1 /*
2 * Copyright © 2016 Red Hat.
3 * Copyright © 2016 Bas Nieuwenhuizen
4 *
5 * based in part on anv driver which is:
6 * Copyright © 2015 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25 * IN THE SOFTWARE.
26 */
27
28 #include <fcntl.h>
29 #include <stdbool.h>
30 #include <string.h>
31
32 #if defined(__FreeBSD__) || defined(__DragonFly__)
33 #include <sys/types.h>
34 #elif !defined(_WIN32)
35 #include <sys/sysmacros.h>
36 #endif
37
38 #include "util/debug.h"
39 #include "util/disk_cache.h"
40 #include "radv_cs.h"
41 #include "radv_debug.h"
42 #include "radv_private.h"
43 #include "radv_shader.h"
44 #include "vk_util.h"
45 #ifdef _WIN32
46 typedef void *drmDevicePtr;
47 #include <io.h>
48 #else
49 #include <amdgpu.h>
50 #include <xf86drm.h>
51 #include "drm-uapi/amdgpu_drm.h"
52 #include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
53 #endif
54 #include "util/build_id.h"
55 #include "util/debug.h"
56 #include "util/driconf.h"
57 #include "util/mesa-sha1.h"
58 #include "util/timespec.h"
59 #include "util/u_atomic.h"
60 #include "winsys/null/radv_null_winsys_public.h"
61 #include "git_sha1.h"
62 #include "sid.h"
63 #include "vk_format.h"
64 #include "vulkan/vk_icd.h"
65
66 #ifdef LLVM_AVAILABLE
67 #include "ac_llvm_util.h"
68 #endif
69
70 /* The number of IBs per submit isn't infinite, it depends on the ring type
71 * (ie. some initial setup needed for a submit) and the number of IBs (4 DW).
72 * This limit is arbitrary but should be safe for now. Ideally, we should get
73 * this limit from the KMD.
74 */
75 #define RADV_MAX_IBS_PER_SUBMIT 192
76
77 /* The "RAW" clocks on Linux are called "FAST" on FreeBSD */
78 #if !defined(CLOCK_MONOTONIC_RAW) && defined(CLOCK_MONOTONIC_FAST)
79 #define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC_FAST
80 #endif
81
82 static struct radv_timeline_point *
83 radv_timeline_find_point_at_least_locked(struct radv_device *device, struct radv_timeline *timeline,
84 uint64_t p);
85
86 static struct radv_timeline_point *radv_timeline_add_point_locked(struct radv_device *device,
87 struct radv_timeline *timeline,
88 uint64_t p);
89
90 static void radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
91 struct list_head *processing_list);
92
93 static void radv_destroy_semaphore_part(struct radv_device *device,
94 struct radv_semaphore_part *part);
95
96 uint64_t
radv_get_current_time(void)97 radv_get_current_time(void)
98 {
99 return os_time_get_nano();
100 }
101
102 static uint64_t
radv_get_absolute_timeout(uint64_t timeout)103 radv_get_absolute_timeout(uint64_t timeout)
104 {
105 if (timeout == UINT64_MAX) {
106 return timeout;
107 } else {
108 uint64_t current_time = radv_get_current_time();
109
110 timeout = MIN2(UINT64_MAX - current_time, timeout);
111
112 return current_time + timeout;
113 }
114 }
115
116 static int
radv_device_get_cache_uuid(enum radeon_family family,void * uuid)117 radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
118 {
119 struct mesa_sha1 ctx;
120 unsigned char sha1[20];
121 unsigned ptr_size = sizeof(void *);
122
123 memset(uuid, 0, VK_UUID_SIZE);
124 _mesa_sha1_init(&ctx);
125
126 if (!disk_cache_get_function_identifier(radv_device_get_cache_uuid, &ctx)
127 #ifdef LLVM_AVAILABLE
128 || !disk_cache_get_function_identifier(LLVMInitializeAMDGPUTargetInfo, &ctx)
129 #endif
130 )
131 return -1;
132
133 _mesa_sha1_update(&ctx, &family, sizeof(family));
134 _mesa_sha1_update(&ctx, &ptr_size, sizeof(ptr_size));
135 _mesa_sha1_final(&ctx, sha1);
136
137 memcpy(uuid, sha1, VK_UUID_SIZE);
138 return 0;
139 }
140
141 static void
radv_get_driver_uuid(void * uuid)142 radv_get_driver_uuid(void *uuid)
143 {
144 ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
145 }
146
147 static void
radv_get_device_uuid(struct radeon_info * info,void * uuid)148 radv_get_device_uuid(struct radeon_info *info, void *uuid)
149 {
150 ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
151 }
152
153 static uint64_t
radv_get_adjusted_vram_size(struct radv_physical_device * device)154 radv_get_adjusted_vram_size(struct radv_physical_device *device)
155 {
156 int ov = driQueryOptioni(&device->instance->dri_options, "override_vram_size");
157 if (ov >= 0)
158 return MIN2(device->rad_info.vram_size, (uint64_t)ov << 20);
159 return device->rad_info.vram_size;
160 }
161
162 static uint64_t
radv_get_visible_vram_size(struct radv_physical_device * device)163 radv_get_visible_vram_size(struct radv_physical_device *device)
164 {
165 return MIN2(radv_get_adjusted_vram_size(device), device->rad_info.vram_vis_size);
166 }
167
168 static uint64_t
radv_get_vram_size(struct radv_physical_device * device)169 radv_get_vram_size(struct radv_physical_device *device)
170 {
171 uint64_t total_size = radv_get_adjusted_vram_size(device);
172 return total_size - MIN2(total_size, device->rad_info.vram_vis_size);
173 }
174
175 enum radv_heap {
176 RADV_HEAP_VRAM = 1 << 0,
177 RADV_HEAP_GTT = 1 << 1,
178 RADV_HEAP_VRAM_VIS = 1 << 2,
179 RADV_HEAP_MAX = 1 << 3,
180 };
181
182 static void
radv_physical_device_init_mem_types(struct radv_physical_device * device)183 radv_physical_device_init_mem_types(struct radv_physical_device *device)
184 {
185 uint64_t visible_vram_size = radv_get_visible_vram_size(device);
186 uint64_t vram_size = radv_get_vram_size(device);
187 uint64_t gtt_size = device->rad_info.gart_size;
188 int vram_index = -1, visible_vram_index = -1, gart_index = -1;
189
190 device->memory_properties.memoryHeapCount = 0;
191 device->heaps = 0;
192
193 if (!device->rad_info.has_dedicated_vram) {
194 /* On APUs, the carveout is usually too small for games that request a minimum VRAM size
195 * greater than it. To workaround this, we compute the total available memory size (GTT +
196 * visible VRAM size) and report 2/3 as VRAM and 1/3 as GTT.
197 */
198 const uint64_t total_size = gtt_size + visible_vram_size;
199 visible_vram_size = align64((total_size * 2) / 3, device->rad_info.gart_page_size);
200 gtt_size = total_size - visible_vram_size;
201 vram_size = 0;
202 }
203
204 /* Only get a VRAM heap if it is significant, not if it is a 16 MiB
205 * remainder above visible VRAM. */
206 if (vram_size > 0 && vram_size * 9 >= visible_vram_size) {
207 vram_index = device->memory_properties.memoryHeapCount++;
208 device->heaps |= RADV_HEAP_VRAM;
209 device->memory_properties.memoryHeaps[vram_index] = (VkMemoryHeap){
210 .size = vram_size,
211 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
212 };
213 }
214
215 if (gtt_size > 0) {
216 gart_index = device->memory_properties.memoryHeapCount++;
217 device->heaps |= RADV_HEAP_GTT;
218 device->memory_properties.memoryHeaps[gart_index] = (VkMemoryHeap){
219 .size = gtt_size,
220 .flags = 0,
221 };
222 }
223
224 if (visible_vram_size) {
225 visible_vram_index = device->memory_properties.memoryHeapCount++;
226 device->heaps |= RADV_HEAP_VRAM_VIS;
227 device->memory_properties.memoryHeaps[visible_vram_index] = (VkMemoryHeap){
228 .size = visible_vram_size,
229 .flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
230 };
231 }
232
233 unsigned type_count = 0;
234
235 if (vram_index >= 0 || visible_vram_index >= 0) {
236 device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
237 device->memory_flags[type_count] = RADEON_FLAG_NO_CPU_ACCESS;
238 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
239 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
240 .heapIndex = vram_index >= 0 ? vram_index : visible_vram_index,
241 };
242 }
243
244 if (gart_index >= 0) {
245 device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
246 device->memory_flags[type_count] = RADEON_FLAG_GTT_WC | RADEON_FLAG_CPU_ACCESS;
247 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
248 .propertyFlags =
249 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
250 .heapIndex = gart_index,
251 };
252 }
253 if (visible_vram_index >= 0) {
254 device->memory_domains[type_count] = RADEON_DOMAIN_VRAM;
255 device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
256 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
257 .propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
258 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
259 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
260 .heapIndex = visible_vram_index,
261 };
262 }
263
264 if (gart_index >= 0) {
265 device->memory_domains[type_count] = RADEON_DOMAIN_GTT;
266 device->memory_flags[type_count] = RADEON_FLAG_CPU_ACCESS;
267 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
268 .propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
269 VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
270 .heapIndex = gart_index,
271 };
272 }
273 device->memory_properties.memoryTypeCount = type_count;
274
275 if (device->rad_info.has_l2_uncached) {
276 for (int i = 0; i < device->memory_properties.memoryTypeCount; i++) {
277 VkMemoryType mem_type = device->memory_properties.memoryTypes[i];
278
279 if ((mem_type.propertyFlags &
280 (VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)) ||
281 mem_type.propertyFlags == VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) {
282
283 VkMemoryPropertyFlags property_flags = mem_type.propertyFlags |
284 VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD |
285 VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD;
286
287 device->memory_domains[type_count] = device->memory_domains[i];
288 device->memory_flags[type_count] = device->memory_flags[i] | RADEON_FLAG_VA_UNCACHED;
289 device->memory_properties.memoryTypes[type_count++] = (VkMemoryType){
290 .propertyFlags = property_flags,
291 .heapIndex = mem_type.heapIndex,
292 };
293 }
294 }
295 device->memory_properties.memoryTypeCount = type_count;
296 }
297 }
298
299 static const char *
radv_get_compiler_string(struct radv_physical_device * pdevice)300 radv_get_compiler_string(struct radv_physical_device *pdevice)
301 {
302 if (!pdevice->use_llvm) {
303 /* Some games like SotTR apply shader workarounds if the LLVM
304 * version is too old or if the LLVM version string is
305 * missing. This gives 2-5% performance with SotTR and ACO.
306 */
307 if (driQueryOptionb(&pdevice->instance->dri_options, "radv_report_llvm9_version_string")) {
308 return " (LLVM 9.0.1)";
309 }
310
311 return "";
312 }
313
314 #ifdef LLVM_AVAILABLE
315 return " (LLVM " MESA_LLVM_VERSION_STRING ")";
316 #else
317 unreachable("LLVM is not available");
318 #endif
319 }
320
321 int
radv_get_int_debug_option(const char * name,int default_value)322 radv_get_int_debug_option(const char *name, int default_value)
323 {
324 const char *str;
325 int result;
326
327 str = getenv(name);
328 if (!str) {
329 result = default_value;
330 } else {
331 char *endptr;
332
333 result = strtol(str, &endptr, 0);
334 if (str == endptr) {
335 /* No digits founs. */
336 result = default_value;
337 }
338 }
339
340 return result;
341 }
342
343 static bool
radv_thread_trace_enabled()344 radv_thread_trace_enabled()
345 {
346 return radv_get_int_debug_option("RADV_THREAD_TRACE", -1) >= 0 ||
347 getenv("RADV_THREAD_TRACE_TRIGGER");
348 }
349
350 #if defined(VK_USE_PLATFORM_WAYLAND_KHR) || defined(VK_USE_PLATFORM_XCB_KHR) || \
351 defined(VK_USE_PLATFORM_XLIB_KHR) || defined(VK_USE_PLATFORM_DISPLAY_KHR)
352 #define RADV_USE_WSI_PLATFORM
353 #endif
354
355 #ifdef ANDROID
356 #define RADV_API_VERSION VK_MAKE_VERSION(1, 1, VK_HEADER_VERSION)
357 #else
358 #define RADV_API_VERSION VK_MAKE_VERSION(1, 2, VK_HEADER_VERSION)
359 #endif
360
361 VkResult
radv_EnumerateInstanceVersion(uint32_t * pApiVersion)362 radv_EnumerateInstanceVersion(uint32_t *pApiVersion)
363 {
364 *pApiVersion = RADV_API_VERSION;
365 return VK_SUCCESS;
366 }
367
368 static const struct vk_instance_extension_table radv_instance_extensions_supported = {
369 .KHR_device_group_creation = true,
370 .KHR_external_fence_capabilities = true,
371 .KHR_external_memory_capabilities = true,
372 .KHR_external_semaphore_capabilities = true,
373 .KHR_get_physical_device_properties2 = true,
374 .EXT_debug_report = true,
375
376 #ifdef RADV_USE_WSI_PLATFORM
377 .KHR_get_surface_capabilities2 = true,
378 .KHR_surface = true,
379 .KHR_surface_protected_capabilities = true,
380 #endif
381 #ifdef VK_USE_PLATFORM_WAYLAND_KHR
382 .KHR_wayland_surface = true,
383 #endif
384 #ifdef VK_USE_PLATFORM_XCB_KHR
385 .KHR_xcb_surface = true,
386 #endif
387 #ifdef VK_USE_PLATFORM_XLIB_KHR
388 .KHR_xlib_surface = true,
389 #endif
390 #ifdef VK_USE_PLATFORM_XLIB_XRANDR_EXT
391 .EXT_acquire_xlib_display = true,
392 #endif
393 #ifdef VK_USE_PLATFORM_DISPLAY_KHR
394 .KHR_display = true,
395 .KHR_get_display_properties2 = true,
396 .EXT_direct_mode_display = true,
397 .EXT_display_surface_counter = true,
398 .EXT_acquire_drm_display = true,
399 #endif
400 };
401
402 static void
radv_physical_device_get_supported_extensions(const struct radv_physical_device * device,struct vk_device_extension_table * ext)403 radv_physical_device_get_supported_extensions(const struct radv_physical_device *device,
404 struct vk_device_extension_table *ext)
405 {
406 *ext = (struct vk_device_extension_table){
407 .KHR_8bit_storage = true,
408 .KHR_16bit_storage = true,
409 .KHR_acceleration_structure = !!(device->instance->perftest_flags & RADV_PERFTEST_RT),
410 .KHR_bind_memory2 = true,
411 .KHR_buffer_device_address = true,
412 .KHR_copy_commands2 = true,
413 .KHR_create_renderpass2 = true,
414 .KHR_dedicated_allocation = true,
415 .KHR_deferred_host_operations = true,
416 .KHR_depth_stencil_resolve = true,
417 .KHR_descriptor_update_template = true,
418 .KHR_device_group = true,
419 .KHR_draw_indirect_count = true,
420 .KHR_driver_properties = true,
421 .KHR_external_fence = true,
422 .KHR_external_fence_fd = true,
423 .KHR_external_memory = true,
424 .KHR_external_memory_fd = true,
425 .KHR_external_semaphore = true,
426 .KHR_external_semaphore_fd = true,
427 .KHR_format_feature_flags2 = true,
428 .KHR_fragment_shading_rate = device->rad_info.chip_class >= GFX10_3,
429 .KHR_get_memory_requirements2 = true,
430 .KHR_image_format_list = true,
431 .KHR_imageless_framebuffer = true,
432 #ifdef RADV_USE_WSI_PLATFORM
433 .KHR_incremental_present = true,
434 #endif
435 .KHR_maintenance1 = true,
436 .KHR_maintenance2 = true,
437 .KHR_maintenance3 = true,
438 .KHR_maintenance4 = true,
439 .KHR_multiview = true,
440 .KHR_pipeline_executable_properties = true,
441 .KHR_pipeline_library = (device->instance->perftest_flags & RADV_PERFTEST_RT) && !device->use_llvm,
442 .KHR_push_descriptor = true,
443 .KHR_ray_tracing_pipeline = (device->instance->perftest_flags & RADV_PERFTEST_RT) && !device->use_llvm,
444 .KHR_relaxed_block_layout = true,
445 .KHR_sampler_mirror_clamp_to_edge = true,
446 .KHR_sampler_ycbcr_conversion = true,
447 .KHR_separate_depth_stencil_layouts = true,
448 .KHR_shader_atomic_int64 = true,
449 .KHR_shader_clock = true,
450 .KHR_shader_draw_parameters = true,
451 .KHR_shader_float16_int8 = true,
452 .KHR_shader_float_controls = true,
453 .KHR_shader_integer_dot_product = true,
454 .KHR_shader_non_semantic_info = true,
455 .KHR_shader_subgroup_extended_types = true,
456 .KHR_shader_subgroup_uniform_control_flow = true,
457 .KHR_shader_terminate_invocation = true,
458 .KHR_spirv_1_4 = true,
459 .KHR_storage_buffer_storage_class = true,
460 #ifdef RADV_USE_WSI_PLATFORM
461 .KHR_swapchain = true,
462 .KHR_swapchain_mutable_format = true,
463 #endif
464 .KHR_timeline_semaphore = true,
465 .KHR_uniform_buffer_standard_layout = true,
466 .KHR_variable_pointers = true,
467 .KHR_vulkan_memory_model = true,
468 .KHR_workgroup_memory_explicit_layout = true,
469 .KHR_zero_initialize_workgroup_memory = true,
470 .EXT_4444_formats = true,
471 .EXT_buffer_device_address = true,
472 .EXT_calibrated_timestamps = RADV_SUPPORT_CALIBRATED_TIMESTAMPS,
473 .EXT_color_write_enable = true,
474 .EXT_conditional_rendering = true,
475 .EXT_conservative_rasterization = device->rad_info.chip_class >= GFX9,
476 .EXT_custom_border_color = true,
477 .EXT_debug_marker = radv_thread_trace_enabled(),
478 .EXT_depth_clip_enable = true,
479 .EXT_depth_range_unrestricted = true,
480 .EXT_descriptor_indexing = true,
481 .EXT_discard_rectangles = true,
482 #ifdef VK_USE_PLATFORM_DISPLAY_KHR
483 .EXT_display_control = true,
484 #endif
485 .EXT_extended_dynamic_state = true,
486 .EXT_extended_dynamic_state2 = true,
487 .EXT_external_memory_dma_buf = true,
488 .EXT_external_memory_host = device->rad_info.has_userptr,
489 .EXT_global_priority = true,
490 .EXT_global_priority_query = true,
491 .EXT_host_query_reset = true,
492 .EXT_image_drm_format_modifier = device->rad_info.chip_class >= GFX9,
493 .EXT_image_robustness = true,
494 .EXT_index_type_uint8 = device->rad_info.chip_class >= GFX8,
495 .EXT_inline_uniform_block = true,
496 .EXT_line_rasterization = true,
497 .EXT_memory_budget = true,
498 .EXT_memory_priority = true,
499 .EXT_multi_draw = true,
500 .EXT_pci_bus_info = true,
501 #ifndef _WIN32
502 .EXT_physical_device_drm = true,
503 #endif
504 .EXT_pipeline_creation_cache_control = true,
505 .EXT_pipeline_creation_feedback = true,
506 .EXT_post_depth_coverage = device->rad_info.chip_class >= GFX10,
507 .EXT_primitive_topology_list_restart = true,
508 .EXT_private_data = true,
509 .EXT_provoking_vertex = true,
510 .EXT_queue_family_foreign = true,
511 .EXT_robustness2 = true,
512 .EXT_sample_locations = device->rad_info.chip_class < GFX10,
513 .EXT_sampler_filter_minmax = true,
514 .EXT_scalar_block_layout = device->rad_info.chip_class >= GFX7,
515 .EXT_shader_atomic_float = true,
516 #ifdef LLVM_AVAILABLE
517 .EXT_shader_atomic_float2 = !device->use_llvm || LLVM_VERSION_MAJOR >= 14,
518 #else
519 .EXT_shader_atomic_float2 = true,
520 #endif
521 .EXT_shader_demote_to_helper_invocation = true,
522 .EXT_shader_image_atomic_int64 = true,
523 .EXT_shader_stencil_export = true,
524 .EXT_shader_subgroup_ballot = true,
525 .EXT_shader_subgroup_vote = true,
526 .EXT_shader_viewport_index_layer = true,
527 .EXT_subgroup_size_control = true,
528 .EXT_texel_buffer_alignment = true,
529 .EXT_transform_feedback = true,
530 .EXT_vertex_attribute_divisor = true,
531 .EXT_vertex_input_dynamic_state = !device->use_llvm,
532 .EXT_ycbcr_image_arrays = true,
533 .AMD_buffer_marker = true,
534 .AMD_device_coherent_memory = true,
535 .AMD_draw_indirect_count = true,
536 .AMD_gcn_shader = true,
537 .AMD_gpu_shader_half_float = device->rad_info.has_packed_math_16bit,
538 .AMD_gpu_shader_int16 = device->rad_info.has_packed_math_16bit,
539 .AMD_memory_overallocation_behavior = true,
540 .AMD_mixed_attachment_samples = true,
541 .AMD_rasterization_order = device->rad_info.has_out_of_order_rast,
542 .AMD_shader_ballot = true,
543 .AMD_shader_core_properties = true,
544 .AMD_shader_core_properties2 = true,
545 .AMD_shader_explicit_vertex_parameter = true,
546 .AMD_shader_fragment_mask = true,
547 .AMD_shader_image_load_store_lod = true,
548 .AMD_shader_info = true,
549 .AMD_shader_trinary_minmax = true,
550 .AMD_texture_gather_bias_lod = true,
551 #ifdef ANDROID
552 .ANDROID_external_memory_android_hardware_buffer = RADV_SUPPORT_ANDROID_HARDWARE_BUFFER,
553 .ANDROID_native_buffer = true,
554 #endif
555 .GOOGLE_decorate_string = true,
556 .GOOGLE_hlsl_functionality1 = true,
557 .GOOGLE_user_type = true,
558 .NV_compute_shader_derivatives = true,
559 .VALVE_mutable_descriptor_type = true,
560 };
561 }
562
563 static VkResult
radv_physical_device_try_create(struct radv_instance * instance,drmDevicePtr drm_device,struct radv_physical_device ** device_out)564 radv_physical_device_try_create(struct radv_instance *instance, drmDevicePtr drm_device,
565 struct radv_physical_device **device_out)
566 {
567 VkResult result;
568 int fd = -1;
569 int master_fd = -1;
570
571 #ifdef _WIN32
572 assert(drm_device == NULL);
573 #else
574 if (drm_device) {
575 const char *path = drm_device->nodes[DRM_NODE_RENDER];
576 drmVersionPtr version;
577
578 fd = open(path, O_RDWR | O_CLOEXEC);
579 if (fd < 0) {
580 if (instance->debug_flags & RADV_DEBUG_STARTUP)
581 radv_logi("Could not open device '%s'", path);
582
583 return vk_error(instance, VK_ERROR_INCOMPATIBLE_DRIVER);
584 }
585
586 version = drmGetVersion(fd);
587 if (!version) {
588 close(fd);
589
590 if (instance->debug_flags & RADV_DEBUG_STARTUP)
591 radv_logi("Could not get the kernel driver version for device '%s'", path);
592
593 return vk_errorf(instance, VK_ERROR_INCOMPATIBLE_DRIVER, "failed to get version %s: %m",
594 path);
595 }
596
597 if (strcmp(version->name, "amdgpu")) {
598 drmFreeVersion(version);
599 close(fd);
600
601 if (instance->debug_flags & RADV_DEBUG_STARTUP)
602 radv_logi("Device '%s' is not using the amdgpu kernel driver.", path);
603
604 return VK_ERROR_INCOMPATIBLE_DRIVER;
605 }
606 drmFreeVersion(version);
607
608 if (instance->debug_flags & RADV_DEBUG_STARTUP)
609 radv_logi("Found compatible device '%s'.", path);
610 }
611 #endif
612
613 struct radv_physical_device *device = vk_zalloc2(&instance->vk.alloc, NULL, sizeof(*device), 8,
614 VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
615 if (!device) {
616 result = vk_error(instance, VK_ERROR_OUT_OF_HOST_MEMORY);
617 goto fail_fd;
618 }
619
620 struct vk_physical_device_dispatch_table dispatch_table;
621 vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
622 &radv_physical_device_entrypoints, true);
623 vk_physical_device_dispatch_table_from_entrypoints(&dispatch_table,
624 &wsi_physical_device_entrypoints, false);
625
626 result = vk_physical_device_init(&device->vk, &instance->vk, NULL, &dispatch_table);
627 if (result != VK_SUCCESS) {
628 goto fail_alloc;
629 }
630
631 device->instance = instance;
632
633 #ifdef _WIN32
634 device->ws = radv_null_winsys_create();
635 #else
636 if (drm_device) {
637 device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags, instance->perftest_flags, false);
638 } else {
639 device->ws = radv_null_winsys_create();
640 }
641 #endif
642
643 if (!device->ws) {
644 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "failed to initialize winsys");
645 goto fail_base;
646 }
647
648 #ifndef _WIN32
649 if (drm_device && instance->vk.enabled_extensions.KHR_display) {
650 master_fd = open(drm_device->nodes[DRM_NODE_PRIMARY], O_RDWR | O_CLOEXEC);
651 if (master_fd >= 0) {
652 uint32_t accel_working = 0;
653 struct drm_amdgpu_info request = {.return_pointer = (uintptr_t)&accel_working,
654 .return_size = sizeof(accel_working),
655 .query = AMDGPU_INFO_ACCEL_WORKING};
656
657 if (drmCommandWrite(master_fd, DRM_AMDGPU_INFO, &request, sizeof(struct drm_amdgpu_info)) <
658 0 ||
659 !accel_working) {
660 close(master_fd);
661 master_fd = -1;
662 }
663 }
664 }
665 #endif
666
667 device->master_fd = master_fd;
668 device->local_fd = fd;
669 device->ws->query_info(device->ws, &device->rad_info);
670
671 device->use_llvm = instance->debug_flags & RADV_DEBUG_LLVM;
672 #ifndef LLVM_AVAILABLE
673 if (device->use_llvm) {
674 fprintf(stderr, "ERROR: LLVM compiler backend selected for radv, but LLVM support was not "
675 "enabled at build time.\n");
676 abort();
677 }
678 #endif
679
680 snprintf(device->name, sizeof(device->name), "AMD RADV %s%s", device->rad_info.name,
681 radv_get_compiler_string(device));
682
683 #ifdef ENABLE_SHADER_CACHE
684 if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
685 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED, "cannot generate UUID");
686 goto fail_wsi;
687 }
688
689 /* The gpu id is already embedded in the uuid so we just pass "radv"
690 * when creating the cache.
