, const int *const rd_threshes,
1996     const int *const rd_thresh_freq_fact, int64_t best_cost, int best_skip,
1997     int extra_shift) {
1998   int skip_this_mode = 0;
1999   const THR_MODES mode_index = mode_idx[ref_frame][INTER_OFFSET(mode)];
2000   int64_t mode_rd_thresh =
2001       best_skip ? ((int64_t)rd_threshes[mode_index]) << (extra_shift + 1)
2002                 : ((int64_t)rd_threshes[mode_index]) << extra_shift;
2003 
2004   // Increase mode_rd_thresh value for non-LAST for improved encoding
2005   // speed
2006   if (ref_frame != LAST_FRAME) {
2007     mode_rd_thresh = mode_rd_thresh << 1;
2008     if (ref_frame == GOLDEN_FRAME && frames_since_golden > 4)
2009       mode_rd_thresh = mode_rd_thresh << (extra_shift + 1);
2010   }
2011 
2012   if (rd_less_than_thresh(best_cost, mode_rd_thresh,
2013                           rd_thresh_freq_fact[mode_index]))
2014     if (mv.as_int != 0) skip_this_mode = 1;
2015 
2016   return skip_this_mode;
2017 }
2018 
2019 static AOM_INLINE int skip_mode_by_low_temp(
2020     PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
2021     CONTENT_STATE_SB content_state_sb, int_mv mv, int force_skip_low_temp_var) {
2022   // Skip non-zeromv mode search for non-LAST frame if force_skip_low_temp_var
2023   // is set. If nearestmv for golden frame is 0, zeromv mode will be skipped
2024   // later.
2025   if (force_skip_low_temp_var && ref_frame != LAST_FRAME && mv.as_int != 0) {
2026     return 1;
2027   }
2028 
2029   if (content_state_sb.source_sad != kHighSad && bsize >= BLOCK_64X64 &&
2030       force_skip_low_temp_var && mode == NEWMV) {
2031     return 1;
2032   }
2033   return 0;
2034 }
2035 
2036 static AOM_INLINE int skip_mode_by_bsize_and_ref_frame(
2037     PREDICTION_MODE mode, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE bsize,
2038     int extra_prune, unsigned int sse_zeromv_norm, int more_prune) {
2039   const unsigned int thresh_skip_golden = 500;
2040 
2041   if (ref_frame != LAST_FRAME && sse_zeromv_norm < thresh_skip_golden &&
2042       mode == NEWMV)
2043     return 1;
2044 
2045   if (bsize == BLOCK_128X128 && mode == NEWMV) return 1;
2046 
2047   // Skip testing non-LAST if this flag is set.
2048   if (extra_prune) {
2049     if (extra_prune > 1 && ref_frame != LAST_FRAME &&
2050         (bsize > BLOCK_64X64 || (bsize > BLOCK_16X16 && mode == NEWMV)))
2051       return 1;
2052 
2053     if (ref_frame != LAST_FRAME && mode == NEARMV) return 1;
2054 
2055     if (more_prune && bsize >= BLOCK_32X32 && mode == NEARMV) return 1;
2056   }
2057   return 0;
2058 }
2059 
2060 void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data,
2061                                   MACROBLOCK *x, RD_STATS *rd_cost,
2062                                   BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
2063   AV1_COMMON *const cm = &cpi->common;
2064   SVC *const svc = &cpi->svc;
2065   MACROBLOCKD *const xd = &x->e_mbd;
2066   MB_MODE_INFO *const mi = xd->mi[0];
2067   struct macroblockd_plane *const pd = &xd->plane[0];
2068 
2069   BEST_PICKMODE best_pickmode;
2070 #if COLLECT_PICK_MODE_STAT
2071   static mode_search_stat ms_stat;
2072 #endif
2073   MV_REFERENCE_FRAME ref_frame;
2074   int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES];
2075   uint8_t mode_checked[MB_MODE_COUNT][REF_FRAMES];
2076   struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
2077   RD_STATS this_rdc, best_rdc;
2078   const unsigned char segment_id = mi->segment_id;
2079   const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
2080   const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize];
2081   const InterpFilter filter_ref = cm->features.interp_filter;
2082   int best_early_term = 0;
2083   unsigned int ref_costs_single[REF_FRAMES],
2084       ref_costs_comp[REF_FRAMES][REF_FRAMES];
2085   int force_skip_low_temp_var = 0;
2086   int use_ref_frame_mask[REF_FRAMES] = { 0 };
2087   unsigned int sse_zeromv_norm = UINT_MAX;
2088   // Use mode set that includes zeromv (via globalmv) for speed >= 9 for
2089   // content with low motion.
