1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of alpha filters
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "src/dsp/dsp.h"
15 
16 #if defined(WEBP_USE_SSE2)
17 
18 #include <assert.h>
19 #include <emmintrin.h>
20 #include <stdlib.h>
21 #include <string.h>
22 
23 //------------------------------------------------------------------------------
24 // Helpful macro.
25 
26 # define SANITY_CHECK(in, out)                                                 \
27   assert((in) != NULL);                                                        \
28   assert((out) != NULL);                                                       \
29   assert(width > 0);                                                           \
30   assert(height > 0);                                                          \
31   assert(stride >= width);                                                     \
32   assert(row >= 0 && num_rows > 0 && row + num_rows <= height);                \
33   (void)height;  // Silence unused warning.
34 
PredictLineTop_SSE2(const uint8_t * src,const uint8_t * pred,uint8_t * dst,int length)35 static void PredictLineTop_SSE2(const uint8_t* src, const uint8_t* pred,
36                                 uint8_t* dst, int length) {
37   int i;
38   const int max_pos = length & ~31;
39   assert(length >= 0);
40   for (i = 0; i < max_pos; i += 32) {
41     const __m128i A0 = _mm_loadu_si128((const __m128i*)&src[i +  0]);
42     const __m128i A1 = _mm_loadu_si128((const __m128i*)&src[i + 16]);
43     const __m128i B0 = _mm_loadu_si128((const __m128i*)&pred[i +  0]);
44     const __m128i B1 = _mm_loadu_si128((const __m128i*)&pred[i + 16]);
45     const __m128i C0 = _mm_sub_epi8(A0, B0);
46     const __m128i C1 = _mm_sub_epi8(A1, B1);
47     _mm_storeu_si128((__m128i*)&dst[i +  0], C0);
48     _mm_storeu_si128((__m128i*)&dst[i + 16], C1);
49   }
50   for (; i < length; ++i) dst[i] = src[i] - pred[i];
51 }
52 
53 // Special case for left-based prediction (when preds==dst-1 or preds==src-1).
PredictLineLeft_SSE2(const uint8_t * src,uint8_t * dst,int length)54 static void PredictLineLeft_SSE2(const uint8_t* src, uint8_t* dst, int length) {
55   int i;
56   const int max_pos = length & ~31;
57   assert(length >= 0);
58   for (i = 0; i < max_pos; i += 32) {
59     const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + i +  0    ));
60     const __m128i B0 = _mm_loadu_si128((const __m128i*)(src + i +  0 - 1));
61     const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + i + 16    ));
62     const __m128i B1 = _mm_loadu_si128((const __m128i*)(src + i + 16 - 1));
63     const __m128i C0 = _mm_sub_epi8(A0, B0);
64     const __m128i C1 = _mm_sub_epi8(A1, B1);
65     _mm_storeu_si128((__m128i*)(dst + i +  0), C0);
66     _mm_storeu_si128((__m128i*)(dst + i + 16), C1);
67   }
68   for (; i < length; ++i) dst[i] = src[i] - src[i - 1];
69 }
70 
71 //------------------------------------------------------------------------------
72 // Horizontal filter.
73 
DoHorizontalFilter_SSE2(const uint8_t * in,int width,int height,int stride,int row,int num_rows,uint8_t * out)74 static WEBP_INLINE void DoHorizontalFilter_SSE2(const uint8_t* in,
75                                                 int width, int height,
76                                                 int stride,
77                                                 int row, int num_rows,
78                                                 uint8_t* out) {
79   const size_t start_offset = row * stride;
80   const int last_row = row + num_rows;
81   SANITY_CHECK(in, out);
82   in += start_offset;
83   out += start_offset;
84 
85   if (row == 0) {
86     // Leftmost pixel is the same as input for topmost scanline.
87     out[0] = in[0];
88     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
89     row = 1;
90     in += stride;
91     out += stride;
92   }
93 
94   // Filter line-by-line.
95   while (row < last_row) {
96     // Leftmost pixel is predicted from above.
97     out[0] = in[0] - in[-stride];
98     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
99     ++row;
100     in += stride;
101     out += stride;
102   }
103 }
104 
105 //------------------------------------------------------------------------------
106 // Vertical filter.
