1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_vec4.h"
25 #include "brw_fs.h"
26 #include "brw_cfg.h"
27 #include "brw_nir.h"
28 #include "brw_vec4_builder.h"
29 #include "brw_vec4_vs.h"
30 #include "brw_dead_control_flow.h"
31 #include "dev/intel_debug.h"
32 #include "program/prog_parameter.h"
33 #include "util/u_math.h"
34 
35 #define MAX_INSTRUCTION (1 << 30)
36 
37 using namespace brw;
38 
39 namespace brw {
40 
41 void
init()42 src_reg::init()
43 {
44    memset((void*)this, 0, sizeof(*this));
45    this->file = BAD_FILE;
46    this->type = BRW_REGISTER_TYPE_UD;
47 }
48 
src_reg(enum brw_reg_file file,int nr,const glsl_type * type)49 src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type)
50 {
51    init();
52 
53    this->file = file;
54    this->nr = nr;
55    if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
56       this->swizzle = brw_swizzle_for_size(type->vector_elements);
57    else
58       this->swizzle = BRW_SWIZZLE_XYZW;
59    if (type)
60       this->type = brw_type_for_base_type(type);
61 }
62 
63 /** Generic unset register constructor. */
src_reg()64 src_reg::src_reg()
65 {
66    init();
67 }
68 
src_reg(struct::brw_reg reg)69 src_reg::src_reg(struct ::brw_reg reg) :
70    backend_reg(reg)
71 {
72    this->offset = 0;
73    this->reladdr = NULL;
74 }
75 
src_reg(const dst_reg & reg)76 src_reg::src_reg(const dst_reg &reg) :
77    backend_reg(reg)
78 {
79    this->reladdr = reg.reladdr;
80    this->swizzle = brw_swizzle_for_mask(reg.writemask);
81 }
82 
83 void
init()84 dst_reg::init()
85 {
86    memset((void*)this, 0, sizeof(*this));
87    this->file = BAD_FILE;
88    this->type = BRW_REGISTER_TYPE_UD;
89    this->writemask = WRITEMASK_XYZW;
90 }
91 
dst_reg()92 dst_reg::dst_reg()
93 {
94    init();
95 }
96 
dst_reg(enum brw_reg_file file,int nr)97 dst_reg::dst_reg(enum brw_reg_file file, int nr)
98 {
99    init();
100 
101    this->file = file;
102    this->nr = nr;
103 }
104 
dst_reg(enum brw_reg_file file,int nr,const glsl_type * type,unsigned writemask)105 dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type,
106                  unsigned writemask)
107 {
108    init();
109 
110    this->file = file;
111    this->nr = nr;
112    this->type = brw_type_for_base_type(type);
113    this->writemask = writemask;
114 }
115 
dst_reg(enum brw_reg_file file,int nr,brw_reg_type type,unsigned writemask)116 dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type,
117                  unsigned writemask)
118 {
119    init();
120 
121    this->file = file;
122    this->nr = nr;
123    this->type = type;
124    this->writemask = writemask;
125 }
126 
dst_reg(struct::brw_reg reg)127 dst_reg::dst_reg(struct ::brw_reg reg) :
128    backend_reg(reg)
129 {
130    this->offset = 0;
131    this->reladdr = NULL;
132 }
133 
dst_reg(const src_reg & reg)134 dst_reg::dst_reg(const src_reg &reg) :
135    backend_reg(reg)
136 {
137    this->writemask = brw_mask_for_swizzle(reg.swizzle);
138    this->reladdr = reg.reladdr;
139 }
140 
141 bool
equals(const dst_reg & r) const142 dst_reg::equals(const dst_reg &r) const
143 {
144    return (this->backend_reg::equals(r) &&
145            (reladdr == r.reladdr ||
146             (reladdr && r.reladdr && reladdr->equals(*r.reladdr))));
147 }
148 
149 bool
is_send_from_grf() const150 vec4_instruction::is_send_from_grf() const
151 {
152    switch (opcode) {
153    case SHADER_OPCODE_SHADER_TIME_ADD:
154    case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
155    case VEC4_OPCODE_UNTYPED_ATOMIC:
156    case VEC4_OPCODE_UNTYPED_SURFACE_READ:
157    case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
158    case VEC4_OPCODE_URB_READ:
159    case TCS_OPCODE_URB_WRITE:
160    case TCS_OPCODE_RELEASE_INPUT:
161    case SHADER_OPCODE_BARRIER:
162       return true;
163    default:
164       return false;
165    }
166 }
167 
168 /**
169  * Returns true if this instruction's sources and destinations cannot
170  * safely be the same register.
171  *
172  * In most cases, a register can be written over safely by the same
173  * instruction that is its last use.  For a single instruction, the
174  * sources are dereferenced before writing of the destination starts
175  * (naturally).
176  *
177  * However, there are a few cases where this can be problematic:
178  *
179  * - Virtual opcodes that translate to multiple instructions in the
180  *   code generator: if src == dst and one instruction writes the
181  *   destination before a later instruction reads the source, then
182  *   src will have been clobbered.
183  *
184  * The register allocator uses this information to set up conflicts between
185  * GRF sources and the destination.
186  */
187 bool
has_source_and_destination_hazard() const188 vec4_instruction::has_source_and_destination_hazard() const
189 {
190    switch (opcode) {
191    case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
192    case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
193    case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
194       return true;
195    default:
196       /* 8-wide compressed DF operations are executed as two 4-wide operations,
197        * so we have a src/dst hazard if the first half of the instruction
198        * overwrites the source of the second half. Prevent this by marking
199        * compressed instructions as having src/dst hazards, so the register
200        * allocator assigns safe register regions for dst and srcs.
201        */
202       return size_written > REG_SIZE;
203    }
204 }
205 
206 unsigned
size_read(unsigned arg) const207 vec4_instruction::size_read(unsigned arg) const
208 {
209    switch (opcode) {
210    case SHADER_OPCODE_SHADER_TIME_ADD:
211    case VEC4_OPCODE_UNTYPED_ATOMIC:
212    case VEC4_OPCODE_UNTYPED_SURFACE_READ:
213    case VEC4_OPCODE_UNTYPED_SURFACE_WRITE:
214    case TCS_OPCODE_URB_WRITE:
215       if (arg == 0)
216          return mlen * REG_SIZE;
217       break;
218    case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
219       if (arg == 1)
220          return mlen * REG_SIZE;
221       break;
222    default:
223       break;
224    }
225 
226    switch (src[arg].file) {
227    case BAD_FILE:
228       return 0;
229    case IMM:
230    case UNIFORM:
231       return 4 * type_sz(src[arg].type);
232    default:
233       /* XXX - Represent actual vertical stride. */
234       return exec_size * type_sz(src[arg].type);
235    }
236 }
237 
238 bool
can_do_source_mods(const struct intel_device_info * devinfo)239 vec4_instruction::can_do_source_mods(const struct intel_device_info *devinfo)
240 {
241    if (devinfo->ver == 6 && is_math())
242       return false;
243 
244    if (is_send_from_grf())
245       return false;
246 
247    if (!backend_instruction::can_do_source_mods())
248       return false;
249 
250    return true;
251 }
252 
253 bool
can_do_cmod()254 vec4_instruction::can_do_cmod()
255 {
256    if (!backend_instruction::can_do_cmod())
257       return false;
258 
259    /* The accumulator result appears to get used for the conditional modifier
260     * generation.  When negating a UD value, there is a 33rd bit generated for
261     * the sign in the accumulator value, so now you can't check, for example,
262     * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
263     */
264    for (unsigned i = 0; i < 3; i++) {
265       if (src[i].file != BAD_FILE &&
266           brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
267          return false;
268    }
269 
270    return true;
271 }
272 
273 bool
can_do_writemask(const struct intel_device_info * devinfo)274 vec4_instruction::can_do_writemask(const struct intel_device_info *devinfo)
275 {
276    switch (opcode) {
277    case SHADER_OPCODE_GFX4_SCRATCH_READ:
278    case VEC4_OPCODE_DOUBLE_TO_F32:
279    case VEC4_OPCODE_DOUBLE_TO_D32:
280    case VEC4_OPCODE_DOUBLE_TO_U32:
281    case VEC4_OPCODE_TO_DOUBLE:
282    case VEC4_OPCODE_PICK_LOW_32BIT:
283    case VEC4_OPCODE_PICK_HIGH_32BIT:
284    case VEC4_OPCODE_SET_LOW_32BIT:
285    case VEC4_OPCODE_SET_HIGH_32BIT:
286    case VS_OPCODE_PULL_CONSTANT_LOAD:
287    case VS_OPCODE_PULL_CONSTANT_LOAD_GFX7:
288    case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
289    case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
290    case TES_OPCODE_CREATE_INPUT_READ_HEADER:
291    case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
292    case VEC4_OPCODE_URB_READ:
293    case SHADER_OPCODE_MOV_INDIRECT:
294       return false;
295    default:
296       /* The MATH instruction on Gfx6 only executes in align1 mode, which does
297        * not support writemasking.
298        */
299       if (devinfo->ver == 6 && is_math())
300          return false;
301 
302       if (is_tex())
303          return false;
304 
305       return true;
306    }
307 }
308 
309 bool
can_change_types() const310 vec4_instruction::can_change_types() const
311 {
312    return dst.type == src[0].type &&
313           !src[0].abs && !src[0].negate && !saturate &&
314           (opcode == BRW_OPCODE_MOV ||
315            (opcode == BRW_OPCODE_SEL &&
316             dst.type == src[1].type &&
317             predicate != BRW_PREDICATE_NONE &&
318             !src[1].abs && !src[1].negate));
319 }
320 
321 /**
322  * Returns how many MRFs an opcode will write over.
323  *
324  * Note that this is not the 0 or 1 implied writes in an actual gen
325  * instruction -- the generate_* functions generate additional MOVs
326  * for setup.
327  */
328 unsigned
implied_mrf_writes() const329 vec4_instruction::implied_mrf_writes() const
330 {
331    if (mlen == 0 || is_send_from_grf())
332       return 0;
333 
334    switch (opcode) {
335    case SHADER_OPCODE_RCP:
336    case SHADER_OPCODE_RSQ:
337    case SHADER_OPCODE_SQRT:
338    case SHADER_OPCODE_EXP2:
339    case SHADER_OPCODE_LOG2:
340    case SHADER_OPCODE_SIN:
341    case SHADER_OPCODE_COS:
342       return 1;
343    case SHADER_OPCODE_INT_QUOTIENT:
344    case SHADER_OPCODE_INT_REMAINDER:
345    case SHADER_OPCODE_POW:
346    case TCS_OPCODE_THREAD_END:
347       return 2;
348    case VS_OPCODE_URB_WRITE:
349       return 1;
350    case VS_OPCODE_PULL_CONSTANT_LOAD:
351       return 2;
352    case SHADER_OPCODE_GFX4_SCRATCH_READ:
353       return 2;
354    case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
355       return 3;
356    case GS_OPCODE_URB_WRITE:
357    case GS_OPCODE_URB_WRITE_ALLOCATE:
358    case GS_OPCODE_THREAD_END:
359       return 0;
360    case GS_OPCODE_FF_SYNC:
361       return 1;
362    case TCS_OPCODE_URB_WRITE:
363       return 0;
364    case SHADER_OPCODE_SHADER_TIME_ADD:
365       return 0;
366    case SHADER_OPCODE_TEX:
367    case SHADER_OPCODE_TXL:
368    case SHADER_OPCODE_TXD:
369    case SHADER_OPCODE_TXF:
370    case SHADER_OPCODE_TXF_CMS:
371    case SHADER_OPCODE_TXF_CMS_W:
372    case SHADER_OPCODE_TXF_MCS:
373    case SHADER_OPCODE_TXS:
374    case SHADER_OPCODE_TG4:
375    case SHADER_OPCODE_TG4_OFFSET:
376    case SHADER_OPCODE_SAMPLEINFO:
377    case SHADER_OPCODE_GET_BUFFER_SIZE:
378       return header_size;
379    default:
380       unreachable("not reached");
381    }
382 }
383 
384 bool
equals(const src_reg & r) const385 src_reg::equals(const src_reg &r) const
386 {
387    return (this->backend_reg::equals(r) &&
388 	   !reladdr && !r.reladdr);
389 }
390 
391 bool
negative_equals(const src_reg & r) const392 src_reg::negative_equals(const src_reg &r) const
393 {
394    return this->backend_reg::negative_equals(r) &&
395           !reladdr && !r.reladdr;
396 }
397 
398 bool
opt_vector_float()399 vec4_visitor::opt_vector_float()
400 {
401    bool progress = false;
402 
403    foreach_block(block, cfg) {
404       unsigned last_reg = ~0u, last_offset = ~0u;
405       enum brw_reg_file last_reg_file = BAD_FILE;
406 
407       uint8_t imm[4] = { 0 };
408       int inst_count = 0;
409       vec4_instruction *imm_inst[4];
410       unsigned writemask = 0;
411       enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F;
412 
413       foreach_inst_in_block_safe(vec4_instruction, inst, block) {
414          int vf = -1;
415          enum brw_reg_type need_type = BRW_REGISTER_TYPE_LAST;
416 
417          /* Look for unconditional MOVs from an immediate with a partial
418           * writemask.  Skip type-conversion MOVs other than integer 0,
419           * where the type doesn't matter.  See if the immediate can be
420           * represented as a VF.