691 */
692 char buf[VK_UUID_SIZE * 2 + 1];
693 disk_cache_format_hex_id(buf, device->cache_uuid, VK_UUID_SIZE * 2);
694 device->disk_cache = disk_cache_create(device->name, buf, 0);
695 #endif
696
697 if (device->rad_info.chip_class < GFX8 || device->rad_info.chip_class > GFX10)
698 vk_warn_non_conformant_implementation("radv");
699
700 radv_get_driver_uuid(&device->driver_uuid);
701 radv_get_device_uuid(&device->rad_info, &device->device_uuid);
702
703 device->out_of_order_rast_allowed =
704 device->rad_info.has_out_of_order_rast &&
705 !(device->instance->debug_flags & RADV_DEBUG_NO_OUT_OF_ORDER);
706
707 device->dcc_msaa_allowed = (device->instance->perftest_flags & RADV_PERFTEST_DCC_MSAA);
708
709 device->use_ngg = device->rad_info.chip_class >= GFX10 &&
710 device->rad_info.family != CHIP_NAVI14 &&
711 !(device->instance->debug_flags & RADV_DEBUG_NO_NGG);
712
713 device->use_ngg_culling =
714 device->use_ngg &&
715 device->rad_info.max_render_backends > 1 &&
716 (device->rad_info.chip_class >= GFX10_3 ||
717 (device->instance->perftest_flags & RADV_PERFTEST_NGGC)) &&
718 !(device->instance->debug_flags & RADV_DEBUG_NO_NGGC);
719
720 device->use_ngg_streamout = false;
721
722 /* Determine the number of threads per wave for all stages. */
723 device->cs_wave_size = 64;
724 device->ps_wave_size = 64;
725 device->ge_wave_size = 64;
726
727 if (device->rad_info.chip_class >= GFX10) {
728 if (device->instance->perftest_flags & RADV_PERFTEST_CS_WAVE_32)
729 device->cs_wave_size = 32;
730
731 /* For pixel shaders, wave64 is recommanded. */
732 if (device->instance->perftest_flags & RADV_PERFTEST_PS_WAVE_32)
733 device->ps_wave_size = 32;
734
735 if (device->instance->perftest_flags & RADV_PERFTEST_GE_WAVE_32)
736 device->ge_wave_size = 32;
737 }
738
739 radv_physical_device_init_mem_types(device);
740
741 radv_physical_device_get_supported_extensions(device, &device->vk.supported_extensions);
742
743 radv_get_nir_options(device);
744
745 #ifndef _WIN32
746 if (drm_device) {
747 struct stat primary_stat = {0}, render_stat = {0};
748
749 device->available_nodes = drm_device->available_nodes;
750 device->bus_info = *drm_device->businfo.pci;
751
752 if ((drm_device->available_nodes & (1 << DRM_NODE_PRIMARY)) &&
753 stat(drm_device->nodes[DRM_NODE_PRIMARY], &primary_stat) != 0) {
754 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
755 "failed to stat DRM primary node %s",
756 drm_device->nodes[DRM_NODE_PRIMARY]);
757 goto fail_disk_cache;
758 }
759 device->primary_devid = primary_stat.st_rdev;
760
761 if ((drm_device->available_nodes & (1 << DRM_NODE_RENDER)) &&
762 stat(drm_device->nodes[DRM_NODE_RENDER], &render_stat) != 0) {
763 result = vk_errorf(instance, VK_ERROR_INITIALIZATION_FAILED,
764 "failed to stat DRM render node %s",
765 drm_device->nodes[DRM_NODE_RENDER]);
766 goto fail_disk_cache;
767 }
768 device->render_devid = render_stat.st_rdev;
769 }
770 #endif
771
772 if ((device->instance->debug_flags & RADV_DEBUG_INFO))
773 ac_print_gpu_info(&device->rad_info, stdout);
774
775 /* The WSI is structured as a layer on top of the driver, so this has
776 * to be the last part of initialization (at least until we get other
777 * semi-layers).
778 */
779 result = radv_init_wsi(device);
780 if (result != VK_SUCCESS) {
781 vk_error(instance, result);
782 goto fail_disk_cache;
783 }
784
785 *device_out = device;
786
787 return VK_SUCCESS;
788
789 fail_disk_cache:
790 disk_cache_destroy(device->disk_cache);
791 #ifdef ENABLE_SHADER_CACHE
792 fail_wsi:
793 #endif
794 device->ws->destroy(device->ws);
795 fail_base:
796 vk_physical_device_finish(&device->vk);
797 fail_alloc:
798 vk_free(&instance->vk.alloc, device);
799 fail_fd:
800 if (fd != -1)
801 close(fd);
802 if (master_fd != -1)
803 close(master_fd);
804 return result;
805 }
806
807 static void
radv_physical_device_destroy(struct radv_physical_device * device)808 radv_physical_device_destroy(struct radv_physical_device *device)
809 {
810 radv_finish_wsi(device);
811 device->ws->destroy(device->ws);
812 disk_cache_destroy(device->disk_cache);
813 if (device->local_fd != -1)
814 close(device->local_fd);
815 if (device->master_fd != -1)
816 close(device->master_fd);
817 vk_physical_device_finish(&device->vk);
818 vk_free(&device->instance->vk.alloc, device);
819 }
820
821 static const struct debug_control radv_debug_options[] = {
822 {"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
823 {"nodcc", RADV_DEBUG_NO_DCC},
824 {"shaders", RADV_DEBUG_DUMP_SHADERS},
825 {"nocache", RADV_DEBUG_NO_CACHE},
826 {"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
827 {"nohiz", RADV_DEBUG_NO_HIZ},
828 {"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
829 {"allbos", RADV_DEBUG_ALL_BOS},
830 {"noibs", RADV_DEBUG_NO_IBS},
831 {"spirv", RADV_DEBUG_DUMP_SPIRV},
832 {"vmfaults", RADV_DEBUG_VM_FAULTS},
833 {"zerovram", RADV_DEBUG_ZERO_VRAM},
834 {"syncshaders", RADV_DEBUG_SYNC_SHADERS},
835 {"preoptir", RADV_DEBUG_PREOPTIR},
836 {"nodynamicbounds", RADV_DEBUG_NO_DYNAMIC_BOUNDS},
837 {"nooutoforder", RADV_DEBUG_NO_OUT_OF_ORDER},
838 {"info", RADV_DEBUG_INFO},
839 {"startup", RADV_DEBUG_STARTUP},
840 {"checkir", RADV_DEBUG_CHECKIR},
841 {"nobinning", RADV_DEBUG_NOBINNING},
842 {"nongg", RADV_DEBUG_NO_NGG},
843 {"metashaders", RADV_DEBUG_DUMP_META_SHADERS},
844 {"nomemorycache", RADV_DEBUG_NO_MEMORY_CACHE},
845 {"discardtodemote", RADV_DEBUG_DISCARD_TO_DEMOTE},
846 {"llvm", RADV_DEBUG_LLVM},
847 {"forcecompress", RADV_DEBUG_FORCE_COMPRESS},
848 {"hang", RADV_DEBUG_HANG},
849 {"img", RADV_DEBUG_IMG},
850 {"noumr", RADV_DEBUG_NO_UMR},
851 {"invariantgeom", RADV_DEBUG_INVARIANT_GEOM},
852 {"nodisplaydcc", RADV_DEBUG_NO_DISPLAY_DCC},
853 {"notccompatcmask", RADV_DEBUG_NO_TC_COMPAT_CMASK},
854 {"novrsflatshading", RADV_DEBUG_NO_VRS_FLAT_SHADING},
855 {"noatocdithering", RADV_DEBUG_NO_ATOC_DITHERING},
856 {"nonggc", RADV_DEBUG_NO_NGGC},
857 {"prologs", RADV_DEBUG_DUMP_PROLOGS},
858 {NULL, 0}};
859
860 const char *
radv_get_debug_option_name(int id)861 radv_get_debug_option_name(int id)
862 {
863 assert(id < ARRAY_SIZE(radv_debug_options) - 1);
864 return radv_debug_options[id].string;
865 }
866
867 static const struct debug_control radv_perftest_options[] = {{"localbos", RADV_PERFTEST_LOCAL_BOS},
868 {"dccmsaa", RADV_PERFTEST_DCC_MSAA},
869 {"bolist", RADV_PERFTEST_BO_LIST},
870 {"cswave32", RADV_PERFTEST_CS_WAVE_32},
871 {"pswave32", RADV_PERFTEST_PS_WAVE_32},
872 {"gewave32", RADV_PERFTEST_GE_WAVE_32},
873 {"nosam", RADV_PERFTEST_NO_SAM},
874 {"sam", RADV_PERFTEST_SAM},
875 {"rt", RADV_PERFTEST_RT},
876 {"nggc", RADV_PERFTEST_NGGC},
877 {"force_emulate_rt", RADV_PERFTEST_FORCE_EMULATE_RT},
878 {NULL, 0}};
879
880 const char *
radv_get_perftest_option_name(int id)881 radv_get_perftest_option_name(int id)
882 {
883 assert(id < ARRAY_SIZE(radv_perftest_options) - 1);
884 return radv_perftest_options[id].string;
885 }
886
887 // clang-format off
888 static const driOptionDescription radv_dri_options[] = {
889 DRI_CONF_SECTION_PERFORMANCE
890 DRI_CONF_ADAPTIVE_SYNC(true)
891 DRI_CONF_VK_X11_OVERRIDE_MIN_IMAGE_COUNT(0)
892 DRI_CONF_VK_X11_STRICT_IMAGE_COUNT(false)
893 DRI_CONF_VK_X11_ENSURE_MIN_IMAGE_COUNT(false)
894 DRI_CONF_VK_XWAYLAND_WAIT_READY(true)
895 DRI_CONF_RADV_REPORT_LLVM9_VERSION_STRING(false)
896 DRI_CONF_RADV_ENABLE_MRT_OUTPUT_NAN_FIXUP(false)
897 DRI_CONF_RADV_DISABLE_SHRINK_IMAGE_STORE(false)
898 DRI_CONF_RADV_NO_DYNAMIC_BOUNDS(false)
899 DRI_CONF_RADV_ABSOLUTE_DEPTH_BIAS(false)
900 DRI_CONF_RADV_OVERRIDE_UNIFORM_OFFSET_ALIGNMENT(0)
901 DRI_CONF_SECTION_END
902
903 DRI_CONF_SECTION_DEBUG
904 DRI_CONF_OVERRIDE_VRAM_SIZE()
905 DRI_CONF_VK_WSI_FORCE_BGRA8_UNORM_FIRST(false)
906 DRI_CONF_RADV_ZERO_VRAM(false)
907 DRI_CONF_RADV_LOWER_DISCARD_TO_DEMOTE(false)
908 DRI_CONF_RADV_INVARIANT_GEOM(false)
909 DRI_CONF_RADV_DISABLE_TC_COMPAT_HTILE_GENERAL(false)
910 DRI_CONF_RADV_DISABLE_DCC(false)
911 DRI_CONF_RADV_REPORT_APU_AS_DGPU(false)
912 DRI_CONF_RADV_DISABLE_HTILE_LAYERS(false)
913 DRI_CONF_SECTION_END
914 };
915 // clang-format on
916
917 static void
radv_init_dri_options(struct radv_instance * instance)918 radv_init_dri_options(struct radv_instance *instance)
919 {
920 driParseOptionInfo(&instance->available_dri_options, radv_dri_options,
921 ARRAY_SIZE(radv_dri_options));
922 driParseConfigFiles(&instance->dri_options, &instance->available_dri_options, 0, "radv", NULL, NULL,
923 instance->vk.app_info.app_name, instance->vk.app_info.app_version,
924 instance->vk.app_info.engine_name, instance->vk.app_info.engine_version);
925
926 instance->enable_mrt_output_nan_fixup =
927 driQueryOptionb(&instance->dri_options, "radv_enable_mrt_output_nan_fixup");
928
929 instance->disable_shrink_image_store =
930 driQueryOptionb(&instance->dri_options, "radv_disable_shrink_image_store");
931
932 instance->absolute_depth_bias =
933 driQueryOptionb(&instance->dri_options, "radv_absolute_depth_bias");
934
935 instance->disable_tc_compat_htile_in_general =
936 driQueryOptionb(&instance->dri_options, "radv_disable_tc_compat_htile_general");
937
938 if (driQueryOptionb(&instance->dri_options, "radv_no_dynamic_bounds"))
939 instance->debug_flags |= RADV_DEBUG_NO_DYNAMIC_BOUNDS;
940
941 if (driQueryOptionb(&instance->dri_options, "radv_zero_vram"))
942 instance->debug_flags |= RADV_DEBUG_ZERO_VRAM;
943
944 if (driQueryOptionb(&instance->dri_options, "radv_lower_discard_to_demote"))
945 instance->debug_flags |= RADV_DEBUG_DISCARD_TO_DEMOTE;
946
947 if (driQueryOptionb(&instance->dri_options, "radv_invariant_geom"))
948 instance->debug_flags |= RADV_DEBUG_INVARIANT_GEOM;
949
950 if (driQueryOptionb(&instance->dri_options, "radv_disable_dcc"))
951 instance->debug_flags |= RADV_DEBUG_NO_DCC;
952
953 instance->report_apu_as_dgpu =
954 driQueryOptionb(&instance->dri_options, "radv_report_apu_as_dgpu");
955
956 instance->disable_htile_layers =
957 driQueryOptionb(&instance->dri_options, "radv_disable_htile_layers");
958 }
959
960 VkResult
radv_CreateInstance(const VkInstanceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkInstance * pInstance)961 radv_CreateInstance(const VkInstanceCreateInfo *pCreateInfo,
962 const VkAllocationCallbacks *pAllocator, VkInstance *pInstance)
963 {
964 struct radv_instance *instance;
965 VkResult result;
966
967 if (!pAllocator)
968 pAllocator = vk_default_allocator();
969
970 instance = vk_zalloc(pAllocator, sizeof(*instance), 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
971 if (!instance)
972 return vk_error(NULL, VK_ERROR_OUT_OF_HOST_MEMORY);
973
974 struct vk_instance_dispatch_table dispatch_table;
975 vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &radv_instance_entrypoints, true);
976 vk_instance_dispatch_table_from_entrypoints(&dispatch_table, &wsi_instance_entrypoints, false);
977 result = vk_instance_init(&instance->vk, &radv_instance_extensions_supported, &dispatch_table,
978 pCreateInfo, pAllocator);
979 if (result != VK_SUCCESS) {
980 vk_free(pAllocator, instance);
981 return vk_error(instance, result);
982 }
983
984 instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"), radv_debug_options);
985 instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"), radv_perftest_options);
986
987 if (instance->debug_flags & RADV_DEBUG_STARTUP)
988 radv_logi("Created an instance");
989
990 instance->physical_devices_enumerated = false;
991 list_inithead(&instance->physical_devices);
992
993 VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
994
995 radv_init_dri_options(instance);
996
997 *pInstance = radv_instance_to_handle(instance);
998
999 return VK_SUCCESS;
1000 }
1001
1002 void
radv_DestroyInstance(VkInstance _instance,const VkAllocationCallbacks * pAllocator)1003 radv_DestroyInstance(VkInstance _instance, const VkAllocationCallbacks *pAllocator)
1004 {
1005 RADV_FROM_HANDLE(radv_instance, instance, _instance);
1006
1007 if (!instance)
1008 return;
1009
1010 list_for_each_entry_safe(struct radv_physical_device, pdevice, &instance->physical_devices, link)
1011 {
1012 radv_physical_device_destroy(pdevice);
1013 }
1014
1015 VG(VALGRIND_DESTROY_MEMPOOL(instance));
1016
1017 driDestroyOptionCache(&instance->dri_options);
1018 driDestroyOptionInfo(&instance->available_dri_options);
1019
1020 vk_instance_finish(&instance->vk);
1021 vk_free(&instance->vk.alloc, instance);
1022 }
1023
1024 static VkResult
radv_enumerate_physical_devices(struct radv_instance * instance)1025 radv_enumerate_physical_devices(struct radv_instance *instance)
1026 {
1027 if (instance->physical_devices_enumerated)
1028 return VK_SUCCESS;
1029
1030 instance->physical_devices_enumerated = true;
1031
1032 VkResult result = VK_SUCCESS;
1033
1034 if (getenv("RADV_FORCE_FAMILY")) {
1035 /* When RADV_FORCE_FAMILY is set, the driver creates a nul
1036 * device that allows to test the compiler without having an
1037 * AMDGPU instance.
1038 */
1039 struct radv_physical_device *pdevice;
1040
1041 result = radv_physical_device_try_create(instance, NULL, &pdevice);
1042 if (result != VK_SUCCESS)
1043 return result;
1044
1045 list_addtail(&pdevice->link, &instance->physical_devices);
1046 return VK_SUCCESS;
1047 }
1048
1049 #ifndef _WIN32
1050 /* TODO: Check for more devices ? */
1051 drmDevicePtr devices[8];
1052 int max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
1053
1054 if (instance->debug_flags & RADV_DEBUG_STARTUP)
1055 radv_logi("Found %d drm nodes", max_devices);
1056
1057 if (max_devices < 1)
1058 return vk_error(instance, VK_SUCCESS);
1059
1060 for (unsigned i = 0; i < (unsigned)max_devices; i++) {
1061 if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
1062 devices[i]->bustype == DRM_BUS_PCI &&
1063 devices[i]->deviceinfo.pci->vendor_id == ATI_VENDOR_ID) {
1064
1065 struct radv_physical_device *pdevice;
1066 result = radv_physical_device_try_create(instance, devices[i], &pdevice);
1067 /* Incompatible DRM device, skip. */
1068 if (result == VK_ERROR_INCOMPATIBLE_DRIVER) {
1069 result = VK_SUCCESS;
1070 continue;
1071 }
1072
1073 /* Error creating the physical device, report the error. */
1074 if (result != VK_SUCCESS)
1075 break;
1076
1077 list_addtail(&pdevice->link, &instance->physical_devices);
1078 }
1079 }
1080 drmFreeDevices(devices, max_devices);
1081 #endif
1082
1083 /* If we successfully enumerated any devices, call it success */
1084 return result;
1085 }
1086
1087 VkResult
radv_EnumeratePhysicalDevices(VkInstance _instance,uint32_t * pPhysicalDeviceCount,VkPhysicalDevice * pPhysicalDevices)1088 radv_EnumeratePhysicalDevices(VkInstance _instance, uint32_t *pPhysicalDeviceCount,
1089 VkPhysicalDevice *pPhysicalDevices)
1090 {
1091 RADV_FROM_HANDLE(radv_instance, instance, _instance);
1092 VK_OUTARRAY_MAKE_TYPED(VkPhysicalDevice, out, pPhysicalDevices, pPhysicalDeviceCount);
1093
1094 VkResult result = radv_enumerate_physical_devices(instance);
1095 if (result != VK_SUCCESS)
1096 return result;
1097
1098 list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
1099 {
1100 vk_outarray_append_typed(VkPhysicalDevice, &out, i)
1101 {
1102 *i = radv_physical_device_to_handle(pdevice);
1103 }
1104 }
1105
1106 return vk_outarray_status(&out);
1107 }
1108
1109 VkResult
radv_EnumeratePhysicalDeviceGroups(VkInstance _instance,uint32_t * pPhysicalDeviceGroupCount,VkPhysicalDeviceGroupProperties * pPhysicalDeviceGroupProperties)1110 radv_EnumeratePhysicalDeviceGroups(VkInstance _instance, uint32_t *pPhysicalDeviceGroupCount,
1111 VkPhysicalDeviceGroupProperties *pPhysicalDeviceGroupProperties)
1112 {
1113 RADV_FROM_HANDLE(radv_instance, instance, _instance);
1114 VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceGroupProperties, out, pPhysicalDeviceGroupProperties,
1115 pPhysicalDeviceGroupCount);
1116
1117 VkResult result = radv_enumerate_physical_devices(instance);
1118 if (result != VK_SUCCESS)
1119 return result;
1120
1121 list_for_each_entry(struct radv_physical_device, pdevice, &instance->physical_devices, link)
1122 {
1123 vk_outarray_append_typed(VkPhysicalDeviceGroupProperties, &out, p)
1124 {
1125 p->physicalDeviceCount = 1;
1126 memset(p->physicalDevices, 0, sizeof(p->physicalDevices));
1127 p->physicalDevices[0] = radv_physical_device_to_handle(pdevice);
1128 p->subsetAllocation = false;
1129 }
1130 }
1131
1132 return vk_outarray_status(&out);
1133 }
1134
1135 void
radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures * pFeatures)1136 radv_GetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures *pFeatures)
1137 {
1138 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1139 memset(pFeatures, 0, sizeof(*pFeatures));
1140
1141 *pFeatures = (VkPhysicalDeviceFeatures){
1142 .robustBufferAccess = true,
1143 .fullDrawIndexUint32 = true,
1144 .imageCubeArray = true,
1145 .independentBlend = true,
1146 .geometryShader = true,
1147 .tessellationShader = true,
1148 .sampleRateShading = true,
1149 .dualSrcBlend = true,
1150 .logicOp = true,
1151 .multiDrawIndirect = true,
1152 .drawIndirectFirstInstance = true,
1153 .depthClamp = true,
1154 .depthBiasClamp = true,
1155 .fillModeNonSolid = true,
1156 .depthBounds = true,
1157 .wideLines = true,
1158 .largePoints = true,
1159 .alphaToOne = false,
1160 .multiViewport = true,
1161 .samplerAnisotropy = true,
1162 .textureCompressionETC2 = radv_device_supports_etc(pdevice),
1163 .textureCompressionASTC_LDR = false,
1164 .textureCompressionBC = true,
1165 .occlusionQueryPrecise = true,
1166 .pipelineStatisticsQuery = true,
1167 .vertexPipelineStoresAndAtomics = true,
1168 .fragmentStoresAndAtomics = true,
1169 .shaderTessellationAndGeometryPointSize = true,
1170 .shaderImageGatherExtended = true,
1171 .shaderStorageImageExtendedFormats = true,
1172 .shaderStorageImageMultisample = true,
1173 .shaderUniformBufferArrayDynamicIndexing = true,
1174 .shaderSampledImageArrayDynamicIndexing = true,
1175 .shaderStorageBufferArrayDynamicIndexing = true,
1176 .shaderStorageImageArrayDynamicIndexing = true,
1177 .shaderStorageImageReadWithoutFormat = true,
1178 .shaderStorageImageWriteWithoutFormat = true,
1179 .shaderClipDistance = true,
1180 .shaderCullDistance = true,
1181 .shaderFloat64 = true,
1182 .shaderInt64 = true,
1183 .shaderInt16 = true,
1184 .sparseBinding = true,
1185 .sparseResidencyBuffer = pdevice->rad_info.family >= CHIP_POLARIS10,
1186 .sparseResidencyImage2D = pdevice->rad_info.family >= CHIP_POLARIS10,
1187 .sparseResidencyAliased = pdevice->rad_info.family >= CHIP_POLARIS10,
1188 .variableMultisampleRate = true,
1189 .shaderResourceMinLod = true,
1190 .shaderResourceResidency = true,
1191 .inheritedQueries = true,
1192 };
1193 }
1194
1195 static void
radv_get_physical_device_features_1_1(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan11Features * f)1196 radv_get_physical_device_features_1_1(struct radv_physical_device *pdevice,
1197 VkPhysicalDeviceVulkan11Features *f)
1198 {
1199 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES);
1200
1201 f->storageBuffer16BitAccess = true;
1202 f->uniformAndStorageBuffer16BitAccess = true;
1203 f->storagePushConstant16 = true;
1204 f->storageInputOutput16 = pdevice->rad_info.has_packed_math_16bit;
1205 f->multiview = true;
1206 f->multiviewGeometryShader = true;
1207 f->multiviewTessellationShader = true;
1208 f->variablePointersStorageBuffer = true;
1209 f->variablePointers = true;
1210 f->protectedMemory = false;
1211 f->samplerYcbcrConversion = true;
1212 f->shaderDrawParameters = true;
1213 }
1214
1215 static void
radv_get_physical_device_features_1_2(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan12Features * f)1216 radv_get_physical_device_features_1_2(struct radv_physical_device *pdevice,
1217 VkPhysicalDeviceVulkan12Features *f)
1218 {
1219 assert(f->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES);
1220
1221 f->samplerMirrorClampToEdge = true;
1222 f->drawIndirectCount = true;
1223 f->storageBuffer8BitAccess = true;
1224 f->uniformAndStorageBuffer8BitAccess = true;
1225 f->storagePushConstant8 = true;
1226 f->shaderBufferInt64Atomics = true;
1227 f->shaderSharedInt64Atomics = true;
1228 f->shaderFloat16 = pdevice->rad_info.has_packed_math_16bit;
1229 f->shaderInt8 = true;
1230
1231 f->descriptorIndexing = true;
1232 f->shaderInputAttachmentArrayDynamicIndexing = true;
1233 f->shaderUniformTexelBufferArrayDynamicIndexing = true;
1234 f->shaderStorageTexelBufferArrayDynamicIndexing = true;
1235 f->shaderUniformBufferArrayNonUniformIndexing = true;
1236 f->shaderSampledImageArrayNonUniformIndexing = true;
1237 f->shaderStorageBufferArrayNonUniformIndexing = true;
1238 f->shaderStorageImageArrayNonUniformIndexing = true;
1239 f->shaderInputAttachmentArrayNonUniformIndexing = true;
1240 f->shaderUniformTexelBufferArrayNonUniformIndexing = true;
1241 f->shaderStorageTexelBufferArrayNonUniformIndexing = true;
1242 f->descriptorBindingUniformBufferUpdateAfterBind = true;
1243 f->descriptorBindingSampledImageUpdateAfterBind = true;
1244 f->descriptorBindingStorageImageUpdateAfterBind = true;
1245 f->descriptorBindingStorageBufferUpdateAfterBind = true;
1246 f->descriptorBindingUniformTexelBufferUpdateAfterBind = true;
1247 f->descriptorBindingStorageTexelBufferUpdateAfterBind = true;
1248 f->descriptorBindingUpdateUnusedWhilePending = true;
1249 f->descriptorBindingPartiallyBound = true;
1250 f->descriptorBindingVariableDescriptorCount = true;
1251 f->runtimeDescriptorArray = true;
1252
1253 f->samplerFilterMinmax = true;
1254 f->scalarBlockLayout = pdevice->rad_info.chip_class >= GFX7;
1255 f->imagelessFramebuffer = true;
1256 f->uniformBufferStandardLayout = true;
1257 f->shaderSubgroupExtendedTypes = true;
1258 f->separateDepthStencilLayouts = true;
1259 f->hostQueryReset = true;
1260 f->timelineSemaphore = true, f->bufferDeviceAddress = true;
1261 f->bufferDeviceAddressCaptureReplay = true;
1262 f->bufferDeviceAddressMultiDevice = true;
1263 f->vulkanMemoryModel = true;
1264 f->vulkanMemoryModelDeviceScope = true;
1265 f->vulkanMemoryModelAvailabilityVisibilityChains = false;
1266 f->shaderOutputViewportIndex = true;
1267 f->shaderOutputLayer = true;
1268 f->subgroupBroadcastDynamicId = true;
1269 }
1270
1271 void
radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceFeatures2 * pFeatures)1272 radv_GetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
1273 VkPhysicalDeviceFeatures2 *pFeatures)
1274 {
1275 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1276 radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
1277
1278 VkPhysicalDeviceVulkan11Features core_1_1 = {
1279 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
1280 };
1281 radv_get_physical_device_features_1_1(pdevice, &core_1_1);
1282
1283 VkPhysicalDeviceVulkan12Features core_1_2 = {
1284 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
1285 };
1286 radv_get_physical_device_features_1_2(pdevice, &core_1_2);
1287
1288 #define CORE_FEATURE(major, minor, feature) features->feature = core_##major##_##minor.feature
1289
1290 vk_foreach_struct(ext, pFeatures->pNext)
1291 {
1292 if (vk_get_physical_device_core_1_1_feature_ext(ext, &core_1_1))
1293 continue;
1294 if (vk_get_physical_device_core_1_2_feature_ext(ext, &core_1_2))
1295 continue;
1296
1297 switch (ext->sType) {
1298 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONDITIONAL_RENDERING_FEATURES_EXT: {
1299 VkPhysicalDeviceConditionalRenderingFeaturesEXT *features =
1300 (VkPhysicalDeviceConditionalRenderingFeaturesEXT *)ext;
1301 features->conditionalRendering = true;
1302 features->inheritedConditionalRendering = false;
1303 break;
1304 }
1305 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT: {
1306 VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *features =
1307 (VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT *)ext;
1308 features->vertexAttributeInstanceRateDivisor = true;
1309 features->vertexAttributeInstanceRateZeroDivisor = true;
1310 break;
1311 }
1312 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT: {
1313 VkPhysicalDeviceTransformFeedbackFeaturesEXT *features =
1314 (VkPhysicalDeviceTransformFeedbackFeaturesEXT *)ext;
1315 features->transformFeedback = true;
1316 features->geometryStreams = !pdevice->use_ngg_streamout;
1317 break;
1318 }
1319 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SCALAR_BLOCK_LAYOUT_FEATURES: {
1320 VkPhysicalDeviceScalarBlockLayoutFeatures *features =
1321 (VkPhysicalDeviceScalarBlockLayoutFeatures *)ext;
1322 CORE_FEATURE(1, 2, scalarBlockLayout);
1323 break;
1324 }
1325 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PRIORITY_FEATURES_EXT: {
1326 VkPhysicalDeviceMemoryPriorityFeaturesEXT *features =
1327 (VkPhysicalDeviceMemoryPriorityFeaturesEXT *)ext;
1328 features->memoryPriority = true;
1329 break;
1330 }
1331 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_BUFFER_DEVICE_ADDRESS_FEATURES_EXT: {
1332 VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *features =
1333 (VkPhysicalDeviceBufferDeviceAddressFeaturesEXT *)ext;
1334 CORE_FEATURE(1, 2, bufferDeviceAddress);