107 
DoVerticalFilter_SSE2(const uint8_t * in,int width,int height,int stride,int row,int num_rows,uint8_t * out)108 static WEBP_INLINE void DoVerticalFilter_SSE2(const uint8_t* in,
109                                               int width, int height, int stride,
110                                               int row, int num_rows,
111                                               uint8_t* out) {
112   const size_t start_offset = row * stride;
113   const int last_row = row + num_rows;
114   SANITY_CHECK(in, out);
115   in += start_offset;
116   out += start_offset;
117 
118   if (row == 0) {
119     // Very first top-left pixel is copied.
120     out[0] = in[0];
121     // Rest of top scan-line is left-predicted.
122     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
123     row = 1;
124     in += stride;
125     out += stride;
126   }
127 
128   // Filter line-by-line.
129   while (row < last_row) {
130     PredictLineTop_SSE2(in, in - stride, out, width);
131     ++row;
132     in += stride;
133     out += stride;
134   }
135 }
136 
137 //------------------------------------------------------------------------------
138 // Gradient filter.
139 
GradientPredictor_SSE2(uint8_t a,uint8_t b,uint8_t c)140 static WEBP_INLINE int GradientPredictor_SSE2(uint8_t a, uint8_t b, uint8_t c) {
141   const int g = a + b - c;
142   return ((g & ~0xff) == 0) ? g : (g < 0) ? 0 : 255;  // clip to 8bit
143 }
144 
GradientPredictDirect_SSE2(const uint8_t * const row,const uint8_t * const top,uint8_t * const out,int length)145 static void GradientPredictDirect_SSE2(const uint8_t* const row,
146                                        const uint8_t* const top,
147                                        uint8_t* const out, int length) {
148   const int max_pos = length & ~7;
149   int i;
150   const __m128i zero = _mm_setzero_si128();
151   for (i = 0; i < max_pos; i += 8) {
152     const __m128i A0 = _mm_loadl_epi64((const __m128i*)&row[i - 1]);
153     const __m128i B0 = _mm_loadl_epi64((const __m128i*)&top[i]);
154     const __m128i C0 = _mm_loadl_epi64((const __m128i*)&top[i - 1]);
155     const __m128i D = _mm_loadl_epi64((const __m128i*)&row[i]);
156     const __m128i A1 = _mm_unpacklo_epi8(A0, zero);
157     const __m128i B1 = _mm_unpacklo_epi8(B0, zero);
158     const __m128i C1 = _mm_unpacklo_epi8(C0, zero);
159     const __m128i E = _mm_add_epi16(A1, B1);
160     const __m128i F = _mm_sub_epi16(E, C1);
161     const __m128i G = _mm_packus_epi16(F, zero);
162     const __m128i H = _mm_sub_epi8(D, G);
163     _mm_storel_epi64((__m128i*)(out + i), H);
164   }
165   for (; i < length; ++i) {
166     const int delta = GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]);
167     out[i] = (uint8_t)(row[i] - delta);
168   }
169 }
170 
DoGradientFilter_SSE2(const uint8_t * in,int width,int height,int stride,int row,int num_rows,uint8_t * out)171 static WEBP_INLINE void DoGradientFilter_SSE2(const uint8_t* in,
172                                               int width, int height, int stride,
173                                               int row, int num_rows,
174                                               uint8_t* out) {
175   const size_t start_offset = row * stride;
176   const int last_row = row + num_rows;
177   SANITY_CHECK(in, out);
178   in += start_offset;
179   out += start_offset;
180 
181   // left prediction for top scan-line
182   if (row == 0) {
183     out[0] = in[0];
184     PredictLineLeft_SSE2(in + 1, out + 1, width - 1);
185     row = 1;
186     in += stride;
187     out += stride;
188   }
189 
190   // Filter line-by-line.