2090   int use_zeromv =
2091       ((cpi->oxcf.speed >= 9 && cpi->rc.avg_frame_low_motion > 70) ||
2092        cpi->sf.rt_sf.nonrd_agressive_skip);
2093   const int num_inter_modes =
2094       use_zeromv ? NUM_INTER_MODES_REDUCED : NUM_INTER_MODES_RT;
2095   const REF_MODE *const ref_mode_set =
2096       use_zeromv ? ref_mode_set_reduced : ref_mode_set_rt;
2097   PRED_BUFFER tmp[4];
2098   DECLARE_ALIGNED(16, uint8_t, pred_buf[3 * 128 * 128]);
2099   PRED_BUFFER *this_mode_pred = NULL;
2100   const int reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd &&
2101                                cm->seq_params.bit_depth == AOM_BITS_8;
2102 
2103   const int bh = block_size_high[bsize];
2104   const int bw = block_size_wide[bsize];
2105   const int pixels_in_block = bh * bw;
2106   struct buf_2d orig_dst = pd->dst;
2107   const CommonQuantParams *quant_params = &cm->quant_params;
2108   const TxfmSearchParams *txfm_params = &x->txfm_search_params;
2109   TxfmSearchInfo *txfm_info = &x->txfm_search_info;
2110 #if COLLECT_PICK_MODE_STAT
2111   aom_usec_timer_start(&ms_stat.timer2);
2112 #endif
2113   const InterpFilter default_interp_filter = EIGHTTAP_REGULAR;
2114   int64_t thresh_sad_pred = INT64_MAX;
2115   const int mi_row = xd->mi_row;
2116   const int mi_col = xd->mi_col;
2117   int svc_mv_col = 0;
2118   int svc_mv_row = 0;
2119   int force_mv_inter_layer = 0;
2120   int use_modeled_non_rd_cost = 0;
2121 #if CONFIG_AV1_TEMPORAL_DENOISING
2122   const int denoise_recheck_zeromv = 1;
2123   AV1_PICKMODE_CTX_DEN ctx_den;
2124   int64_t zero_last_cost_orig = INT64_MAX;
2125   int denoise_svc_pickmode = 1;
2126   const int resize_pending =
2127       (cpi->resize_pending_params.width && cpi->resize_pending_params.height &&
2128        (cpi->common.width != cpi->resize_pending_params.width ||
2129         cpi->common.height != cpi->resize_pending_params.height));
2130 
2131 #endif
2132 
2133   init_best_pickmode(&best_pickmode);
2134 
2135   const ModeCosts *mode_costs = &x->mode_costs;
2136 
2137   estimate_single_ref_frame_costs(cm, xd, mode_costs, segment_id,
2138                                   ref_costs_single);
2139   if (cpi->sf.rt_sf.use_comp_ref_nonrd)
2140     estimate_comp_ref_frame_costs(cm, xd, mode_costs, segment_id,
2141                                   ref_costs_comp);
2142 
2143   memset(&mode_checked[0][0], 0, MB_MODE_COUNT * REF_FRAMES);
2144   if (reuse_inter_pred) {
2145     for (int i = 0; i < 3; i++) {
2146       tmp[i].data = &pred_buf[pixels_in_block * i];
2147       tmp[i].stride = bw;
2148       tmp[i].in_use = 0;
2149     }
2150     tmp[3].data = pd->dst.buf;
2151     tmp[3].stride = pd->dst.stride;