421           */
422          if (inst->opcode == BRW_OPCODE_MOV &&
423              inst->src[0].file == IMM &&
424              inst->predicate == BRW_PREDICATE_NONE &&
425              inst->dst.writemask != WRITEMASK_XYZW &&
426              type_sz(inst->src[0].type) < 8 &&
427              (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) {
428 
429             vf = brw_float_to_vf(inst->src[0].d);
430             need_type = BRW_REGISTER_TYPE_D;
431 
432             if (vf == -1) {
433                vf = brw_float_to_vf(inst->src[0].f);
434                need_type = BRW_REGISTER_TYPE_F;
435             }
436          } else {
437             last_reg = ~0u;
438          }
439 
440          /* If this wasn't a MOV, or the destination register doesn't match,
441           * or we have to switch destination types, then this breaks our
442           * sequence.  Combine anything we've accumulated so far.
443           */
444          if (last_reg != inst->dst.nr ||
445              last_offset != inst->dst.offset ||
446              last_reg_file != inst->dst.file ||
447              (vf > 0 && dest_type != need_type)) {
448 
449             if (inst_count > 1) {
450                unsigned vf;
451                memcpy(&vf, imm, sizeof(vf));
452                vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf));
453                mov->dst.type = dest_type;
454                mov->dst.writemask = writemask;
455                inst->insert_before(block, mov);
456 
457                for (int i = 0; i < inst_count; i++) {
458                   imm_inst[i]->remove(block);
459                }
460 
461                progress = true;
462             }
463 
464             inst_count = 0;
465             last_reg = ~0u;;
466             writemask = 0;
467             dest_type = BRW_REGISTER_TYPE_F;
468 
469             for (int i = 0; i < 4; i++) {
470                imm[i] = 0;
471             }
472          }
473 
474          /* Record this instruction's value (if it was representable). */
475          if (vf != -1) {
476             if ((inst->dst.writemask & WRITEMASK_X) != 0)
477                imm[0] = vf;
478             if ((inst->dst.writemask & WRITEMASK_Y) != 0)
479                imm[1] = vf;
480             if ((inst->dst.writemask & WRITEMASK_Z) != 0)
481                imm[2] = vf;
482             if ((inst->dst.writemask & WRITEMASK_W) != 0)
483                imm[3] = vf;
484 
485             writemask |= inst->dst.writemask;
486             imm_inst[inst_count++] = inst;
487 
488             last_reg = inst->dst.nr;
489             last_offset = inst->dst.offset;
490             last_reg_file = inst->dst.file;
491             if (vf > 0)
492                dest_type = need_type;
493          }
494       }
495    }
496 
497    if (progress)
498       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
499 
500    return progress;
501 }
502 
503 /* Replaces unused channels of a swizzle with channels that are used.
504  *
505  * For instance, this pass transforms
506  *
507  *    mov vgrf4.yz, vgrf5.wxzy
508  *
509  * into
510  *
511  *    mov vgrf4.yz, vgrf5.xxzx
512  *
513  * This eliminates false uses of some channels, letting dead code elimination
514  * remove the instructions that wrote them.
515  */
516 bool
opt_reduce_swizzle()517 vec4_visitor::opt_reduce_swizzle()
518 {
519    bool progress = false;
520 
521    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
522       if (inst->dst.file == BAD_FILE ||
523           inst->dst.file == ARF ||
524           inst->dst.file == FIXED_GRF ||
525           inst->is_send_from_grf())
526          continue;
527 
528       unsigned swizzle;
529 
530       /* Determine which channels of the sources are read. */
531       switch (inst->opcode) {
532       case VEC4_OPCODE_PACK_BYTES:
533       case BRW_OPCODE_DP4:
534       case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0,
535                             *           but all four of src1.
536                             */
537          swizzle = brw_swizzle_for_size(4);
538          break;
539       case BRW_OPCODE_DP3:
540          swizzle = brw_swizzle_for_size(3);
541          break;
542       case BRW_OPCODE_DP2:
543          swizzle = brw_swizzle_for_size(2);
544          break;
545 
546       case VEC4_OPCODE_TO_DOUBLE:
547       case VEC4_OPCODE_DOUBLE_TO_F32:
548       case VEC4_OPCODE_DOUBLE_TO_D32:
549       case VEC4_OPCODE_DOUBLE_TO_U32:
550       case VEC4_OPCODE_PICK_LOW_32BIT:
551       case VEC4_OPCODE_PICK_HIGH_32BIT:
552       case VEC4_OPCODE_SET_LOW_32BIT:
553       case VEC4_OPCODE_SET_HIGH_32BIT:
554          swizzle = brw_swizzle_for_size(4);
555          break;
556 
557       default:
558          swizzle = brw_swizzle_for_mask(inst->dst.writemask);
559          break;
560       }
561 
562       /* Update sources' swizzles. */
563       for (int i = 0; i < 3; i++) {
564          if (inst->src[i].file != VGRF &&
565              inst->src[i].file != ATTR &&
566              inst->src[i].file != UNIFORM)
567             continue;
568 
569          const unsigned new_swizzle =
570             brw_compose_swizzle(swizzle, inst->src[i].swizzle);
571          if (inst->src[i].swizzle != new_swizzle) {
572             inst->src[i].swizzle = new_swizzle;
573             progress = true;
574          }
575       }
576    }
577 
578    if (progress)
579       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
580 
581    return progress;
582 }
583 
584 void
split_uniform_registers()585 vec4_visitor::split_uniform_registers()
586 {
587    /* Prior to this, uniforms have been in an array sized according to
588     * the number of vector uniforms present, sparsely filled (so an
589     * aggregate results in reg indices being skipped over).  Now we're
590     * going to cut those aggregates up so each .nr index is one
591     * vector.  The goal is to make elimination of unused uniform
592     * components easier later.
593     */
594    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
595       for (int i = 0 ; i < 3; i++) {
596          if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
597 	    continue;
598 
599 	 assert(!inst->src[i].reladdr);
600 
601          inst->src[i].nr += inst->src[i].offset / 16;
602 	 inst->src[i].offset %= 16;
603       }
604    }
605 }
606 
607 /* This function returns the register number where we placed the uniform */
608 static int
set_push_constant_loc(const int nr_uniforms,int * new_uniform_count,const int src,const int size,const int channel_size,int * new_loc,int * new_chan,int * new_chans_used)609 set_push_constant_loc(const int nr_uniforms, int *new_uniform_count,
610                       const int src, const int size, const int channel_size,
611                       int *new_loc, int *new_chan,
612                       int *new_chans_used)
613 {
614    int dst;
615    /* Find the lowest place we can slot this uniform in. */
616    for (dst = 0; dst < nr_uniforms; dst++) {
617       if (ALIGN(new_chans_used[dst], channel_size) + size <= 4)
618          break;
619    }
620 
621    assert(dst < nr_uniforms);
622 
623    new_loc[src] = dst;
624    new_chan[src] = ALIGN(new_chans_used[dst], channel_size);
625    new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size;
626 
627    *new_uniform_count = MAX2(*new_uniform_count, dst + 1);
628    return dst;
629 }
630 
631 void
pack_uniform_registers()632 vec4_visitor::pack_uniform_registers()
633 {
634    if (!compiler->compact_params)
635       return;
636 
637    uint8_t chans_used[this->uniforms];
638    int new_loc[this->uniforms];
639    int new_chan[this->uniforms];
640    bool is_aligned_to_dvec4[this->uniforms];
641    int new_chans_used[this->uniforms];
642    int channel_sizes[this->uniforms];
643 
644    memset(chans_used, 0, sizeof(chans_used));
645    memset(new_loc, 0, sizeof(new_loc));
646    memset(new_chan, 0, sizeof(new_chan));
647    memset(new_chans_used, 0, sizeof(new_chans_used));
648    memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4));
649    memset(channel_sizes, 0, sizeof(channel_sizes));
650 
651    /* Find which uniform vectors are actually used by the program.  We
652     * expect unused vector elements when we've moved array access out
653     * to pull constants, and from some GLSL code generators like wine.
654     */
655    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
656       unsigned readmask;
657       switch (inst->opcode) {
658       case VEC4_OPCODE_PACK_BYTES:
659       case BRW_OPCODE_DP4:
660       case BRW_OPCODE_DPH:
661          readmask = 0xf;
662          break;
663       case BRW_OPCODE_DP3:
664          readmask = 0x7;
665          break;
666       case BRW_OPCODE_DP2:
667          readmask = 0x3;
668          break;
669       default:
670          readmask = inst->dst.writemask;
671          break;
672       }
673 
674       for (int i = 0 ; i < 3; i++) {
675          if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
676             continue;
677 
678          assert(type_sz(inst->src[i].type) % 4 == 0);
679          int channel_size = type_sz(inst->src[i].type) / 4;
680 
681          int reg = inst->src[i].nr;
682          for (int c = 0; c < 4; c++) {
683             if (!(readmask & (1 << c)))
684                continue;
685 
686             unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1;
687             unsigned used = MAX2(chans_used[reg], channel * channel_size);
688             if (used <= 4) {
689                chans_used[reg] = used;
690                channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size);
691             } else {
692                is_aligned_to_dvec4[reg] = true;
693                is_aligned_to_dvec4[reg + 1] = true;
694                chans_used[reg + 1] = used - 4;
695                channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size);
696             }
697          }
698       }
699 
700       if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
701           inst->src[0].file == UNIFORM) {
702          assert(inst->src[2].file == BRW_IMMEDIATE_VALUE);
703          assert(inst->src[0].subnr == 0);
704 
705          unsigned bytes_read = inst->src[2].ud;
706          assert(bytes_read % 4 == 0);
707          unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16);
708 
709          /* We just mark every register touched by a MOV_INDIRECT as being
710           * fully used.  This ensures that it doesn't broken up piecewise by
711           * the next part of our packing algorithm.
712           */
713          int reg = inst->src[0].nr;
714          int channel_size = type_sz(inst->src[0].type) / 4;
715          for (unsigned i = 0; i < vec4s_read; i++) {
716             chans_used[reg + i] = 4;
717             channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size);
718          }
719       }
720    }
721 
722    int new_uniform_count = 0;
723 
724    /* As the uniforms are going to be reordered, take the data from a temporary
725     * copy of the original param[].
726     */
727    uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params);
728    memcpy(param, stage_prog_data->param,
729           sizeof(uint32_t) * stage_prog_data->nr_params);
730 
731    /* Now, figure out a packing of the live uniform vectors into our
732     * push constants. Start with dvec{3,4} because they are aligned to
733     * dvec4 size (2 vec4).
734     */
735    for (int src = 0; src < uniforms; src++) {
736       int size = chans_used[src];
737 
738       if (size == 0 || !is_aligned_to_dvec4[src])
739          continue;
740 
741       /* dvec3 are aligned to dvec4 size, apply the alignment of the size
742        * to 4 to avoid moving last component of a dvec3 to the available
743        * location at the end of a previous dvec3. These available locations
744        * could be filled by smaller variables in next loop.
745        */
746       size = ALIGN(size, 4);
747       int dst = set_push_constant_loc(uniforms, &new_uniform_count,
748                                       src, size, channel_sizes[src],
749                                       new_loc, new_chan,
750                                       new_chans_used);
751       /* Move the references to the data */
752       for (int j = 0; j < size; j++) {
753          stage_prog_data->param[dst * 4 + new_chan[src] + j] =
754             param[src * 4 + j];
755       }
756    }
757 
758    /* Continue with the rest of data, which is aligned to vec4. */
759    for (int src = 0; src < uniforms; src++) {
760       int size = chans_used[src];
761 
762       if (size == 0 || is_aligned_to_dvec4[src])
763          continue;
764 
765       int dst = set_push_constant_loc(uniforms, &new_uniform_count,
766                                       src, size, channel_sizes[src],
767                                       new_loc, new_chan,
768                                       new_chans_used);
769       /* Move the references to the data */
770       for (int j = 0; j < size; j++) {
771          stage_prog_data->param[dst * 4 + new_chan[src] + j] =
772             param[src * 4 + j];
773       }
774    }
775 
776    ralloc_free(param);
777    this->uniforms = new_uniform_count;
778    stage_prog_data->nr_params = new_uniform_count * 4;
779 
780    /* Now, update the instructions for our repacked uniforms. */
781    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
782       for (int i = 0 ; i < 3; i++) {
783          int src = inst->src[i].nr;
784 
785          if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START)
786             continue;
787 
788          int chan = new_chan[src] / channel_sizes[src];
789          inst->src[i].nr = new_loc[src];
790          inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan);
791       }
792    }
793 }
794 
795 /**
796  * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
797  *
798  * While GLSL IR also performs this optimization, we end up with it in
799  * our instruction stream for a couple of reasons.  One is that we
800  * sometimes generate silly instructions, for example in array access
801  * where we'll generate "ADD offset, index, base" even if base is 0.