1335 CORE_FEATURE(1, 2, bufferDeviceAddressCaptureReplay);
1336 CORE_FEATURE(1, 2, bufferDeviceAddressMultiDevice);
1337 break;
1338 }
1339 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_CLIP_ENABLE_FEATURES_EXT: {
1340 VkPhysicalDeviceDepthClipEnableFeaturesEXT *features =
1341 (VkPhysicalDeviceDepthClipEnableFeaturesEXT *)ext;
1342 features->depthClipEnable = true;
1343 break;
1344 }
1345 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_DEMOTE_TO_HELPER_INVOCATION_FEATURES_EXT: {
1346 VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *features =
1347 (VkPhysicalDeviceShaderDemoteToHelperInvocationFeaturesEXT *)ext;
1348 features->shaderDemoteToHelperInvocation = true;
1349 break;
1350 }
1351 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_FEATURES_EXT: {
1352 VkPhysicalDeviceInlineUniformBlockFeaturesEXT *features =
1353 (VkPhysicalDeviceInlineUniformBlockFeaturesEXT *)ext;
1354
1355 features->inlineUniformBlock = true;
1356 features->descriptorBindingInlineUniformBlockUpdateAfterBind = true;
1357 break;
1358 }
1359 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COMPUTE_SHADER_DERIVATIVES_FEATURES_NV: {
1360 VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *features =
1361 (VkPhysicalDeviceComputeShaderDerivativesFeaturesNV *)ext;
1362 features->computeDerivativeGroupQuads = false;
1363 features->computeDerivativeGroupLinear = true;
1364 break;
1365 }
1366 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_YCBCR_IMAGE_ARRAYS_FEATURES_EXT: {
1367 VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *features =
1368 (VkPhysicalDeviceYcbcrImageArraysFeaturesEXT *)ext;
1369 features->ycbcrImageArrays = true;
1370 break;
1371 }
1372 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT: {
1373 VkPhysicalDeviceIndexTypeUint8FeaturesEXT *features =
1374 (VkPhysicalDeviceIndexTypeUint8FeaturesEXT *)ext;
1375 features->indexTypeUint8 = pdevice->rad_info.chip_class >= GFX8;
1376 break;
1377 }
1378 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_EXECUTABLE_PROPERTIES_FEATURES_KHR: {
1379 VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *features =
1380 (VkPhysicalDevicePipelineExecutablePropertiesFeaturesKHR *)ext;
1381 features->pipelineExecutableInfo = true;
1382 break;
1383 }
1384 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CLOCK_FEATURES_KHR: {
1385 VkPhysicalDeviceShaderClockFeaturesKHR *features =
1386 (VkPhysicalDeviceShaderClockFeaturesKHR *)ext;
1387 features->shaderSubgroupClock = true;
1388 features->shaderDeviceClock = pdevice->rad_info.chip_class >= GFX8;
1389 break;
1390 }
1391 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_FEATURES_EXT: {
1392 VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *features =
1393 (VkPhysicalDeviceTexelBufferAlignmentFeaturesEXT *)ext;
1394 features->texelBufferAlignment = true;
1395 break;
1396 }
1397 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT: {
1398 VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *features =
1399 (VkPhysicalDeviceSubgroupSizeControlFeaturesEXT *)ext;
1400 features->subgroupSizeControl = true;
1401 features->computeFullSubgroups = true;
1402 break;
1403 }
1404 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COHERENT_MEMORY_FEATURES_AMD: {
1405 VkPhysicalDeviceCoherentMemoryFeaturesAMD *features =
1406 (VkPhysicalDeviceCoherentMemoryFeaturesAMD *)ext;
1407 features->deviceCoherentMemory = pdevice->rad_info.has_l2_uncached;
1408 break;
1409 }
1410 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT: {
1411 VkPhysicalDeviceLineRasterizationFeaturesEXT *features =
1412 (VkPhysicalDeviceLineRasterizationFeaturesEXT *)ext;
1413 features->rectangularLines = false;
1414 features->bresenhamLines = true;
1415 features->smoothLines = false;
1416 features->stippledRectangularLines = false;
1417 /* FIXME: Some stippled Bresenham CTS fails on Vega10
1418 * but work on Raven.
1419 */
1420 features->stippledBresenhamLines = pdevice->rad_info.chip_class != GFX9;
1421 features->stippledSmoothLines = false;
1422 break;
1423 }
1424 case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
1425 VkDeviceMemoryOverallocationCreateInfoAMD *features =
1426 (VkDeviceMemoryOverallocationCreateInfoAMD *)ext;
1427 features->overallocationBehavior = true;
1428 break;
1429 }
1430 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
1431 VkPhysicalDeviceRobustness2FeaturesEXT *features =
1432 (VkPhysicalDeviceRobustness2FeaturesEXT *)ext;
1433 features->robustBufferAccess2 = true;
1434 features->robustImageAccess2 = true;
1435 features->nullDescriptor = true;
1436 break;
1437 }
1438 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
1439 VkPhysicalDeviceCustomBorderColorFeaturesEXT *features =
1440 (VkPhysicalDeviceCustomBorderColorFeaturesEXT *)ext;
1441 features->customBorderColors = true;
1442 features->customBorderColorWithoutFormat = true;
1443 break;
1444 }
1445 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIVATE_DATA_FEATURES_EXT: {
1446 VkPhysicalDevicePrivateDataFeaturesEXT *features =
1447 (VkPhysicalDevicePrivateDataFeaturesEXT *)ext;
1448 features->privateData = true;
1449 break;
1450 }
1451 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_CREATION_CACHE_CONTROL_FEATURES_EXT: {
1452 VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *features =
1453 (VkPhysicalDevicePipelineCreationCacheControlFeaturesEXT *)ext;
1454 features->pipelineCreationCacheControl = true;
1455 break;
1456 }
1457 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_FEATURES_EXT: {
1458 VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *features =
1459 (VkPhysicalDeviceExtendedDynamicStateFeaturesEXT *)ext;
1460 features->extendedDynamicState = true;
1461 break;
1462 }
1463 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_ROBUSTNESS_FEATURES_EXT: {
1464 VkPhysicalDeviceImageRobustnessFeaturesEXT *features =
1465 (VkPhysicalDeviceImageRobustnessFeaturesEXT *)ext;
1466 features->robustImageAccess = true;
1467 break;
1468 }
1469 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
1470 VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features =
1471 (VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *)ext;
1472 features->shaderBufferFloat32Atomics = true;
1473 features->shaderBufferFloat32AtomicAdd = false;
1474 features->shaderBufferFloat64Atomics = true;
1475 features->shaderBufferFloat64AtomicAdd = false;
1476 features->shaderSharedFloat32Atomics = true;
1477 features->shaderSharedFloat32AtomicAdd = pdevice->rad_info.chip_class >= GFX8;
1478 features->shaderSharedFloat64Atomics = true;
1479 features->shaderSharedFloat64AtomicAdd = false;
1480 features->shaderImageFloat32Atomics = true;
1481 features->shaderImageFloat32AtomicAdd = false;
1482 features->sparseImageFloat32Atomics = true;
1483 features->sparseImageFloat32AtomicAdd = false;
1484 break;
1485 }
1486 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_4444_FORMATS_FEATURES_EXT: {
1487 VkPhysicalDevice4444FormatsFeaturesEXT *features =
1488 (VkPhysicalDevice4444FormatsFeaturesEXT *)ext;
1489 features->formatA4R4G4B4 = true;
1490 features->formatA4B4G4R4 = true;
1491 break;
1492 }
1493 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_TERMINATE_INVOCATION_FEATURES_KHR: {
1494 VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR *features =
1495 (VkPhysicalDeviceShaderTerminateInvocationFeaturesKHR *)ext;
1496 features->shaderTerminateInvocation = true;
1497 break;
1498 }
1499 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_IMAGE_ATOMIC_INT64_FEATURES_EXT: {
1500 VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *features =
1501 (VkPhysicalDeviceShaderImageAtomicInt64FeaturesEXT *)ext;
1502 features->shaderImageInt64Atomics = true;
1503 features->sparseImageInt64Atomics = true;
1504 break;
1505 }
1506 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MUTABLE_DESCRIPTOR_TYPE_FEATURES_VALVE: {
1507 VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *features =
1508 (VkPhysicalDeviceMutableDescriptorTypeFeaturesVALVE *)ext;
1509 features->mutableDescriptorType = true;
1510 break;
1511 }
1512 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
1513 VkPhysicalDeviceFragmentShadingRateFeaturesKHR *features =
1514 (VkPhysicalDeviceFragmentShadingRateFeaturesKHR *)ext;
1515 features->pipelineFragmentShadingRate = true;
1516 features->primitiveFragmentShadingRate = true;
1517 features->attachmentFragmentShadingRate = true;
1518 break;
1519 }
1520 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_WORKGROUP_MEMORY_EXPLICIT_LAYOUT_FEATURES_KHR: {
1521 VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *features =
1522 (VkPhysicalDeviceWorkgroupMemoryExplicitLayoutFeaturesKHR *)ext;
1523 features->workgroupMemoryExplicitLayout = true;
1524 features->workgroupMemoryExplicitLayoutScalarBlockLayout = true;
1525 features->workgroupMemoryExplicitLayout8BitAccess = true;
1526 features->workgroupMemoryExplicitLayout16BitAccess = true;
1527 break;
1528 }
1529 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ZERO_INITIALIZE_WORKGROUP_MEMORY_FEATURES_KHR: {
1530 VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR *features =
1531 (VkPhysicalDeviceZeroInitializeWorkgroupMemoryFeaturesKHR *)ext;
1532 features->shaderZeroInitializeWorkgroupMemory = true;
1533 break;
1534 }
1535 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT: {
1536 VkPhysicalDeviceProvokingVertexFeaturesEXT *features =
1537 (VkPhysicalDeviceProvokingVertexFeaturesEXT *)ext;
1538 features->provokingVertexLast = true;
1539 features->transformFeedbackPreservesProvokingVertex = true;
1540 break;
1541 }
1542 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTENDED_DYNAMIC_STATE_2_FEATURES_EXT: {
1543 VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *features =
1544 (VkPhysicalDeviceExtendedDynamicState2FeaturesEXT *)ext;
1545 features->extendedDynamicState2 = true;
1546 features->extendedDynamicState2LogicOp = true;
1547 features->extendedDynamicState2PatchControlPoints = false;
1548 break;
1549 }
1550 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_GLOBAL_PRIORITY_QUERY_FEATURES_EXT: {
1551 VkPhysicalDeviceGlobalPriorityQueryFeaturesEXT *features =
1552 (VkPhysicalDeviceGlobalPriorityQueryFeaturesEXT *)ext;
1553 features->globalPriorityQuery = true;
1554 break;
1555 }
1556 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR: {
1557 VkPhysicalDeviceAccelerationStructureFeaturesKHR *features =
1558 (VkPhysicalDeviceAccelerationStructureFeaturesKHR *)ext;
1559 features->accelerationStructure = true;
1560 features->accelerationStructureCaptureReplay = false;
1561 features->accelerationStructureIndirectBuild = false;
1562 features->accelerationStructureHostCommands = true;
1563 features->descriptorBindingAccelerationStructureUpdateAfterBind = true;
1564 break;
1565 }
1566 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_SUBGROUP_UNIFORM_CONTROL_FLOW_FEATURES_KHR: {
1567 VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *features =
1568 (VkPhysicalDeviceShaderSubgroupUniformControlFlowFeaturesKHR *)ext;
1569 features->shaderSubgroupUniformControlFlow = true;
1570 break;
1571 }
1572 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_FEATURES_EXT: {
1573 VkPhysicalDeviceMultiDrawFeaturesEXT *features = (VkPhysicalDeviceMultiDrawFeaturesEXT *)ext;
1574 features->multiDraw = true;
1575 break;
1576 }
1577 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COLOR_WRITE_ENABLE_FEATURES_EXT: {
1578 VkPhysicalDeviceColorWriteEnableFeaturesEXT *features =
1579 (VkPhysicalDeviceColorWriteEnableFeaturesEXT *)ext;
1580 features->colorWriteEnable = true;
1581 break;
1582 }
1583 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
1584 VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features =
1585 (VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *)ext;
1586 bool has_shader_buffer_float_minmax = ((pdevice->rad_info.chip_class == GFX6 ||
1587 pdevice->rad_info.chip_class == GFX7) &&
1588 !pdevice->use_llvm) ||
1589 pdevice->rad_info.chip_class >= GFX10;
1590 bool has_shader_image_float_minmax = pdevice->rad_info.chip_class != GFX8 &&
1591 pdevice->rad_info.chip_class != GFX9;
1592 features->shaderBufferFloat16Atomics = false;
1593 features->shaderBufferFloat16AtomicAdd = false;
1594 features->shaderBufferFloat16AtomicMinMax = false;
1595 features->shaderBufferFloat32AtomicMinMax = has_shader_buffer_float_minmax;
1596 features->shaderBufferFloat64AtomicMinMax = has_shader_buffer_float_minmax;
1597 features->shaderSharedFloat16Atomics = false;
1598 features->shaderSharedFloat16AtomicAdd = false;
1599 features->shaderSharedFloat16AtomicMinMax = false;
1600 features->shaderSharedFloat32AtomicMinMax = true;
1601 features->shaderSharedFloat64AtomicMinMax = true;
1602 features->shaderImageFloat32AtomicMinMax = has_shader_image_float_minmax;
1603 features->sparseImageFloat32AtomicMinMax = has_shader_image_float_minmax;
1604 break;
1605 }
1606 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PRIMITIVE_TOPOLOGY_LIST_RESTART_FEATURES_EXT: {
1607 VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *features =
1608 (VkPhysicalDevicePrimitiveTopologyListRestartFeaturesEXT *)ext;
1609 features->primitiveTopologyListRestart = true;
1610 features->primitiveTopologyPatchListRestart = false;
1611 break;
1612 }
1613 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_FEATURES_KHR: {
1614 VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR *features =
1615 (VkPhysicalDeviceShaderIntegerDotProductFeaturesKHR *)ext;
1616 features->shaderIntegerDotProduct = true;
1617 break;
1618 }
1619 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR: {
1620 VkPhysicalDeviceRayTracingPipelineFeaturesKHR *features =
1621 (VkPhysicalDeviceRayTracingPipelineFeaturesKHR *)ext;
1622 features->rayTracingPipeline = true;
1623 features->rayTracingPipelineShaderGroupHandleCaptureReplay = false;
1624 features->rayTracingPipelineShaderGroupHandleCaptureReplayMixed = false;
1625 features->rayTracingPipelineTraceRaysIndirect = false;
1626 features->rayTraversalPrimitiveCulling = false;
1627 break;
1628 }
1629 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES_KHR: {
1630 VkPhysicalDeviceMaintenance4FeaturesKHR *features =
1631 (VkPhysicalDeviceMaintenance4FeaturesKHR *)ext;
1632 features->maintenance4 = true;
1633 break;
1634 }
1635 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
1636 VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features =
1637 (VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *)ext;
1638 features->vertexInputDynamicState = true;
1639 break;
1640 }
1641 default:
1642 break;
1643 }
1644 }
1645 }
1646
1647 static size_t
radv_max_descriptor_set_size()1648 radv_max_descriptor_set_size()
1649 {
1650 /* make sure that the entire descriptor set is addressable with a signed
1651 * 32-bit int. So the sum of all limits scaled by descriptor size has to
1652 * be at most 2 GiB. the combined image & samples object count as one of
1653 * both. This limit is for the pipeline layout, not for the set layout, but
1654 * there is no set limit, so we just set a pipeline limit. I don't think
1655 * any app is going to hit this soon. */
1656 return ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
1657 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1658 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1659 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1660 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
1661 64 /* storage image */);
1662 }
1663
1664 static uint32_t
radv_uniform_buffer_offset_alignment(const struct radv_physical_device * pdevice)1665 radv_uniform_buffer_offset_alignment(const struct radv_physical_device *pdevice)
1666 {
1667 uint32_t uniform_offset_alignment =
1668 driQueryOptioni(&pdevice->instance->dri_options, "radv_override_uniform_offset_alignment");
1669 if (!util_is_power_of_two_or_zero(uniform_offset_alignment)) {
1670 fprintf(stderr,
1671 "ERROR: invalid radv_override_uniform_offset_alignment setting %d:"
1672 "not a power of two\n",
1673 uniform_offset_alignment);
1674 uniform_offset_alignment = 0;
1675 }
1676
1677 /* Take at least the hardware limit. */
1678 return MAX2(uniform_offset_alignment, 4);
1679 }
1680
1681 void
radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties * pProperties)1682 radv_GetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
1683 VkPhysicalDeviceProperties *pProperties)
1684 {
1685 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1686 VkSampleCountFlags sample_counts = 0xf;
1687
1688 size_t max_descriptor_set_size = radv_max_descriptor_set_size();
1689
1690 VkPhysicalDeviceLimits limits = {
1691 .maxImageDimension1D = (1 << 14),
1692 .maxImageDimension2D = (1 << 14),
1693 .maxImageDimension3D = (1 << 11),
1694 .maxImageDimensionCube = (1 << 14),
1695 .maxImageArrayLayers = (1 << 11),
1696 .maxTexelBufferElements = UINT32_MAX,
1697 .maxUniformBufferRange = UINT32_MAX,
1698 .maxStorageBufferRange = UINT32_MAX,
1699 .maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
1700 .maxMemoryAllocationCount = UINT32_MAX,
1701 .maxSamplerAllocationCount = 64 * 1024,
1702 .bufferImageGranularity = 1,
1703 .sparseAddressSpaceSize = RADV_MAX_MEMORY_ALLOCATION_SIZE, /* buffer max size */
1704 .maxBoundDescriptorSets = MAX_SETS,
1705 .maxPerStageDescriptorSamplers = max_descriptor_set_size,
1706 .maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
1707 .maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
1708 .maxPerStageDescriptorSampledImages = max_descriptor_set_size,
1709 .maxPerStageDescriptorStorageImages = max_descriptor_set_size,
1710 .maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
1711 .maxPerStageResources = max_descriptor_set_size,
1712 .maxDescriptorSetSamplers = max_descriptor_set_size,
1713 .maxDescriptorSetUniformBuffers = max_descriptor_set_size,
1714 .maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS,
1715 .maxDescriptorSetStorageBuffers = max_descriptor_set_size,
1716 .maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS,
1717 .maxDescriptorSetSampledImages = max_descriptor_set_size,
1718 .maxDescriptorSetStorageImages = max_descriptor_set_size,
1719 .maxDescriptorSetInputAttachments = max_descriptor_set_size,
1720 .maxVertexInputAttributes = MAX_VERTEX_ATTRIBS,
1721 .maxVertexInputBindings = MAX_VBS,
1722 .maxVertexInputAttributeOffset = UINT32_MAX,
1723 .maxVertexInputBindingStride = 2048,
1724 .maxVertexOutputComponents = 128,
1725 .maxTessellationGenerationLevel = 64,
1726 .maxTessellationPatchSize = 32,
1727 .maxTessellationControlPerVertexInputComponents = 128,
1728 .maxTessellationControlPerVertexOutputComponents = 128,
1729 .maxTessellationControlPerPatchOutputComponents = 120,
1730 .maxTessellationControlTotalOutputComponents = 4096,
1731 .maxTessellationEvaluationInputComponents = 128,
1732 .maxTessellationEvaluationOutputComponents = 128,
1733 .maxGeometryShaderInvocations = 127,
1734 .maxGeometryInputComponents = 64,
1735 .maxGeometryOutputComponents = 128,
1736 .maxGeometryOutputVertices = 256,
1737 .maxGeometryTotalOutputComponents = 1024,
1738 .maxFragmentInputComponents = 128,
1739 .maxFragmentOutputAttachments = 8,
1740 .maxFragmentDualSrcAttachments = 1,
1741 .maxFragmentCombinedOutputResources = 8,
1742 .maxComputeSharedMemorySize = pdevice->rad_info.chip_class >= GFX7 ? 65536 : 32768,
1743 .maxComputeWorkGroupCount = {65535, 65535, 65535},
1744 .maxComputeWorkGroupInvocations = 1024,
1745 .maxComputeWorkGroupSize = {1024, 1024, 1024},
1746 .subPixelPrecisionBits = 8,
1747 .subTexelPrecisionBits = 8,
1748 .mipmapPrecisionBits = 8,
1749 .maxDrawIndexedIndexValue = UINT32_MAX,
1750 .maxDrawIndirectCount = UINT32_MAX,
1751 .maxSamplerLodBias = 16,
1752 .maxSamplerAnisotropy = 16,
1753 .maxViewports = MAX_VIEWPORTS,
1754 .maxViewportDimensions = {(1 << 14), (1 << 14)},
1755 .viewportBoundsRange = {INT16_MIN, INT16_MAX},
1756 .viewportSubPixelBits = 8,
1757 .minMemoryMapAlignment = 4096, /* A page */
1758 .minTexelBufferOffsetAlignment = 4,
1759 .minUniformBufferOffsetAlignment = radv_uniform_buffer_offset_alignment(pdevice),
1760 .minStorageBufferOffsetAlignment = 4,
1761 .minTexelOffset = -32,
1762 .maxTexelOffset = 31,
1763 .minTexelGatherOffset = -32,
1764 .maxTexelGatherOffset = 31,
1765 .minInterpolationOffset = -2,
1766 .maxInterpolationOffset = 2,
1767 .subPixelInterpolationOffsetBits = 8,
1768 .maxFramebufferWidth = (1 << 14),
1769 .maxFramebufferHeight = (1 << 14),
1770 .maxFramebufferLayers = (1 << 10),
1771 .framebufferColorSampleCounts = sample_counts,
1772 .framebufferDepthSampleCounts = sample_counts,
1773 .framebufferStencilSampleCounts = sample_counts,
1774 .framebufferNoAttachmentsSampleCounts = sample_counts,
1775 .maxColorAttachments = MAX_RTS,
1776 .sampledImageColorSampleCounts = sample_counts,
1777 .sampledImageIntegerSampleCounts = sample_counts,
1778 .sampledImageDepthSampleCounts = sample_counts,
1779 .sampledImageStencilSampleCounts = sample_counts,
1780 .storageImageSampleCounts = sample_counts,
1781 .maxSampleMaskWords = 1,
1782 .timestampComputeAndGraphics = true,
1783 .timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
1784 .maxClipDistances = 8,
1785 .maxCullDistances = 8,
1786 .maxCombinedClipAndCullDistances = 8,
1787 .discreteQueuePriorities = 2,
1788 .pointSizeRange = {0.0, 8191.875},
1789 .lineWidthRange = {0.0, 8191.875},
1790 .pointSizeGranularity = (1.0 / 8.0),
1791 .lineWidthGranularity = (1.0 / 8.0),
1792 .strictLines = false, /* FINISHME */
1793 .standardSampleLocations = true,
1794 .optimalBufferCopyOffsetAlignment = 1,
1795 .optimalBufferCopyRowPitchAlignment = 1,
1796 .nonCoherentAtomSize = 64,
1797 };
1798
1799 VkPhysicalDeviceType device_type;
1800
1801 if (pdevice->rad_info.has_dedicated_vram || pdevice->instance->report_apu_as_dgpu) {
1802 device_type = VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU;
1803 } else {
1804 device_type = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
1805 }
1806
1807 *pProperties = (VkPhysicalDeviceProperties){
1808 .apiVersion = RADV_API_VERSION,
1809 .driverVersion = vk_get_driver_version(),
1810 .vendorID = ATI_VENDOR_ID,
1811 .deviceID = pdevice->rad_info.pci_id,
1812 .deviceType = device_type,
1813 .limits = limits,
1814 .sparseProperties =
1815 {
1816 .residencyNonResidentStrict = pdevice->rad_info.family >= CHIP_POLARIS10,
1817 .residencyStandard2DBlockShape = pdevice->rad_info.family >= CHIP_POLARIS10,
1818 },
1819 };
1820
1821 strcpy(pProperties->deviceName, pdevice->name);
1822 memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
1823 }
1824
1825 static void
radv_get_physical_device_properties_1_1(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan11Properties * p)1826 radv_get_physical_device_properties_1_1(struct radv_physical_device *pdevice,
1827 VkPhysicalDeviceVulkan11Properties *p)
1828 {
1829 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES);
1830
1831 memcpy(p->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
1832 memcpy(p->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
1833 memset(p->deviceLUID, 0, VK_LUID_SIZE);
1834 /* The LUID is for Windows. */
1835 p->deviceLUIDValid = false;
1836 p->deviceNodeMask = 0;
1837
1838 p->subgroupSize = RADV_SUBGROUP_SIZE;
1839 p->subgroupSupportedStages = VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT;
1840 p->subgroupSupportedOperations =
1841 VK_SUBGROUP_FEATURE_BASIC_BIT | VK_SUBGROUP_FEATURE_VOTE_BIT |
1842 VK_SUBGROUP_FEATURE_ARITHMETIC_BIT | VK_SUBGROUP_FEATURE_BALLOT_BIT |
1843 VK_SUBGROUP_FEATURE_CLUSTERED_BIT | VK_SUBGROUP_FEATURE_QUAD_BIT |
1844 VK_SUBGROUP_FEATURE_SHUFFLE_BIT | VK_SUBGROUP_FEATURE_SHUFFLE_RELATIVE_BIT;
1845 p->subgroupQuadOperationsInAllStages = true;
1846
1847 p->pointClippingBehavior = VK_POINT_CLIPPING_BEHAVIOR_ALL_CLIP_PLANES;
1848 p->maxMultiviewViewCount = MAX_VIEWS;
1849 p->maxMultiviewInstanceIndex = INT_MAX;
1850 p->protectedNoFault = false;
1851 p->maxPerSetDescriptors = RADV_MAX_PER_SET_DESCRIPTORS;
1852 p->maxMemoryAllocationSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
1853 }
1854
1855 static void
radv_get_physical_device_properties_1_2(struct radv_physical_device * pdevice,VkPhysicalDeviceVulkan12Properties * p)1856 radv_get_physical_device_properties_1_2(struct radv_physical_device *pdevice,
1857 VkPhysicalDeviceVulkan12Properties *p)
1858 {
1859 assert(p->sType == VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES);
1860
1861 p->driverID = VK_DRIVER_ID_MESA_RADV;
1862 snprintf(p->driverName, VK_MAX_DRIVER_NAME_SIZE, "radv");
1863 snprintf(p->driverInfo, VK_MAX_DRIVER_INFO_SIZE, "Mesa " PACKAGE_VERSION MESA_GIT_SHA1 "%s",
1864 radv_get_compiler_string(pdevice));
1865 p->conformanceVersion = (VkConformanceVersion){
1866 .major = 1,
1867 .minor = 2,
1868 .subminor = 3,
1869 .patch = 0,
1870 };
1871
1872 /* On AMD hardware, denormals and rounding modes for fp16/fp64 are
1873 * controlled by the same config register.