2152     tmp[3].in_use = 0;
2153   }
2154 
2155   txfm_info->skip_txfm = 0;
2156 
2157   // initialize mode decisions
2158   av1_invalid_rd_stats(&best_rdc);
2159   av1_invalid_rd_stats(&this_rdc);
2160   av1_invalid_rd_stats(rd_cost);
2161   mi->bsize = bsize;
2162   mi->ref_frame[0] = NONE_FRAME;
2163   mi->ref_frame[1] = NONE_FRAME;
2164 
2165 #if CONFIG_AV1_TEMPORAL_DENOISING
2166   if (cpi->oxcf.noise_sensitivity > 0) {
2167     // if (cpi->use_svc) denoise_svc_pickmode = av1_denoise_svc_non_key(cpi);
2168     if (cpi->denoiser.denoising_level > kDenLowLow && denoise_svc_pickmode)
2169       av1_denoiser_reset_frame_stats(ctx);
2170   }
2171 #endif
2172 
2173   const int gf_temporal_ref = is_same_gf_and_last_scale(cm);
2174 
2175   // If the lower spatial layer uses an averaging filter for downsampling
2176   // (phase = 8), the target decimated pixel is shifted by (1/2, 1/2) relative
2177   // to source, so use subpel motion vector to compensate. The nonzero motion
2178   // is half pixel shifted to left and top, so (-4, -4). This has more effect
2179   // on higher resolutins, so condition it on that for now.
2180   if (cpi->use_svc && svc->spatial_layer_id > 0 &&
2181       svc->downsample_filter_phase[svc->spatial_layer_id - 1] == 8 &&
2182       cm->width * cm->height > 640 * 480) {
2183     svc_mv_col = -4;
2184     svc_mv_row = -4;
2185   }
2186 
2187   get_ref_frame_use_mask(cpi, x, mi, mi_row, mi_col, bsize, gf_temporal_ref,
2188                          use_ref_frame_mask, &force_skip_low_temp_var);
2189 
2190   for (MV_REFERENCE_FRAME ref_frame_iter = LAST_FRAME;
2191        ref_frame_iter <= ALTREF_FRAME; ++ref_frame_iter) {
2192     if (use_ref_frame_mask[ref_frame_iter]) {
2193       find_predictors(cpi, x, ref_frame_iter, frame_mv, tile_data, yv12_mb,
2194                       bsize, force_skip_low_temp_var);
2195     }
2196   }
2197 
2198   thresh_sad_pred = ((int64_t)x->pred_mv_sad[LAST_FRAME]) << 1;
2199   // Increase threshold for less agressive pruning.
2200   if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search == 1)
2201     thresh_sad_pred += (x->pred_mv_sad[LAST_FRAME] >> 2);
2202 
2203   const int large_block = bsize >= BLOCK_32X32;
2204   const int use_model_yrd_large =
2205       cpi->oxcf.rc_cfg.mode == AOM_CBR && large_block &&
2206       !cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) &&
2207       quant_params->base_qindex && cm->seq_params.bit_depth == 8;
2208 
2209   const int enable_filter_search =
2210       is_filter_search_enabled(cpi, mi_row, mi_col, bsize);
2211 
2212   // TODO(marpan): Look into reducing these conditions. For now constrain
2213   // it to avoid significant bdrate loss.