802  * The other is that GLSL IR's constant propagation doesn't track the
803  * components of aggregates, so some VS patterns (initialize matrix to
804  * 0, accumulate in vertex blending factors) end up breaking down to
805  * instructions involving 0.
806  */
807 bool
opt_algebraic()808 vec4_visitor::opt_algebraic()
809 {
810    bool progress = false;
811 
812    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
813       switch (inst->opcode) {
814       case BRW_OPCODE_MOV:
815          if (inst->src[0].file != IMM)
816             break;
817 
818          if (inst->saturate) {
819             /* Full mixed-type saturates don't happen.  However, we can end up
820              * with things like:
821              *
822              *    mov.sat(8) g21<1>DF       -1F
823              *
824              * Other mixed-size-but-same-base-type cases may also be possible.
825              */
826             if (inst->dst.type != inst->src[0].type &&
827                 inst->dst.type != BRW_REGISTER_TYPE_DF &&
828                 inst->src[0].type != BRW_REGISTER_TYPE_F)
829                assert(!"unimplemented: saturate mixed types");
830 
831             if (brw_saturate_immediate(inst->src[0].type,
832                                        &inst->src[0].as_brw_reg())) {
833                inst->saturate = false;
834                progress = true;
835             }
836          }
837          break;
838 
839       case BRW_OPCODE_OR:
840          if (inst->src[1].is_zero()) {
841             inst->opcode = BRW_OPCODE_MOV;
842             inst->src[1] = src_reg();
843             progress = true;
844          }
845          break;
846 
847       case VEC4_OPCODE_UNPACK_UNIFORM:
848          if (inst->src[0].file != UNIFORM) {
849             inst->opcode = BRW_OPCODE_MOV;
850             progress = true;
851          }
852          break;
853 
854       case BRW_OPCODE_ADD:
855 	 if (inst->src[1].is_zero()) {
856 	    inst->opcode = BRW_OPCODE_MOV;
857 	    inst->src[1] = src_reg();
858 	    progress = true;
859 	 }
860 	 break;
861 
862       case BRW_OPCODE_MUL:
863 	 if (inst->src[1].is_zero()) {
864 	    inst->opcode = BRW_OPCODE_MOV;
865 	    switch (inst->src[0].type) {
866 	    case BRW_REGISTER_TYPE_F:
867 	       inst->src[0] = brw_imm_f(0.0f);
868 	       break;
869 	    case BRW_REGISTER_TYPE_D:
870 	       inst->src[0] = brw_imm_d(0);
871 	       break;
872 	    case BRW_REGISTER_TYPE_UD:
873 	       inst->src[0] = brw_imm_ud(0u);
874 	       break;
875 	    default:
876 	       unreachable("not reached");
877 	    }
878 	    inst->src[1] = src_reg();
879 	    progress = true;
880 	 } else if (inst->src[1].is_one()) {
881 	    inst->opcode = BRW_OPCODE_MOV;
882 	    inst->src[1] = src_reg();
883 	    progress = true;
884          } else if (inst->src[1].is_negative_one()) {
885             inst->opcode = BRW_OPCODE_MOV;
886             inst->src[0].negate = !inst->src[0].negate;
887             inst->src[1] = src_reg();
888             progress = true;
889 	 }
890 	 break;
891       case SHADER_OPCODE_BROADCAST:
892          if (is_uniform(inst->src[0]) ||
893              inst->src[1].is_zero()) {
894             inst->opcode = BRW_OPCODE_MOV;
895             inst->src[1] = src_reg();
896             inst->force_writemask_all = true;
897             progress = true;
898          }
899          break;
900 
901       default:
902 	 break;
903       }
904    }
905 
906    if (progress)
907       invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW |
908                           DEPENDENCY_INSTRUCTION_DETAIL);
909 
910    return progress;
911 }
912 
913 /**
914  * Only a limited number of hardware registers may be used for push
915  * constants, so this turns access to the overflowed constants into
916  * pull constants.
917  */
918 void
move_push_constants_to_pull_constants()919 vec4_visitor::move_push_constants_to_pull_constants()
920 {
921    int pull_constant_loc[this->uniforms];
922 
923    const int max_uniform_components = push_length * 8;
924 
925    if (this->uniforms * 4 <= max_uniform_components)
926       return;
927 
928    assert(compiler->supports_pull_constants);
929    assert(compiler->compact_params);
930 
931    /* If we got here, we also can't have any push ranges */
932    for (unsigned i = 0; i < 4; i++)
933       assert(prog_data->base.ubo_ranges[i].length == 0);
934 
935    /* Make some sort of choice as to which uniforms get sent to pull
936     * constants.  We could potentially do something clever here like
937     * look for the most infrequently used uniform vec4s, but leave
938     * that for later.
939     */
940    for (int i = 0; i < this->uniforms * 4; i += 4) {
941       pull_constant_loc[i / 4] = -1;
942 
943       if (i >= max_uniform_components) {
944          uint32_t *values = &stage_prog_data->param[i];
945 
946          /* Try to find an existing copy of this uniform in the pull
947           * constants if it was part of an array access already.
948           */
949          for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) {
950             int matches;
951 
952             for (matches = 0; matches < 4; matches++) {
953                if (stage_prog_data->pull_param[j + matches] != values[matches])
954                   break;
955             }
956 
957             if (matches == 4) {
958                pull_constant_loc[i / 4] = j / 4;
959                break;
960             }
961          }
962 
963          if (pull_constant_loc[i / 4] == -1) {
964             assert(stage_prog_data->nr_pull_params % 4 == 0);
965             pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4;
966 
967             for (int j = 0; j < 4; j++) {
968                stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
969                   values[j];
970             }
971          }
972       }
973    }
974 
975    /* Now actually rewrite usage of the things we've moved to pull
976     * constants.
977     */
978    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
979       for (int i = 0 ; i < 3; i++) {
980          if (inst->src[i].file != UNIFORM || inst->src[i].nr >= UBO_START ||
981              pull_constant_loc[inst->src[i].nr] == -1)
982             continue;
983 
984          int uniform = inst->src[i].nr;
985 
986          const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ?
987             glsl_type::dvec4_type : glsl_type::vec4_type;
988          dst_reg temp = dst_reg(this, temp_type);
989 
990          emit_pull_constant_load(block, inst, temp, inst->src[i],
991                                  pull_constant_loc[uniform], src_reg());
992 
993          inst->src[i].file = temp.file;
994          inst->src[i].nr = temp.nr;
995          inst->src[i].offset %= 16;
996          inst->src[i].reladdr = NULL;
997       }
998    }
999 
1000    /* Repack push constants to remove the now-unused ones. */
1001    pack_uniform_registers();
1002 }
1003 
1004 /* Conditions for which we want to avoid setting the dependency control bits */
1005 bool
is_dep_ctrl_unsafe(const vec4_instruction * inst)1006 vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst)
1007 {
1008 #define IS_DWORD(reg) \
1009    (reg.type == BRW_REGISTER_TYPE_UD || \
1010     reg.type == BRW_REGISTER_TYPE_D)
1011 
1012 #define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8)
1013 
1014    if (devinfo->ver >= 7) {
1015       if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) ||
1016           IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2]))
1017       return true;
1018    }
1019 
1020 #undef IS_64BIT
1021 #undef IS_DWORD
1022 
1023    /*
1024     * mlen:
1025     * In the presence of send messages, totally interrupt dependency
1026     * control. They're long enough that the chance of dependency
1027     * control around them just doesn't matter.
1028     *
1029     * predicate:
1030     * From the Ivy Bridge PRM, volume 4 part 3.7, page 80:
1031     * When a sequence of NoDDChk and NoDDClr are used, the last instruction that
1032     * completes the scoreboard clear must have a non-zero execution mask. This
1033     * means, if any kind of predication can change the execution mask or channel
1034     * enable of the last instruction, the optimization must be avoided. This is
1035     * to avoid instructions being shot down the pipeline when no writes are
1036     * required.
1037     *
1038     * math:
1039     * Dependency control does not work well over math instructions.
1040     * NB: Discovered empirically
1041     */
1042    return (inst->mlen || inst->predicate || inst->is_math());
1043 }
1044 
1045 /**
1046  * Sets the dependency control fields on instructions after register
1047  * allocation and before the generator is run.
1048  *
1049  * When you have a sequence of instructions like:
1050  *
1051  * DP4 temp.x vertex uniform[0]
1052  * DP4 temp.y vertex uniform[0]
1053  * DP4 temp.z vertex uniform[0]
1054  * DP4 temp.w vertex uniform[0]
1055  *
1056  * The hardware doesn't know that it can actually run the later instructions
1057  * while the previous ones are in flight, producing stalls.  However, we have
1058  * manual fields we can set in the instructions that let it do so.
1059  */
1060 void
opt_set_dependency_control()1061 vec4_visitor::opt_set_dependency_control()
1062 {
1063    vec4_instruction *last_grf_write[BRW_MAX_GRF];
1064    uint8_t grf_channels_written[BRW_MAX_GRF];
1065    vec4_instruction *last_mrf_write[BRW_MAX_GRF];
1066    uint8_t mrf_channels_written[BRW_MAX_GRF];
1067 
1068    assert(prog_data->total_grf ||
1069           !"Must be called after register allocation");
1070 
1071    foreach_block (block, cfg) {
1072       memset(last_grf_write, 0, sizeof(last_grf_write));
1073       memset(last_mrf_write, 0, sizeof(last_mrf_write));
1074 
1075       foreach_inst_in_block (vec4_instruction, inst, block) {
1076          /* If we read from a register that we were doing dependency control
1077           * on, don't do dependency control across the read.
1078           */
1079          for (int i = 0; i < 3; i++) {
1080             int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE;
1081             if (inst->src[i].file == VGRF) {
1082                last_grf_write[reg] = NULL;
1083             } else if (inst->src[i].file == FIXED_GRF) {
1084                memset(last_grf_write, 0, sizeof(last_grf_write));
1085                break;
1086             }
1087             assert(inst->src[i].file != MRF);
1088          }
1089 
1090          if (is_dep_ctrl_unsafe(inst)) {
1091             memset(last_grf_write, 0, sizeof(last_grf_write));
1092             memset(last_mrf_write, 0, sizeof(last_mrf_write));
1093             continue;
1094          }
1095 
1096          /* Now, see if we can do dependency control for this instruction
1097           * against a previous one writing to its destination.
1098           */
1099          int reg = inst->dst.nr + inst->dst.offset / REG_SIZE;
1100          if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) {
1101             if (last_grf_write[reg] &&
1102                 last_grf_write[reg]->dst.offset == inst->dst.offset &&
1103                 !(inst->dst.writemask & grf_channels_written[reg])) {
1104                last_grf_write[reg]->no_dd_clear = true;
1105                inst->no_dd_check = true;
1106             } else {
1107                grf_channels_written[reg] = 0;
1108             }
1109 
1110             last_grf_write[reg] = inst;
1111             grf_channels_written[reg] |= inst->dst.writemask;
1112          } else if (inst->dst.file == MRF) {
1113             if (last_mrf_write[reg] &&
1114                 last_mrf_write[reg]->dst.offset == inst->dst.offset &&
1115                 !(inst->dst.writemask & mrf_channels_written[reg])) {
1116                last_mrf_write[reg]->no_dd_clear = true;
1117                inst->no_dd_check = true;
1118             } else {
1119                mrf_channels_written[reg] = 0;
1120             }
1121 
1122             last_mrf_write[reg] = inst;
1123             mrf_channels_written[reg] |= inst->dst.writemask;
1124          }
1125       }
1126    }
1127 }
1128 
1129 bool
can_reswizzle(const struct intel_device_info * devinfo,int dst_writemask,int swizzle,int swizzle_mask)1130 vec4_instruction::can_reswizzle(const struct intel_device_info *devinfo,
1131                                 int dst_writemask,
1132                                 int swizzle,
1133                                 int swizzle_mask)
1134 {
1135    /* Gfx6 MATH instructions can not execute in align16 mode, so swizzles
1136     * are not allowed.
1137     */
1138    if (devinfo->ver == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW)
1139       return false;
1140 
1141    /* If we write to the flag register changing the swizzle would change
1142     * what channels are written to the flag register.
1143     */
1144    if (writes_flag(devinfo))
1145       return false;
1146 
1147    /* We can't swizzle implicit accumulator access.  We'd have to
1148     * reswizzle the producer of the accumulator value in addition
1149     * to the consumer (i.e. both MUL and MACH).  Just skip this.
1150     */
1151    if (reads_accumulator_implicitly())
1152       return false;
1153 
1154    if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW)
1155       return false;
1156 
1157    /* If this instruction sets anything not referenced by swizzle, then we'd
1158     * totally break it when we reswizzle.
1159     */
1160    if (dst.writemask & ~swizzle_mask)
1161       return false;
1162 
1163    if (mlen > 0)
1164       return false;
1165 
1166    for (int i = 0; i < 3; i++) {
1167       if (src[i].is_accumulator())
1168          return false;
1169    }
1170 
1171    return true;
1172 }
1173 
1174 /**
1175  * For any channels in the swizzle's source that were populated by this
1176  * instruction, rewrite the instruction to put the appropriate result directly
1177  * in those channels.