191   while (row < last_row) {
192     out[0] = (uint8_t)(in[0] - in[-stride]);
193     GradientPredictDirect_SSE2(in + 1, in + 1 - stride, out + 1, width - 1);
194     ++row;
195     in += stride;
196     out += stride;
197   }
198 }
199 
200 #undef SANITY_CHECK
201 
202 //------------------------------------------------------------------------------
203 
HorizontalFilter_SSE2(const uint8_t * data,int width,int height,int stride,uint8_t * filtered_data)204 static void HorizontalFilter_SSE2(const uint8_t* data, int width, int height,
205                                   int stride, uint8_t* filtered_data) {
206   DoHorizontalFilter_SSE2(data, width, height, stride, 0, height,
207                           filtered_data);
208 }
209 
VerticalFilter_SSE2(const uint8_t * data,int width,int height,int stride,uint8_t * filtered_data)210 static void VerticalFilter_SSE2(const uint8_t* data, int width, int height,
211                                 int stride, uint8_t* filtered_data) {
212   DoVerticalFilter_SSE2(data, width, height, stride, 0, height, filtered_data);
213 }
214 
GradientFilter_SSE2(const uint8_t * data,int width,int height,int stride,uint8_t * filtered_data)215 static void GradientFilter_SSE2(const uint8_t* data, int width, int height,
216                                 int stride, uint8_t* filtered_data) {
217   DoGradientFilter_SSE2(data, width, height, stride, 0, height, filtered_data);
218 }
219 
220 //------------------------------------------------------------------------------
221 // Inverse transforms
222 
HorizontalUnfilter_SSE2(const uint8_t * prev,const uint8_t * in,uint8_t * out,int width)223 static void HorizontalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in,
224                                     uint8_t* out, int width) {
225   int i;
226   __m128i last;
227   out[0] = (uint8_t)(in[0] + (prev == NULL ? 0 : prev[0]));
228   if (width <= 1) return;
229   last = _mm_set_epi32(0, 0, 0, out[0]);
230   for (i = 1; i + 8 <= width; i += 8) {
231     const __m128i A0 = _mm_loadl_epi64((const __m128i*)(in + i));
232     const __m128i A1 = _mm_add_epi8(A0, last);
233     const __m128i A2 = _mm_slli_si128(A1, 1);
234     const __m128i A3 = _mm_add_epi8(A1, A2);
235     const __m128i A4 = _mm_slli_si128(A3, 2);
236     const __m128i A5 = _mm_add_epi8(A3, A4);
237     const __m128i A6 = _mm_slli_si128(A5, 4);
238     const __m128i A7 = _mm_add_epi8(A5, A6);
239     _mm_storel_epi64((__m128i*)(out + i), A7);
240     last = _mm_srli_epi64(A7, 56);
241   }
242   for (; i < width; ++i) out[i] = (uint8_t)(in[i] + out[i - 1]);
243 }
244 
VerticalUnfilter_SSE2(const uint8_t * prev,const uint8_t * in,uint8_t * out,int width)245 static void VerticalUnfilter_SSE2(const uint8_t* prev, const uint8_t* in,
246                                   uint8_t* out, int width) {
247   if (prev == NULL) {
248     HorizontalUnfilter_SSE2(NULL, in, out, width);
249   } else {
250     int i;
251     const int max_pos = width & ~31;
252     assert(width >= 0);
253     for (i = 0; i < max_pos; i += 32) {
254       const __m128i A0 = _mm_loadu_si128((const __m128i*)&in[i +  0]);
255       const __m128i A1 = _mm_loadu_si128((const __m128i*)&in[i + 16]);
256       const __m128i B0 = _mm_loadu_si128((const __m128i*)&prev[i +  0]);
257       const __m128i B1 = _mm_loadu_si128((const __m128i*)&prev[i + 16]);
258       const __m128i C0 = _mm_add_epi8(A0, B0);
259       const __m128i C1 = _mm_add_epi8(A1, B1);
260       _mm_storeu_si128((__m128i*)&out[i +  0], C0);
261       _mm_storeu_si128((__m128i*)&out[i + 16], C1);