2214   if (cpi->sf.rt_sf.use_modeled_non_rd_cost) {
2215     if (cpi->svc.non_reference_frame)
2216       use_modeled_non_rd_cost = 1;
2217     else if (cpi->svc.number_temporal_layers > 1 &&
2218              cpi->svc.temporal_layer_id == 0)
2219       use_modeled_non_rd_cost = 0;
2220     else
2221       use_modeled_non_rd_cost =
2222           (quant_params->base_qindex > 120 && x->source_variance > 100 &&
2223            bsize <= BLOCK_16X16 && !x->content_state_sb.lighting_change &&
2224            x->content_state_sb.source_sad != kHighSad);
2225   }
2226 
2227 #if COLLECT_PICK_MODE_STAT
2228   ms_stat.num_blocks[bsize]++;
2229 #endif
2230   init_mbmi(mi, DC_PRED, NONE_FRAME, NONE_FRAME, cm);
2231   mi->tx_size = AOMMIN(
2232       AOMMIN(max_txsize_lookup[bsize],
2233              tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]),
2234       TX_16X16);
2235 
2236   for (int idx = 0; idx < num_inter_modes; ++idx) {
2237     const struct segmentation *const seg = &cm->seg;
2238 
2239     int rate_mv = 0;
2240     int is_skippable;
2241     int this_early_term = 0;
2242     int skip_this_mv = 0;
2243     PREDICTION_MODE this_mode;
2244     MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
2245     RD_STATS nonskip_rdc;
2246     av1_invalid_rd_stats(&nonskip_rdc);
2247 
2248     this_mode = ref_mode_set[idx].pred_mode;
2249     ref_frame = ref_mode_set[idx].ref_frame;
2250 
2251 #if COLLECT_PICK_MODE_STAT
2252     aom_usec_timer_start(&ms_stat.timer1);
2253     ms_stat.num_searches[bsize][this_mode]++;
2254 #endif
2255     mi->mode = this_mode;
2256     mi->ref_frame[0] = ref_frame;
2257 
2258     if (!use_ref_frame_mask[ref_frame]) continue;
2259 
2260     force_mv_inter_layer = 0;
2261     if (cpi->use_svc && svc->spatial_layer_id > 0 &&
2262         ((ref_frame == LAST_FRAME && svc->skip_mvsearch_last) ||
2263          (ref_frame == GOLDEN_FRAME && svc->skip_mvsearch_gf))) {
2264       // Only test mode if NEARESTMV/NEARMV is (svc_mv_col, svc_mv_row),
2265       // otherwise set NEWMV to (svc_mv_col, svc_mv_row).
2266       // Skip newmv and filter search.
2267       force_mv_inter_layer = 1;
2268       if (this_mode == NEWMV) {
2269         frame_mv[this_mode][ref_frame].as_mv.col = svc_mv_col;
2270         frame_mv[this_mode][ref_frame].as_mv.row = svc_mv_row;
2271       } else if (frame_mv[this_mode][ref_frame].as_mv.col != svc_mv_col ||
2272                  frame_mv[this_mode][ref_frame].as_mv.row != svc_mv_row) {
2273         continue;
2274       }
2275     }
2276 
2277     // If the segment reference frame feature is enabled then do nothing if the
2278     // current ref frame is not allowed.
2279     if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
2280         get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame)
2281       continue;
2282 
2283     if (skip_mode_by_bsize_and_ref_frame(
2284             this_mode, ref_frame, bsize, x->nonrd_prune_ref_frame_search,
2285             sse_zeromv_norm, cpi->sf.rt_sf.nonrd_agressive_skip))
2286       continue;
2287 
2288     if (skip_mode_by_low_temp(this_mode, ref_frame, bsize, x->content_state_sb,
2289                               frame_mv[this_mode][ref_frame],
2290                               force_skip_low_temp_var))
2291       continue;
2292 
2293     // Disable this drop out case if the ref frame segment level feature is
2294     // enabled for this segment. This is to prevent the possibility that we
2295     // end up unable to pick any mode.
2296     if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
2297       // Check for skipping GOLDEN and ALTREF based pred_mv_sad.
2298       if (cpi->sf.rt_sf.nonrd_prune_ref_frame_search > 0 &&
2299           x->pred_mv_sad[ref_frame] != INT_MAX && ref_frame != LAST_FRAME) {
2300         if ((int64_t)(x->pred_mv_sad[ref_frame]) > thresh_sad_pred) continue;
2301       }
2302     }
2303 
2304     if (skip_mode_by_threshold(
2305             this_mode, ref_frame, frame_mv[this_mode][ref_frame],
2306             cpi->rc.frames_since_golden, rd_threshes, rd_thresh_freq_fact,
2307             best_rdc.rdcost, best_pickmode.best_mode_skip_txfm,
2308             (cpi->sf.rt_sf.nonrd_agressive_skip ? 1 : 0)))
2309       continue;
2310 
2311     // Select prediction reference frames.