1178  *
1179  * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
1180  */
1181 void
reswizzle(int dst_writemask,int swizzle)1182 vec4_instruction::reswizzle(int dst_writemask, int swizzle)
1183 {
1184    /* Destination write mask doesn't correspond to source swizzle for the dot
1185     * product and pack_bytes instructions.
1186     */
1187    if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH &&
1188        opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 &&
1189        opcode != VEC4_OPCODE_PACK_BYTES) {
1190       for (int i = 0; i < 3; i++) {
1191          if (src[i].file == BAD_FILE)
1192             continue;
1193 
1194          if (src[i].file == IMM) {
1195             assert(src[i].type != BRW_REGISTER_TYPE_V &&
1196                    src[i].type != BRW_REGISTER_TYPE_UV);
1197 
1198             /* Vector immediate types need to be reswizzled. */
1199             if (src[i].type == BRW_REGISTER_TYPE_VF) {
1200                const unsigned imm[] = {
1201                   (src[i].ud >>  0) & 0x0ff,
1202                   (src[i].ud >>  8) & 0x0ff,
1203                   (src[i].ud >> 16) & 0x0ff,
1204                   (src[i].ud >> 24) & 0x0ff,
1205                };
1206 
1207                src[i] = brw_imm_vf4(imm[BRW_GET_SWZ(swizzle, 0)],
1208                                     imm[BRW_GET_SWZ(swizzle, 1)],
1209                                     imm[BRW_GET_SWZ(swizzle, 2)],
1210                                     imm[BRW_GET_SWZ(swizzle, 3)]);
1211             }
1212 
1213             continue;
1214          }
1215 
1216          src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle);
1217       }
1218    }
1219 
1220    /* Apply the specified swizzle and writemask to the original mask of
1221     * written components.
1222     */
1223    dst.writemask = dst_writemask &
1224                    brw_apply_swizzle_to_mask(swizzle, dst.writemask);
1225 }
1226 
1227 /*
1228  * Tries to reduce extra MOV instructions by taking temporary GRFs that get
1229  * just written and then MOVed into another reg and making the original write
1230  * of the GRF write directly to the final destination instead.
1231  */
1232 bool
opt_register_coalesce()1233 vec4_visitor::opt_register_coalesce()
1234 {
1235    bool progress = false;
1236    int next_ip = 0;
1237    const vec4_live_variables &live = live_analysis.require();
1238 
1239    foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
1240       int ip = next_ip;
1241       next_ip++;
1242 
1243       if (inst->opcode != BRW_OPCODE_MOV ||
1244           (inst->dst.file != VGRF && inst->dst.file != MRF) ||
1245 	  inst->predicate ||
1246 	  inst->src[0].file != VGRF ||
1247 	  inst->dst.type != inst->src[0].type ||
1248 	  inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
1249 	 continue;
1250 
1251       /* Remove no-op MOVs */
1252       if (inst->dst.file == inst->src[0].file &&
1253           inst->dst.nr == inst->src[0].nr &&
1254           inst->dst.offset == inst->src[0].offset) {
1255          bool is_nop_mov = true;
1256 
1257          for (unsigned c = 0; c < 4; c++) {
1258             if ((inst->dst.writemask & (1 << c)) == 0)
1259                continue;
1260 
1261             if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) {
1262                is_nop_mov = false;
1263                break;
1264             }
1265          }
1266 
1267          if (is_nop_mov) {
1268             inst->remove(block);
1269             progress = true;
1270             continue;
1271          }
1272       }
1273 
1274       bool to_mrf = (inst->dst.file == MRF);
1275 
1276       /* Can't coalesce this GRF if someone else was going to
1277        * read it later.
1278        */
1279       if (live.var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip)
1280 	 continue;
1281 
1282       /* We need to check interference with the final destination between this
1283        * instruction and the earliest instruction involved in writing the GRF
1284        * we're eliminating.  To do that, keep track of which of our source
1285        * channels we've seen initialized.
1286        */
1287       const unsigned chans_needed =
1288          brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle,
1289                                        inst->dst.writemask);
1290       unsigned chans_remaining = chans_needed;
1291 
1292       /* Now walk up the instruction stream trying to see if we can rewrite
1293        * everything writing to the temporary to write into the destination
1294        * instead.
1295        */
1296       vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev;
1297       foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst,
1298                                                   inst) {
1299          _scan_inst = scan_inst;
1300 
1301          if (regions_overlap(inst->src[0], inst->size_read(0),
1302                              scan_inst->dst, scan_inst->size_written)) {
1303             /* Found something writing to the reg we want to coalesce away. */
1304             if (to_mrf) {
1305                /* SEND instructions can't have MRF as a destination. */
1306                if (scan_inst->mlen)
1307                   break;
1308 
1309                if (devinfo->ver == 6) {
1310                   /* gfx6 math instructions must have the destination be
1311                    * VGRF, so no compute-to-MRF for them.
1312                    */
1313                   if (scan_inst->is_math()) {
1314                      break;
1315                   }
1316                }
1317             }
1318 
1319             /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1)
1320              * instructions, and this optimization pass is not capable of
1321              * handling that.  Bail on these instructions and hope that some
1322              * later optimization pass can do the right thing after they are
1323              * expanded.
1324              */
1325             if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2)
1326                break;
1327 
1328             /* This doesn't handle saturation on the instruction we
1329              * want to coalesce away if the register types do not match.
1330              * But if scan_inst is a non type-converting 'mov', we can fix
1331              * the types later.
1332              */
1333             if (inst->saturate &&
1334                 inst->dst.type != scan_inst->dst.type &&
1335                 !(scan_inst->opcode == BRW_OPCODE_MOV &&
1336                   scan_inst->dst.type == scan_inst->src[0].type))
1337                break;
1338 
1339             /* Only allow coalescing between registers of the same type size.
1340              * Otherwise we would need to make the pass aware of the fact that
1341              * channel sizes are different for single and double precision.
1342              */
1343             if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type))
1344                break;
1345 
1346             /* Check that scan_inst writes the same amount of data as the
1347              * instruction, otherwise coalescing would lead to writing a
1348              * different (larger or smaller) region of the destination
1349              */
1350             if (scan_inst->size_written != inst->size_written)
1351                break;
1352 
1353             /* If we can't handle the swizzle, bail. */
1354             if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask,
1355                                           inst->src[0].swizzle,
1356                                           chans_needed)) {
1357                break;
1358             }
1359 
1360             /* This only handles coalescing writes of 8 channels (1 register
1361              * for single-precision and 2 registers for double-precision)
1362              * starting at the source offset of the copy instruction.
1363              */
1364             if (DIV_ROUND_UP(scan_inst->size_written,
1365                              type_sz(scan_inst->dst.type)) > 8 ||
1366                 scan_inst->dst.offset != inst->src[0].offset)
1367                break;
1368 
1369 	    /* Mark which channels we found unconditional writes for. */
1370 	    if (!scan_inst->predicate)
1371                chans_remaining &= ~scan_inst->dst.writemask;
1372 
1373 	    if (chans_remaining == 0)
1374 	       break;
1375 	 }
1376 
1377          /* You can't read from an MRF, so if someone else reads our MRF's
1378           * source GRF that we wanted to rewrite, that stops us.  If it's a
1379           * GRF we're trying to coalesce to, we don't actually handle
1380           * rewriting sources so bail in that case as well.
1381           */
1382 	 bool interfered = false;
1383 	 for (int i = 0; i < 3; i++) {
1384             if (regions_overlap(inst->src[0], inst->size_read(0),
1385                                 scan_inst->src[i], scan_inst->size_read(i)))
1386 	       interfered = true;
1387 	 }
1388 	 if (interfered)
1389 	    break;
1390 
1391          /* If somebody else writes the same channels of our destination here,
1392           * we can't coalesce before that.
1393           */
1394          if (regions_overlap(inst->dst, inst->size_written,
1395                              scan_inst->dst, scan_inst->size_written) &&
1396              (inst->dst.writemask & scan_inst->dst.writemask) != 0) {
1397             break;
1398          }
1399 
1400          /* Check for reads of the register we're trying to coalesce into.  We
1401           * can't go rewriting instructions above that to put some other value
1402           * in the register instead.
1403           */
1404          if (to_mrf && scan_inst->mlen > 0) {
1405             unsigned start = scan_inst->base_mrf;
1406             unsigned end = scan_inst->base_mrf + scan_inst->mlen;
1407 
1408             if (inst->dst.nr >= start && inst->dst.nr < end) {
1409                break;
1410             }
1411          } else {
1412             for (int i = 0; i < 3; i++) {
1413                if (regions_overlap(inst->dst, inst->size_written,
1414                                    scan_inst->src[i], scan_inst->size_read(i)))
1415                   interfered = true;
1416             }
1417             if (interfered)
1418                break;
1419          }
1420       }
1421 
1422       if (chans_remaining == 0) {
1423 	 /* If we've made it here, we have an MOV we want to coalesce out, and
1424 	  * a scan_inst pointing to the earliest instruction involved in
1425 	  * computing the value.  Now go rewrite the instruction stream
1426 	  * between the two.
1427 	  */
1428          vec4_instruction *scan_inst = _scan_inst;
1429 	 while (scan_inst != inst) {
1430 	    if (scan_inst->dst.file == VGRF &&
1431                 scan_inst->dst.nr == inst->src[0].nr &&
1432 		scan_inst->dst.offset == inst->src[0].offset) {
1433                scan_inst->reswizzle(inst->dst.writemask,
1434                                     inst->src[0].swizzle);
1435 	       scan_inst->dst.file = inst->dst.file;
1436                scan_inst->dst.nr = inst->dst.nr;
1437 	       scan_inst->dst.offset = inst->dst.offset;
1438                if (inst->saturate &&
1439                    inst->dst.type != scan_inst->dst.type) {
1440                   /* If we have reached this point, scan_inst is a non
1441                    * type-converting 'mov' and we can modify its register types
1442                    * to match the ones in inst. Otherwise, we could have an
1443                    * incorrect saturation result.
1444                    */
1445                   scan_inst->dst.type = inst->dst.type;
1446                   scan_inst->src[0].type = inst->src[0].type;
1447                }
1448 	       scan_inst->saturate |= inst->saturate;
1449 	    }
1450 	    scan_inst = (vec4_instruction *)scan_inst->next;
1451 	 }
1452 	 inst->remove(block);
1453 	 progress = true;
1454       }
1455    }
1456 
1457    if (progress)
1458       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1459 
1460    return progress;
1461 }
1462 
1463 /**
1464  * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
1465  * flow.  We could probably do better here with some form of divergence
1466  * analysis.
1467  */
1468 bool
eliminate_find_live_channel()1469 vec4_visitor::eliminate_find_live_channel()
1470 {
1471    bool progress = false;
1472    unsigned depth = 0;
1473 
1474    if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
1475       /* The optimization below assumes that channel zero is live on thread
1476        * dispatch, which may not be the case if the fixed function dispatches
1477        * threads sparsely.
1478        */
1479       return false;
1480    }
1481 
1482    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1483       switch (inst->opcode) {
1484       case BRW_OPCODE_IF:
1485       case BRW_OPCODE_DO:
1486          depth++;
1487          break;
1488 
1489       case BRW_OPCODE_ENDIF:
1490       case BRW_OPCODE_WHILE:
1491          depth--;
1492          break;
1493 
1494       case SHADER_OPCODE_FIND_LIVE_CHANNEL:
1495          if (depth == 0) {
1496             inst->opcode = BRW_OPCODE_MOV;
1497             inst->src[0] = brw_imm_d(0);
1498             inst->force_writemask_all = true;
1499             progress = true;
1500          }
1501          break;
1502 
1503       default:
1504          break;
1505       }
1506    }
1507 
1508    if (progress)
1509       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL);
1510 
1511    return progress;
1512 }
1513 
1514 /**
1515  * Splits virtual GRFs requesting more than one contiguous physical register.
1516  *
1517  * We initially create large virtual GRFs for temporary structures, arrays,
1518  * and matrices, so that the visitor functions can add offsets to work their
1519  * way down to the actual member being accessed.  But when it comes to
1520  * optimization, we'd like to treat each register as individual storage if
1521  * possible.
1522  *
1523  * So far, the only thing that might prevent splitting is a send message from
1524  * a GRF on IVB.
1525  */
1526 void
split_virtual_grfs()1527 vec4_visitor::split_virtual_grfs()
1528 {
1529    int num_vars = this->alloc.count;
1530    int new_virtual_grf[num_vars];
1531    bool split_grf[num_vars];
1532 
1533    memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1534 
1535    /* Try to split anything > 0 sized. */
1536    for (int i = 0; i < num_vars; i++) {
1537       split_grf[i] = this->alloc.sizes[i] != 1;
1538    }
1539 
1540    /* Check that the instructions are compatible with the registers we're trying
1541     * to split.