1874 */
1875 if (pdevice->rad_info.has_packed_math_16bit) {
1876 p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
1877 p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY_KHR;
1878 } else {
1879 p->denormBehaviorIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1880 p->roundingModeIndependence = VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL_KHR;
1881 }
1882
1883 /* With LLVM, do not allow both preserving and flushing denorms because
1884 * different shaders in the same pipeline can have different settings and
1885 * this won't work for merged shaders. To make it work, this requires LLVM
1886 * support for changing the register. The same logic applies for the
1887 * rounding modes because they are configured with the same config
1888 * register.
1889 */
1890 p->shaderDenormFlushToZeroFloat32 = true;
1891 p->shaderDenormPreserveFloat32 = !pdevice->use_llvm;
1892 p->shaderRoundingModeRTEFloat32 = true;
1893 p->shaderRoundingModeRTZFloat32 = !pdevice->use_llvm;
1894 p->shaderSignedZeroInfNanPreserveFloat32 = true;
1895
1896 p->shaderDenormFlushToZeroFloat16 =
1897 pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
1898 p->shaderDenormPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
1899 p->shaderRoundingModeRTEFloat16 = pdevice->rad_info.has_packed_math_16bit;
1900 p->shaderRoundingModeRTZFloat16 = pdevice->rad_info.has_packed_math_16bit && !pdevice->use_llvm;
1901 p->shaderSignedZeroInfNanPreserveFloat16 = pdevice->rad_info.has_packed_math_16bit;
1902
1903 p->shaderDenormFlushToZeroFloat64 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_llvm;
1904 p->shaderDenormPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
1905 p->shaderRoundingModeRTEFloat64 = pdevice->rad_info.chip_class >= GFX8;
1906 p->shaderRoundingModeRTZFloat64 = pdevice->rad_info.chip_class >= GFX8 && !pdevice->use_llvm;
1907 p->shaderSignedZeroInfNanPreserveFloat64 = pdevice->rad_info.chip_class >= GFX8;
1908
1909 p->maxUpdateAfterBindDescriptorsInAllPools = UINT32_MAX / 64;
1910 p->shaderUniformBufferArrayNonUniformIndexingNative = false;
1911 p->shaderSampledImageArrayNonUniformIndexingNative = false;
1912 p->shaderStorageBufferArrayNonUniformIndexingNative = false;
1913 p->shaderStorageImageArrayNonUniformIndexingNative = false;
1914 p->shaderInputAttachmentArrayNonUniformIndexingNative = false;
1915 p->robustBufferAccessUpdateAfterBind = true;
1916 p->quadDivergentImplicitLod = false;
1917
1918 size_t max_descriptor_set_size =
1919 ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS -
1920 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_INLINE_UNIFORM_BLOCK_COUNT) /
1921 (32 /* uniform buffer, 32 due to potential space wasted on alignment */ +
1922 32 /* storage buffer, 32 due to potential space wasted on alignment */ +
1923 32 /* sampler, largest when combined with image */ + 64 /* sampled image */ +
1924 64 /* storage image */);
1925 p->maxPerStageDescriptorUpdateAfterBindSamplers = max_descriptor_set_size;
1926 p->maxPerStageDescriptorUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1927 p->maxPerStageDescriptorUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1928 p->maxPerStageDescriptorUpdateAfterBindSampledImages = max_descriptor_set_size;
1929 p->maxPerStageDescriptorUpdateAfterBindStorageImages = max_descriptor_set_size;
1930 p->maxPerStageDescriptorUpdateAfterBindInputAttachments = max_descriptor_set_size;
1931 p->maxPerStageUpdateAfterBindResources = max_descriptor_set_size;
1932 p->maxDescriptorSetUpdateAfterBindSamplers = max_descriptor_set_size;
1933 p->maxDescriptorSetUpdateAfterBindUniformBuffers = max_descriptor_set_size;
1934 p->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = MAX_DYNAMIC_UNIFORM_BUFFERS;
1935 p->maxDescriptorSetUpdateAfterBindStorageBuffers = max_descriptor_set_size;
1936 p->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = MAX_DYNAMIC_STORAGE_BUFFERS;
1937 p->maxDescriptorSetUpdateAfterBindSampledImages = max_descriptor_set_size;
1938 p->maxDescriptorSetUpdateAfterBindStorageImages = max_descriptor_set_size;
1939 p->maxDescriptorSetUpdateAfterBindInputAttachments = max_descriptor_set_size;
1940
1941 /* We support all of the depth resolve modes */
1942 p->supportedDepthResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1943 VK_RESOLVE_MODE_AVERAGE_BIT_KHR | VK_RESOLVE_MODE_MIN_BIT_KHR |
1944 VK_RESOLVE_MODE_MAX_BIT_KHR;
1945
1946 /* Average doesn't make sense for stencil so we don't support that */
1947 p->supportedStencilResolveModes = VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR |
1948 VK_RESOLVE_MODE_MIN_BIT_KHR | VK_RESOLVE_MODE_MAX_BIT_KHR;
1949
1950 p->independentResolveNone = true;
1951 p->independentResolve = true;
1952
1953 /* GFX6-8 only support single channel min/max filter. */
1954 p->filterMinmaxImageComponentMapping = pdevice->rad_info.chip_class >= GFX9;
1955 p->filterMinmaxSingleComponentFormats = true;
1956
1957 p->maxTimelineSemaphoreValueDifference = UINT64_MAX;
1958
1959 p->framebufferIntegerColorSampleCounts = VK_SAMPLE_COUNT_1_BIT;
1960 }
1961
1962 void
radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties2 * pProperties)1963 radv_GetPhysicalDeviceProperties2(VkPhysicalDevice physicalDevice,
1964 VkPhysicalDeviceProperties2 *pProperties)
1965 {
1966 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
1967 radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
1968
1969 VkPhysicalDeviceVulkan11Properties core_1_1 = {
1970 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_PROPERTIES,
1971 };
1972 radv_get_physical_device_properties_1_1(pdevice, &core_1_1);
1973
1974 VkPhysicalDeviceVulkan12Properties core_1_2 = {
1975 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_PROPERTIES,
1976 };
1977 radv_get_physical_device_properties_1_2(pdevice, &core_1_2);
1978
1979 vk_foreach_struct(ext, pProperties->pNext)
1980 {
1981 if (vk_get_physical_device_core_1_1_property_ext(ext, &core_1_1))
1982 continue;
1983 if (vk_get_physical_device_core_1_2_property_ext(ext, &core_1_2))
1984 continue;
1985
1986 switch (ext->sType) {
1987 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
1988 VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
1989 (VkPhysicalDevicePushDescriptorPropertiesKHR *)ext;
1990 properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
1991 break;
1992 }
1993 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DISCARD_RECTANGLE_PROPERTIES_EXT: {
1994 VkPhysicalDeviceDiscardRectanglePropertiesEXT *properties =
1995 (VkPhysicalDeviceDiscardRectanglePropertiesEXT *)ext;
1996 properties->maxDiscardRectangles = MAX_DISCARD_RECTANGLES;
1997 break;
1998 }
1999 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT: {
2000 VkPhysicalDeviceExternalMemoryHostPropertiesEXT *properties =
2001 (VkPhysicalDeviceExternalMemoryHostPropertiesEXT *)ext;
2002 properties->minImportedHostPointerAlignment = 4096;
2003 break;
2004 }
2005 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_AMD: {
2006 VkPhysicalDeviceShaderCorePropertiesAMD *properties =
2007 (VkPhysicalDeviceShaderCorePropertiesAMD *)ext;
2008
2009 /* Shader engines. */
2010 properties->shaderEngineCount = pdevice->rad_info.max_se;
2011 properties->shaderArraysPerEngineCount = pdevice->rad_info.max_sa_per_se;
2012 properties->computeUnitsPerShaderArray = pdevice->rad_info.min_good_cu_per_sa;
2013 properties->simdPerComputeUnit = pdevice->rad_info.num_simd_per_compute_unit;
2014 properties->wavefrontsPerSimd = pdevice->rad_info.max_wave64_per_simd;
2015 properties->wavefrontSize = 64;
2016
2017 /* SGPR. */
2018 properties->sgprsPerSimd = pdevice->rad_info.num_physical_sgprs_per_simd;
2019 properties->minSgprAllocation = pdevice->rad_info.min_sgpr_alloc;
2020 properties->maxSgprAllocation = pdevice->rad_info.max_sgpr_alloc;
2021 properties->sgprAllocationGranularity = pdevice->rad_info.sgpr_alloc_granularity;
2022
2023 /* VGPR. */
2024 properties->vgprsPerSimd = pdevice->rad_info.num_physical_wave64_vgprs_per_simd;
2025 properties->minVgprAllocation = pdevice->rad_info.min_wave64_vgpr_alloc;
2026 properties->maxVgprAllocation = pdevice->rad_info.max_vgpr_alloc;
2027 properties->vgprAllocationGranularity = pdevice->rad_info.wave64_vgpr_alloc_granularity;
2028 break;
2029 }
2030 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_CORE_PROPERTIES_2_AMD: {
2031 VkPhysicalDeviceShaderCoreProperties2AMD *properties =
2032 (VkPhysicalDeviceShaderCoreProperties2AMD *)ext;
2033
2034 properties->shaderCoreFeatures = 0;
2035 properties->activeComputeUnitCount = pdevice->rad_info.num_good_compute_units;
2036 break;
2037 }
2038 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT: {
2039 VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *properties =
2040 (VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT *)ext;
2041 properties->maxVertexAttribDivisor = UINT32_MAX;
2042 break;
2043 }
2044 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CONSERVATIVE_RASTERIZATION_PROPERTIES_EXT: {
2045 VkPhysicalDeviceConservativeRasterizationPropertiesEXT *properties =
2046 (VkPhysicalDeviceConservativeRasterizationPropertiesEXT *)ext;
2047 properties->primitiveOverestimationSize = 0;
2048 properties->maxExtraPrimitiveOverestimationSize = 0;
2049 properties->extraPrimitiveOverestimationSizeGranularity = 0;
2050 properties->primitiveUnderestimation = false;
2051 properties->conservativePointAndLineRasterization = false;
2052 properties->degenerateTrianglesRasterized = true;
2053 properties->degenerateLinesRasterized = false;
2054 properties->fullyCoveredFragmentShaderInputVariable = false;
2055 properties->conservativeRasterizationPostDepthCoverage = false;
2056 break;
2057 }
2058 #ifndef _WIN32
2059 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT: {
2060 VkPhysicalDevicePCIBusInfoPropertiesEXT *properties =
2061 (VkPhysicalDevicePCIBusInfoPropertiesEXT *)ext;
2062 properties->pciDomain = pdevice->bus_info.domain;
2063 properties->pciBus = pdevice->bus_info.bus;
2064 properties->pciDevice = pdevice->bus_info.dev;
2065 properties->pciFunction = pdevice->bus_info.func;
2066 break;
2067 }
2068 #endif
2069 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_PROPERTIES_EXT: {
2070 VkPhysicalDeviceTransformFeedbackPropertiesEXT *properties =
2071 (VkPhysicalDeviceTransformFeedbackPropertiesEXT *)ext;
2072 properties->maxTransformFeedbackStreams = MAX_SO_STREAMS;
2073 properties->maxTransformFeedbackBuffers = MAX_SO_BUFFERS;
2074 properties->maxTransformFeedbackBufferSize = UINT32_MAX;
2075 properties->maxTransformFeedbackStreamDataSize = 512;
2076 properties->maxTransformFeedbackBufferDataSize = 512;
2077 properties->maxTransformFeedbackBufferDataStride = 512;
2078 properties->transformFeedbackQueries = !pdevice->use_ngg_streamout;
2079 properties->transformFeedbackStreamsLinesTriangles = !pdevice->use_ngg_streamout;
2080 properties->transformFeedbackRasterizationStreamSelect = false;
2081 properties->transformFeedbackDraw = true;
2082 break;
2083 }
2084 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INLINE_UNIFORM_BLOCK_PROPERTIES_EXT: {
2085 VkPhysicalDeviceInlineUniformBlockPropertiesEXT *props =
2086 (VkPhysicalDeviceInlineUniformBlockPropertiesEXT *)ext;
2087
2088 props->maxInlineUniformBlockSize = MAX_INLINE_UNIFORM_BLOCK_SIZE;
2089 props->maxPerStageDescriptorInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
2090 props->maxPerStageDescriptorUpdateAfterBindInlineUniformBlocks =
2091 MAX_INLINE_UNIFORM_BLOCK_SIZE * MAX_SETS;
2092 props->maxDescriptorSetInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
2093 props->maxDescriptorSetUpdateAfterBindInlineUniformBlocks = MAX_INLINE_UNIFORM_BLOCK_COUNT;
2094 break;
2095 }
2096 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLE_LOCATIONS_PROPERTIES_EXT: {
2097 VkPhysicalDeviceSampleLocationsPropertiesEXT *properties =
2098 (VkPhysicalDeviceSampleLocationsPropertiesEXT *)ext;
2099 properties->sampleLocationSampleCounts = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
2100 VK_SAMPLE_COUNT_8_BIT;
2101 properties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
2102 properties->sampleLocationCoordinateRange[0] = 0.0f;
2103 properties->sampleLocationCoordinateRange[1] = 0.9375f;
2104 properties->sampleLocationSubPixelBits = 4;
2105 properties->variableSampleLocations = false;
2106 break;
2107 }
2108 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TEXEL_BUFFER_ALIGNMENT_PROPERTIES_EXT: {
2109 VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *properties =
2110 (VkPhysicalDeviceTexelBufferAlignmentPropertiesEXT *)ext;
2111 properties->storageTexelBufferOffsetAlignmentBytes = 4;
2112 properties->storageTexelBufferOffsetSingleTexelAlignment = true;
2113 properties->uniformTexelBufferOffsetAlignmentBytes = 4;
2114 properties->uniformTexelBufferOffsetSingleTexelAlignment = true;
2115 break;
2116 }
2117 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_PROPERTIES_EXT: {
2118 VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *props =
2119 (VkPhysicalDeviceSubgroupSizeControlPropertiesEXT *)ext;
2120 props->minSubgroupSize = 64;
2121 props->maxSubgroupSize = 64;
2122 props->maxComputeWorkgroupSubgroups = UINT32_MAX;
2123 props->requiredSubgroupSizeStages = 0;
2124
2125 if (pdevice->rad_info.chip_class >= GFX10) {
2126 /* Only GFX10+ supports wave32. */
2127 props->minSubgroupSize = 32;
2128 props->requiredSubgroupSizeStages = VK_SHADER_STAGE_COMPUTE_BIT;
2129 }
2130 break;
2131 }
2132 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_PROPERTIES_EXT: {
2133 VkPhysicalDeviceLineRasterizationPropertiesEXT *props =
2134 (VkPhysicalDeviceLineRasterizationPropertiesEXT *)ext;
2135 props->lineSubPixelPrecisionBits = 4;
2136 break;
2137 }
2138 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_PROPERTIES_EXT: {
2139 VkPhysicalDeviceRobustness2PropertiesEXT *properties =
2140 (VkPhysicalDeviceRobustness2PropertiesEXT *)ext;
2141 properties->robustStorageBufferAccessSizeAlignment = 4;
2142 properties->robustUniformBufferAccessSizeAlignment = 4;
2143 break;
2144 }
2145 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_PROPERTIES_EXT: {
2146 VkPhysicalDeviceCustomBorderColorPropertiesEXT *props =
2147 (VkPhysicalDeviceCustomBorderColorPropertiesEXT *)ext;
2148 props->maxCustomBorderColorSamplers = RADV_BORDER_COLOR_COUNT;
2149 break;
2150 }
2151 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR: {
2152 VkPhysicalDeviceFragmentShadingRatePropertiesKHR *props =
2153 (VkPhysicalDeviceFragmentShadingRatePropertiesKHR *)ext;
2154 props->minFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
2155 props->maxFragmentShadingRateAttachmentTexelSize = (VkExtent2D){8, 8};
2156 props->maxFragmentShadingRateAttachmentTexelSizeAspectRatio = 1;
2157 props->primitiveFragmentShadingRateWithMultipleViewports = true;
2158 props->layeredShadingRateAttachments = false; /* TODO */
2159 props->fragmentShadingRateNonTrivialCombinerOps = true;
2160 props->maxFragmentSize = (VkExtent2D){2, 2};
2161 props->maxFragmentSizeAspectRatio = 2;
2162 props->maxFragmentShadingRateCoverageSamples = 32;
2163 props->maxFragmentShadingRateRasterizationSamples = VK_SAMPLE_COUNT_8_BIT;
2164 props->fragmentShadingRateWithShaderDepthStencilWrites = false;
2165 props->fragmentShadingRateWithSampleMask = true;
2166 props->fragmentShadingRateWithShaderSampleMask = false;
2167 props->fragmentShadingRateWithConservativeRasterization = true;
2168 props->fragmentShadingRateWithFragmentShaderInterlock = false;
2169 props->fragmentShadingRateWithCustomSampleLocations = false;
2170 props->fragmentShadingRateStrictMultiplyCombiner = true;
2171 break;
2172 }
2173 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_PROPERTIES_EXT: {
2174 VkPhysicalDeviceProvokingVertexPropertiesEXT *props =
2175 (VkPhysicalDeviceProvokingVertexPropertiesEXT *)ext;
2176 props->provokingVertexModePerPipeline = true;
2177 props->transformFeedbackPreservesTriangleFanProvokingVertex = true;
2178 break;
2179 }
2180 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR: {
2181 VkPhysicalDeviceAccelerationStructurePropertiesKHR *props =
2182 (VkPhysicalDeviceAccelerationStructurePropertiesKHR *)ext;
2183 props->maxGeometryCount = (1 << 24) - 1;
2184 props->maxInstanceCount = (1 << 24) - 1;
2185 props->maxPrimitiveCount = (1 << 29) - 1;
2186 props->maxPerStageDescriptorAccelerationStructures =
2187 pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
2188 props->maxPerStageDescriptorUpdateAfterBindAccelerationStructures =
2189 pProperties->properties.limits.maxPerStageDescriptorStorageBuffers;
2190 props->maxDescriptorSetAccelerationStructures =
2191 pProperties->properties.limits.maxDescriptorSetStorageBuffers;
2192 props->maxDescriptorSetUpdateAfterBindAccelerationStructures =
2193 pProperties->properties.limits.maxDescriptorSetStorageBuffers;
2194 props->minAccelerationStructureScratchOffsetAlignment = 128;
2195 break;
2196 }
2197 #ifndef _WIN32
2198 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT: {
2199 VkPhysicalDeviceDrmPropertiesEXT *props = (VkPhysicalDeviceDrmPropertiesEXT *)ext;
2200 if (pdevice->available_nodes & (1 << DRM_NODE_PRIMARY)) {
2201 props->hasPrimary = true;
2202 props->primaryMajor = (int64_t)major(pdevice->primary_devid);
2203 props->primaryMinor = (int64_t)minor(pdevice->primary_devid);
2204 } else {
2205 props->hasPrimary = false;
2206 }
2207 if (pdevice->available_nodes & (1 << DRM_NODE_RENDER)) {
2208 props->hasRender = true;
2209 props->renderMajor = (int64_t)major(pdevice->render_devid);
2210 props->renderMinor = (int64_t)minor(pdevice->render_devid);
2211 } else {
2212 props->hasRender = false;
2213 }
2214 break;
2215 }
2216 #endif
2217 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTI_DRAW_PROPERTIES_EXT: {
2218 VkPhysicalDeviceMultiDrawPropertiesEXT *props = (VkPhysicalDeviceMultiDrawPropertiesEXT *)ext;
2219 props->maxMultiDrawCount = 2048;
2220 break;
2221 }
2222 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_INTEGER_DOT_PRODUCT_PROPERTIES_KHR: {
2223 VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR *props =
2224 (VkPhysicalDeviceShaderIntegerDotProductPropertiesKHR *)ext;
2225
2226 bool accel = pdevice->rad_info.has_accelerated_dot_product;
2227
2228 props->integerDotProduct8BitUnsignedAccelerated = accel;
2229 props->integerDotProduct8BitSignedAccelerated = accel;
2230 props->integerDotProduct8BitMixedSignednessAccelerated = false;
2231 props->integerDotProduct4x8BitPackedUnsignedAccelerated = accel;
2232 props->integerDotProduct4x8BitPackedSignedAccelerated = accel;
2233 props->integerDotProduct4x8BitPackedMixedSignednessAccelerated = false;
2234 props->integerDotProduct16BitUnsignedAccelerated = accel;
2235 props->integerDotProduct16BitSignedAccelerated = accel;
2236 props->integerDotProduct16BitMixedSignednessAccelerated = false;
2237 props->integerDotProduct32BitUnsignedAccelerated = false;
2238 props->integerDotProduct32BitSignedAccelerated = false;
2239 props->integerDotProduct32BitMixedSignednessAccelerated = false;
2240 props->integerDotProduct64BitUnsignedAccelerated = false;
2241 props->integerDotProduct64BitSignedAccelerated = false;
2242 props->integerDotProduct64BitMixedSignednessAccelerated = false;
2243 props->integerDotProductAccumulatingSaturating8BitUnsignedAccelerated = accel;
2244 props->integerDotProductAccumulatingSaturating8BitSignedAccelerated = accel;
2245 props->integerDotProductAccumulatingSaturating8BitMixedSignednessAccelerated = false;
2246 props->integerDotProductAccumulatingSaturating4x8BitPackedUnsignedAccelerated = accel;
2247 props->integerDotProductAccumulatingSaturating4x8BitPackedSignedAccelerated = accel;
2248 props->integerDotProductAccumulatingSaturating4x8BitPackedMixedSignednessAccelerated =
2249 false;
2250 props->integerDotProductAccumulatingSaturating16BitUnsignedAccelerated = accel;
2251 props->integerDotProductAccumulatingSaturating16BitSignedAccelerated = accel;
2252 props->integerDotProductAccumulatingSaturating16BitMixedSignednessAccelerated = false;
2253 props->integerDotProductAccumulatingSaturating32BitUnsignedAccelerated = false;
2254 props->integerDotProductAccumulatingSaturating32BitSignedAccelerated = false;
2255 props->integerDotProductAccumulatingSaturating32BitMixedSignednessAccelerated = false;
2256 props->integerDotProductAccumulatingSaturating64BitUnsignedAccelerated = false;
2257 props->integerDotProductAccumulatingSaturating64BitSignedAccelerated = false;
2258 props->integerDotProductAccumulatingSaturating64BitMixedSignednessAccelerated = false;
2259 break;
2260 }
2261 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR: {
2262 VkPhysicalDeviceRayTracingPipelinePropertiesKHR *props =
2263 (VkPhysicalDeviceRayTracingPipelinePropertiesKHR *)ext;
2264 props->shaderGroupHandleSize = RADV_RT_HANDLE_SIZE;