2312     for (int i = 0; i < MAX_MB_PLANE; i++) {
2313       xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
2314     }
2315 
2316     mi->ref_frame[0] = ref_frame;
2317     mi->ref_frame[1] = NONE_FRAME;
2318     set_ref_ptrs(cm, xd, ref_frame, NONE_FRAME);
2319 
2320     if (this_mode == NEWMV && !force_mv_inter_layer) {
2321       if (search_new_mv(cpi, x, frame_mv, ref_frame, gf_temporal_ref, bsize,
2322                         mi_row, mi_col, &rate_mv, &best_rdc))
2323         continue;
2324     }
2325 
2326     for (PREDICTION_MODE inter_mv_mode = NEARESTMV; inter_mv_mode <= NEWMV;
2327          inter_mv_mode++) {
2328       if (inter_mv_mode == this_mode) continue;
2329       if (mode_checked[inter_mv_mode][ref_frame] &&
2330           frame_mv[this_mode][ref_frame].as_int ==
2331               frame_mv[inter_mv_mode][ref_frame].as_int) {
2332         skip_this_mv = 1;
2333         break;
2334       }
2335     }
2336 
2337     if (skip_this_mv) continue;
2338 
2339     mi->mode = this_mode;
2340     mi->mv[0].as_int = frame_mv[this_mode][ref_frame].as_int;
2341     mi->mv[1].as_int = 0;
2342     if (reuse_inter_pred) {
2343       if (!this_mode_pred) {
2344         this_mode_pred = &tmp[3];
2345       } else {
2346         this_mode_pred = &tmp[get_pred_buffer(tmp, 3)];
2347         pd->dst.buf = this_mode_pred->data;
2348         pd->dst.stride = bw;
2349       }
2350     }
2351 #if COLLECT_PICK_MODE_STAT
2352     ms_stat.num_nonskipped_searches[bsize][this_mode]++;
2353 #endif
2354     if (enable_filter_search && !force_mv_inter_layer &&
2355         ((mi->mv[0].as_mv.row & 0x07) || (mi->mv[0].as_mv.col & 0x07)) &&
2356         (ref_frame == LAST_FRAME || !x->nonrd_prune_ref_frame_search)) {
2357       search_filter_ref(cpi, x, &this_rdc, mi_row, mi_col, tmp, bsize,
2358                         reuse_inter_pred, &this_mode_pred, &this_early_term,
2359                         use_model_yrd_large);
2360     } else {
2361       mi->interp_filters =
2362           (filter_ref == SWITCHABLE)
2363               ? av1_broadcast_interp_filter(default_interp_filter)
2364               : av1_broadcast_interp_filter(filter_ref);
2365       if (force_mv_inter_layer)
2366         mi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
2367 
2368       av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
2369       if (use_model_yrd_large) {
2370         model_skip_for_sb_y_large(cpi, bsize, mi_row, mi_col, x, xd, &this_rdc,
2371                                   &this_early_term, use_modeled_non_rd_cost);
2372       } else {
2373         model_rd_for_sb_y(cpi, bsize, x, xd, &this_rdc,
2374                           use_modeled_non_rd_cost);
2375       }
2376     }
2377 
2378     if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0) {
2379       sse_zeromv_norm =
2380           (unsigned int)(this_rdc.sse >> (b_width_log2_lookup[bsize] +
2381                                           b_height_log2_lookup[bsize]));
2382     }
2383 
2384     const int skip_ctx = av1_get_skip_txfm_context(xd);
2385     const int skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][1];
2386     const int no_skip_txfm_cost = mode_costs->skip_txfm_cost[skip_ctx][0];
2387     const int64_t sse_y = this_rdc.sse;
2388     if (this_early_term) {
2389       this_rdc.skip_txfm = 1;
