1 /*
2 * Copyright (C) 2021 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "agx_compiler.h"
25 #include "agx_minifloat.h"
26
27 /* AGX peephole optimizer responsible for instruction combining. It operates in
28 * a forward direction and a backward direction, in each case traversing in
29 * source order. SSA means the forward pass satisfies the invariant:
30 *
31 * Every def is visited before any of its uses.
32 *
33 * Dually, the backend pass satisfies the invariant:
34 *
35 * Every use of a def is visited before the def.
36 *
37 * This means the forward pass can propagate modifiers forward, whereas the
38 * backwards pass propagates modifiers backward. Consider an example:
39 *
40 * 1 = fabs 0
41 * 2 = fround 1
42 * 3 = fsat 1
43 *
44 * The forwards pass would propagate the fabs to the fround (since we can
45 * lookup the fabs from the fround source and do the replacement). By contrast
46 * the backwards pass would propagate the fsat back to the fround (since when
47 * we see the fround we know it has only a single user, fsat). Propagatable
48 * instruction have natural directions (like pushforwards and pullbacks).
49 *
50 * We are careful to update the tracked state whenever we modify an instruction
51 * to ensure the passes are linear-time and converge in a single iteration.
52 *
53 * Size conversions are worth special discussion. Consider the snippet:
54 *
55 * 2 = fadd 0, 1
56 * 3 = f2f16 2
57 * 4 = fround 3
58 *
59 * A priori, we can move the f2f16 in either direction. But it's not equal --
60 * if we move it up to the fadd, we get FP16 for two instructions, whereas if
61 * we push it into the fround, we effectively get FP32 for two instructions. So
62 * f2f16 is backwards. Likewise, consider
63 *
64 * 2 = fadd 0, 1
65 * 3 = f2f32 1
66 * 4 = fround 3
67 *
68 * This time if we move f2f32 up to the fadd, we get FP32 for two, but if we
69 * move it down to the fround, we get FP16 to too. So f2f32 is backwards.
70 */
71
72 static bool
agx_is_fmov(agx_instr * def)73 agx_is_fmov(agx_instr *def)
74 {
75 return (def->op == AGX_OPCODE_FADD)
76 && agx_is_equiv(def->src[1], agx_negzero());
77 }
78
79 /* Compose floating-point modifiers with floating-point sources */
80
81 static agx_index
agx_compose_float_src(agx_index to,agx_index from)82 agx_compose_float_src(agx_index to, agx_index from)
83 {
84 if (to.abs)
85 from.neg = false;
86
87 from.abs |= to.abs;
88 from.neg |= to.neg;
89
90 return from;
91 }
92
93 static void
agx_optimizer_fmov(agx_instr ** defs,agx_instr * ins,unsigned srcs)94 agx_optimizer_fmov(agx_instr **defs, agx_instr *ins, unsigned srcs)
95 {
96 for (unsigned s = 0; s < srcs; ++s) {
97 agx_index src = ins->src[s];
98 if (src.type != AGX_INDEX_NORMAL) continue;
99
100 agx_instr *def = defs[src.value];
101 if (!agx_is_fmov(def)) continue;
102 if (def->saturate) continue;
103
104 ins->src[s] = agx_compose_float_src(src, def->src[0]);
105 }
106 }
107
108 static void
agx_optimizer_inline_imm(agx_instr ** defs,agx_instr * I,unsigned srcs,bool is_float)109 agx_optimizer_inline_imm(agx_instr **defs, agx_instr *I,
110 unsigned srcs, bool is_float)
111 {
112 for (unsigned s = 0; s < srcs; ++s) {