2265 props->maxRayRecursionDepth = 31; /* Minimum allowed for DXR. */
2266 props->maxShaderGroupStride = 16384; /* dummy */
2267 props->shaderGroupBaseAlignment = 16;
2268 props->shaderGroupHandleCaptureReplaySize = 16;
2269 props->maxRayDispatchInvocationCount = 1024 * 1024 * 64;
2270 props->shaderGroupHandleAlignment = 16;
2271 props->maxRayHitAttributeSize = RADV_MAX_HIT_ATTRIB_SIZE;
2272 break;
2273 }
2274 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_PROPERTIES_KHR: {
2275 VkPhysicalDeviceMaintenance4PropertiesKHR *properties =
2276 (VkPhysicalDeviceMaintenance4PropertiesKHR *)ext;
2277 properties->maxBufferSize = RADV_MAX_MEMORY_ALLOCATION_SIZE;
2278 break;
2279 }
2280 default:
2281 break;
2282 }
2283 }
2284 }
2285
2286 static void
radv_get_physical_device_queue_family_properties(struct radv_physical_device * pdevice,uint32_t * pCount,VkQueueFamilyProperties ** pQueueFamilyProperties)2287 radv_get_physical_device_queue_family_properties(struct radv_physical_device *pdevice,
2288 uint32_t *pCount,
2289 VkQueueFamilyProperties **pQueueFamilyProperties)
2290 {
2291 int num_queue_families = 1;
2292 int idx;
2293 if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
2294 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
2295 num_queue_families++;
2296
2297 if (pQueueFamilyProperties == NULL) {
2298 *pCount = num_queue_families;
2299 return;
2300 }
2301
2302 if (!*pCount)
2303 return;
2304
2305 idx = 0;
2306 if (*pCount >= 1) {
2307 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
2308 .queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT |
2309 VK_QUEUE_SPARSE_BINDING_BIT,
2310 .queueCount = 1,
2311 .timestampValidBits = 64,
2312 .minImageTransferGranularity = (VkExtent3D){1, 1, 1},
2313 };
2314 idx++;
2315 }
2316
2317 if (pdevice->rad_info.num_rings[RING_COMPUTE] > 0 &&
2318 !(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
2319 if (*pCount > idx) {
2320 *pQueueFamilyProperties[idx] = (VkQueueFamilyProperties){
2321 .queueFlags =
2322 VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT,
2323 .queueCount = pdevice->rad_info.num_rings[RING_COMPUTE],
2324 .timestampValidBits = 64,
2325 .minImageTransferGranularity = (VkExtent3D){1, 1, 1},
2326 };
2327 idx++;
2328 }
2329 }
2330 *pCount = idx;
2331 }
2332
2333 void
radv_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,uint32_t * pCount,VkQueueFamilyProperties * pQueueFamilyProperties)2334 radv_GetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice, uint32_t *pCount,
2335 VkQueueFamilyProperties *pQueueFamilyProperties)
2336 {
2337 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
2338 if (!pQueueFamilyProperties) {
2339 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
2340 return;
2341 }
2342 VkQueueFamilyProperties *properties[] = {
2343 pQueueFamilyProperties + 0,
2344 pQueueFamilyProperties + 1,
2345 pQueueFamilyProperties + 2,
2346 };
2347 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
2348 assert(*pCount <= 3);
2349 }
2350
2351 static const VkQueueGlobalPriorityEXT radv_global_queue_priorities[] = {
2352 VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT,
2353 VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT,
2354 VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT,
2355 VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT,
2356 };
2357
2358 void
radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,uint32_t * pCount,VkQueueFamilyProperties2 * pQueueFamilyProperties)2359 radv_GetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice, uint32_t *pCount,
2360 VkQueueFamilyProperties2 *pQueueFamilyProperties)
2361 {
2362 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
2363 if (!pQueueFamilyProperties) {
2364 radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
2365 return;
2366 }
2367 VkQueueFamilyProperties *properties[] = {
2368 &pQueueFamilyProperties[0].queueFamilyProperties,
2369 &pQueueFamilyProperties[1].queueFamilyProperties,
2370 &pQueueFamilyProperties[2].queueFamilyProperties,
2371 };
2372 radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
2373 assert(*pCount <= 3);
2374
2375 for (uint32_t i = 0; i < *pCount; i++) {
2376 vk_foreach_struct(ext, pQueueFamilyProperties[i].pNext)
2377 {
2378 switch (ext->sType) {
2379 case VK_STRUCTURE_TYPE_QUEUE_FAMILY_GLOBAL_PRIORITY_PROPERTIES_EXT: {
2380 VkQueueFamilyGlobalPriorityPropertiesEXT *prop =
2381 (VkQueueFamilyGlobalPriorityPropertiesEXT *)ext;
2382 STATIC_ASSERT(ARRAY_SIZE(radv_global_queue_priorities) <= VK_MAX_GLOBAL_PRIORITY_SIZE_EXT);
2383 prop->priorityCount = ARRAY_SIZE(radv_global_queue_priorities);
2384 memcpy(&prop->priorities, radv_global_queue_priorities, sizeof(radv_global_queue_priorities));
2385 break;
2386 }
2387 default:
2388 break;
2389 }
2390 }
2391 }
2392 }
2393
2394 void
radv_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties * pMemoryProperties)2395 radv_GetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
2396 VkPhysicalDeviceMemoryProperties *pMemoryProperties)
2397 {
2398 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
2399
2400 *pMemoryProperties = physical_device->memory_properties;
2401 }
2402
2403 static void
radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryBudgetPropertiesEXT * memoryBudget)2404 radv_get_memory_budget_properties(VkPhysicalDevice physicalDevice,
2405 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memoryBudget)
2406 {
2407 RADV_FROM_HANDLE(radv_physical_device, device, physicalDevice);
2408 VkPhysicalDeviceMemoryProperties *memory_properties = &device->memory_properties;
2409
2410 /* For all memory heaps, the computation of budget is as follow:
2411 * heap_budget = heap_size - global_heap_usage + app_heap_usage
2412 *
2413 * The Vulkan spec 1.1.97 says that the budget should include any
2414 * currently allocated device memory.
2415 *
2416 * Note that the application heap usages are not really accurate (eg.
2417 * in presence of shared buffers).
2418 */
2419 if (!device->rad_info.has_dedicated_vram) {
2420 /* On APUs, the driver exposes fake heaps to the application because usually the carveout is
2421 * too small for games but the budgets need to be redistributed accordingly.
2422 */
2423
2424 assert(device->heaps == (RADV_HEAP_GTT | RADV_HEAP_VRAM_VIS));
2425 assert(device->memory_properties.memoryHeaps[0].flags == 0); /* GTT */
2426 assert(device->memory_properties.memoryHeaps[1].flags == VK_MEMORY_HEAP_DEVICE_LOCAL_BIT);
2427 uint8_t gtt_heap_idx = 0, vram_vis_heap_idx = 1;
2428
2429 /* Get the visible VRAM/GTT heap sizes and internal usages. */
2430 uint64_t gtt_heap_size = device->memory_properties.memoryHeaps[gtt_heap_idx].size;
2431 uint64_t vram_vis_heap_size = device->memory_properties.memoryHeaps[vram_vis_heap_idx].size;
2432
2433 uint64_t vram_vis_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS) +
2434 device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
2435 uint64_t gtt_internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
2436
2437 /* Compute the total heap size, internal and system usage. */
2438 uint64_t total_heap_size = vram_vis_heap_size + gtt_heap_size;
2439 uint64_t total_internal_usage = vram_vis_internal_usage + gtt_internal_usage;
2440 uint64_t total_system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE) +
2441 device->ws->query_value(device->ws, RADEON_GTT_USAGE);
2442
2443 uint64_t total_usage = MAX2(total_internal_usage, total_system_usage);
2444
2445 /* Compute the total free space that can be allocated for this process accross all heaps. */
2446 uint64_t total_free_space = total_heap_size - MIN2(total_heap_size, total_usage);
2447
2448 /* Compute the remaining visible VRAM size for this process. */
2449 uint64_t vram_vis_free_space = vram_vis_heap_size - MIN2(vram_vis_heap_size, vram_vis_internal_usage);
2450
2451 /* Distribute the total free space (2/3rd as VRAM and 1/3rd as GTT) to match the heap sizes,
2452 * and align down to the page size to be conservative.
2453 */
2454 vram_vis_free_space = ROUND_DOWN_TO(MIN2((total_free_space * 2) / 3, vram_vis_free_space),
2455 device->rad_info.gart_page_size);
2456 uint64_t gtt_free_space = total_free_space - vram_vis_free_space;
2457
2458 memoryBudget->heapBudget[vram_vis_heap_idx] = vram_vis_free_space + vram_vis_internal_usage;
2459 memoryBudget->heapUsage[vram_vis_heap_idx] = vram_vis_internal_usage;
2460 memoryBudget->heapBudget[gtt_heap_idx] = gtt_free_space + gtt_internal_usage;
2461 memoryBudget->heapUsage[gtt_heap_idx] = gtt_internal_usage;
2462 } else {
2463 unsigned mask = device->heaps;
2464 unsigned heap = 0;
2465 while (mask) {
2466 uint64_t internal_usage = 0, system_usage = 0;
2467 unsigned type = 1u << u_bit_scan(&mask);
2468
2469 switch (type) {
2470 case RADV_HEAP_VRAM:
2471 internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
2472 system_usage = device->ws->query_value(device->ws, RADEON_VRAM_USAGE);
2473 break;
2474 case RADV_HEAP_VRAM_VIS:
2475 internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM_VIS);
2476 if (!(device->heaps & RADV_HEAP_VRAM))
2477 internal_usage += device->ws->query_value(device->ws, RADEON_ALLOCATED_VRAM);
2478 system_usage = device->ws->query_value(device->ws, RADEON_VRAM_VIS_USAGE);
2479 break;
2480 case RADV_HEAP_GTT:
2481 internal_usage = device->ws->query_value(device->ws, RADEON_ALLOCATED_GTT);
2482 system_usage = device->ws->query_value(device->ws, RADEON_GTT_USAGE);
2483 break;
2484 }
2485
2486 uint64_t total_usage = MAX2(internal_usage, system_usage);
2487
2488 uint64_t free_space = device->memory_properties.memoryHeaps[heap].size -
2489 MIN2(device->memory_properties.memoryHeaps[heap].size, total_usage);
2490 memoryBudget->heapBudget[heap] = free_space + internal_usage;
2491 memoryBudget->heapUsage[heap] = internal_usage;
2492 ++heap;
2493 }
2494
2495 assert(heap == memory_properties->memoryHeapCount);
2496 }
2497
2498 /* The heapBudget and heapUsage values must be zero for array elements
2499 * greater than or equal to
2500 * VkPhysicalDeviceMemoryProperties::memoryHeapCount.
2501 */
2502 for (uint32_t i = memory_properties->memoryHeapCount; i < VK_MAX_MEMORY_HEAPS; i++) {
2503 memoryBudget->heapBudget[i] = 0;
2504 memoryBudget->heapUsage[i] = 0;
2505 }
2506 }
2507
2508 void
radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties2 * pMemoryProperties)2509 radv_GetPhysicalDeviceMemoryProperties2(VkPhysicalDevice physicalDevice,
2510 VkPhysicalDeviceMemoryProperties2 *pMemoryProperties)
2511 {
2512 radv_GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties);
2513
2514 VkPhysicalDeviceMemoryBudgetPropertiesEXT *memory_budget =
2515 vk_find_struct(pMemoryProperties->pNext, PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT);
2516 if (memory_budget)
2517 radv_get_memory_budget_properties(physicalDevice, memory_budget);
2518 }
2519
2520 VkResult
radv_GetMemoryHostPointerPropertiesEXT(VkDevice _device,VkExternalMemoryHandleTypeFlagBits handleType,const void * pHostPointer,VkMemoryHostPointerPropertiesEXT * pMemoryHostPointerProperties)2521 radv_GetMemoryHostPointerPropertiesEXT(
2522 VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType, const void *pHostPointer,
2523 VkMemoryHostPointerPropertiesEXT *pMemoryHostPointerProperties)
2524 {
2525 RADV_FROM_HANDLE(radv_device, device, _device);
2526
2527 switch (handleType) {
2528 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT: {
2529 const struct radv_physical_device *physical_device = device->physical_device;
2530 uint32_t memoryTypeBits = 0;
2531 for (int i = 0; i < physical_device->memory_properties.memoryTypeCount; i++) {
2532 if (physical_device->memory_domains[i] == RADEON_DOMAIN_GTT &&
2533 !(physical_device->memory_flags[i] & RADEON_FLAG_GTT_WC)) {
2534 memoryTypeBits = (1 << i);
2535 break;
2536 }
2537 }
2538 pMemoryHostPointerProperties->memoryTypeBits = memoryTypeBits;
2539 return VK_SUCCESS;
2540 }
2541 default:
2542 return VK_ERROR_INVALID_EXTERNAL_HANDLE;
2543 }
2544 }
2545
2546 static enum radeon_ctx_priority
radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT * pObj)2547 radv_get_queue_global_priority(const VkDeviceQueueGlobalPriorityCreateInfoEXT *pObj)
2548 {
2549 /* Default to MEDIUM when a specific global priority isn't requested */
2550 if (!pObj)
2551 return RADEON_CTX_PRIORITY_MEDIUM;
2552
2553 switch (pObj->globalPriority) {
2554 case VK_QUEUE_GLOBAL_PRIORITY_REALTIME_EXT:
2555 return RADEON_CTX_PRIORITY_REALTIME;
2556 case VK_QUEUE_GLOBAL_PRIORITY_HIGH_EXT:
2557 return RADEON_CTX_PRIORITY_HIGH;
2558 case VK_QUEUE_GLOBAL_PRIORITY_MEDIUM_EXT:
2559 return RADEON_CTX_PRIORITY_MEDIUM;
2560 case VK_QUEUE_GLOBAL_PRIORITY_LOW_EXT:
2561 return RADEON_CTX_PRIORITY_LOW;
2562 default:
2563 unreachable("Illegal global priority value");
2564 return RADEON_CTX_PRIORITY_INVALID;
2565 }
2566 }
2567
2568 static int
radv_queue_init(struct radv_device * device,struct radv_queue * queue,int idx,const VkDeviceQueueCreateInfo * create_info,const VkDeviceQueueGlobalPriorityCreateInfoEXT * global_priority)2569 radv_queue_init(struct radv_device *device, struct radv_queue *queue,
2570 int idx, const VkDeviceQueueCreateInfo *create_info,
2571 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority)
2572 {
2573 queue->device = device;
2574 queue->priority = radv_get_queue_global_priority(global_priority);
2575 queue->hw_ctx = device->hw_ctx[queue->priority];
2576
2577 VkResult result = vk_queue_init(&queue->vk, &device->vk, create_info, idx);
2578 if (result != VK_SUCCESS)
2579 return result;
2580
2581 list_inithead(&queue->pending_submissions);
2582 mtx_init(&queue->pending_mutex, mtx_plain);
2583
2584 mtx_init(&queue->thread_mutex, mtx_plain);
2585 if (u_cnd_monotonic_init(&queue->thread_cond)) {
2586 vk_queue_finish(&queue->vk);
2587 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
2588 }
2589 queue->cond_created = true;
2590
2591 return VK_SUCCESS;
2592 }
2593
2594 static void
radv_queue_finish(struct radv_queue * queue)2595 radv_queue_finish(struct radv_queue *queue)
2596 {
2597 if (queue->hw_ctx) {
2598 if (queue->cond_created) {
2599 if (queue->thread_running) {
2600 p_atomic_set(&queue->thread_exit, true);
2601 u_cnd_monotonic_broadcast(&queue->thread_cond);
2602 thrd_join(queue->submission_thread, NULL);
2603 }
2604
2605 u_cnd_monotonic_destroy(&queue->thread_cond);
2606 }
2607
2608 mtx_destroy(&queue->pending_mutex);
2609 mtx_destroy(&queue->thread_mutex);
2610 }
2611
2612 if (queue->initial_full_flush_preamble_cs)
2613 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
2614 if (queue->initial_preamble_cs)
2615 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
2616 if (queue->continue_preamble_cs)
2617 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
2618 if (queue->descriptor_bo)
2619 queue->device->ws->buffer_destroy(queue->device->ws, queue->descriptor_bo);
2620 if (queue->scratch_bo)
2621 queue->device->ws->buffer_destroy(queue->device->ws, queue->scratch_bo);
2622 if (queue->esgs_ring_bo)
2623 queue->device->ws->buffer_destroy(queue->device->ws, queue->esgs_ring_bo);
2624 if (queue->gsvs_ring_bo)
2625 queue->device->ws->buffer_destroy(queue->device->ws, queue->gsvs_ring_bo);
2626 if (queue->tess_rings_bo)
2627 queue->device->ws->buffer_destroy(queue->device->ws, queue->tess_rings_bo);
2628 if (queue->gds_bo)
2629 queue->device->ws->buffer_destroy(queue->device->ws, queue->gds_bo);
2630 if (queue->gds_oa_bo)
2631 queue->device->ws->buffer_destroy(queue->device->ws, queue->gds_oa_bo);
2632 if (queue->compute_scratch_bo)
2633 queue->device->ws->buffer_destroy(queue->device->ws, queue->compute_scratch_bo);
2634
2635 vk_queue_finish(&queue->vk);
2636 }
2637
2638 static void
radv_device_init_gs_info(struct radv_device * device)2639 radv_device_init_gs_info(struct radv_device *device)
2640 {
2641 device->gs_table_depth = ac_get_gs_table_depth(device->physical_device->rad_info.chip_class,
2642 device->physical_device->rad_info.family);
2643 }
2644
2645 static VkResult
radv_device_init_border_color(struct radv_device * device)2646 radv_device_init_border_color(struct radv_device *device)
2647 {
2648 VkResult result;
2649
2650 result = device->ws->buffer_create(
2651 device->ws, RADV_BORDER_COLOR_BUFFER_SIZE, 4096, RADEON_DOMAIN_VRAM,
2652 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_READ_ONLY | RADEON_FLAG_NO_INTERPROCESS_SHARING,
2653 RADV_BO_PRIORITY_SHADER, 0, &device->border_color_data.bo);
2654
2655 if (result != VK_SUCCESS)
2656 return vk_error(device, result);
2657
2658 result = device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, true);
2659 if (result != VK_SUCCESS)
2660 return vk_error(device, result);
2661
2662 device->border_color_data.colors_gpu_ptr = device->ws->buffer_map(device->border_color_data.bo);
2663 if (!device->border_color_data.colors_gpu_ptr)
2664 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
2665 mtx_init(&device->border_color_data.mutex, mtx_plain);
2666
2667 return VK_SUCCESS;
2668 }
2669
2670 static void
radv_device_finish_border_color(struct radv_device * device)2671 radv_device_finish_border_color(struct radv_device *device)
2672 {
2673 if (device->border_color_data.bo) {
2674 device->ws->buffer_make_resident(device->ws, device->border_color_data.bo, false);
2675 device->ws->buffer_destroy(device->ws, device->border_color_data.bo);
2676
2677 mtx_destroy(&device->border_color_data.mutex);
2678 }
2679 }
2680
2681 static VkResult
radv_device_init_vs_prologs(struct radv_device * device)2682 radv_device_init_vs_prologs(struct radv_device *device)
2683 {
2684 u_rwlock_init(&device->vs_prologs_lock);
2685 device->vs_prologs = _mesa_hash_table_create(NULL, &radv_hash_vs_prolog, &radv_cmp_vs_prolog);
2686 if (!device->vs_prologs)
2687 return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2688
2689 /* don't pre-compile prologs if we want to print them */
2690 if (device->instance->debug_flags & RADV_DEBUG_DUMP_PROLOGS)
2691 return VK_SUCCESS;
2692
2693 struct radv_vs_input_state state;
2694 state.nontrivial_divisors = 0;
2695 memset(state.offsets, 0, sizeof(state.offsets));
2696 state.alpha_adjust_lo = 0;
2697 state.alpha_adjust_hi = 0;
2698 memset(state.formats, 0, sizeof(state.formats));
2699
2700 struct radv_vs_prolog_key key;
2701 key.state = &state;
2702 key.misaligned_mask = 0;
2703 key.as_ls = false;
2704 key.is_ngg = device->physical_device->use_ngg;
2705 key.next_stage = MESA_SHADER_VERTEX;
2706 key.wave32 = device->physical_device->ge_wave_size == 32;
2707
2708 for (unsigned i = 1; i <= MAX_VERTEX_ATTRIBS; i++) {
2709 state.attribute_mask = BITFIELD_MASK(i);
2710 state.instance_rate_inputs = 0;
2711
2712 key.num_attributes = i;
2713
2714 device->simple_vs_prologs[i - 1] = radv_create_vs_prolog(device, &key);
2715 if (!device->simple_vs_prologs[i - 1])
2716 return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
2717 }
2718
2719 unsigned idx = 0;
2720 for (unsigned num_attributes = 1; num_attributes <= 16; num_attributes++) {
2721 state.attribute_mask = BITFIELD_MASK(num_attributes);
2722
2723 for (unsigned i = 0; i < num_attributes; i++)
2724 state.divisors[i] = 1;
2725
2726 for (unsigned count = 1; count <= num_attributes; count++) {
2727 for (unsigned start = 0; start <= (num_attributes - count); start++) {
2728 state.instance_rate_inputs = u_bit_consecutive(start, count);
2729
2730 key.num_attributes = num_attributes;
2731
2732 struct radv_shader_prolog *prolog = radv_create_vs_prolog(device, &key);
2733 if (!prolog)
2734 return vk_error(device->physical_device->instance, VK_ERROR_OUT_OF_DEVICE_MEMORY);
2735
2736 assert(idx ==
2737 radv_instance_rate_prolog_index(num_attributes, state.instance_rate_inputs));
2738 device->instance_rate_vs_prologs[idx++] = prolog;
2739 }
2740 }
2741 }
2742 assert(idx == ARRAY_SIZE(device->instance_rate_vs_prologs));
2743
2744 return VK_SUCCESS;
2745 }
2746
2747 static void
radv_device_finish_vs_prologs(struct radv_device * device)2748 radv_device_finish_vs_prologs(struct radv_device *device)
2749 {
2750 if (device->vs_prologs) {
2751 hash_table_foreach(device->vs_prologs, entry)
2752 {
2753 free((void *)entry->key);
2754 radv_prolog_destroy(device, entry->data);
2755 }
2756 _mesa_hash_table_destroy(device->vs_prologs, NULL);
2757 }
2758
2759 for (unsigned i = 0; i < ARRAY_SIZE(device->simple_vs_prologs); i++)
2760 radv_prolog_destroy(device, device->simple_vs_prologs[i]);
2761
2762 for (unsigned i = 0; i < ARRAY_SIZE(device->instance_rate_vs_prologs); i++)
2763 radv_prolog_destroy(device, device->instance_rate_vs_prologs[i]);
2764 }
2765
2766 VkResult
radv_device_init_vrs_state(struct radv_device * device)2767 radv_device_init_vrs_state(struct radv_device *device)
2768 {
2769 /* FIXME: 4k depth buffers should be large enough for now but we might want to adjust this
2770 * dynamically at some point.