2390       this_rdc.rate = skip_txfm_cost;
2391       this_rdc.dist = this_rdc.sse << 4;
2392     } else {
2393       if (use_modeled_non_rd_cost) {
2394         if (this_rdc.skip_txfm) {
2395           this_rdc.rate = skip_txfm_cost;
2396         } else {
2397           this_rdc.rate += no_skip_txfm_cost;
2398         }
2399       } else {
2400         block_yrd(cpi, x, mi_row, mi_col, &this_rdc, &is_skippable, bsize,
2401                   mi->tx_size);
2402         if (this_rdc.skip_txfm ||
2403             RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist) >=
2404                 RDCOST(x->rdmult, 0, this_rdc.sse)) {
2405           if (!this_rdc.skip_txfm) {
2406             // Need to store "real" rdc for possible furure use if UV rdc
2407             // disallows tx skip
2408             nonskip_rdc = this_rdc;
2409             nonskip_rdc.rate += no_skip_txfm_cost;
2410           }
2411           this_rdc.rate = skip_txfm_cost;
2412           this_rdc.skip_txfm = 1;
2413           this_rdc.dist = this_rdc.sse;
2414         } else {
2415           this_rdc.rate += no_skip_txfm_cost;
2416         }
2417       }
2418       if ((x->color_sensitivity[0] || x->color_sensitivity[1])) {
2419         RD_STATS rdc_uv;
2420         const BLOCK_SIZE uv_bsize = get_plane_block_size(
2421             bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);
2422         if (x->color_sensitivity[0]) {
2423           av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
2424                                         AOM_PLANE_U, AOM_PLANE_U);
2425         }
2426         if (x->color_sensitivity[1]) {
2427           av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
2428                                         AOM_PLANE_V, AOM_PLANE_V);
2429         }
2430         model_rd_for_sb_uv(cpi, uv_bsize, x, xd, &rdc_uv, &this_rdc.sse, 1, 2);
2431         // Restore Y rdc if UV rdc disallows txfm skip
2432         if (this_rdc.skip_txfm && !rdc_uv.skip_txfm &&
2433             nonskip_rdc.rate != INT_MAX)
2434           this_rdc = nonskip_rdc;
2435         this_rdc.rate += rdc_uv.rate;
2436         this_rdc.dist += rdc_uv.dist;
2437         this_rdc.skip_txfm = this_rdc.skip_txfm && rdc_uv.skip_txfm;
2438       }
2439     }
2440 
2441     // TODO(kyslov) account for UV prediction cost
2442     this_rdc.rate += rate_mv;
2443     const int16_t mode_ctx =
2444         av1_mode_context_analyzer(mbmi_ext->mode_context, mi->ref_frame);
2445     this_rdc.rate += cost_mv_ref(mode_costs, this_mode, mode_ctx);
2446 
2447     this_rdc.rate += ref_costs_single[ref_frame];
2448 
2449     this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
2450     if (cpi->oxcf.rc_cfg.mode == AOM_CBR) {
2451       newmv_diff_bias(xd, this_mode, &this_rdc, bsize,
2452                       frame_mv[this_mode][ref_frame].as_mv.row,
2453                       frame_mv[this_mode][ref_frame].as_mv.col, cpi->speed,
2454                       x->source_variance, x->content_state_sb);
2455     }
2456 #if CONFIG_AV1_TEMPORAL_DENOISING
2457     if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc_pickmode &&
2458         cpi->denoiser.denoising_level > kDenLowLow) {
2459       av1_denoiser_update_frame_stats(mi, sse_y, this_mode, ctx);
2460       // Keep track of zero_last cost.