113 agx_index src = I->src[s];
114 if (src.type != AGX_INDEX_NORMAL) continue;
115
116 agx_instr *def = defs[src.value];
117 if (def->op != AGX_OPCODE_MOV_IMM) continue;
118
119 uint8_t value = def->imm;
120 bool float_src = is_float;
121
122 /* cmpselsrc takes integer immediates only */
123 if (s >= 2 && I->op == AGX_OPCODE_FCMPSEL) float_src = false;
124
125 if (float_src) {
126 bool fp16 = (def->dest[0].size == AGX_SIZE_16);
127 assert(fp16 || (def->dest[0].size == AGX_SIZE_32));
128
129 float f = fp16 ? _mesa_half_to_float(def->imm) : uif(def->imm);
130 if (!agx_minifloat_exact(f)) continue;
131
132 value = agx_minifloat_encode(f);
133 } else if (value != def->imm) {
134 continue;
135 }
136
137 I->src[s].type = AGX_INDEX_IMMEDIATE;
138 I->src[s].value = value;
139 }
140 }
141
142 static bool
agx_optimizer_fmov_rev(agx_instr * I,agx_instr * use)143 agx_optimizer_fmov_rev(agx_instr *I, agx_instr *use)
144 {
145 if (!agx_is_fmov(use)) return false;
146 if (use->src[0].neg || use->src[0].abs) return false;
147
148 /* saturate(saturate(x)) = saturate(x) */
149 I->saturate |= use->saturate;
150 I->dest[0] = use->dest[0];
151 return true;
152 }
153
154 static void
agx_optimizer_forward(agx_context * ctx)155 agx_optimizer_forward(agx_context *ctx)
156 {
157 agx_instr **defs = calloc(ctx->alloc, sizeof(*defs));
158
159 agx_foreach_instr_global(ctx, I) {
160 struct agx_opcode_info info = agx_opcodes_info[I->op];
161
162 for (unsigned d = 0; d < info.nr_dests; ++d) {
163 if (I->dest[d].type == AGX_INDEX_NORMAL)
164 defs[I->dest[d].value] = I;
165 }
166
167 /* Propagate fmov down */
168 if (info.is_float)
169 agx_optimizer_fmov(defs, I, info.nr_srcs);
170
171 /* Inline immediates if we can. TODO: systematic */
172 if (I->op != AGX_OPCODE_ST_VARY && I->op != AGX_OPCODE_ST_TILE && I->op != AGX_OPCODE_P_EXTRACT && I->op != AGX_OPCODE_P_COMBINE)
173 agx_optimizer_inline_imm(defs, I, info.nr_srcs, info.is_float);
174 }
175
176 free(defs);
177 }
178
179 static void
agx_optimizer_backward(agx_context * ctx)180 agx_optimizer_backward(agx_context *ctx)
181 {
182 agx_instr **uses = calloc(ctx->alloc, sizeof(*uses));
183 BITSET_WORD *multiple = calloc(BITSET_WORDS(ctx->alloc), sizeof(*multiple));
184
185 agx_foreach_instr_global_rev(ctx, I) {
186 struct agx_opcode_info info = agx_opcodes_info[I->op];
187
188 for (unsigned s = 0; s < info.nr_srcs; ++s) {
189 if (I->src[s].type == AGX_INDEX_NORMAL) {
190 unsigned v = I->src[s].value;
191
192 if (uses[v])
193 BITSET_SET(multiple, v);
194 else
195 uses[v] = I;
196 }
197 }
198
199 if (info.nr_dests != 1)
200 continue;
201
202 if (I->dest[0].type != AGX_INDEX_NORMAL)
203 continue;
204
205 agx_instr *use = uses[I->dest[0].value];
206
207 if (!use || BITSET_TEST(multiple, I->dest[0].value))
208 continue;
209
210 /* Destination has a single use, try to propagate */
211 if (info.is_float && agx_optimizer_fmov_rev(I, use)) {
212 agx_remove_instruction(use);
213 continue;
214 }
215 }
216
217 free(uses);
218 free(multiple);
219 }
220
221 void
agx_optimizer(agx_context * ctx)222 agx_optimizer(agx_context *ctx)
223 {
224 agx_optimizer_backward(ctx);
225 agx_optimizer_forward(ctx);
226 }
227