2771 */
2772 uint32_t width = 4096, height = 4096;
2773 VkDeviceMemory mem;
2774 VkBuffer buffer;
2775 VkResult result;
2776 VkImage image;
2777
2778 VkImageCreateInfo image_create_info = {
2779 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
2780 .imageType = VK_IMAGE_TYPE_2D,
2781 .format = VK_FORMAT_D16_UNORM,
2782 .extent = {width, height, 1},
2783 .mipLevels = 1,
2784 .arrayLayers = 1,
2785 .samples = VK_SAMPLE_COUNT_1_BIT,
2786 .tiling = VK_IMAGE_TILING_OPTIMAL,
2787 .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
2788 .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
2789 .queueFamilyIndexCount = 0,
2790 .pQueueFamilyIndices = NULL,
2791 .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
2792 };
2793
2794 result = radv_CreateImage(radv_device_to_handle(device), &image_create_info,
2795 &device->meta_state.alloc, &image);
2796 if (result != VK_SUCCESS)
2797 return result;
2798
2799 VkBufferCreateInfo buffer_create_info = {
2800 .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
2801 .size = radv_image_from_handle(image)->planes[0].surface.meta_size,
2802 .usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT,
2803 .sharingMode = VK_SHARING_MODE_EXCLUSIVE,
2804 };
2805
2806 result = radv_CreateBuffer(radv_device_to_handle(device), &buffer_create_info,
2807 &device->meta_state.alloc, &buffer);
2808 if (result != VK_SUCCESS)
2809 goto fail_create;
2810
2811 VkBufferMemoryRequirementsInfo2 info = {
2812 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
2813 .buffer = buffer,
2814 };
2815 VkMemoryRequirements2 mem_req = {
2816 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
2817 };
2818 radv_GetBufferMemoryRequirements2(radv_device_to_handle(device), &info, &mem_req);
2819
2820 VkMemoryAllocateInfo alloc_info = {
2821 .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
2822 .allocationSize = mem_req.memoryRequirements.size,
2823 };
2824
2825 result = radv_AllocateMemory(radv_device_to_handle(device), &alloc_info,
2826 &device->meta_state.alloc, &mem);
2827 if (result != VK_SUCCESS)
2828 goto fail_alloc;
2829
2830 VkBindBufferMemoryInfo bind_info = {
2831 .sType = VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO,
2832 .buffer = buffer,
2833 .memory = mem,
2834 .memoryOffset = 0
2835 };
2836
2837 result = radv_BindBufferMemory2(radv_device_to_handle(device), 1, &bind_info);
2838 if (result != VK_SUCCESS)
2839 goto fail_bind;
2840
2841 device->vrs.image = radv_image_from_handle(image);
2842 device->vrs.buffer = radv_buffer_from_handle(buffer);
2843 device->vrs.mem = radv_device_memory_from_handle(mem);
2844
2845 return VK_SUCCESS;
2846
2847 fail_bind:
2848 radv_FreeMemory(radv_device_to_handle(device), mem, &device->meta_state.alloc);
2849 fail_alloc:
2850 radv_DestroyBuffer(radv_device_to_handle(device), buffer, &device->meta_state.alloc);
2851 fail_create:
2852 radv_DestroyImage(radv_device_to_handle(device), image, &device->meta_state.alloc);
2853
2854 return result;
2855 }
2856
2857 static void
radv_device_finish_vrs_image(struct radv_device * device)2858 radv_device_finish_vrs_image(struct radv_device *device)
2859 {
2860 radv_FreeMemory(radv_device_to_handle(device), radv_device_memory_to_handle(device->vrs.mem),
2861 &device->meta_state.alloc);
2862 radv_DestroyBuffer(radv_device_to_handle(device), radv_buffer_to_handle(device->vrs.buffer),
2863 &device->meta_state.alloc);
2864 radv_DestroyImage(radv_device_to_handle(device), radv_image_to_handle(device->vrs.image),
2865 &device->meta_state.alloc);
2866 }
2867
2868 VkResult
_radv_device_set_lost(struct radv_device * device,const char * file,int line,const char * msg,...)2869 _radv_device_set_lost(struct radv_device *device, const char *file, int line, const char *msg, ...)
2870 {
2871 VkResult err;
2872 va_list ap;
2873
2874 p_atomic_inc(&device->lost);
2875
2876 va_start(ap, msg);
2877 err =
2878 __vk_errorv(device, VK_ERROR_DEVICE_LOST, file, line, msg, ap);
2879 va_end(ap);
2880
2881 return err;
2882 }
2883
2884 VkResult
radv_CreateDevice(VkPhysicalDevice physicalDevice,const VkDeviceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkDevice * pDevice)2885 radv_CreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo *pCreateInfo,
2886 const VkAllocationCallbacks *pAllocator, VkDevice *pDevice)
2887 {
2888 RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
2889 VkResult result;
2890 struct radv_device *device;
2891
2892 bool keep_shader_info = false;
2893 bool robust_buffer_access = false;
2894 bool robust_buffer_access2 = false;
2895 bool overallocation_disallowed = false;
2896 bool custom_border_colors = false;
2897 bool attachment_vrs_enabled = false;
2898 bool image_float32_atomics = false;
2899 bool vs_prologs = false;
2900
2901 /* Check enabled features */
2902 if (pCreateInfo->pEnabledFeatures) {
2903 if (pCreateInfo->pEnabledFeatures->robustBufferAccess)
2904 robust_buffer_access = true;
2905 }
2906
2907 vk_foreach_struct_const(ext, pCreateInfo->pNext)
2908 {
2909 switch (ext->sType) {
2910 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2: {
2911 const VkPhysicalDeviceFeatures2 *features = (const void *)ext;
2912 if (features->features.robustBufferAccess)
2913 robust_buffer_access = true;
2914 break;
2915 }
2916 case VK_STRUCTURE_TYPE_DEVICE_MEMORY_OVERALLOCATION_CREATE_INFO_AMD: {
2917 const VkDeviceMemoryOverallocationCreateInfoAMD *overallocation = (const void *)ext;
2918 if (overallocation->overallocationBehavior ==
2919 VK_MEMORY_OVERALLOCATION_BEHAVIOR_DISALLOWED_AMD)
2920 overallocation_disallowed = true;
2921 break;
2922 }
2923 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_CUSTOM_BORDER_COLOR_FEATURES_EXT: {
2924 const VkPhysicalDeviceCustomBorderColorFeaturesEXT *border_color_features =
2925 (const void *)ext;
2926 custom_border_colors = border_color_features->customBorderColors;
2927 break;
2928 }
2929 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR: {
2930 const VkPhysicalDeviceFragmentShadingRateFeaturesKHR *vrs = (const void *)ext;
2931 attachment_vrs_enabled = vrs->attachmentFragmentShadingRate;
2932 break;
2933 }
2934 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ROBUSTNESS_2_FEATURES_EXT: {
2935 const VkPhysicalDeviceRobustness2FeaturesEXT *features = (const void *)ext;
2936 if (features->robustBufferAccess2)
2937 robust_buffer_access2 = true;
2938 break;
2939 }
2940 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT: {
2941 const VkPhysicalDeviceShaderAtomicFloatFeaturesEXT *features = (const void *)ext;
2942 if (features->shaderImageFloat32Atomics ||
2943 features->sparseImageFloat32Atomics)
2944 image_float32_atomics = true;
2945 break;
2946 }
2947 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_2_FEATURES_EXT: {
2948 const VkPhysicalDeviceShaderAtomicFloat2FeaturesEXT *features = (const void *)ext;
2949 if (features->shaderImageFloat32AtomicMinMax ||
2950 features->sparseImageFloat32AtomicMinMax)
2951 image_float32_atomics = true;
2952 break;
2953 }
2954 case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_INPUT_DYNAMIC_STATE_FEATURES_EXT: {
2955 const VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT *features = (const void *)ext;
2956 if (features->vertexInputDynamicState)
2957 vs_prologs = true;
2958 break;
2959 }
2960 default:
2961 break;
2962 }
2963 }
2964
2965 device = vk_zalloc2(&physical_device->instance->vk.alloc, pAllocator, sizeof(*device), 8,
2966 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
2967 if (!device)
2968 return vk_error(physical_device->instance, VK_ERROR_OUT_OF_HOST_MEMORY);
2969
2970 struct vk_device_dispatch_table dispatch_table;
2971
2972 if (physical_device->instance->vk.app_info.app_name &&
2973 !strcmp(physical_device->instance->vk.app_info.app_name, "metroexodus")) {
2974 /* Metro Exodus (Linux native) calls vkGetSemaphoreCounterValue() with a NULL semaphore and it
2975 * crashes sometimes. Workaround this game bug by enabling an internal layer. Remove this
2976 * when the game is fixed.
2977 */
2978 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &metro_exodus_device_entrypoints, true);
2979 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
2980 } else if (radv_thread_trace_enabled()) {
2981 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &sqtt_device_entrypoints, true);
2982 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, false);
2983 } else {
2984 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &radv_device_entrypoints, true);
2985 }
2986 vk_device_dispatch_table_from_entrypoints(&dispatch_table, &wsi_device_entrypoints, false);
2987
2988 result =
2989 vk_device_init(&device->vk, &physical_device->vk, &dispatch_table, pCreateInfo, pAllocator);
2990 if (result != VK_SUCCESS) {
2991 vk_free(&device->vk.alloc, device);
2992 return result;
2993 }
2994
2995 device->instance = physical_device->instance;
2996 device->physical_device = physical_device;
2997
2998 device->ws = physical_device->ws;
2999
3000 keep_shader_info = device->vk.enabled_extensions.AMD_shader_info;
3001
3002 /* With update after bind we can't attach bo's to the command buffer
3003 * from the descriptor set anymore, so we have to use a global BO list.
3004 */
3005 device->use_global_bo_list = (device->instance->perftest_flags & RADV_PERFTEST_BO_LIST) ||
3006 device->vk.enabled_extensions.EXT_descriptor_indexing ||
3007 device->vk.enabled_extensions.EXT_buffer_device_address ||
3008 device->vk.enabled_extensions.KHR_buffer_device_address ||
3009 device->vk.enabled_extensions.KHR_ray_tracing_pipeline ||
3010 device->vk.enabled_extensions.KHR_acceleration_structure;
3011
3012 device->robust_buffer_access = robust_buffer_access || robust_buffer_access2;
3013 device->robust_buffer_access2 = robust_buffer_access2;
3014
3015 device->attachment_vrs_enabled = attachment_vrs_enabled;
3016
3017 device->image_float32_atomics = image_float32_atomics;
3018
3019 radv_init_shader_arenas(device);
3020
3021 device->overallocation_disallowed = overallocation_disallowed;
3022 mtx_init(&device->overallocation_mutex, mtx_plain);
3023
3024 /* Create one context per queue priority. */
3025 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
3026 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
3027 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
3028 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
3029 enum radeon_ctx_priority priority = radv_get_queue_global_priority(global_priority);
3030
3031 if (device->hw_ctx[priority])
3032 continue;
3033
3034 result = device->ws->ctx_create(device->ws, priority, &device->hw_ctx[priority]);
3035 if (result != VK_SUCCESS)
3036 goto fail;
3037 }
3038
3039 for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
3040 const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
3041 uint32_t qfi = queue_create->queueFamilyIndex;
3042 const VkDeviceQueueGlobalPriorityCreateInfoEXT *global_priority =
3043 vk_find_struct_const(queue_create->pNext, DEVICE_QUEUE_GLOBAL_PRIORITY_CREATE_INFO_EXT);
3044
3045 device->queues[qfi] =
3046 vk_alloc(&device->vk.alloc, queue_create->queueCount * sizeof(struct radv_queue), 8,
3047 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
3048 if (!device->queues[qfi]) {
3049 result = VK_ERROR_OUT_OF_HOST_MEMORY;
3050 goto fail;
3051 }
3052
3053 memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
3054
3055 device->queue_count[qfi] = queue_create->queueCount;
3056
3057 for (unsigned q = 0; q < queue_create->queueCount; q++) {
3058 result = radv_queue_init(device, &device->queues[qfi][q], q, queue_create, global_priority);
3059 if (result != VK_SUCCESS)
3060 goto fail;
3061 }
3062 }
3063
3064 device->pbb_allowed = device->physical_device->rad_info.chip_class >= GFX9 &&
3065 !(device->instance->debug_flags & RADV_DEBUG_NOBINNING);
3066
3067 /* The maximum number of scratch waves. Scratch space isn't divided
3068 * evenly between CUs. The number is only a function of the number of CUs.
3069 * We can decrease the constant to decrease the scratch buffer size.
3070 *
3071 * sctx->scratch_waves must be >= the maximum possible size of
3072 * 1 threadgroup, so that the hw doesn't hang from being unable
3073 * to start any.
3074 *
3075 * The recommended value is 4 per CU at most. Higher numbers don't
3076 * bring much benefit, but they still occupy chip resources (think
3077 * async compute). I've seen ~2% performance difference between 4 and 32.
3078 */
3079 uint32_t max_threads_per_block = 2048;
3080 device->scratch_waves =
3081 MAX2(32 * physical_device->rad_info.num_good_compute_units, max_threads_per_block / 64);
3082
3083 device->dispatch_initiator = S_00B800_COMPUTE_SHADER_EN(1);
3084
3085 if (device->physical_device->rad_info.chip_class >= GFX7) {
3086 /* If the KMD allows it (there is a KMD hw register for it),
3087 * allow launching waves out-of-order.
3088 */
3089 device->dispatch_initiator |= S_00B800_ORDER_MODE(1);
3090 }
3091
3092 radv_device_init_gs_info(device);
3093
3094 device->tess_offchip_block_dw_size =
3095 device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
3096
3097 if (getenv("RADV_TRACE_FILE")) {
3098 fprintf(
3099 stderr,
3100 "***********************************************************************************\n");
3101 fprintf(
3102 stderr,
3103 "* WARNING: RADV_TRACE_FILE=<file> is deprecated and replaced by RADV_DEBUG=hang *\n");
3104 fprintf(
3105 stderr,
3106 "***********************************************************************************\n");
3107 abort();
3108 }
3109
3110 if (device->instance->debug_flags & RADV_DEBUG_HANG) {
3111 /* Enable GPU hangs detection and dump logs if a GPU hang is
3112 * detected.
3113 */
3114 keep_shader_info = true;
3115
3116 if (!radv_init_trace(device))
3117 goto fail;
3118
3119 fprintf(stderr,
3120 "*****************************************************************************\n");
3121 fprintf(stderr,
3122 "* WARNING: RADV_DEBUG=hang is costly and should only be used for debugging! *\n");
3123 fprintf(stderr,
3124 "*****************************************************************************\n");
3125
3126 /* Wait for idle after every draw/dispatch to identify the
3127 * first bad call.
3128 */
3129 device->instance->debug_flags |= RADV_DEBUG_SYNC_SHADERS;
3130
3131 radv_dump_enabled_options(device, stderr);
3132 }
3133
3134 if (radv_thread_trace_enabled()) {
3135 fprintf(stderr, "*************************************************\n");
3136 fprintf(stderr, "* WARNING: Thread trace support is experimental *\n");
3137 fprintf(stderr, "*************************************************\n");
3138
3139 if (device->physical_device->rad_info.chip_class < GFX8 ||
3140 device->physical_device->rad_info.chip_class > GFX10_3) {
3141 fprintf(stderr, "GPU hardware not supported: refer to "
3142 "the RGP documentation for the list of "
3143 "supported GPUs!\n");
3144 abort();
3145 }
3146
3147 if (!radv_thread_trace_init(device))
3148 goto fail;
3149 }
3150
3151 if (getenv("RADV_TRAP_HANDLER")) {
3152 /* TODO: Add support for more hardware. */
3153 assert(device->physical_device->rad_info.chip_class == GFX8);
3154
3155 fprintf(stderr, "**********************************************************************\n");
3156 fprintf(stderr, "* WARNING: RADV_TRAP_HANDLER is experimental and only for debugging! *\n");
3157 fprintf(stderr, "**********************************************************************\n");
3158
3159 /* To get the disassembly of the faulty shaders, we have to
3160 * keep some shader info around.
3161 */
3162 keep_shader_info = true;
3163
3164 if (!radv_trap_handler_init(device))
3165 goto fail;
3166 }
3167
3168 if (getenv("RADV_FORCE_VRS")) {
3169 const char *vrs_rates = getenv("RADV_FORCE_VRS");
3170
3171 if (device->physical_device->rad_info.chip_class < GFX10_3)
3172 fprintf(stderr, "radv: VRS is only supported on RDNA2+\n");
3173 else if (!strcmp(vrs_rates, "2x2"))
3174 device->force_vrs = RADV_FORCE_VRS_2x2;
3175 else if (!strcmp(vrs_rates, "2x1"))
3176 device->force_vrs = RADV_FORCE_VRS_2x1;
3177 else if (!strcmp(vrs_rates, "1x2"))
3178 device->force_vrs = RADV_FORCE_VRS_1x2;
3179 else
3180 fprintf(stderr, "radv: Invalid VRS rates specified "
3181 "(valid values are 2x2, 2x1 and 1x2)\n");
3182 }
3183
3184 device->adjust_frag_coord_z =
3185 (device->vk.enabled_extensions.KHR_fragment_shading_rate ||
3186 device->force_vrs != RADV_FORCE_VRS_NONE) &&
3187 (device->physical_device->rad_info.family == CHIP_SIENNA_CICHLID ||
3188 device->physical_device->rad_info.family == CHIP_NAVY_FLOUNDER ||
3189 device->physical_device->rad_info.family == CHIP_VANGOGH);
3190
3191 device->keep_shader_info = keep_shader_info;
3192 result = radv_device_init_meta(device);
3193 if (result != VK_SUCCESS)
3194 goto fail;
3195
3196 radv_device_init_msaa(device);
3197
3198 /* If the border color extension is enabled, let's create the buffer we need. */
3199 if (custom_border_colors) {
3200 result = radv_device_init_border_color(device);
3201 if (result != VK_SUCCESS)
3202 goto fail;
3203 }
3204
3205 if (vs_prologs) {
3206 result = radv_device_init_vs_prologs(device);
3207 if (result != VK_SUCCESS)
3208 goto fail;
3209 }
3210
3211 for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
3212 device->empty_cs[family] = device->ws->cs_create(device->ws, family);
3213 if (!device->empty_cs[family])
3214 goto fail;
3215
3216 switch (family) {
3217 case RADV_QUEUE_GENERAL:
3218 radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
3219 radeon_emit(device->empty_cs[family], CC0_UPDATE_LOAD_ENABLES(1));
3220 radeon_emit(device->empty_cs[family], CC1_UPDATE_SHADOW_ENABLES(1));
3221 break;
3222 case RADV_QUEUE_COMPUTE:
3223 radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
3224 radeon_emit(device->empty_cs[family], 0);
3225 break;
3226 }
3227
3228 result = device->ws->cs_finalize(device->empty_cs[family]);
3229 if (result != VK_SUCCESS)
3230 goto fail;
3231 }
3232
3233 if (device->physical_device->rad_info.chip_class >= GFX7)
3234 cik_create_gfx_config(device);
3235
3236 VkPipelineCacheCreateInfo ci;
3237 ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
3238 ci.pNext = NULL;
3239 ci.flags = 0;
3240 ci.pInitialData = NULL;
3241 ci.initialDataSize = 0;
3242 VkPipelineCache pc;
3243 result = radv_CreatePipelineCache(radv_device_to_handle(device), &ci, NULL, &pc);
3244 if (result != VK_SUCCESS)
3245 goto fail_meta;
3246
3247 device->mem_cache = radv_pipeline_cache_from_handle(pc);
3248
3249 if (u_cnd_monotonic_init(&device->timeline_cond)) {
3250 result = VK_ERROR_INITIALIZATION_FAILED;
3251 goto fail_mem_cache;
3252 }
3253
3254 device->force_aniso = MIN2(16, radv_get_int_debug_option("RADV_TEX_ANISO", -1));
3255 if (device->force_aniso >= 0) {
3256 fprintf(stderr, "radv: Forcing anisotropy filter to %ix\n",
3257 1 << util_logbase2(device->force_aniso));
3258 }
3259
3260 *pDevice = radv_device_to_handle(device);
3261 return VK_SUCCESS;
3262
3263 fail_mem_cache:
3264 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
3265 fail_meta:
3266 radv_device_finish_meta(device);
3267 fail:
3268 radv_thread_trace_finish(device);
3269 free(device->thread_trace.trigger_file);
3270
3271 radv_trap_handler_finish(device);
3272 radv_finish_trace(device);
3273
3274 if (device->gfx_init)
3275 device->ws->buffer_destroy(device->ws, device->gfx_init);
3276
3277 radv_device_finish_vs_prologs(device);
3278 radv_device_finish_border_color(device);
3279
3280 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3281 for (unsigned q = 0; q < device->queue_count[i]; q++)
3282 radv_queue_finish(&device->queues[i][q]);
3283 if (device->queue_count[i])
3284 vk_free(&device->vk.alloc, device->queues[i]);
3285 }
3286
3287 for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
3288 if (device->hw_ctx[i])
3289 device->ws->ctx_destroy(device->hw_ctx[i]);
3290 }
3291
3292 vk_device_finish(&device->vk);
3293 vk_free(&device->vk.alloc, device);
3294 return result;
3295 }
3296
3297 void
radv_DestroyDevice(VkDevice _device,const VkAllocationCallbacks * pAllocator)3298 radv_DestroyDevice(VkDevice _device, const VkAllocationCallbacks *pAllocator)
3299 {
3300 RADV_FROM_HANDLE(radv_device, device, _device);
3301
3302 if (!device)
3303 return;
3304
3305 if (device->gfx_init)
3306 device->ws->buffer_destroy(device->ws, device->gfx_init);
3307
3308 radv_device_finish_vs_prologs(device);
3309 radv_device_finish_border_color(device);
3310 radv_device_finish_vrs_image(device);
3311
3312 for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
3313 for (unsigned q = 0; q < device->queue_count[i]; q++)
3314 radv_queue_finish(&device->queues[i][q]);
3315 if (device->queue_count[i])
3316 vk_free(&device->vk.alloc, device->queues[i]);
3317 if (device->empty_cs[i])
3318 device->ws->cs_destroy(device->empty_cs[i]);
3319 }
3320
3321 for (unsigned i = 0; i < RADV_NUM_HW_CTX; i++) {
3322 if (device->hw_ctx[i])
3323 device->ws->ctx_destroy(device->hw_ctx[i]);
3324 }
3325
3326 radv_device_finish_meta(device);
3327
3328 VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
3329 radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
3330
3331 radv_trap_handler_finish(device);
3332 radv_finish_trace(device);
3333
3334 radv_destroy_shader_arenas(device);
3335
3336 u_cnd_monotonic_destroy(&device->timeline_cond);
3337
3338 free(device->thread_trace.trigger_file);
3339 radv_thread_trace_finish(device);
3340
3341 vk_device_finish(&device->vk);
3342 vk_free(&device->vk.alloc, device);
3343 }
3344
3345 VkResult
radv_EnumerateInstanceLayerProperties(uint32_t * pPropertyCount,VkLayerProperties * pProperties)3346 radv_EnumerateInstanceLayerProperties(uint32_t *pPropertyCount, VkLayerProperties *pProperties)
3347 {
3348 if (pProperties == NULL) {
3349 *pPropertyCount = 0;
3350 return VK_SUCCESS;
3351 }
3352
3353 /* None supported at this time */
3354 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
3355 }
3356
3357 VkResult
radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice,uint32_t * pPropertyCount,VkLayerProperties * pProperties)3358 radv_EnumerateDeviceLayerProperties(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
3359 VkLayerProperties *pProperties)
3360 {
3361 if (pProperties == NULL) {
3362 *pPropertyCount = 0;
3363 return VK_SUCCESS;
3364 }
3365
3366 /* None supported at this time */
3367 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
3368 }
3369
3370 static void
fill_geom_tess_rings(struct radv_queue * queue,uint32_t * map,bool add_sample_positions,uint32_t esgs_ring_size,struct radeon_winsys_bo * esgs_ring_bo,uint32_t gsvs_ring_size,struct radeon_winsys_bo * gsvs_ring_bo,uint32_t tess_factor_ring_size,uint32_t tess_offchip_ring_offset,uint32_t tess_offchip_ring_size,struct radeon_winsys_bo * tess_rings_bo)3371 fill_geom_tess_rings(struct radv_queue *queue, uint32_t *map, bool add_sample_positions,
3372 uint32_t esgs_ring_size, struct radeon_winsys_bo *esgs_ring_bo,
3373 uint32_t gsvs_ring_size, struct radeon_winsys_bo *gsvs_ring_bo,
3374 uint32_t tess_factor_ring_size, uint32_t tess_offchip_ring_offset,
3375 uint32_t tess_offchip_ring_size, struct radeon_winsys_bo *tess_rings_bo)
3376 {
3377 uint32_t *desc = &map[4];
3378
3379 if (esgs_ring_bo) {
3380 uint64_t esgs_va = radv_buffer_get_va(esgs_ring_bo);
3381
3382 /* stride 0, num records - size, add tid, swizzle, elsize4,
3383 index stride 64 */
3384 desc[0] = esgs_va;
3385 desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) | S_008F04_SWIZZLE_ENABLE(true);
3386 desc[2] = esgs_ring_size;
3387 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3388 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3389 S_008F0C_INDEX_STRIDE(3) | S_008F0C_ADD_TID_ENABLE(1);
3390
3391 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3392 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3393 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3394 } else {
3395 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3396 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
3397 }
3398
3399 /* GS entry for ES->GS ring */
3400 /* stride 0, num records - size, elsize0,
3401 index stride 0 */
3402 desc[4] = esgs_va;
3403 desc[5] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32);
3404 desc[6] = esgs_ring_size;
3405 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3406 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3407
3408 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3409 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3410 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3411 } else {
3412 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3413 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3414 }
3415 }
3416
3417 desc += 8;
3418
3419 if (gsvs_ring_bo) {
3420 uint64_t gsvs_va = radv_buffer_get_va(gsvs_ring_bo);
3421
3422 /* VS entry for GS->VS ring */
3423 /* stride 0, num records - size, elsize0,
3424 index stride 0 */
3425 desc[0] = gsvs_va;
3426 desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32);
3427 desc[2] = gsvs_ring_size;
3428 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3429 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3430
3431 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3432 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3433 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3434 } else {
3435 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3436 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3437 }
3438
3439 /* stride gsvs_itemsize, num records 64
3440 elsize 4, index stride 16 */
3441 /* shader will patch stride and desc[2] */
3442 desc[4] = gsvs_va;
3443 desc[5] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
3444 desc[6] = 0;
3445 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3446 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
3447 S_008F0C_INDEX_STRIDE(1) | S_008F0C_ADD_TID_ENABLE(true);
3448
3449 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3450 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3451 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_DISABLED) | S_008F0C_RESOURCE_LEVEL(1);
3452 } else {
3453 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3454 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) | S_008F0C_ELEMENT_SIZE(1);
3455 }
3456 }
3457
3458 desc += 8;
3459
3460 if (tess_rings_bo) {
3461 uint64_t tess_va = radv_buffer_get_va(tess_rings_bo);
3462 uint64_t tess_offchip_va = tess_va + tess_offchip_ring_offset;
3463
3464 desc[0] = tess_va;
3465 desc[1] = S_008F04_BASE_ADDRESS_HI(tess_va >> 32);
3466 desc[2] = tess_factor_ring_size;
3467 desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3468 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3469
3470 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3471 desc[3] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3472 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
3473 } else {
3474 desc[3] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3475 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3476 }
3477
3478 desc[4] = tess_offchip_va;
3479 desc[5] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32);
3480 desc[6] = tess_offchip_ring_size;
3481 desc[7] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) | S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
3482 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) | S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
3483
3484 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3485 desc[7] |= S_008F0C_FORMAT(V_008F0C_GFX10_FORMAT_32_FLOAT) |
3486 S_008F0C_OOB_SELECT(V_008F0C_OOB_SELECT_RAW) | S_008F0C_RESOURCE_LEVEL(1);
3487 } else {
3488 desc[7] |= S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
3489 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
3490 }
3491 }
3492
3493 desc += 8;
3494
3495 if (add_sample_positions) {
3496 /* add sample positions after all rings */
3497 memcpy(desc, queue->device->sample_locations_1x, 8);
3498 desc += 2;
3499 memcpy(desc, queue->device->sample_locations_2x, 16);
3500 desc += 4;
3501 memcpy(desc, queue->device->sample_locations_4x, 32);
3502 desc += 8;
3503 memcpy(desc, queue->device->sample_locations_8x, 64);
3504 }
3505 }
3506
3507 static unsigned
radv_get_hs_offchip_param(struct radv_device * device,uint32_t * max_offchip_buffers_p)3508 radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
3509 {
3510 bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= GFX7 &&
3511 device->physical_device->rad_info.family != CHIP_CARRIZO &&
3512 device->physical_device->rad_info.family != CHIP_STONEY;
3513 unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
3514 unsigned max_offchip_buffers;
3515 unsigned offchip_granularity;
3516 unsigned hs_offchip_param;
3517
3518 /*
3519 * Per RadeonSI:
3520 * This must be one less than the maximum number due to a hw limitation.
