1 /*
2  * Copyright (C) 2021 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "agx_compiler.h"
25 #include "agx_minifloat.h"
26 
27 /* AGX peephole optimizer responsible for instruction combining. It operates in
28  * a forward direction and a backward direction, in each case traversing in
29  * source order. SSA means the forward pass satisfies the invariant:
30  *
31  *    Every def is visited before any of its uses.
32  *
33  * Dually, the backend pass satisfies the invariant:
34  *
35  *    Every use of a def is visited before the def.
36  *
37  * This means the forward pass can propagate modifiers forward, whereas the
38  * backwards pass propagates modifiers backward. Consider an example:
39  *
40  *    1 = fabs 0
41  *    2 = fround 1
42  *    3 = fsat 1
43  *
44  * The forwards pass would propagate the fabs to the fround (since we can
45  * lookup the fabs from the fround source and do the replacement). By contrast
46  * the backwards pass would propagate the fsat back to the fround (since when
47  * we see the fround we know it has only a single user, fsat).  Propagatable
48  * instruction have natural directions (like pushforwards and pullbacks).
49  *
50  * We are careful to update the tracked state whenever we modify an instruction
51  * to ensure the passes are linear-time and converge in a single iteration.
52  *
53  * Size conversions are worth special discussion. Consider the snippet:
54  *
55  *    2 = fadd 0, 1
56  *    3 = f2f16 2
57  *    4 = fround 3
58  *
59  * A priori, we can move the f2f16 in either direction. But it's not equal --
60  * if we move it up to the fadd, we get FP16 for two instructions, whereas if
61  * we push it into the fround, we effectively get FP32 for two instructions. So
62  * f2f16 is backwards. Likewise, consider
63  *
64  *    2 = fadd 0, 1
65  *    3 = f2f32 1
66  *    4 = fround 3
67  *
68  * This time if we move f2f32 up to the fadd, we get FP32 for two, but if we
69  * move it down to the fround, we get FP16 to too. So f2f32 is backwards.
70  */
71 
72 static bool
agx_is_fmov(agx_instr * def)73 agx_is_fmov(agx_instr *def)
74 {
75    return (def->op == AGX_OPCODE_FADD)
76       && agx_is_equiv(def->src[1], agx_negzero());
77 }
78 
79 /* Compose floating-point modifiers with floating-point sources */
80 
81 static agx_index
agx_compose_float_src(agx_index to,agx_index from)82 agx_compose_float_src(agx_index to, agx_index from)
83 {
84    if (to.abs)
85       from.neg = false;
86 
87    from.abs |= to.abs;
88    from.neg |= to.neg;
89 
90    return from;
91 }
92 
93 static void
agx_optimizer_fmov(agx_instr ** defs,agx_instr * ins,unsigned srcs)94 agx_optimizer_fmov(agx_instr **defs, agx_instr *ins, unsigned srcs)
95 {
96    for (unsigned s = 0; s < srcs; ++s) {
97       agx_index src = ins->src[s];
98       if (src.type != AGX_INDEX_NORMAL) continue;
99 
100       agx_instr *def = defs[src.value];
101       if (!agx_is_fmov(def)) continue;
102       if (def->saturate) continue;
103 
104       ins->src[s] = agx_compose_float_src(src, def->src[0]);
105    }
106 }
107 
108 static void
agx_optimizer_inline_imm(agx_instr ** defs,agx_instr * I,unsigned srcs,bool is_float)109 agx_optimizer_inline_imm(agx_instr **defs, agx_instr *I,
110       unsigned srcs, bool is_float)
111 {
112    for (unsigned s = 0; s < srcs; ++s) {
113       agx_index src = I->src[s];
114       if (src.type != AGX_INDEX_NORMAL) continue;
115 
116       agx_instr *def = defs[src.value];