1542     */
1543    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1544       if (inst->dst.file == VGRF && regs_written(inst) > 1)
1545          split_grf[inst->dst.nr] = false;
1546 
1547       for (int i = 0; i < 3; i++) {
1548          if (inst->src[i].file == VGRF && regs_read(inst, i) > 1)
1549             split_grf[inst->src[i].nr] = false;
1550       }
1551    }
1552 
1553    /* Allocate new space for split regs.  Note that the virtual
1554     * numbers will be contiguous.
1555     */
1556    for (int i = 0; i < num_vars; i++) {
1557       if (!split_grf[i])
1558          continue;
1559 
1560       new_virtual_grf[i] = alloc.allocate(1);
1561       for (unsigned j = 2; j < this->alloc.sizes[i]; j++) {
1562          unsigned reg = alloc.allocate(1);
1563          assert(reg == new_virtual_grf[i] + j - 1);
1564          (void) reg;
1565       }
1566       this->alloc.sizes[i] = 1;
1567    }
1568 
1569    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1570       if (inst->dst.file == VGRF && split_grf[inst->dst.nr] &&
1571           inst->dst.offset / REG_SIZE != 0) {
1572          inst->dst.nr = (new_virtual_grf[inst->dst.nr] +
1573                          inst->dst.offset / REG_SIZE - 1);
1574          inst->dst.offset %= REG_SIZE;
1575       }
1576       for (int i = 0; i < 3; i++) {
1577          if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] &&
1578              inst->src[i].offset / REG_SIZE != 0) {
1579             inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] +
1580                                 inst->src[i].offset / REG_SIZE - 1);
1581             inst->src[i].offset %= REG_SIZE;
1582          }
1583       }
1584    }
1585    invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL | DEPENDENCY_VARIABLES);
1586 }
1587 
1588 void
dump_instruction(const backend_instruction * be_inst) const1589 vec4_visitor::dump_instruction(const backend_instruction *be_inst) const
1590 {
1591    dump_instruction(be_inst, stderr);
1592 }
1593 
1594 void
dump_instruction(const backend_instruction * be_inst,FILE * file) const1595 vec4_visitor::dump_instruction(const backend_instruction *be_inst, FILE *file) const
1596 {
1597    const vec4_instruction *inst = (const vec4_instruction *)be_inst;
1598 
1599    if (inst->predicate) {
1600       fprintf(file, "(%cf%d.%d%s) ",
1601               inst->predicate_inverse ? '-' : '+',
1602               inst->flag_subreg / 2,
1603               inst->flag_subreg % 2,
1604               pred_ctrl_align16[inst->predicate]);
1605    }
1606 
1607    fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode),
1608            inst->exec_size);
1609    if (inst->saturate)
1610       fprintf(file, ".sat");
1611    if (inst->conditional_mod) {
1612       fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
1613       if (!inst->predicate &&
1614           (devinfo->ver < 5 || (inst->opcode != BRW_OPCODE_SEL &&
1615                                 inst->opcode != BRW_OPCODE_CSEL &&
1616                                 inst->opcode != BRW_OPCODE_IF &&
1617                                 inst->opcode != BRW_OPCODE_WHILE))) {
1618          fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2);
1619       }
1620    }
1621    fprintf(file, " ");
1622 
1623    switch (inst->dst.file) {
1624    case VGRF:
1625       fprintf(file, "vgrf%d", inst->dst.nr);
1626       break;
1627    case FIXED_GRF:
1628       fprintf(file, "g%d", inst->dst.nr);
1629       break;
1630    case MRF:
1631       fprintf(file, "m%d", inst->dst.nr);
1632       break;
1633    case ARF:
1634       switch (inst->dst.nr) {
1635       case BRW_ARF_NULL:
1636          fprintf(file, "null");
1637          break;
1638       case BRW_ARF_ADDRESS:
1639          fprintf(file, "a0.%d", inst->dst.subnr);
1640          break;
1641       case BRW_ARF_ACCUMULATOR:
1642          fprintf(file, "acc%d", inst->dst.subnr);
1643          break;
1644       case BRW_ARF_FLAG:
1645          fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1646          break;
1647       default:
1648          fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
1649          break;
1650       }
1651       break;
1652    case BAD_FILE:
1653       fprintf(file, "(null)");
1654       break;
1655    case IMM:
1656    case ATTR:
1657    case UNIFORM:
1658       unreachable("not reached");
1659    }
1660    if (inst->dst.offset ||
1661        (inst->dst.file == VGRF &&
1662         alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
1663       const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE);
1664       fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
1665               inst->dst.offset % reg_size);
1666    }
1667    if (inst->dst.writemask != WRITEMASK_XYZW) {
1668       fprintf(file, ".");
1669       if (inst->dst.writemask & 1)
1670          fprintf(file, "x");
1671       if (inst->dst.writemask & 2)
1672          fprintf(file, "y");
1673       if (inst->dst.writemask & 4)
1674          fprintf(file, "z");
1675       if (inst->dst.writemask & 8)
1676          fprintf(file, "w");
1677    }
1678    fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type));
1679 
1680    if (inst->src[0].file != BAD_FILE)
1681       fprintf(file, ", ");
1682 
1683    for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) {
1684       if (inst->src[i].negate)
1685          fprintf(file, "-");
1686       if (inst->src[i].abs)
1687          fprintf(file, "|");
1688       switch (inst->src[i].file) {
1689       case VGRF:
1690          fprintf(file, "vgrf%d", inst->src[i].nr);
1691          break;
1692       case FIXED_GRF:
1693          fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr);
1694          break;
1695       case ATTR:
1696          fprintf(file, "attr%d", inst->src[i].nr);
1697          break;
1698       case UNIFORM:
1699          fprintf(file, "u%d", inst->src[i].nr);
1700          break;
1701       case IMM:
1702          switch (inst->src[i].type) {
1703          case BRW_REGISTER_TYPE_F:
1704             fprintf(file, "%fF", inst->src[i].f);
1705             break;
1706          case BRW_REGISTER_TYPE_DF:
1707             fprintf(file, "%fDF", inst->src[i].df);
1708             break;
1709          case BRW_REGISTER_TYPE_D:
1710             fprintf(file, "%dD", inst->src[i].d);
1711             break;
1712          case BRW_REGISTER_TYPE_UD:
1713             fprintf(file, "%uU", inst->src[i].ud);
1714             break;
1715          case BRW_REGISTER_TYPE_VF:
1716             fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
1717                     brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
1718                     brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
1719                     brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
1720                     brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
1721             break;
1722          default:
1723             fprintf(file, "???");
1724             break;
1725          }
1726          break;
1727       case ARF:
1728          switch (inst->src[i].nr) {
1729          case BRW_ARF_NULL:
1730             fprintf(file, "null");
1731             break;
1732          case BRW_ARF_ADDRESS:
1733             fprintf(file, "a0.%d", inst->src[i].subnr);
1734             break;
1735          case BRW_ARF_ACCUMULATOR:
1736             fprintf(file, "acc%d", inst->src[i].subnr);
1737             break;
1738          case BRW_ARF_FLAG:
1739             fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1740             break;
1741          default:
1742             fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
1743             break;
1744          }
1745          break;
1746       case BAD_FILE:
1747          fprintf(file, "(null)");
1748          break;
1749       case MRF:
1750          unreachable("not reached");
1751       }
1752 
1753       if (inst->src[i].offset ||
1754           (inst->src[i].file == VGRF &&
1755            alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
1756          const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE);
1757          fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
1758                  inst->src[i].offset % reg_size);
1759       }
1760 
1761       if (inst->src[i].file != IMM) {
1762          static const char *chans[4] = {"x", "y", "z", "w"};
1763          fprintf(file, ".");
1764          for (int c = 0; c < 4; c++) {
1765             fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1766          }
1767       }
1768 
1769       if (inst->src[i].abs)
1770          fprintf(file, "|");
1771 
1772       if (inst->src[i].file != IMM) {
1773          fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
1774       }
1775 
1776       if (i < 2 && inst->src[i + 1].file != BAD_FILE)
1777          fprintf(file, ", ");
1778    }
1779 
1780    if (inst->force_writemask_all)
1781       fprintf(file, " NoMask");
1782 
1783    if (inst->exec_size != 8)
1784       fprintf(file, " group%d", inst->group);
1785 
1786    fprintf(file, "\n");
1787 }
1788 
1789 
1790 int
setup_attributes(int payload_reg)1791 vec4_vs_visitor::setup_attributes(int payload_reg)
1792 {
1793    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1794       for (int i = 0; i < 3; i++) {
1795          if (inst->src[i].file == ATTR) {
1796             assert(inst->src[i].offset % REG_SIZE == 0);
1797             int grf = payload_reg + inst->src[i].nr +
1798                       inst->src[i].offset / REG_SIZE;
1799 
1800             struct brw_reg reg = brw_vec8_grf(grf, 0);
1801             reg.swizzle = inst->src[i].swizzle;
1802             reg.type = inst->src[i].type;
1803             reg.abs = inst->src[i].abs;
1804             reg.negate = inst->src[i].negate;
1805             inst->src[i] = reg;
1806          }
1807       }
1808    }
1809 
1810    return payload_reg + vs_prog_data->nr_attribute_slots;
1811 }
1812 
1813 void
setup_push_ranges()1814 vec4_visitor::setup_push_ranges()
1815 {
1816    /* Only allow 32 registers (256 uniform components) as push constants,
1817     * which is the limit on gfx6.
1818     *
1819     * If changing this value, note the limitation about total_regs in
1820     * brw_curbe.c.
1821     */
1822    const unsigned max_push_length = 32;
1823 
1824    push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
1825    push_length = MIN2(push_length, max_push_length);
1826 
1827    /* Shrink UBO push ranges so it all fits in max_push_length */
1828    for (unsigned i = 0; i < 4; i++) {
1829       struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
1830 
1831       if (push_length + range->length > max_push_length)
1832          range->length = max_push_length - push_length;
1833 
1834       push_length += range->length;
1835    }
1836    assert(push_length <= max_push_length);
1837 }
1838 
1839 int
setup_uniforms(int reg)1840 vec4_visitor::setup_uniforms(int reg)
1841 {
1842    /* It's possible that uniform compaction will shrink further than expected
1843     * so we re-compute the layout and set up our UBO push starts.
1844     */
1845    const unsigned old_push_length = push_length;
1846    push_length = DIV_ROUND_UP(prog_data->base.nr_params, 8);
1847    for (unsigned i = 0; i < 4; i++) {
1848       ubo_push_start[i] = push_length;
1849       push_length += stage_prog_data->ubo_ranges[i].length;
1850    }
1851    assert(push_length <= old_push_length);
1852    if (push_length < old_push_length)
1853       assert(compiler->compact_params);
1854 
1855    /* The pre-gfx6 VS requires that some push constants get loaded no
1856     * matter what, or the GPU would hang.
1857     */
1858    if (devinfo->ver < 6 && push_length == 0) {
1859       brw_stage_prog_data_add_params(stage_prog_data, 4);
1860       for (unsigned int i = 0; i < 4; i++) {
1861 	 unsigned int slot = this->uniforms * 4 + i;
1862 	 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO;
1863       }
1864       push_length = 1;
1865    }
1866 
1867    prog_data->base.dispatch_grf_start_reg = reg;
1868    prog_data->base.curb_read_length = push_length;
1869 
1870    return reg + push_length;
1871 }
1872 
1873 void
setup_payload(void)1874 vec4_vs_visitor::setup_payload(void)
1875 {
1876    int reg = 0;
1877 
1878    /* The payload always contains important data in g0, which contains
1879     * the URB handles that are passed on to the URB write at the end
1880     * of the thread.  So, we always start push constants at g1.
1881     */
1882    reg++;
1883 
1884    reg = setup_uniforms(reg);
1885 
1886    reg = setup_attributes(reg);
1887 
1888    this->first_non_payload_grf = reg;
1889 }
1890 
1891 bool
lower_minmax()1892 vec4_visitor::lower_minmax()
1893 {
1894    assert(devinfo->ver < 6);
1895 
1896    bool progress = false;
1897 
1898    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1899       const vec4_builder ibld(this, block, inst);
1900 
1901       if (inst->opcode == BRW_OPCODE_SEL &&
1902           inst->predicate == BRW_PREDICATE_NONE) {
1903          /* If src1 is an immediate value that is not NaN, then it can't be
1904           * NaN.  In that case, emit CMP because it is much better for cmod
1905           * propagation.  Likewise if src1 is not float.  Gfx4 and Gfx5 don't
1906           * support HF or DF, so it is not necessary to check for those.