262     }
263     for (; i < width; ++i) out[i] = (uint8_t)(in[i] + prev[i]);
264   }
265 }
266 
GradientPredictInverse_SSE2(const uint8_t * const in,const uint8_t * const top,uint8_t * const row,int length)267 static void GradientPredictInverse_SSE2(const uint8_t* const in,
268                                         const uint8_t* const top,
269                                         uint8_t* const row, int length) {
270   if (length > 0) {
271     int i;
272     const int max_pos = length & ~7;
273     const __m128i zero = _mm_setzero_si128();
274     __m128i A = _mm_set_epi32(0, 0, 0, row[-1]);   // left sample
275     for (i = 0; i < max_pos; i += 8) {
276       const __m128i tmp0 = _mm_loadl_epi64((const __m128i*)&top[i]);
277       const __m128i tmp1 = _mm_loadl_epi64((const __m128i*)&top[i - 1]);
278       const __m128i B = _mm_unpacklo_epi8(tmp0, zero);
279       const __m128i C = _mm_unpacklo_epi8(tmp1, zero);
280       const __m128i D = _mm_loadl_epi64((const __m128i*)&in[i]);  // base input
281       const __m128i E = _mm_sub_epi16(B, C);  // unclipped gradient basis B - C
282       __m128i out = zero;                     // accumulator for output
283       __m128i mask_hi = _mm_set_epi32(0, 0, 0, 0xff);
284       int k = 8;
285       while (1) {
286         const __m128i tmp3 = _mm_add_epi16(A, E);           // delta = A + B - C
287         const __m128i tmp4 = _mm_packus_epi16(tmp3, zero);  // saturate delta
288         const __m128i tmp5 = _mm_add_epi8(tmp4, D);         // add to in[]
289         A = _mm_and_si128(tmp5, mask_hi);                   // 1-complement clip
290         out = _mm_or_si128(out, A);                         // accumulate output
291         if (--k == 0) break;
292         A = _mm_slli_si128(A, 1);                        // rotate left sample
293         mask_hi = _mm_slli_si128(mask_hi, 1);            // rotate mask
294         A = _mm_unpacklo_epi8(A, zero);                  // convert 8b->16b
295       }
296       A = _mm_srli_si128(A, 7);       // prepare left sample for next iteration
297       _mm_storel_epi64((__m128i*)&row[i], out);
298     }
299     for (; i < length; ++i) {
300       const int delta = GradientPredictor_SSE2(row[i - 1], top[i], top[i - 1]);
301       row[i] = (uint8_t)(in[i] + delta);
302     }
303   }
304 }
305 
GradientUnfilter_SSE2(const uint8_t * prev,const uint8_t * in,uint8_t * out,int width)306 static void GradientUnfilter_SSE2(const uint8_t* prev, const uint8_t* in,
307                                   uint8_t* out, int width) {
308   if (prev == NULL) {
309     HorizontalUnfilter_SSE2(NULL, in, out, width);
310   } else {
311     out[0] = (uint8_t)(in[0] + prev[0]);  // predict from above
312     GradientPredictInverse_SSE2(in + 1, prev + 1, out + 1, width - 1);
313   }
314 }
315 
316 //------------------------------------------------------------------------------
317 // Entry point
318 
319 extern void VP8FiltersInitSSE2(void);
320 
VP8FiltersInitSSE2(void)321 WEBP_TSAN_IGNORE_FUNCTION void VP8FiltersInitSSE2(void) {
322   WebPUnfilters[WEBP_FILTER_HORIZONTAL] = HorizontalUnfilter_SSE2;
323   WebPUnfilters[WEBP_FILTER_VERTICAL] = VerticalUnfilter_SSE2;
324   WebPUnfilters[WEBP_FILTER_GRADIENT] = GradientUnfilter_SSE2;
325 
326   WebPFilters[WEBP_FILTER_HORIZONTAL] = HorizontalFilter_SSE2;
327   WebPFilters[WEBP_FILTER_VERTICAL] = VerticalFilter_SSE2;
328   WebPFilters[WEBP_FILTER_GRADIENT] = GradientFilter_SSE2;
329 }
330 
331 #else  // !WEBP_USE_SSE2
332 
333 WEBP_DSP_INIT_STUB(VP8FiltersInitSSE2)
334 
335 #endif  // WEBP_USE_SSE2
336