2461       if (ref_frame == LAST_FRAME && frame_mv[this_mode][ref_frame].as_int == 0)
2462         zero_last_cost_orig = this_rdc.rdcost;
2463     }
2464 #else
2465     (void)sse_y;
2466 #endif
2467 
2468     mode_checked[this_mode][ref_frame] = 1;
2469 #if COLLECT_PICK_MODE_STAT
2470     aom_usec_timer_mark(&ms_stat.timer1);
2471     ms_stat.nonskipped_search_times[bsize][this_mode] +=
2472         aom_usec_timer_elapsed(&ms_stat.timer1);
2473 #endif
2474     if (this_rdc.rdcost < best_rdc.rdcost) {
2475       best_rdc = this_rdc;
2476       best_early_term = this_early_term;
2477       best_pickmode.best_mode = this_mode;
2478       best_pickmode.best_pred_filter = mi->interp_filters;
2479       best_pickmode.best_tx_size = mi->tx_size;
2480       best_pickmode.best_ref_frame = ref_frame;
2481       best_pickmode.best_mode_skip_txfm = this_rdc.skip_txfm;
2482       best_pickmode.best_mode_initial_skip_flag =
2483           (nonskip_rdc.rate == INT_MAX && this_rdc.skip_txfm);
2484 
2485       if (reuse_inter_pred) {
2486         free_pred_buffer(best_pickmode.best_pred);
2487         best_pickmode.best_pred = this_mode_pred;
2488       }
2489     } else {
2490       if (reuse_inter_pred) free_pred_buffer(this_mode_pred);
2491     }
2492     if (best_early_term && (idx > 0 || cpi->sf.rt_sf.nonrd_agressive_skip)) {
2493       txfm_info->skip_txfm = 1;
2494       break;
2495     }
2496   }
2497 
2498   mi->mode = best_pickmode.best_mode;
2499   mi->interp_filters = best_pickmode.best_pred_filter;
2500   mi->tx_size = best_pickmode.best_tx_size;
2501   memset(mi->inter_tx_size, mi->tx_size, sizeof(mi->inter_tx_size));
2502   mi->ref_frame[0] = best_pickmode.best_ref_frame;
2503   mi->mv[0].as_int =
2504       frame_mv[best_pickmode.best_mode][best_pickmode.best_ref_frame].as_int;
2505 
2506   // Perform intra prediction search, if the best SAD is above a certain
2507   // threshold.
2508   mi->angle_delta[PLANE_TYPE_Y] = 0;
2509   mi->angle_delta[PLANE_TYPE_UV] = 0;
2510   mi->filter_intra_mode_info.use_filter_intra = 0;
2511 
2512   estimate_intra_mode(cpi, x, bsize, use_modeled_non_rd_cost, best_early_term,
2513                       ref_costs_single[INTRA_FRAME], reuse_inter_pred,
2514                       &orig_dst, tmp, &this_mode_pred, &best_rdc,
2515                       &best_pickmode);
2516 
2517   pd->dst = orig_dst;
2518   mi->mode = best_pickmode.best_mode;
2519   mi->ref_frame[0] = best_pickmode.best_ref_frame;
2520   txfm_info->skip_txfm = best_rdc.skip_txfm;
2521 
2522   if (!is_inter_block(mi)) {
2523     mi->interp_filters = av1_broadcast_interp_filter(SWITCHABLE_FILTERS);
2524   }
2525 
2526   if (reuse_inter_pred && best_pickmode.best_pred != NULL) {
2527     PRED_BUFFER *const best_pred = best_pickmode.best_pred;
2528     if (best_pred->data != orig_dst.buf && is_inter_mode(mi->mode)) {
2529       aom_convolve_copy(best_pred->data, best_pred->stride, pd->dst.buf,
2530                         pd->dst.stride, bw, bh);
2531     }
2532   }
2533 
2534 #if CONFIG_AV1_TEMPORAL_DENOISING
2535   if (cpi->oxcf.noise_sensitivity > 0 && resize_pending == 0 &&
2536       denoise_svc_pickmode && cpi->denoiser.denoising_level > kDenLowLow &&
2537       cpi->denoiser.reset == 0) {
2538     AV1_DENOISER_DECISION decision = COPY_BLOCK;
2539     ctx->sb_skip_denoising = 0;
2540     av1_pickmode_ctx_den_update(&ctx_den, zero_last_cost_orig, ref_costs_single,
2541                                 frame_mv, reuse_inter_pred, &best_pickmode);
2542     av1_denoiser_denoise(cpi, x, mi_row, mi_col, bsize, ctx, &decision,
2543                          gf_temporal_ref);
2544     if (denoise_recheck_zeromv)
2545       recheck_zeromv_after_denoising(cpi, mi, x, xd, decision, &ctx_den,
2546                                      yv12_mb, &best_rdc, &best_pickmode, bsize,
2547                                      mi_row, mi_col);
2548     best_pickmode.best_ref_frame = ctx_den.best_ref_frame;
2549   }
2550 #endif
2551 
2552   if (cpi->sf.inter_sf.adaptive_rd_thresh) {
2553     THR_MODES best_mode_idx =
2554         mode_idx[best_pickmode.best_ref_frame][mode_offset(mi->mode)];
2555     if (best_pickmode.best_ref_frame == INTRA_FRAME) {
2556       // Only consider the modes that are included in the intra_mode_list.