1907           */
1908          if (inst->src[1].type != BRW_REGISTER_TYPE_F ||
1909              (inst->src[1].file == IMM && !isnan(inst->src[1].f))) {
1910             ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
1911                      inst->conditional_mod);
1912          } else {
1913             ibld.CMPN(ibld.null_reg_d(), inst->src[0], inst->src[1],
1914                       inst->conditional_mod);
1915          }
1916          inst->predicate = BRW_PREDICATE_NORMAL;
1917          inst->conditional_mod = BRW_CONDITIONAL_NONE;
1918 
1919          progress = true;
1920       }
1921    }
1922 
1923    if (progress)
1924       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
1925 
1926    return progress;
1927 }
1928 
1929 src_reg
get_timestamp()1930 vec4_visitor::get_timestamp()
1931 {
1932    assert(devinfo->ver == 7);
1933 
1934    src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1935                                 BRW_ARF_TIMESTAMP,
1936                                 0,
1937                                 0,
1938                                 0,
1939                                 BRW_REGISTER_TYPE_UD,
1940                                 BRW_VERTICAL_STRIDE_0,
1941                                 BRW_WIDTH_4,
1942                                 BRW_HORIZONTAL_STRIDE_4,
1943                                 BRW_SWIZZLE_XYZW,
1944                                 WRITEMASK_XYZW));
1945 
1946    dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1947 
1948    vec4_instruction *mov = emit(MOV(dst, ts));
1949    /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1950     * even if it's not enabled in the dispatch.
1951     */
1952    mov->force_writemask_all = true;
1953 
1954    return src_reg(dst);
1955 }
1956 
1957 void
emit_shader_time_begin()1958 vec4_visitor::emit_shader_time_begin()
1959 {
1960    current_annotation = "shader time start";
1961    shader_start_time = get_timestamp();
1962 }
1963 
1964 void
emit_shader_time_end()1965 vec4_visitor::emit_shader_time_end()
1966 {
1967    current_annotation = "shader time end";
1968    src_reg shader_end_time = get_timestamp();
1969 
1970 
1971    /* Check that there weren't any timestamp reset events (assuming these
1972     * were the only two timestamp reads that happened).
1973     */
1974    src_reg reset_end = shader_end_time;
1975    reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1976    vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u)));
1977    test->conditional_mod = BRW_CONDITIONAL_Z;
1978 
1979    emit(IF(BRW_PREDICATE_NORMAL));
1980 
1981    /* Take the current timestamp and get the delta. */
1982    shader_start_time.negate = true;
1983    dst_reg diff = dst_reg(this, glsl_type::uint_type);
1984    emit(ADD(diff, shader_start_time, shader_end_time));
1985 
1986    /* If there were no instructions between the two timestamp gets, the diff
1987     * is 2 cycles.  Remove that overhead, so I can forget about that when
1988     * trying to determine the time taken for single instructions.
1989     */
1990    emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u)));
1991 
1992    emit_shader_time_write(0, src_reg(diff));
1993    emit_shader_time_write(1, brw_imm_ud(1u));
1994    emit(BRW_OPCODE_ELSE);
1995    emit_shader_time_write(2, brw_imm_ud(1u));
1996    emit(BRW_OPCODE_ENDIF);
1997 }
1998 
1999 void
emit_shader_time_write(int shader_time_subindex,src_reg value)2000 vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value)
2001 {
2002    dst_reg dst =
2003       dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
2004 
2005    dst_reg offset = dst;
2006    dst_reg time = dst;
2007    time.offset += REG_SIZE;
2008 
2009    offset.type = BRW_REGISTER_TYPE_UD;
2010    int index = shader_time_index * 3 + shader_time_subindex;
2011    emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE)));
2012 
2013    time.type = BRW_REGISTER_TYPE_UD;
2014    emit(MOV(time, value));
2015 
2016    vec4_instruction *inst =
2017       emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
2018    inst->mlen = 2;
2019 }
2020 
2021 static bool
is_align1_df(vec4_instruction * inst)2022 is_align1_df(vec4_instruction *inst)
2023 {
2024    switch (inst->opcode) {
2025    case VEC4_OPCODE_DOUBLE_TO_F32:
2026    case VEC4_OPCODE_DOUBLE_TO_D32:
2027    case VEC4_OPCODE_DOUBLE_TO_U32:
2028    case VEC4_OPCODE_TO_DOUBLE:
2029    case VEC4_OPCODE_PICK_LOW_32BIT:
2030    case VEC4_OPCODE_PICK_HIGH_32BIT:
2031    case VEC4_OPCODE_SET_LOW_32BIT:
2032    case VEC4_OPCODE_SET_HIGH_32BIT:
2033       return true;
2034    default:
2035       return false;
2036    }
2037 }
2038 
2039 /**
2040  * Three source instruction must have a GRF/MRF destination register.
2041  * ARF NULL is not allowed.  Fix that up by allocating a temporary GRF.
2042  */
2043 void
fixup_3src_null_dest()2044 vec4_visitor::fixup_3src_null_dest()
2045 {
2046    bool progress = false;
2047 
2048    foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) {
2049       if (inst->is_3src(devinfo) && inst->dst.is_null()) {
2050          const unsigned size_written = type_sz(inst->dst.type);
2051          const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2052 
2053          inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2054                             inst->dst.type);
2055          progress = true;
2056       }
2057    }
2058 
2059    if (progress)
2060       invalidate_analysis(DEPENDENCY_INSTRUCTION_DETAIL |
2061                           DEPENDENCY_VARIABLES);
2062 }
2063 
2064 void
convert_to_hw_regs()2065 vec4_visitor::convert_to_hw_regs()
2066 {
2067    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
2068       for (int i = 0; i < 3; i++) {
2069          class src_reg &src = inst->src[i];
2070          struct brw_reg reg;
2071          switch (src.file) {
2072          case VGRF: {
2073             reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset);
2074             reg.type = src.type;
2075             reg.abs = src.abs;
2076             reg.negate = src.negate;
2077             break;
2078          }
2079 
2080          case UNIFORM: {
2081             if (src.nr >= UBO_START) {
2082                reg = byte_offset(brw_vec4_grf(
2083                                     prog_data->base.dispatch_grf_start_reg +
2084                                     ubo_push_start[src.nr - UBO_START] +
2085                                     src.offset / 32, 0),
2086                                  src.offset % 32);
2087             } else {
2088                reg = byte_offset(brw_vec4_grf(
2089                                     prog_data->base.dispatch_grf_start_reg +
2090                                     src.nr / 2, src.nr % 2 * 4),
2091                                  src.offset);
2092             }
2093             reg = stride(reg, 0, 4, 1);
2094             reg.type = src.type;
2095             reg.abs = src.abs;
2096             reg.negate = src.negate;
2097 
2098             /* This should have been moved to pull constants. */
2099             assert(!src.reladdr);
2100             break;
2101          }
2102 
2103          case FIXED_GRF:
2104             if (type_sz(src.type) == 8) {
2105                reg = src.as_brw_reg();
2106                break;
2107             }
2108             FALLTHROUGH;
2109          case ARF:
2110          case IMM:
2111             continue;
2112 
2113          case BAD_FILE:
2114             /* Probably unused. */
2115             reg = brw_null_reg();
2116             reg = retype(reg, src.type);
2117             break;
2118 
2119          case MRF:
2120          case ATTR:
2121             unreachable("not reached");
2122          }
2123 
2124          apply_logical_swizzle(&reg, inst, i);
2125          src = reg;
2126 
2127          /* From IVB PRM, vol4, part3, "General Restrictions on Regioning
2128           * Parameters":
2129           *
2130           *   "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set
2131           *    to Width * HorzStride."
2132           *
2133           * We can break this rule with DF sources on DF align1
2134           * instructions, because the exec_size would be 4 and width is 4.
2135           * As we know we are not accessing to next GRF, it is safe to
2136           * set vstride to the formula given by the rule itself.
2137           */
2138          if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width)
2139             src.vstride = src.width + src.hstride;
2140       }
2141 
2142       if (inst->is_3src(devinfo)) {
2143          /* 3-src instructions with scalar sources support arbitrary subnr,
2144           * but don't actually use swizzles.  Convert swizzle into subnr.
2145           * Skip this for double-precision instructions: RepCtrl=1 is not
2146           * allowed for them and needs special handling.
2147           */
2148          for (int i = 0; i < 3; i++) {
2149             if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 &&
2150                 type_sz(inst->src[i].type) < 8) {
2151                assert(brw_is_single_value_swizzle(inst->src[i].swizzle));
2152                inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0);
2153             }
2154          }
2155       }
2156 
2157       dst_reg &dst = inst->dst;
2158       struct brw_reg reg;
2159 
2160       switch (inst->dst.file) {
2161       case VGRF:
2162          reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset);
2163          reg.type = dst.type;
2164          reg.writemask = dst.writemask;
2165          break;
2166 
2167       case MRF:
2168          reg = byte_offset(brw_message_reg(dst.nr), dst.offset);
2169          assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->ver));
2170          reg.type = dst.type;
2171          reg.writemask = dst.writemask;
2172          break;
2173 
2174       case ARF:
2175       case FIXED_GRF:
2176          reg = dst.as_brw_reg();
2177          break;
2178 
2179       case BAD_FILE:
2180          reg = brw_null_reg();
2181          reg = retype(reg, dst.type);
2182          break;
2183 
2184       case IMM:
2185       case ATTR:
2186       case UNIFORM:
2187          unreachable("not reached");
2188       }
2189 
2190       dst = reg;
2191    }
2192 }
2193 
2194 static bool
stage_uses_interleaved_attributes(unsigned stage,enum shader_dispatch_mode dispatch_mode)2195 stage_uses_interleaved_attributes(unsigned stage,
2196                                   enum shader_dispatch_mode dispatch_mode)
2197 {
2198    switch (stage) {
2199    case MESA_SHADER_TESS_EVAL:
2200       return true;
2201    case MESA_SHADER_GEOMETRY:
2202       return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT;
2203    default:
2204       return false;
2205    }
2206 }
2207 
2208 /**
2209  * Get the closest native SIMD width supported by the hardware for instruction
2210  * \p inst.  The instruction will be left untouched by
2211  * vec4_visitor::lower_simd_width() if the returned value matches the
2212  * instruction's original execution size.
2213  */
2214 static unsigned
get_lowered_simd_width(const struct intel_device_info * devinfo,enum shader_dispatch_mode dispatch_mode,unsigned stage,const vec4_instruction * inst)2215 get_lowered_simd_width(const struct intel_device_info *devinfo,
2216                        enum shader_dispatch_mode dispatch_mode,
2217                        unsigned stage, const vec4_instruction *inst)
2218 {
2219    /* Do not split some instructions that require special handling */
2220    switch (inst->opcode) {
2221    case SHADER_OPCODE_GFX4_SCRATCH_READ:
2222    case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
2223       return inst->exec_size;
2224    default:
2225       break;
2226    }
2227 
2228    unsigned lowered_width = MIN2(16, inst->exec_size);
2229 
2230    /* We need to split some cases of double-precision instructions that write
2231     * 2 registers. We only need to care about this in gfx7 because that is the
2232     * only hardware that implements fp64 in Align16.
2233     */
2234    if (devinfo->ver == 7 && inst->size_written > REG_SIZE) {
2235       /* Align16 8-wide double-precision SEL does not work well. Verified
2236        * empirically.
2237        */
2238       if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8)
2239          lowered_width = MIN2(lowered_width, 4);
2240 
2241       /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct
2242        * Register Addressing:
2243        *
2244        *    "When destination spans two registers, the source MUST span two
2245        *     registers."
2246        */
2247       for (unsigned i = 0; i < 3; i++) {
2248          if (inst->src[i].file == BAD_FILE)
2249             continue;
2250          if (inst->size_read(i) <= REG_SIZE)
2251             lowered_width = MIN2(lowered_width, 4);
2252 
2253          /* Interleaved attribute setups use a vertical stride of 0, which
2254           * makes them hit the associated instruction decompression bug in gfx7.
2255           * Split them to prevent this.
2256           */
2257          if (inst->src[i].file == ATTR &&
2258              stage_uses_interleaved_attributes(stage, dispatch_mode))
2259             lowered_width = MIN2(lowered_width, 4);
2260       }
2261    }
2262 
2263    /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since
2264     * it doesn't support compression in Align16 mode, no matter if it has
2265     * force_writemask_all enabled or disabled (the latter is affected by the
2266     * compressed instruction bug in gfx7, which is another reason to enforce
2267     * this limit).
2268     */
2269    if (devinfo->verx10 == 70 &&
2270        (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8))
2271       lowered_width = MIN2(lowered_width, 4);
2272 
2273    return lowered_width;
2274 }
2275 
2276 static bool
dst_src_regions_overlap(vec4_instruction * inst)2277 dst_src_regions_overlap(vec4_instruction *inst)
2278 {
2279    if (inst->size_written == 0)
2280       return false;
2281 
2282    unsigned dst_start = inst->dst.offset;
2283    unsigned dst_end = dst_start + inst->size_written - 1;
2284    for (int i = 0; i < 3; i++) {
2285       if (inst->src[i].file == BAD_FILE)
2286          continue;
2287 
2288       if (inst->dst.file != inst->src[i].file ||
2289           inst->dst.nr != inst->src[i].nr)
2290          continue;
2291 
2292       unsigned src_start = inst->src[i].offset;
2293       unsigned src_end = src_start + inst->size_read(i) - 1;
2294 
2295       if ((dst_start >= src_start && dst_start <= src_end) ||
2296           (dst_end >= src_start && dst_end <= src_end) ||
2297           (dst_start <= src_start && dst_end >= src_end)) {
2298          return true;
2299       }
2300    }
2301 
2302    return false;
2303 }
2304 
2305 bool
lower_simd_width()2306 vec4_visitor::lower_simd_width()
2307 {
2308    bool progress = false;
2309 
2310    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2311       const unsigned lowered_width =
2312          get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst);
2313       assert(lowered_width <= inst->exec_size);
2314       if (lowered_width == inst->exec_size)
2315          continue;
2316 
2317       /* We need to deal with source / destination overlaps when splitting.