117       if (def->op != AGX_OPCODE_MOV_IMM) continue;
118 
119       uint8_t value = def->imm;
120       bool float_src = is_float;
121 
122       /* cmpselsrc takes integer immediates only */
123       if (s >= 2 && I->op == AGX_OPCODE_FCMPSEL) float_src = false;
124 
125       if (float_src) {
126          bool fp16 = (def->dest[0].size == AGX_SIZE_16);
127          assert(fp16 || (def->dest[0].size == AGX_SIZE_32));
128 
129          float f = fp16 ? _mesa_half_to_float(def->imm) : uif(def->imm);
130          if (!agx_minifloat_exact(f)) continue;
131 
132          value = agx_minifloat_encode(f);
133       } else if (value != def->imm) {
134          continue;
135       }
136 
137       I->src[s].type = AGX_INDEX_IMMEDIATE;
138       I->src[s].value = value;
139    }
140 }
141 
142 static bool
agx_optimizer_fmov_rev(agx_instr * I,agx_instr * use)143 agx_optimizer_fmov_rev(agx_instr *I, agx_instr *use)
144 {
145    if (!agx_is_fmov(use)) return false;
146    if (use->src[0].neg || use->src[0].abs) return false;
147 
148    /* saturate(saturate(x)) = saturate(x) */
149    I->saturate |= use->saturate;
150    I->dest[0] = use->dest[0];
151    return true;
152 }
153 
154 static void
agx_optimizer_forward(agx_context * ctx)155 agx_optimizer_forward(agx_context *ctx)
156 {
157    agx_instr **defs = calloc(ctx->alloc, sizeof(*defs));
158 
159    agx_foreach_instr_global(ctx, I) {
160       struct agx_opcode_info info = agx_opcodes_info[I->op];
161 
162       for (unsigned d = 0; d < info.nr_dests; ++d) {
163          if (I->dest[d].type == AGX_INDEX_NORMAL)
164             defs[I->dest[d].value] = I;
165       }
166 
167       /* Propagate fmov down */
168       if (info.is_float)
169          agx_optimizer_fmov(defs, I, info.nr_srcs);
170 
171       /* Inline immediates if we can. TODO: systematic */
172       if (I->op != AGX_OPCODE_ST_VARY && I->op != AGX_OPCODE_ST_TILE && I->op != AGX_OPCODE_P_EXTRACT && I->op != AGX_OPCODE_P_COMBINE)
173          agx_optimizer_inline_imm(defs, I, info.nr_srcs, info.is_float);
174    }
175 
176    free(defs);
177 }
178 
179 static void
agx_optimizer_backward(agx_context * ctx)180 agx_optimizer_backward(agx_context *ctx)
181 {
182    agx_instr **uses = calloc(ctx->alloc, sizeof(*uses));
183    BITSET_WORD *multiple = calloc(BITSET_WORDS(ctx->alloc), sizeof(*multiple));
184 
185    agx_foreach_instr_global_rev(ctx, I) {
186       struct agx_opcode_info info = agx_opcodes_info[I->op];
187 
188       for (unsigned s = 0; s < info.nr_srcs; ++s) {
189          if (I->src[s].type == AGX_INDEX_NORMAL) {
190             unsigned v = I->src[s].value;
191 
192             if (uses[v])
193                BITSET_SET(multiple, v);
194             else
195                uses[v] = I;
196          }
197       }
198 
199       if (info.nr_dests != 1)
200          continue;
201 
202       if (I->dest[0].type != AGX_INDEX_NORMAL)
203          continue;
204 
205       agx_instr *use = uses[I->dest[0].value];
206 
207       if (!use || BITSET_TEST(multiple, I->dest[0].value))
208          continue;
209 
210       /* Destination has a single use, try to propagate */
211       if (info.is_float && agx_optimizer_fmov_rev(I, use)) {
212          agx_remove_instruction(use);
213          continue;
214       }
215    }
216 
217    free(uses);
218    free(multiple);
219 }
220 
221 void
agx_optimizer(agx_context * ctx)222 agx_optimizer(agx_context *ctx)
223 {
224    agx_optimizer_backward(ctx);
225    agx_optimizer_forward(ctx);
226 }
227