3521 * Various hardware bugs need thGFX7
3522 *
3523 * Per AMDVLK:
3524 * Vega10 should limit max_offchip_buffers to 508 (4 * 127).
3525 * Gfx7 should limit max_offchip_buffers to 508
3526 * Gfx6 should limit max_offchip_buffers to 126 (2 * 63)
3527 *
3528 * Follow AMDVLK here.
3529 */
3530 if (device->physical_device->rad_info.chip_class >= GFX10) {
3531 max_offchip_buffers_per_se = 128;
3532 } else if (device->physical_device->rad_info.family == CHIP_VEGA10 ||
3533 device->physical_device->rad_info.chip_class == GFX7 ||
3534 device->physical_device->rad_info.chip_class == GFX6)
3535 --max_offchip_buffers_per_se;
3536
3537 max_offchip_buffers = max_offchip_buffers_per_se * device->physical_device->rad_info.max_se;
3538
3539 /* Hawaii has a bug with offchip buffers > 256 that can be worked
3540 * around by setting 4K granularity.
3541 */
3542 if (device->tess_offchip_block_dw_size == 4096) {
3543 assert(device->physical_device->rad_info.family == CHIP_HAWAII);
3544 offchip_granularity = V_03093C_X_4K_DWORDS;
3545 } else {
3546 assert(device->tess_offchip_block_dw_size == 8192);
3547 offchip_granularity = V_03093C_X_8K_DWORDS;
3548 }
3549
3550 switch (device->physical_device->rad_info.chip_class) {
3551 case GFX6:
3552 max_offchip_buffers = MIN2(max_offchip_buffers, 126);
3553 break;
3554 case GFX7:
3555 case GFX8:
3556 case GFX9:
3557 max_offchip_buffers = MIN2(max_offchip_buffers, 508);
3558 break;
3559 case GFX10:
3560 break;
3561 default:
3562 break;
3563 }
3564
3565 *max_offchip_buffers_p = max_offchip_buffers;
3566 if (device->physical_device->rad_info.chip_class >= GFX10_3) {
3567 hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX103(max_offchip_buffers - 1) |
3568 S_03093C_OFFCHIP_GRANULARITY_GFX103(offchip_granularity);
3569 } else if (device->physical_device->rad_info.chip_class >= GFX7) {
3570 if (device->physical_device->rad_info.chip_class >= GFX8)
3571 --max_offchip_buffers;
3572 hs_offchip_param = S_03093C_OFFCHIP_BUFFERING_GFX7(max_offchip_buffers) |
3573 S_03093C_OFFCHIP_GRANULARITY_GFX7(offchip_granularity);
3574 } else {
3575 hs_offchip_param = S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
3576 }
3577 return hs_offchip_param;
3578 }
3579
3580 static void
radv_emit_gs_ring_sizes(struct radv_queue * queue,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * esgs_ring_bo,uint32_t esgs_ring_size,struct radeon_winsys_bo * gsvs_ring_bo,uint32_t gsvs_ring_size)3581 radv_emit_gs_ring_sizes(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3582 struct radeon_winsys_bo *esgs_ring_bo, uint32_t esgs_ring_size,
3583 struct radeon_winsys_bo *gsvs_ring_bo, uint32_t gsvs_ring_size)
3584 {
3585 if (!esgs_ring_bo && !gsvs_ring_bo)
3586 return;
3587
3588 if (esgs_ring_bo)
3589 radv_cs_add_buffer(queue->device->ws, cs, esgs_ring_bo);
3590
3591 if (gsvs_ring_bo)
3592 radv_cs_add_buffer(queue->device->ws, cs, gsvs_ring_bo);
3593
3594 if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
3595 radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
3596 radeon_emit(cs, esgs_ring_size >> 8);
3597 radeon_emit(cs, gsvs_ring_size >> 8);
3598 } else {
3599 radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
3600 radeon_emit(cs, esgs_ring_size >> 8);
3601 radeon_emit(cs, gsvs_ring_size >> 8);
3602 }
3603 }
3604
3605 static void
radv_emit_tess_factor_ring(struct radv_queue * queue,struct radeon_cmdbuf * cs,unsigned hs_offchip_param,unsigned tf_ring_size,struct radeon_winsys_bo * tess_rings_bo)3606 radv_emit_tess_factor_ring(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3607 unsigned hs_offchip_param, unsigned tf_ring_size,
3608 struct radeon_winsys_bo *tess_rings_bo)
3609 {
3610 uint64_t tf_va;
3611
3612 if (!tess_rings_bo)
3613 return;
3614
3615 tf_va = radv_buffer_get_va(tess_rings_bo);
3616
3617 radv_cs_add_buffer(queue->device->ws, cs, tess_rings_bo);
3618
3619 if (queue->device->physical_device->rad_info.chip_class >= GFX7) {
3620 radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE, S_030938_SIZE(tf_ring_size / 4));
3621 radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE, tf_va >> 8);
3622
3623 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3624 radeon_set_uconfig_reg(cs, R_030984_VGT_TF_MEMORY_BASE_HI_UMD,
3625 S_030984_BASE_HI(tf_va >> 40));
3626 } else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
3627 radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI, S_030944_BASE_HI(tf_va >> 40));
3628 }
3629 radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, hs_offchip_param);
3630 } else {
3631 radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE, S_008988_SIZE(tf_ring_size / 4));
3632 radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE, tf_va >> 8);
3633 radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM, hs_offchip_param);
3634 }
3635 }
3636
3637 static void
radv_emit_graphics_scratch(struct radv_queue * queue,struct radeon_cmdbuf * cs,uint32_t size_per_wave,uint32_t waves,struct radeon_winsys_bo * scratch_bo)3638 radv_emit_graphics_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3639 uint32_t size_per_wave, uint32_t waves,
3640 struct radeon_winsys_bo *scratch_bo)
3641 {
3642 if (queue->vk.queue_family_index != RADV_QUEUE_GENERAL)
3643 return;
3644
3645 if (!scratch_bo)
3646 return;
3647
3648 radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
3649
3650 radeon_set_context_reg(
3651 cs, R_0286E8_SPI_TMPRING_SIZE,
3652 S_0286E8_WAVES(waves) | S_0286E8_WAVESIZE(round_up_u32(size_per_wave, 1024)));
3653 }
3654
3655 static void
radv_emit_compute_scratch(struct radv_queue * queue,struct radeon_cmdbuf * cs,uint32_t size_per_wave,uint32_t waves,struct radeon_winsys_bo * compute_scratch_bo)3656 radv_emit_compute_scratch(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3657 uint32_t size_per_wave, uint32_t waves,
3658 struct radeon_winsys_bo *compute_scratch_bo)
3659 {
3660 uint64_t scratch_va;
3661
3662 if (!compute_scratch_bo)
3663 return;
3664
3665 scratch_va = radv_buffer_get_va(compute_scratch_bo);
3666
3667 radv_cs_add_buffer(queue->device->ws, cs, compute_scratch_bo);
3668
3669 radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
3670 radeon_emit(cs, scratch_va);
3671 radeon_emit(cs, S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1));
3672
3673 radeon_set_sh_reg(cs, R_00B860_COMPUTE_TMPRING_SIZE,
3674 S_00B860_WAVES(waves) | S_00B860_WAVESIZE(round_up_u32(size_per_wave, 1024)));
3675 }
3676
3677 static void
radv_emit_global_shader_pointers(struct radv_queue * queue,struct radeon_cmdbuf * cs,struct radeon_winsys_bo * descriptor_bo)3678 radv_emit_global_shader_pointers(struct radv_queue *queue, struct radeon_cmdbuf *cs,
3679 struct radeon_winsys_bo *descriptor_bo)
3680 {
3681 uint64_t va;
3682
3683 if (!descriptor_bo)
3684 return;
3685
3686 va = radv_buffer_get_va(descriptor_bo);
3687
3688 radv_cs_add_buffer(queue->device->ws, cs, descriptor_bo);
3689
3690 if (queue->device->physical_device->rad_info.chip_class >= GFX10) {
3691 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
3692 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
3693 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
3694
3695 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
3696 radv_emit_shader_pointer(queue->device, cs, regs[i], va, true);
3697 }
3698 } else if (queue->device->physical_device->rad_info.chip_class == GFX9) {
3699 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
3700 R_00B208_SPI_SHADER_USER_DATA_ADDR_LO_GS,
3701 R_00B408_SPI_SHADER_USER_DATA_ADDR_LO_HS};
3702
3703 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
3704 radv_emit_shader_pointer(queue->device, cs, regs[i], va, true);
3705 }
3706 } else {
3707 uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0, R_00B130_SPI_SHADER_USER_DATA_VS_0,
3708 R_00B230_SPI_SHADER_USER_DATA_GS_0, R_00B330_SPI_SHADER_USER_DATA_ES_0,
3709 R_00B430_SPI_SHADER_USER_DATA_HS_0, R_00B530_SPI_SHADER_USER_DATA_LS_0};
3710
3711 for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
3712 radv_emit_shader_pointer(queue->device, cs, regs[i], va, true);
3713 }
3714 }
3715 }
3716
3717 static void
radv_init_graphics_state(struct radeon_cmdbuf * cs,struct radv_queue * queue)3718 radv_init_graphics_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
3719 {
3720 struct radv_device *device = queue->device;
3721
3722 if (device->gfx_init) {
3723 uint64_t va = radv_buffer_get_va(device->gfx_init);
3724
3725 radeon_emit(cs, PKT3(PKT3_INDIRECT_BUFFER_CIK, 2, 0));
3726 radeon_emit(cs, va);
3727 radeon_emit(cs, va >> 32);
3728 radeon_emit(cs, device->gfx_init_size_dw & 0xffff);
3729
3730 radv_cs_add_buffer(device->ws, cs, device->gfx_init);
3731 } else {
3732 si_emit_graphics(device, cs);
3733 }
3734 }
3735
3736 static void
radv_init_compute_state(struct radeon_cmdbuf * cs,struct radv_queue * queue)3737 radv_init_compute_state(struct radeon_cmdbuf *cs, struct radv_queue *queue)
3738 {
3739 si_emit_compute(queue->device, cs);
3740 }
3741
3742 static VkResult
radv_get_preamble_cs(struct radv_queue * queue,uint32_t scratch_size_per_wave,uint32_t scratch_waves,uint32_t compute_scratch_size_per_wave,uint32_t compute_scratch_waves,uint32_t esgs_ring_size,uint32_t gsvs_ring_size,bool needs_tess_rings,bool needs_gds,bool needs_gds_oa,bool needs_sample_positions,struct radeon_cmdbuf ** initial_full_flush_preamble_cs,struct radeon_cmdbuf ** initial_preamble_cs,struct radeon_cmdbuf ** continue_preamble_cs)3743 radv_get_preamble_cs(struct radv_queue *queue, uint32_t scratch_size_per_wave,
3744 uint32_t scratch_waves, uint32_t compute_scratch_size_per_wave,
3745 uint32_t compute_scratch_waves, uint32_t esgs_ring_size,
3746 uint32_t gsvs_ring_size, bool needs_tess_rings, bool needs_gds,
3747 bool needs_gds_oa, bool needs_sample_positions,
3748 struct radeon_cmdbuf **initial_full_flush_preamble_cs,
3749 struct radeon_cmdbuf **initial_preamble_cs,
3750 struct radeon_cmdbuf **continue_preamble_cs)
3751 {
3752 struct radeon_winsys_bo *scratch_bo = NULL;
3753 struct radeon_winsys_bo *descriptor_bo = NULL;
3754 struct radeon_winsys_bo *compute_scratch_bo = NULL;
3755 struct radeon_winsys_bo *esgs_ring_bo = NULL;
3756 struct radeon_winsys_bo *gsvs_ring_bo = NULL;
3757 struct radeon_winsys_bo *tess_rings_bo = NULL;
3758 struct radeon_winsys_bo *gds_bo = NULL;
3759 struct radeon_winsys_bo *gds_oa_bo = NULL;
3760 struct radeon_cmdbuf *dest_cs[3] = {0};
3761 bool add_tess_rings = false, add_gds = false, add_gds_oa = false, add_sample_positions = false;
3762 unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
3763 unsigned max_offchip_buffers;
3764 unsigned hs_offchip_param = 0;
3765 unsigned tess_offchip_ring_offset;
3766 uint32_t ring_bo_flags = RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING;
3767 VkResult result = VK_SUCCESS;
3768 if (!queue->has_tess_rings) {
3769 if (needs_tess_rings)
3770 add_tess_rings = true;
3771 }
3772 if (!queue->has_gds) {
3773 if (needs_gds)
3774 add_gds = true;
3775 }
3776 if (!queue->has_gds_oa) {
3777 if (needs_gds_oa)
3778 add_gds_oa = true;
3779 }
3780 if (!queue->has_sample_positions) {
3781 if (needs_sample_positions)
3782 add_sample_positions = true;
3783 }
3784 tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
3785 hs_offchip_param = radv_get_hs_offchip_param(queue->device, &max_offchip_buffers);
3786 tess_offchip_ring_offset = align(tess_factor_ring_size, 64 * 1024);
3787 tess_offchip_ring_size = max_offchip_buffers * queue->device->tess_offchip_block_dw_size * 4;
3788
3789 scratch_size_per_wave = MAX2(scratch_size_per_wave, queue->scratch_size_per_wave);
3790 if (scratch_size_per_wave)
3791 scratch_waves = MIN2(scratch_waves, UINT32_MAX / scratch_size_per_wave);
3792 else
3793 scratch_waves = 0;
3794
3795 compute_scratch_size_per_wave =
3796 MAX2(compute_scratch_size_per_wave, queue->compute_scratch_size_per_wave);
3797 if (compute_scratch_size_per_wave)
3798 compute_scratch_waves =
3799 MIN2(compute_scratch_waves, UINT32_MAX / compute_scratch_size_per_wave);
3800 else
3801 compute_scratch_waves = 0;
3802
3803 if (scratch_size_per_wave <= queue->scratch_size_per_wave &&
3804 scratch_waves <= queue->scratch_waves &&
3805 compute_scratch_size_per_wave <= queue->compute_scratch_size_per_wave &&
3806 compute_scratch_waves <= queue->compute_scratch_waves &&
3807 esgs_ring_size <= queue->esgs_ring_size && gsvs_ring_size <= queue->gsvs_ring_size &&
3808 !add_tess_rings && !add_gds && !add_gds_oa && !add_sample_positions &&
3809 queue->initial_preamble_cs) {
3810 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
3811 *initial_preamble_cs = queue->initial_preamble_cs;
3812 *continue_preamble_cs = queue->continue_preamble_cs;
3813 if (!scratch_size_per_wave && !compute_scratch_size_per_wave && !esgs_ring_size &&
3814 !gsvs_ring_size && !needs_tess_rings && !needs_gds && !needs_gds_oa &&
3815 !needs_sample_positions)
3816 *continue_preamble_cs = NULL;
3817 return VK_SUCCESS;
3818 }
3819
3820 uint32_t scratch_size = scratch_size_per_wave * scratch_waves;
3821 uint32_t queue_scratch_size = queue->scratch_size_per_wave * queue->scratch_waves;
3822 if (scratch_size > queue_scratch_size) {
3823 result =
3824 queue->device->ws->buffer_create(queue->device->ws, scratch_size, 4096, RADEON_DOMAIN_VRAM,
3825 ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &scratch_bo);
3826 if (result != VK_SUCCESS)
3827 goto fail;
3828 } else
3829 scratch_bo = queue->scratch_bo;
3830
3831 uint32_t compute_scratch_size = compute_scratch_size_per_wave * compute_scratch_waves;
3832 uint32_t compute_queue_scratch_size =
3833 queue->compute_scratch_size_per_wave * queue->compute_scratch_waves;
3834 if (compute_scratch_size > compute_queue_scratch_size) {
3835 result = queue->device->ws->buffer_create(queue->device->ws, compute_scratch_size, 4096,
3836 RADEON_DOMAIN_VRAM, ring_bo_flags,
3837 RADV_BO_PRIORITY_SCRATCH, 0, &compute_scratch_bo);
3838 if (result != VK_SUCCESS)
3839 goto fail;
3840
3841 } else
3842 compute_scratch_bo = queue->compute_scratch_bo;
3843
3844 if (esgs_ring_size > queue->esgs_ring_size) {
3845 result = queue->device->ws->buffer_create(queue->device->ws, esgs_ring_size, 4096,
3846 RADEON_DOMAIN_VRAM, ring_bo_flags,
3847 RADV_BO_PRIORITY_SCRATCH, 0, &esgs_ring_bo);
3848 if (result != VK_SUCCESS)
3849 goto fail;
3850 } else {
3851 esgs_ring_bo = queue->esgs_ring_bo;
3852 esgs_ring_size = queue->esgs_ring_size;
3853 }
3854
3855 if (gsvs_ring_size > queue->gsvs_ring_size) {
3856 result = queue->device->ws->buffer_create(queue->device->ws, gsvs_ring_size, 4096,
3857 RADEON_DOMAIN_VRAM, ring_bo_flags,
3858 RADV_BO_PRIORITY_SCRATCH, 0, &gsvs_ring_bo);
3859 if (result != VK_SUCCESS)
3860 goto fail;
3861 } else {
3862 gsvs_ring_bo = queue->gsvs_ring_bo;
3863 gsvs_ring_size = queue->gsvs_ring_size;
3864 }
3865
3866 if (add_tess_rings) {
3867 result = queue->device->ws->buffer_create(
3868 queue->device->ws, tess_offchip_ring_offset + tess_offchip_ring_size, 256,
3869 RADEON_DOMAIN_VRAM, ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &tess_rings_bo);
3870 if (result != VK_SUCCESS)
3871 goto fail;
3872 } else {
3873 tess_rings_bo = queue->tess_rings_bo;
3874 }
3875
3876 if (add_gds) {
3877 assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
3878
3879 /* 4 streamout GDS counters.
3880 * We need 256B (64 dw) of GDS, otherwise streamout hangs.