2318        * The hardware supports reading from and writing to the same register
2319        * in the same instruction, but we need to be careful that each split
2320        * instruction we produce does not corrupt the source of the next.
2321        *
2322        * The easiest way to handle this is to make the split instructions write
2323        * to temporaries if there is an src/dst overlap and then move from the
2324        * temporaries to the original destination. We also need to consider
2325        * instructions that do partial writes via align1 opcodes, in which case
2326        * we need to make sure that the we initialize the temporary with the
2327        * value of the instruction's dst.
2328        */
2329       bool needs_temp = dst_src_regions_overlap(inst);
2330       for (unsigned n = 0; n < inst->exec_size / lowered_width; n++)  {
2331          unsigned channel_offset = lowered_width * n;
2332 
2333          unsigned size_written = lowered_width * type_sz(inst->dst.type);
2334 
2335          /* Create the split instruction from the original so that we copy all
2336           * relevant instruction fields, then set the width and calculate the
2337           * new dst/src regions.
2338           */
2339          vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst);
2340          linst->exec_size = lowered_width;
2341          linst->group = channel_offset;
2342          linst->size_written = size_written;
2343 
2344          /* Compute split dst region */
2345          dst_reg dst;
2346          if (needs_temp) {
2347             unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE);
2348             dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)),
2349                          inst->dst.type);
2350             if (inst->is_align1_partial_write()) {
2351                vec4_instruction *copy = MOV(dst, src_reg(inst->dst));
2352                copy->exec_size = lowered_width;
2353                copy->group = channel_offset;
2354                copy->size_written = size_written;
2355                inst->insert_before(block, copy);
2356             }
2357          } else {
2358             dst = horiz_offset(inst->dst, channel_offset);
2359          }
2360          linst->dst = dst;
2361 
2362          /* Compute split source regions */
2363          for (int i = 0; i < 3; i++) {
2364             if (linst->src[i].file == BAD_FILE)
2365                continue;
2366 
2367             bool is_interleaved_attr =
2368                linst->src[i].file == ATTR &&
2369                stage_uses_interleaved_attributes(stage,
2370                                                  prog_data->dispatch_mode);
2371 
2372             if (!is_uniform(linst->src[i]) && !is_interleaved_attr)
2373                linst->src[i] = horiz_offset(linst->src[i], channel_offset);
2374          }
2375 
2376          inst->insert_before(block, linst);
2377 
2378          /* If we used a temporary to store the result of the split
2379           * instruction, copy the result to the original destination
2380           */
2381          if (needs_temp) {
2382             vec4_instruction *mov =
2383                MOV(offset(inst->dst, lowered_width, n), src_reg(dst));
2384             mov->exec_size = lowered_width;
2385             mov->group = channel_offset;
2386             mov->size_written = size_written;
2387             mov->predicate = inst->predicate;
2388             inst->insert_before(block, mov);
2389          }
2390       }
2391 
2392       inst->remove(block);
2393       progress = true;
2394    }
2395 
2396    if (progress)
2397       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2398 
2399    return progress;
2400 }
2401 
2402 static brw_predicate
scalarize_predicate(brw_predicate predicate,unsigned writemask)2403 scalarize_predicate(brw_predicate predicate, unsigned writemask)
2404 {
2405    if (predicate != BRW_PREDICATE_NORMAL)
2406       return predicate;
2407 
2408    switch (writemask) {
2409    case WRITEMASK_X:
2410       return BRW_PREDICATE_ALIGN16_REPLICATE_X;
2411    case WRITEMASK_Y:
2412       return BRW_PREDICATE_ALIGN16_REPLICATE_Y;
2413    case WRITEMASK_Z:
2414       return BRW_PREDICATE_ALIGN16_REPLICATE_Z;
2415    case WRITEMASK_W:
2416       return BRW_PREDICATE_ALIGN16_REPLICATE_W;
2417    default:
2418       unreachable("invalid writemask");
2419    }
2420 }
2421 
2422 /* Gfx7 has a hardware decompression bug that we can exploit to represent
2423  * handful of additional swizzles natively.
2424  */
2425 static bool
is_gfx7_supported_64bit_swizzle(vec4_instruction * inst,unsigned arg)2426 is_gfx7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg)
2427 {
2428    switch (inst->src[arg].swizzle) {
2429    case BRW_SWIZZLE_XXXX:
2430    case BRW_SWIZZLE_YYYY:
2431    case BRW_SWIZZLE_ZZZZ:
2432    case BRW_SWIZZLE_WWWW:
2433    case BRW_SWIZZLE_XYXY:
2434    case BRW_SWIZZLE_YXYX:
2435    case BRW_SWIZZLE_ZWZW:
2436    case BRW_SWIZZLE_WZWZ:
2437       return true;
2438    default:
2439       return false;
2440    }
2441 }
2442 
2443 /* 64-bit sources use regions with a width of 2. These 2 elements in each row
2444  * can be addressed using 32-bit swizzles (which is what the hardware supports)
2445  * but it also means that the swizzle we apply on the first two components of a
2446  * dvec4 is coupled with the swizzle we use for the last 2. In other words,
2447  * only some specific swizzle combinations can be natively supported.
2448  *
2449  * FIXME: we can go an step further and implement even more swizzle
2450  *        variations using only partial scalarization.
2451  *
2452  * For more details see:
2453  * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82
2454  */
2455 bool
is_supported_64bit_region(vec4_instruction * inst,unsigned arg)2456 vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg)
2457 {
2458    const src_reg &src = inst->src[arg];
2459    assert(type_sz(src.type) == 8);
2460 
2461    /* Uniform regions have a vstride=0. Because we use 2-wide rows with
2462     * 64-bit regions it means that we cannot access components Z/W, so
2463     * return false for any such case. Interleaved attributes will also be
2464     * mapped to GRF registers with a vstride of 0, so apply the same
2465     * treatment.
2466     */
2467    if ((is_uniform(src) ||
2468         (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) &&
2469          src.file == ATTR)) &&
2470        (brw_mask_for_swizzle(src.swizzle) & 12))
2471       return false;
2472 
2473    switch (src.swizzle) {
2474    case BRW_SWIZZLE_XYZW:
2475    case BRW_SWIZZLE_XXZZ:
2476    case BRW_SWIZZLE_YYWW:
2477    case BRW_SWIZZLE_YXWZ:
2478       return true;
2479    default:
2480       return devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg);
2481    }
2482 }
2483 
2484 bool
scalarize_df()2485 vec4_visitor::scalarize_df()
2486 {
2487    bool progress = false;
2488 
2489    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2490       /* Skip DF instructions that operate in Align1 mode */
2491       if (is_align1_df(inst))
2492          continue;
2493 
2494       /* Check if this is a double-precision instruction */
2495       bool is_double = type_sz(inst->dst.type) == 8;
2496       for (int arg = 0; !is_double && arg < 3; arg++) {
2497          is_double = inst->src[arg].file != BAD_FILE &&
2498                      type_sz(inst->src[arg].type) == 8;
2499       }
2500 
2501       if (!is_double)
2502          continue;
2503 
2504       /* Skip the lowering for specific regioning scenarios that we can
2505        * support natively.
2506        */
2507       bool skip_lowering = true;
2508 
2509       /* XY and ZW writemasks operate in 32-bit, which means that they don't
2510        * have a native 64-bit representation and they should always be split.
2511        */
2512       if (inst->dst.writemask == WRITEMASK_XY ||
2513           inst->dst.writemask == WRITEMASK_ZW) {
2514          skip_lowering = false;
2515       } else {
2516          for (unsigned i = 0; i < 3; i++) {
2517             if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8)
2518                continue;
2519             skip_lowering = skip_lowering && is_supported_64bit_region(inst, i);
2520          }
2521       }
2522 
2523       if (skip_lowering)
2524          continue;
2525 
2526       /* Generate scalar instructions for each enabled channel */
2527       for (unsigned chan = 0; chan < 4; chan++) {
2528          unsigned chan_mask = 1 << chan;
2529          if (!(inst->dst.writemask & chan_mask))
2530             continue;
2531 
2532          vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst);
2533 
2534          for (unsigned i = 0; i < 3; i++) {
2535             unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan);
2536             scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz);
2537          }
2538 
2539          scalar_inst->dst.writemask = chan_mask;
2540 
2541          if (inst->predicate != BRW_PREDICATE_NONE) {
2542             scalar_inst->predicate =
2543                scalarize_predicate(inst->predicate, chan_mask);
2544          }
2545 
2546          inst->insert_before(block, scalar_inst);
2547       }
2548 
2549       inst->remove(block);
2550       progress = true;
2551    }
2552 
2553    if (progress)
2554       invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
2555 
2556    return progress;
2557 }
2558 
2559 bool
lower_64bit_mad_to_mul_add()2560 vec4_visitor::lower_64bit_mad_to_mul_add()
2561 {
2562    bool progress = false;
2563 
2564    foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
2565       if (inst->opcode != BRW_OPCODE_MAD)
2566          continue;
2567 
2568       if (type_sz(inst->dst.type) != 8)
2569          continue;
2570 
2571       dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
2572 
2573       /* Use the copy constructor so we copy all relevant instruction fields
2574        * from the original mad into the add and mul instructions
2575        */
2576       vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst);
2577       mul->opcode = BRW_OPCODE_MUL;
2578       mul->dst = mul_dst;
2579       mul->src[0] = inst->src[1];
2580       mul->src[1] = inst->src[2];
2581       mul->src[2].file = BAD_FILE;
2582 
2583       vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst);
2584       add->opcode = BRW_OPCODE_ADD;
2585       add->src[0] = src_reg(mul_dst);
2586       add->src[1] = inst->src[0];
2587       add->src[2].file = BAD_FILE;
2588 
2589       inst->insert_before(block, mul);
2590       inst->insert_before(block, add);
2591       inst->remove(block);
2592 
2593       progress = true;
2594    }
2595 
2596    if (progress)
2597       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
2598 
2599    return progress;
2600 }
2601 
2602 /* The align16 hardware can only do 32-bit swizzle channels, so we need to
2603  * translate the logical 64-bit swizzle channels that we use in the Vec4 IR
2604  * to 32-bit swizzle channels in hardware registers.
2605  *
2606  * @inst and @arg identify the original vec4 IR source operand we need to
2607  * translate the swizzle for and @hw_reg is the hardware register where we
2608  * will write the hardware swizzle to use.
2609  *
2610  * This pass assumes that Align16/DF instructions have been fully scalarized
2611  * previously so there is just one 64-bit swizzle channel to deal with for any
2612  * given Vec4 IR source.
2613  */
2614 void
apply_logical_swizzle(struct brw_reg * hw_reg,vec4_instruction * inst,int arg)2615 vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg,
2616                                     vec4_instruction *inst, int arg)
2617 {
2618    src_reg reg = inst->src[arg];
2619 
2620    if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE)
2621       return;
2622 
2623    /* If this is not a 64-bit operand or this is a scalar instruction we don't
2624     * need to do anything about the swizzles.
2625     */
2626    if(type_sz(reg.type) < 8 || is_align1_df(inst)) {
2627       hw_reg->swizzle = reg.swizzle;
2628       return;
2629    }
2630 
2631    /* Take the 64-bit logical swizzle channel and translate it to 32-bit */
2632    assert(brw_is_single_value_swizzle(reg.swizzle) ||
2633           is_supported_64bit_region(inst, arg));
2634 
2635    /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16
2636     * HW can only do 32-bit swizzle channels.
2637     */
2638    hw_reg->width = BRW_WIDTH_2;
2639 
2640    if (is_supported_64bit_region(inst, arg) &&
2641        !is_gfx7_supported_64bit_swizzle(inst, arg)) {
2642       /* Supported 64-bit swizzles are those such that their first two
2643        * components, when expanded to 32-bit swizzles, match the semantics
2644        * of the original 64-bit swizzle with 2-wide row regioning.
2645        */
2646       unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2647       unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2648       hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2649                                      swizzle1 * 2, swizzle1 * 2 + 1);
2650    } else {
2651       /* If we got here then we have one of the following:
2652        *
2653        * 1. An unsupported swizzle, which should be single-value thanks to the
2654        *    scalarization pass.
2655        *
2656        * 2. A gfx7 supported swizzle. These can be single-value or double-value
2657        *    swizzles. If the latter, they are never cross-dvec2 channels. For
2658        *    these we always need to activate the gfx7 vstride=0 exploit.
2659        */
2660       unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0);
2661       unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1);
2662       assert((swizzle0 < 2) == (swizzle1 < 2));
2663 
2664       /* To gain access to Z/W components we need to select the second half
2665        * of the register and then use a X/Y swizzle to select Z/W respectively.