2557       int intra_modes = sizeof(intra_mode_list) / sizeof(PREDICTION_MODE);
2558       for (int i = 0; i < intra_modes; i++) {
2559         update_thresh_freq_fact(cpi, x, bsize, INTRA_FRAME, best_mode_idx,
2560                                 intra_mode_list[i]);
2561       }
2562     } else {
2563       PREDICTION_MODE this_mode;
2564       for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) {
2565         update_thresh_freq_fact(cpi, x, bsize, best_pickmode.best_ref_frame,
2566                                 best_mode_idx, this_mode);
2567       }
2568     }
2569   }
2570 
2571 #if CONFIG_INTERNAL_STATS
2572   store_coding_context(x, ctx, mi->mode);
2573 #else
2574   store_coding_context(x, ctx);
2575 #endif  // CONFIG_INTERNAL_STATS
2576 #if COLLECT_PICK_MODE_STAT
2577   aom_usec_timer_mark(&ms_stat.timer2);
2578   ms_stat.avg_block_times[bsize] += aom_usec_timer_elapsed(&ms_stat.timer2);
2579   //
2580   if ((mi_row + mi_size_high[bsize] >= (cpi->common.mi_params.mi_rows)) &&
2581       (mi_col + mi_size_wide[bsize] >= (cpi->common.mi_params.mi_cols))) {
2582     int i, j;
2583     PREDICTION_MODE used_modes[3] = { NEARESTMV, NEARMV, NEWMV };
2584     BLOCK_SIZE bss[5] = { BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64,
2585                           BLOCK_128X128 };
2586     int64_t total_time = 0l;
2587     int32_t total_blocks = 0;
2588 
2589     printf("\n");
2590     for (i = 0; i < 5; i++) {
2591       printf("BS(%d) Num %d, Avg_time %f: ", bss[i], ms_stat.num_blocks[bss[i]],
2592              ms_stat.num_blocks[bss[i]] > 0
2593                  ? (float)ms_stat.avg_block_times[bss[i]] /
2594                        ms_stat.num_blocks[bss[i]]
2595                  : 0);
2596       total_time += ms_stat.avg_block_times[bss[i]];
2597       total_blocks += ms_stat.num_blocks[bss[i]];
2598       for (j = 0; j < 3; j++) {
2599         printf("Mode %d, %d/%d tps %f ", used_modes[j],
2600                ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]],
2601                ms_stat.num_searches[bss[i]][used_modes[j]],
2602                ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]] > 0
2603                    ? (float)ms_stat
2604                              .nonskipped_search_times[bss[i]][used_modes[j]] /
2605                          ms_stat.num_nonskipped_searches[bss[i]][used_modes[j]]
2606                    : 0l);
2607       }
2608       printf("\n");
2609     }
2610     printf("Total time = %ld. Total blocks = %d\n", total_time, total_blocks);
2611   }
2612   //
2613 #endif  // COLLECT_PICK_MODE_STAT
2614   *rd_cost = best_rdc;
2615 }
2616