2666        */
2667       if (swizzle0 >= 2) {
2668          *hw_reg = suboffset(*hw_reg, 2);
2669          swizzle0 -= 2;
2670          swizzle1 -= 2;
2671       }
2672 
2673       /* All gfx7-specific supported swizzles require the vstride=0 exploit */
2674       if (devinfo->ver == 7 && is_gfx7_supported_64bit_swizzle(inst, arg))
2675          hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2676 
2677       /* Any 64-bit source with an offset at 16B is intended to address the
2678        * second half of a register and needs a vertical stride of 0 so we:
2679        *
2680        * 1. Don't violate register region restrictions.
2681        * 2. Activate the gfx7 instruction decompresion bug exploit when
2682        *    execsize > 4
2683        */
2684       if (hw_reg->subnr % REG_SIZE == 16) {
2685          assert(devinfo->ver == 7);
2686          hw_reg->vstride = BRW_VERTICAL_STRIDE_0;
2687       }
2688 
2689       hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1,
2690                                      swizzle1 * 2, swizzle1 * 2 + 1);
2691    }
2692 }
2693 
2694 void
invalidate_analysis(brw::analysis_dependency_class c)2695 vec4_visitor::invalidate_analysis(brw::analysis_dependency_class c)
2696 {
2697    backend_shader::invalidate_analysis(c);
2698    live_analysis.invalidate(c);
2699 }
2700 
2701 bool
run()2702 vec4_visitor::run()
2703 {
2704    if (shader_time_index >= 0)
2705       emit_shader_time_begin();
2706 
2707    setup_push_ranges();
2708 
2709    if (prog_data->base.zero_push_reg) {
2710       /* push_reg_mask_param is in uint32 params and UNIFORM is in vec4s */
2711       const unsigned mask_param = stage_prog_data->push_reg_mask_param;
2712       src_reg mask = src_reg(dst_reg(UNIFORM, mask_param / 4));
2713       assert(mask_param % 2 == 0); /* Should be 64-bit-aligned */
2714       mask.swizzle = BRW_SWIZZLE4((mask_param + 0) % 4,
2715                                   (mask_param + 1) % 4,
2716                                   (mask_param + 0) % 4,
2717                                   (mask_param + 1) % 4);
2718 
2719       emit(VEC4_OPCODE_ZERO_OOB_PUSH_REGS,
2720            dst_reg(VGRF, alloc.allocate(3)), mask);
2721    }
2722 
2723    emit_prolog();
2724 
2725    emit_nir_code();
2726    if (failed)
2727       return false;
2728    base_ir = NULL;
2729 
2730    emit_thread_end();
2731 
2732    calculate_cfg();
2733 
2734    /* Before any optimization, push array accesses out to scratch
2735     * space where we need them to be.  This pass may allocate new
2736     * virtual GRFs, so we want to do it early.  It also makes sure
2737     * that we have reladdr computations available for CSE, since we'll
2738     * often do repeated subexpressions for those.
2739     */
2740    move_grf_array_access_to_scratch();
2741    move_uniform_array_access_to_pull_constants();
2742 
2743    pack_uniform_registers();
2744    move_push_constants_to_pull_constants();
2745    split_virtual_grfs();
2746 
2747 #define OPT(pass, args...) ({                                          \
2748       pass_num++;                                                      \
2749       bool this_progress = pass(args);                                 \
2750                                                                        \
2751       if (INTEL_DEBUG(DEBUG_OPTIMIZER) && this_progress) {             \
2752          char filename[64];                                            \
2753          snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass,              \
2754                   stage_abbrev, nir->info.name, iteration, pass_num); \
2755                                                                        \
2756          backend_shader::dump_instructions(filename);                  \
2757       }                                                                \
2758                                                                        \
2759       progress = progress || this_progress;                            \
2760       this_progress;                                                   \
2761    })
2762 
2763 
2764    if (INTEL_DEBUG(DEBUG_OPTIMIZER)) {
2765       char filename[64];
2766       snprintf(filename, 64, "%s-%s-00-00-start",
2767                stage_abbrev, nir->info.name);
2768 
2769       backend_shader::dump_instructions(filename);
2770    }
2771 
2772    bool progress;
2773    int iteration = 0;
2774    int pass_num = 0;
2775    do {
2776       progress = false;
2777       pass_num = 0;
2778       iteration++;
2779 
2780       OPT(opt_predicated_break, this);
2781       OPT(opt_reduce_swizzle);
2782       OPT(dead_code_eliminate);
2783       OPT(dead_control_flow_eliminate, this);
2784       OPT(opt_copy_propagation);
2785       OPT(opt_cmod_propagation);
2786       OPT(opt_cse);
2787       OPT(opt_algebraic);
2788       OPT(opt_register_coalesce);
2789       OPT(eliminate_find_live_channel);
2790    } while (progress);
2791 
2792    pass_num = 0;
2793 
2794    if (OPT(opt_vector_float)) {
2795       OPT(opt_cse);
2796       OPT(opt_copy_propagation, false);
2797       OPT(opt_copy_propagation, true);
2798       OPT(dead_code_eliminate);
2799    }
2800 
2801    if (devinfo->ver <= 5 && OPT(lower_minmax)) {
2802       OPT(opt_cmod_propagation);
2803       OPT(opt_cse);
2804       OPT(opt_copy_propagation);
2805       OPT(dead_code_eliminate);
2806    }
2807 
2808    if (OPT(lower_simd_width)) {
2809       OPT(opt_copy_propagation);
2810       OPT(dead_code_eliminate);
2811    }
2812 
2813    if (failed)
2814       return false;
2815 
2816    OPT(lower_64bit_mad_to_mul_add);
2817 
2818    /* Run this before payload setup because tesselation shaders
2819     * rely on it to prevent cross dvec2 regioning on DF attributes
2820     * that are setup so that XY are on the second half of register and
2821     * ZW are in the first half of the next.
2822     */
2823    OPT(scalarize_df);
2824 
2825    setup_payload();
2826 
2827    if (INTEL_DEBUG(DEBUG_SPILL_VEC4)) {
2828       /* Debug of register spilling: Go spill everything. */
2829       const int grf_count = alloc.count;
2830       float spill_costs[alloc.count];
2831       bool no_spill[alloc.count];
2832       evaluate_spill_costs(spill_costs, no_spill);
2833       for (int i = 0; i < grf_count; i++) {
2834          if (no_spill[i])
2835             continue;
2836          spill_reg(i);
2837       }
2838 
2839       /* We want to run this after spilling because 64-bit (un)spills need to
2840        * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2841        * messages that can produce unsupported 64-bit swizzle regions.
2842        */
2843       OPT(scalarize_df);
2844    }
2845 
2846    fixup_3src_null_dest();
2847 
2848    bool allocated_without_spills = reg_allocate();
2849 
2850    if (!allocated_without_spills) {
2851       brw_shader_perf_log(compiler, log_data,
2852                           "%s shader triggered register spilling.  "
2853                           "Try reducing the number of live vec4 values "
2854                           "to improve performance.\n",
2855                           stage_name);
2856 
2857       while (!reg_allocate()) {
2858          if (failed)
2859             return false;
2860       }
2861 
2862       /* We want to run this after spilling because 64-bit (un)spills need to
2863        * emit code to shuffle 64-bit data for the 32-bit scratch read/write
2864        * messages that can produce unsupported 64-bit swizzle regions.
2865        */
2866       OPT(scalarize_df);
2867    }
2868 
2869    opt_schedule_instructions();
2870 
2871    opt_set_dependency_control();
2872 
2873    convert_to_hw_regs();
2874 
2875    if (last_scratch > 0) {
2876       prog_data->base.total_scratch =
2877          brw_get_scratch_size(last_scratch * REG_SIZE);
2878    }
2879 
2880    return !failed;
2881 }
2882 
2883 } /* namespace brw */
2884 
2885 extern "C" {
2886 
2887 const unsigned *
brw_compile_vs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_vs_params * params)2888 brw_compile_vs(const struct brw_compiler *compiler,
2889                void *mem_ctx,
2890                struct brw_compile_vs_params *params)
2891 {
2892    struct nir_shader *nir = params->nir;
2893    const struct brw_vs_prog_key *key = params->key;
2894    struct brw_vs_prog_data *prog_data = params->prog_data;
2895    const bool debug_enabled =
2896       INTEL_DEBUG(params->debug_flag ? params->debug_flag : DEBUG_VS);
2897 
2898    prog_data->base.base.stage = MESA_SHADER_VERTEX;
2899 
2900    const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX];
2901    brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
2902 
2903    const unsigned *assembly = NULL;
2904 
2905    prog_data->inputs_read = nir->info.inputs_read;
2906    prog_data->double_inputs_read = nir->info.vs.double_inputs;
2907 
2908    brw_nir_lower_vs_inputs(nir, params->edgeflag_is_last, key->gl_attrib_wa_flags);
2909    brw_nir_lower_vue_outputs(nir);
2910    brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
2911                        key->base.robust_buffer_access);
2912 
2913    prog_data->base.clip_distance_mask =
2914       ((1 << nir->info.clip_distance_array_size) - 1);
2915    prog_data->base.cull_distance_mask =
2916       ((1 << nir->info.cull_distance_array_size) - 1) <<
2917       nir->info.clip_distance_array_size;
2918 
2919    unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read);
2920 
2921    /* gl_VertexID and gl_InstanceID are system values, but arrive via an
2922     * incoming vertex attribute.  So, add an extra slot.
2923     */
2924    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
2925        BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
2926        BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
2927        BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID)) {
2928       nr_attribute_slots++;
2929    }
2930 
2931    /* gl_DrawID and IsIndexedDraw share its very own vec4 */
2932    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID) ||
2933        BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW)) {
2934       nr_attribute_slots++;
2935    }
2936 
2937    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_IS_INDEXED_DRAW))
2938       prog_data->uses_is_indexed_draw = true;
2939 
2940    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX))
2941       prog_data->uses_firstvertex = true;
2942 
2943    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE))
2944       prog_data->uses_baseinstance = true;
2945 
2946    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE))
2947       prog_data->uses_vertexid = true;
2948 
2949    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID))
2950       prog_data->uses_instanceid = true;
2951 
2952    if (BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_DRAW_ID))
2953           prog_data->uses_drawid = true;
2954 
2955    /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry
2956     * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode.  Empirically, in
2957     * vec4 mode, the hardware appears to wedge unless we read something.
2958     */
2959    if (is_scalar)
2960       prog_data->base.urb_read_length =
2961          DIV_ROUND_UP(nr_attribute_slots, 2);
2962    else
2963       prog_data->base.urb_read_length =
2964          DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2);
2965 
2966    prog_data->nr_attribute_slots = nr_attribute_slots;
2967 
2968    /* Since vertex shaders reuse the same VUE entry for inputs and outputs
2969     * (overwriting the original contents), we need to make sure the size is
2970     * the larger of the two.
2971     */
2972    const unsigned vue_entries =
2973       MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots);
2974 
2975    if (compiler->devinfo->ver == 6) {
2976       prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8);
2977    } else {
2978       prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4);
2979    }
2980 
2981    if (unlikely(debug_enabled)) {
2982       fprintf(stderr, "VS Output ");
2983       brw_print_vue_map(stderr, &prog_data->base.vue_map, MESA_SHADER_VERTEX);
2984    }
2985 
2986    if (is_scalar) {
2987       prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
2988 
2989       fs_visitor v(compiler, params->log_data, mem_ctx, &key->base,
2990                    &prog_data->base.base, nir, 8,
2991                    params->shader_time ? params->shader_time_index : -1,
2992                    debug_enabled);
2993       if (!v.run_vs()) {
2994          params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
2995          return NULL;
2996       }
2997 
2998       prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
2999 
3000       fs_generator g(compiler, params->log_data, mem_ctx,
3001                      &prog_data->base.base, v.runtime_check_aads_emit,
3002                      MESA_SHADER_VERTEX);
3003       if (unlikely(debug_enabled)) {
3004          const char *debug_name =
3005             ralloc_asprintf(mem_ctx, "%s vertex shader %s",
3006                             nir->info.label ? nir->info.label :
3007                                "unnamed",
3008                             nir->info.name);
3009 
3010          g.enable_debug(debug_name);
3011       }
3012       g.generate_code(v.cfg, 8, v.shader_stats,
3013                       v.performance_analysis.require(), params->stats);
3014       g.add_const_data(nir->constant_data, nir->constant_data_size);
3015       assembly = g.get_assembly();
3016    }
3017 
3018    if (!assembly) {
3019       prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
3020 
3021       vec4_vs_visitor v(compiler, params->log_data, key, prog_data,
3022                         nir, mem_ctx,
3023                         params->shader_time ? params->shader_time_index : -1,
3024                         debug_enabled);
3025       if (!v.run()) {
3026          params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
3027          return NULL;
3028       }
3029 
3030       assembly = brw_vec4_generate_assembly(compiler, params->log_data, mem_ctx,
3031                                             nir, &prog_data->base,
3032                                             v.cfg,
3033                                             v.performance_analysis.require(),
3034                                             params->stats, debug_enabled);
3035    }
3036 
3037    return assembly;
3038 }
3039 
3040 } /* extern "C" */
3041