3881 */
3882 result =
3883 queue->device->ws->buffer_create(queue->device->ws, 256, 4, RADEON_DOMAIN_GDS,
3884 ring_bo_flags, RADV_BO_PRIORITY_SCRATCH, 0, &gds_bo);
3885 if (result != VK_SUCCESS)
3886 goto fail;
3887 } else {
3888 gds_bo = queue->gds_bo;
3889 }
3890
3891 if (add_gds_oa) {
3892 assert(queue->device->physical_device->rad_info.chip_class >= GFX10);
3893
3894 result =
3895 queue->device->ws->buffer_create(queue->device->ws, 4, 1, RADEON_DOMAIN_OA, ring_bo_flags,
3896 RADV_BO_PRIORITY_SCRATCH, 0, &gds_oa_bo);
3897 if (result != VK_SUCCESS)
3898 goto fail;
3899 } else {
3900 gds_oa_bo = queue->gds_oa_bo;
3901 }
3902
3903 if (scratch_bo != queue->scratch_bo || esgs_ring_bo != queue->esgs_ring_bo ||
3904 gsvs_ring_bo != queue->gsvs_ring_bo || tess_rings_bo != queue->tess_rings_bo ||
3905 add_sample_positions) {
3906 uint32_t size = 0;
3907 if (gsvs_ring_bo || esgs_ring_bo || tess_rings_bo || add_sample_positions) {
3908 size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
3909 if (add_sample_positions)
3910 size += 128; /* 64+32+16+8 = 120 bytes */
3911 } else if (scratch_bo)
3912 size = 8; /* 2 dword */
3913
3914 result = queue->device->ws->buffer_create(
3915 queue->device->ws, size, 4096, RADEON_DOMAIN_VRAM,
3916 RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY,
3917 RADV_BO_PRIORITY_DESCRIPTOR, 0, &descriptor_bo);
3918 if (result != VK_SUCCESS)
3919 goto fail;
3920 } else
3921 descriptor_bo = queue->descriptor_bo;
3922
3923 if (descriptor_bo != queue->descriptor_bo) {
3924 uint32_t *map = (uint32_t *)queue->device->ws->buffer_map(descriptor_bo);
3925 if (!map)
3926 goto fail;
3927
3928 if (scratch_bo) {
3929 uint64_t scratch_va = radv_buffer_get_va(scratch_bo);
3930 uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
3931 map[0] = scratch_va;
3932 map[1] = rsrc1;
3933 }
3934
3935 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo || add_sample_positions)
3936 fill_geom_tess_rings(queue, map, add_sample_positions, esgs_ring_size, esgs_ring_bo,
3937 gsvs_ring_size, gsvs_ring_bo, tess_factor_ring_size,
3938 tess_offchip_ring_offset, tess_offchip_ring_size, tess_rings_bo);
3939
3940 queue->device->ws->buffer_unmap(descriptor_bo);
3941 }
3942
3943 for (int i = 0; i < 3; ++i) {
3944 enum rgp_flush_bits sqtt_flush_bits = 0;
3945 struct radeon_cmdbuf *cs = NULL;
3946 cs = queue->device->ws->cs_create(queue->device->ws,
3947 queue->vk.queue_family_index ? RING_COMPUTE : RING_GFX);
3948 if (!cs) {
3949 result = VK_ERROR_OUT_OF_HOST_MEMORY;
3950 goto fail;
3951 }
3952
3953 dest_cs[i] = cs;
3954
3955 if (scratch_bo)
3956 radv_cs_add_buffer(queue->device->ws, cs, scratch_bo);
3957
3958 /* Emit initial configuration. */
3959 switch (queue->vk.queue_family_index) {
3960 case RADV_QUEUE_GENERAL:
3961 radv_init_graphics_state(cs, queue);
3962 break;
3963 case RADV_QUEUE_COMPUTE:
3964 radv_init_compute_state(cs, queue);
3965 break;
3966 case RADV_QUEUE_TRANSFER:
3967 break;
3968 }
3969
3970 if (esgs_ring_bo || gsvs_ring_bo || tess_rings_bo) {
3971 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3972 radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
3973
3974 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
3975 radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
3976 }
3977
3978 radv_emit_gs_ring_sizes(queue, cs, esgs_ring_bo, esgs_ring_size, gsvs_ring_bo,
3979 gsvs_ring_size);
3980 radv_emit_tess_factor_ring(queue, cs, hs_offchip_param, tess_factor_ring_size, tess_rings_bo);
3981 radv_emit_global_shader_pointers(queue, cs, descriptor_bo);
3982 radv_emit_compute_scratch(queue, cs, compute_scratch_size_per_wave, compute_scratch_waves,
3983 compute_scratch_bo);
3984 radv_emit_graphics_scratch(queue, cs, scratch_size_per_wave, scratch_waves, scratch_bo);
3985
3986 if (gds_bo)
3987 radv_cs_add_buffer(queue->device->ws, cs, gds_bo);
3988 if (gds_oa_bo)
3989 radv_cs_add_buffer(queue->device->ws, cs, gds_oa_bo);
3990
3991 if (i == 0) {
3992 si_cs_emit_cache_flush(
3993 cs, queue->device->physical_device->rad_info.chip_class, NULL, 0,
3994 queue->vk.queue_family_index == RING_COMPUTE &&
3995 queue->device->physical_device->rad_info.chip_class >= GFX7,
3996 (queue->vk.queue_family_index == RADV_QUEUE_COMPUTE
3997 ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH
3998 : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
3999 RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE | RADV_CMD_FLAG_INV_VCACHE |
4000 RADV_CMD_FLAG_INV_L2 | RADV_CMD_FLAG_START_PIPELINE_STATS,
4001 &sqtt_flush_bits, 0);
4002 } else if (i == 1) {
4003 si_cs_emit_cache_flush(cs, queue->device->physical_device->rad_info.chip_class, NULL, 0,
4004 queue->vk.queue_family_index == RING_COMPUTE &&
4005 queue->device->physical_device->rad_info.chip_class >= GFX7,
4006 RADV_CMD_FLAG_INV_ICACHE | RADV_CMD_FLAG_INV_SCACHE |
4007 RADV_CMD_FLAG_INV_VCACHE | RADV_CMD_FLAG_INV_L2 |
4008 RADV_CMD_FLAG_START_PIPELINE_STATS,
4009 &sqtt_flush_bits, 0);
4010 }
4011
4012 result = queue->device->ws->cs_finalize(cs);
4013 if (result != VK_SUCCESS)
4014 goto fail;
4015 }
4016
4017 if (queue->initial_full_flush_preamble_cs)
4018 queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
4019
4020 if (queue->initial_preamble_cs)
4021 queue->device->ws->cs_destroy(queue->initial_preamble_cs);
4022
4023 if (queue->continue_preamble_cs)
4024 queue->device->ws->cs_destroy(queue->continue_preamble_cs);
4025
4026 queue->initial_full_flush_preamble_cs = dest_cs[0];
4027 queue->initial_preamble_cs = dest_cs[1];
4028 queue->continue_preamble_cs = dest_cs[2];
4029
4030 if (scratch_bo != queue->scratch_bo) {
4031 if (queue->scratch_bo)
4032 queue->device->ws->buffer_destroy(queue->device->ws, queue->scratch_bo);
4033 queue->scratch_bo = scratch_bo;
4034 }
4035 queue->scratch_size_per_wave = scratch_size_per_wave;
4036 queue->scratch_waves = scratch_waves;
4037
4038 if (compute_scratch_bo != queue->compute_scratch_bo) {
4039 if (queue->compute_scratch_bo)
4040 queue->device->ws->buffer_destroy(queue->device->ws, queue->compute_scratch_bo);
4041 queue->compute_scratch_bo = compute_scratch_bo;
4042 }
4043 queue->compute_scratch_size_per_wave = compute_scratch_size_per_wave;
4044 queue->compute_scratch_waves = compute_scratch_waves;
4045
4046 if (esgs_ring_bo != queue->esgs_ring_bo) {
4047 if (queue->esgs_ring_bo)
4048 queue->device->ws->buffer_destroy(queue->device->ws, queue->esgs_ring_bo);
4049 queue->esgs_ring_bo = esgs_ring_bo;
4050 queue->esgs_ring_size = esgs_ring_size;
4051 }
4052
4053 if (gsvs_ring_bo != queue->gsvs_ring_bo) {
4054 if (queue->gsvs_ring_bo)
4055 queue->device->ws->buffer_destroy(queue->device->ws, queue->gsvs_ring_bo);
4056 queue->gsvs_ring_bo = gsvs_ring_bo;
4057 queue->gsvs_ring_size = gsvs_ring_size;
4058 }
4059
4060 if (tess_rings_bo != queue->tess_rings_bo) {
4061 queue->tess_rings_bo = tess_rings_bo;
4062 queue->has_tess_rings = true;
4063 }
4064
4065 if (gds_bo != queue->gds_bo) {
4066 queue->gds_bo = gds_bo;
4067 queue->has_gds = true;
4068 }
4069
4070 if (gds_oa_bo != queue->gds_oa_bo) {
4071 queue->gds_oa_bo = gds_oa_bo;
4072 queue->has_gds_oa = true;
4073 }
4074
4075 if (descriptor_bo != queue->descriptor_bo) {
4076 if (queue->descriptor_bo)
4077 queue->device->ws->buffer_destroy(queue->device->ws, queue->descriptor_bo);
4078
4079 queue->descriptor_bo = descriptor_bo;
4080 }
4081
4082 if (add_sample_positions)
4083 queue->has_sample_positions = true;
4084
4085 *initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
4086 *initial_preamble_cs = queue->initial_preamble_cs;
4087 *continue_preamble_cs = queue->continue_preamble_cs;
4088 if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
4089 *continue_preamble_cs = NULL;
4090 return VK_SUCCESS;
4091 fail:
4092 for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
4093 if (dest_cs[i])
4094 queue->device->ws->cs_destroy(dest_cs[i]);
4095 if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
4096 queue->device->ws->buffer_destroy(queue->device->ws, descriptor_bo);
4097 if (scratch_bo && scratch_bo != queue->scratch_bo)
4098 queue->device->ws->buffer_destroy(queue->device->ws, scratch_bo);
4099 if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
4100 queue->device->ws->buffer_destroy(queue->device->ws, compute_scratch_bo);
4101 if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
4102 queue->device->ws->buffer_destroy(queue->device->ws, esgs_ring_bo);
4103 if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
4104 queue->device->ws->buffer_destroy(queue->device->ws, gsvs_ring_bo);
4105 if (tess_rings_bo && tess_rings_bo != queue->tess_rings_bo)
4106 queue->device->ws->buffer_destroy(queue->device->ws, tess_rings_bo);
4107 if (gds_bo && gds_bo != queue->gds_bo)
4108 queue->device->ws->buffer_destroy(queue->device->ws, gds_bo);
4109 if (gds_oa_bo && gds_oa_bo != queue->gds_oa_bo)
4110 queue->device->ws->buffer_destroy(queue->device->ws, gds_oa_bo);
4111
4112 return vk_error(queue, result);
4113 }
4114
4115 static VkResult
radv_alloc_sem_counts(struct radv_device * device,struct radv_winsys_sem_counts * counts,int num_sems,struct radv_semaphore_part ** sems,const uint64_t * timeline_values,VkFence _fence,bool is_signal)4116 radv_alloc_sem_counts(struct radv_device *device, struct radv_winsys_sem_counts *counts,
4117 int num_sems, struct radv_semaphore_part **sems,
4118 const uint64_t *timeline_values, VkFence _fence, bool is_signal)
4119 {
4120 int syncobj_idx = 0, non_reset_idx = 0, timeline_idx = 0;
4121
4122 if (num_sems == 0 && _fence == VK_NULL_HANDLE)
4123 return VK_SUCCESS;
4124
4125 for (uint32_t i = 0; i < num_sems; i++) {
4126 switch (sems[i]->kind) {
4127 case RADV_SEMAPHORE_SYNCOBJ:
4128 counts->syncobj_count++;
4129 counts->syncobj_reset_count++;
4130 break;
4131 case RADV_SEMAPHORE_NONE:
4132 break;
4133 case RADV_SEMAPHORE_TIMELINE:
4134 counts->syncobj_count++;
4135 break;
4136 case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
4137 counts->timeline_syncobj_count++;
4138 break;
4139 }
4140 }
4141
4142 if (_fence != VK_NULL_HANDLE)
4143 counts->syncobj_count++;
4144
4145 if (counts->syncobj_count || counts->timeline_syncobj_count) {
4146 counts->points = (uint64_t *)malloc(sizeof(*counts->syncobj) * counts->syncobj_count +
4147 (sizeof(*counts->syncobj) + sizeof(*counts->points)) *
4148 counts->timeline_syncobj_count);
4149 if (!counts->points)
4150 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4151 counts->syncobj = (uint32_t *)(counts->points + counts->timeline_syncobj_count);
4152 }
4153
4154 non_reset_idx = counts->syncobj_reset_count;
4155
4156 for (uint32_t i = 0; i < num_sems; i++) {
4157 switch (sems[i]->kind) {
4158 case RADV_SEMAPHORE_NONE:
4159 unreachable("Empty semaphore");
4160 break;
4161 case RADV_SEMAPHORE_SYNCOBJ:
4162 counts->syncobj[syncobj_idx++] = sems[i]->syncobj;
4163 break;
4164 case RADV_SEMAPHORE_TIMELINE: {
4165 mtx_lock(&sems[i]->timeline.mutex);
4166 struct radv_timeline_point *point = NULL;
4167 if (is_signal) {
4168 point = radv_timeline_add_point_locked(device, &sems[i]->timeline, timeline_values[i]);
4169 } else {
4170 point = radv_timeline_find_point_at_least_locked(device, &sems[i]->timeline,
4171 timeline_values[i]);
4172 }
4173
4174 mtx_unlock(&sems[i]->timeline.mutex);
4175
4176 if (point) {
4177 counts->syncobj[non_reset_idx++] = point->syncobj;
4178 } else {
4179 /* Explicitly remove the semaphore so we might not find
4180 * a point later post-submit. */
4181 sems[i] = NULL;
4182 }
4183 break;
4184 }
4185 case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
4186 counts->syncobj[counts->syncobj_count + timeline_idx] = sems[i]->syncobj;
4187 counts->points[timeline_idx] = timeline_values[i];
4188 ++timeline_idx;
4189 break;
4190 }
4191 }
4192
4193 if (_fence != VK_NULL_HANDLE) {
4194 RADV_FROM_HANDLE(radv_fence, fence, _fence);
4195
4196 struct radv_fence_part *part =
4197 fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
4198 counts->syncobj[non_reset_idx++] = part->syncobj;
4199 }
4200
4201 assert(MAX2(syncobj_idx, non_reset_idx) <= counts->syncobj_count);
4202 counts->syncobj_count = MAX2(syncobj_idx, non_reset_idx);
4203
4204 return VK_SUCCESS;
4205 }
4206
4207 static void
radv_free_sem_info(struct radv_winsys_sem_info * sem_info)4208 radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
4209 {
4210 free(sem_info->wait.points);
4211 free(sem_info->signal.points);
4212 }
4213
4214 static void
radv_free_temp_syncobjs(struct radv_device * device,int num_sems,struct radv_semaphore_part * sems)4215 radv_free_temp_syncobjs(struct radv_device *device, int num_sems, struct radv_semaphore_part *sems)
4216 {
4217 for (uint32_t i = 0; i < num_sems; i++) {
4218 radv_destroy_semaphore_part(device, sems + i);
4219 }
4220 }
4221
4222 static VkResult
radv_alloc_sem_info(struct radv_device * device,struct radv_winsys_sem_info * sem_info,int num_wait_sems,struct radv_semaphore_part ** wait_sems,const uint64_t * wait_values,int num_signal_sems,struct radv_semaphore_part ** signal_sems,const uint64_t * signal_values,VkFence fence)4223 radv_alloc_sem_info(struct radv_device *device, struct radv_winsys_sem_info *sem_info,
4224 int num_wait_sems, struct radv_semaphore_part **wait_sems,
4225 const uint64_t *wait_values, int num_signal_sems,
4226 struct radv_semaphore_part **signal_sems, const uint64_t *signal_values,
4227 VkFence fence)
4228 {
4229 VkResult ret;
4230
4231 ret = radv_alloc_sem_counts(device, &sem_info->wait, num_wait_sems, wait_sems, wait_values,
4232 VK_NULL_HANDLE, false);
4233 if (ret)
4234 return ret;
4235 ret = radv_alloc_sem_counts(device, &sem_info->signal, num_signal_sems, signal_sems,
4236 signal_values, fence, true);
4237 if (ret)
4238 radv_free_sem_info(sem_info);
4239
4240 /* caller can override these */
4241 sem_info->cs_emit_wait = true;
4242 sem_info->cs_emit_signal = true;
4243 return ret;
4244 }
4245
4246 static void
radv_finalize_timelines(struct radv_device * device,uint32_t num_wait_sems,struct radv_semaphore_part ** wait_sems,const uint64_t * wait_values,uint32_t num_signal_sems,struct radv_semaphore_part ** signal_sems,const uint64_t * signal_values,struct list_head * processing_list)4247 radv_finalize_timelines(struct radv_device *device, uint32_t num_wait_sems,
4248 struct radv_semaphore_part **wait_sems, const uint64_t *wait_values,
4249 uint32_t num_signal_sems, struct radv_semaphore_part **signal_sems,
4250 const uint64_t *signal_values, struct list_head *processing_list)
4251 {
4252 for (uint32_t i = 0; i < num_wait_sems; ++i) {
4253 if (wait_sems[i] && wait_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
4254 mtx_lock(&wait_sems[i]->timeline.mutex);
4255 struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(
4256 device, &wait_sems[i]->timeline, wait_values[i]);
4257 point->wait_count -= 2;
4258 mtx_unlock(&wait_sems[i]->timeline.mutex);
4259 }
4260 }
4261 for (uint32_t i = 0; i < num_signal_sems; ++i) {
4262 if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE) {
4263 mtx_lock(&signal_sems[i]->timeline.mutex);
4264 struct radv_timeline_point *point = radv_timeline_find_point_at_least_locked(
4265 device, &signal_sems[i]->timeline, signal_values[i]);
4266 signal_sems[i]->timeline.highest_submitted =
4267 MAX2(signal_sems[i]->timeline.highest_submitted, point->value);
4268 point->wait_count -= 2;
4269 radv_timeline_trigger_waiters_locked(&signal_sems[i]->timeline, processing_list);
4270 mtx_unlock(&signal_sems[i]->timeline.mutex);
4271 } else if (signal_sems[i] && signal_sems[i]->kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ) {
4272 signal_sems[i]->timeline_syncobj.max_point =
4273 MAX2(signal_sems[i]->timeline_syncobj.max_point, signal_values[i]);
4274 }
4275 }
4276 }
4277
4278 static VkResult
radv_sparse_buffer_bind_memory(struct radv_device * device,const VkSparseBufferMemoryBindInfo * bind)4279 radv_sparse_buffer_bind_memory(struct radv_device *device, const VkSparseBufferMemoryBindInfo *bind)
4280 {
4281 RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
4282 VkResult result;
4283
4284 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4285 struct radv_device_memory *mem = NULL;
4286
4287 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4288 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4289
4290 result = device->ws->buffer_virtual_bind(device->ws, buffer->bo,
4291 bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
4292 mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
4293 if (result != VK_SUCCESS)
4294 return result;
4295 }
4296
4297 return VK_SUCCESS;
4298 }
4299
4300 static VkResult
radv_sparse_image_opaque_bind_memory(struct radv_device * device,const VkSparseImageOpaqueMemoryBindInfo * bind)4301 radv_sparse_image_opaque_bind_memory(struct radv_device *device,
4302 const VkSparseImageOpaqueMemoryBindInfo *bind)
4303 {
4304 RADV_FROM_HANDLE(radv_image, image, bind->image);
4305 VkResult result;
4306
4307 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4308 struct radv_device_memory *mem = NULL;
4309
4310 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4311 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4312
4313 result = device->ws->buffer_virtual_bind(device->ws, image->bo,
4314 bind->pBinds[i].resourceOffset, bind->pBinds[i].size,
4315 mem ? mem->bo : NULL, bind->pBinds[i].memoryOffset);
4316 if (result != VK_SUCCESS)
4317 return result;
4318 }
4319
4320 return VK_SUCCESS;
4321 }
4322
4323 static VkResult
radv_sparse_image_bind_memory(struct radv_device * device,const VkSparseImageMemoryBindInfo * bind)4324 radv_sparse_image_bind_memory(struct radv_device *device, const VkSparseImageMemoryBindInfo *bind)
4325 {
4326 RADV_FROM_HANDLE(radv_image, image, bind->image);
4327 struct radeon_surf *surface = &image->planes[0].surface;
4328 uint32_t bs = vk_format_get_blocksize(image->vk_format);
4329 VkResult result;
4330
4331 for (uint32_t i = 0; i < bind->bindCount; ++i) {
4332 struct radv_device_memory *mem = NULL;
4333 uint32_t offset, pitch;
4334 uint32_t mem_offset = bind->pBinds[i].memoryOffset;
4335 const uint32_t layer = bind->pBinds[i].subresource.arrayLayer;
4336 const uint32_t level = bind->pBinds[i].subresource.mipLevel;
4337
4338 VkExtent3D bind_extent = bind->pBinds[i].extent;
4339 bind_extent.width =
4340 DIV_ROUND_UP(bind_extent.width, vk_format_get_blockwidth(image->vk_format));
4341 bind_extent.height =
4342 DIV_ROUND_UP(bind_extent.height, vk_format_get_blockheight(image->vk_format));
4343
4344 VkOffset3D bind_offset = bind->pBinds[i].offset;
4345 bind_offset.x /= vk_format_get_blockwidth(image->vk_format);
4346 bind_offset.y /= vk_format_get_blockheight(image->vk_format);
4347
4348 if (bind->pBinds[i].memory != VK_NULL_HANDLE)
4349 mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
4350
4351 if (device->physical_device->rad_info.chip_class >= GFX9) {
4352 offset = surface->u.gfx9.surf_slice_size * layer + surface->u.gfx9.prt_level_offset[level];
4353 pitch = surface->u.gfx9.prt_level_pitch[level];
4354 } else {
4355 offset = (uint64_t)surface->u.legacy.level[level].offset_256B * 256 +
4356 surface->u.legacy.level[level].slice_size_dw * 4 * layer;
4357 pitch = surface->u.legacy.level[level].nblk_x;
4358 }
4359
4360 offset += (bind_offset.y * pitch * bs) + (bind_offset.x * surface->prt_tile_height * bs);
4361
4362 uint32_t aligned_extent_width = ALIGN(bind_extent.width, surface->prt_tile_width);
4363
4364 bool whole_subres = bind_offset.x == 0 && aligned_extent_width == pitch;
4365
4366 if (whole_subres) {
4367 uint32_t aligned_extent_height = ALIGN(bind_extent.height, surface->prt_tile_height);
4368
4369 uint32_t size = aligned_extent_width * aligned_extent_height * bs;
4370 result = device->ws->buffer_virtual_bind(device->ws, image->bo, offset, size,
4371 mem ? mem->bo : NULL, mem_offset);
4372 if (result != VK_SUCCESS)
4373 return result;
4374 } else {
4375 uint32_t img_increment = pitch * bs;
4376 uint32_t mem_increment = aligned_extent_width * bs;
4377 uint32_t size = mem_increment * surface->prt_tile_height;
4378 for (unsigned y = 0; y < bind_extent.height; y += surface->prt_tile_height) {
4379 result = device->ws->buffer_virtual_bind(
4380 device->ws, image->bo, offset + img_increment * y, size, mem ? mem->bo : NULL,
4381 mem_offset + mem_increment * y);
4382 if (result != VK_SUCCESS)
4383 return result;
4384 }
4385 }
4386 }
4387
4388 return VK_SUCCESS;
4389 }
4390
4391 static VkResult
radv_get_preambles(struct radv_queue * queue,const VkCommandBuffer * cmd_buffers,uint32_t cmd_buffer_count,struct radeon_cmdbuf ** initial_full_flush_preamble_cs,struct radeon_cmdbuf ** initial_preamble_cs,struct radeon_cmdbuf ** continue_preamble_cs)4392 radv_get_preambles(struct radv_queue *queue, const VkCommandBuffer *cmd_buffers,
4393 uint32_t cmd_buffer_count, struct radeon_cmdbuf **initial_full_flush_preamble_cs,
4394 struct radeon_cmdbuf **initial_preamble_cs,
4395 struct radeon_cmdbuf **continue_preamble_cs)
4396 {
4397 uint32_t scratch_size_per_wave = 0, waves_wanted = 0;
4398 uint32_t compute_scratch_size_per_wave = 0, compute_waves_wanted = 0;
4399 uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
4400 bool tess_rings_needed = false;
4401 bool gds_needed = false;
4402 bool gds_oa_needed = false;
4403 bool sample_positions_needed = false;
4404
4405 for (uint32_t j = 0; j < cmd_buffer_count; j++) {
4406 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, cmd_buffers[j]);
4407
4408 scratch_size_per_wave = MAX2(scratch_size_per_wave, cmd_buffer->scratch_size_per_wave_needed);
4409 waves_wanted = MAX2(waves_wanted, cmd_buffer->scratch_waves_wanted);
4410 compute_scratch_size_per_wave =
4411 MAX2(compute_scratch_size_per_wave, cmd_buffer->compute_scratch_size_per_wave_needed);
4412 compute_waves_wanted = MAX2(compute_waves_wanted, cmd_buffer->compute_scratch_waves_wanted);
4413 esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
4414 gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
4415 tess_rings_needed |= cmd_buffer->tess_rings_needed;
4416 gds_needed |= cmd_buffer->gds_needed;
4417 gds_oa_needed |= cmd_buffer->gds_oa_needed;
4418 sample_positions_needed |= cmd_buffer->sample_positions_needed;
4419 }
4420
4421 return radv_get_preamble_cs(queue, scratch_size_per_wave, waves_wanted,
4422 compute_scratch_size_per_wave, compute_waves_wanted, esgs_ring_size,
4423 gsvs_ring_size, tess_rings_needed, gds_needed, gds_oa_needed,
4424 sample_positions_needed, initial_full_flush_preamble_cs,
4425 initial_preamble_cs, continue_preamble_cs);
4426 }
4427
4428 struct radv_deferred_queue_submission {
4429 struct radv_queue *queue;
4430 VkCommandBuffer *cmd_buffers;
4431 uint32_t cmd_buffer_count;
4432
4433 /* Sparse bindings that happen on a queue. */
4434 VkSparseBufferMemoryBindInfo *buffer_binds;
4435 uint32_t buffer_bind_count;
4436 VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
4437 uint32_t image_opaque_bind_count;
4438 VkSparseImageMemoryBindInfo *image_binds;
4439 uint32_t image_bind_count;
4440
4441 bool flush_caches;
4442 VkShaderStageFlags wait_dst_stage_mask;
4443 struct radv_semaphore_part **wait_semaphores;
4444 uint32_t wait_semaphore_count;
4445 struct radv_semaphore_part **signal_semaphores;
4446 uint32_t signal_semaphore_count;
4447 VkFence fence;
4448
4449 uint64_t *wait_values;
4450 uint64_t *signal_values;
4451
4452 struct radv_semaphore_part *temporary_semaphore_parts;
4453 uint32_t temporary_semaphore_part_count;
4454
4455 struct list_head queue_pending_list;
4456 uint32_t submission_wait_count;
4457 struct radv_timeline_waiter *wait_nodes;
4458
4459 struct list_head processing_list;
4460 };
4461
4462 struct radv_queue_submission {
4463 const VkCommandBuffer *cmd_buffers;
4464 uint32_t cmd_buffer_count;
4465
4466 /* Sparse bindings that happen on a queue. */
4467 const VkSparseBufferMemoryBindInfo *buffer_binds;
4468 uint32_t buffer_bind_count;
4469 const VkSparseImageOpaqueMemoryBindInfo *image_opaque_binds;
4470 uint32_t image_opaque_bind_count;
4471 const VkSparseImageMemoryBindInfo *image_binds;
4472 uint32_t image_bind_count;
4473
4474 bool flush_caches;
4475 VkPipelineStageFlags wait_dst_stage_mask;
4476 const VkSemaphore *wait_semaphores;
4477 uint32_t wait_semaphore_count;
4478 const VkSemaphore *signal_semaphores;
4479 uint32_t signal_semaphore_count;
4480 VkFence fence;
4481
4482 const uint64_t *wait_values;
4483 uint32_t wait_value_count;
4484 const uint64_t *signal_values;
4485 uint32_t signal_value_count;
4486 };
4487
4488 static VkResult radv_queue_trigger_submission(struct radv_deferred_queue_submission *submission,
4489 uint32_t decrement,
4490 struct list_head *processing_list);
4491
4492 static VkResult
radv_create_deferred_submission(struct radv_queue * queue,const struct radv_queue_submission * submission,struct radv_deferred_queue_submission ** out)4493 radv_create_deferred_submission(struct radv_queue *queue,
4494 const struct radv_queue_submission *submission,
4495 struct radv_deferred_queue_submission **out)
4496 {
4497 struct radv_deferred_queue_submission *deferred = NULL;
4498 size_t size = sizeof(struct radv_deferred_queue_submission);
4499
4500 uint32_t temporary_count = 0;
4501 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4502 RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
4503 if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE)
4504 ++temporary_count;
4505 }
4506
4507 size += submission->cmd_buffer_count * sizeof(VkCommandBuffer);
4508 size += submission->buffer_bind_count * sizeof(VkSparseBufferMemoryBindInfo);
4509 size += submission->image_opaque_bind_count * sizeof(VkSparseImageOpaqueMemoryBindInfo);
4510 size += submission->image_bind_count * sizeof(VkSparseImageMemoryBindInfo);
4511
4512 for (uint32_t i = 0; i < submission->image_bind_count; ++i)
4513 size += submission->image_binds[i].bindCount * sizeof(VkSparseImageMemoryBind);
4514
4515 size += submission->wait_semaphore_count * sizeof(struct radv_semaphore_part *);
4516 size += temporary_count * sizeof(struct radv_semaphore_part);
4517 size += submission->signal_semaphore_count * sizeof(struct radv_semaphore_part *);
4518 size += submission->wait_value_count * sizeof(uint64_t);
4519 size += submission->signal_value_count * sizeof(uint64_t);
4520 size += submission->wait_semaphore_count * sizeof(struct radv_timeline_waiter);
4521
4522 deferred = calloc(1, size);
4523 if (!deferred)
4524 return VK_ERROR_OUT_OF_HOST_MEMORY;
4525
4526 deferred->queue = queue;
4527
4528 deferred->cmd_buffers = (void *)(deferred + 1);
4529 deferred->cmd_buffer_count = submission->cmd_buffer_count;
4530 if (submission->cmd_buffer_count) {
4531 memcpy(deferred->cmd_buffers, submission->cmd_buffers,
4532 submission->cmd_buffer_count * sizeof(*deferred->cmd_buffers));
4533 }
4534
4535 deferred->buffer_binds = (void *)(deferred->cmd_buffers + submission->cmd_buffer_count);
4536 deferred->buffer_bind_count = submission->buffer_bind_count;
4537 if (submission->buffer_bind_count) {
4538 memcpy(deferred->buffer_binds, submission->buffer_binds,
4539 submission->buffer_bind_count * sizeof(*deferred->buffer_binds));
4540 }
4541
4542 deferred->image_opaque_binds = (void *)(deferred->buffer_binds + submission->buffer_bind_count);
4543 deferred->image_opaque_bind_count = submission->image_opaque_bind_count;
4544 if (submission->image_opaque_bind_count) {
4545 memcpy(deferred->image_opaque_binds, submission->image_opaque_binds,
4546 submission->image_opaque_bind_count * sizeof(*deferred->image_opaque_binds));
4547 }
4548
4549 deferred->image_binds =
4550 (void *)(deferred->image_opaque_binds + deferred->image_opaque_bind_count);
4551 deferred->image_bind_count = submission->image_bind_count;
4552
4553 VkSparseImageMemoryBind *sparse_image_binds =
4554 (void *)(deferred->image_binds + deferred->image_bind_count);
4555 for (uint32_t i = 0; i < deferred->image_bind_count; ++i) {
4556 deferred->image_binds[i] = submission->image_binds[i];
4557 deferred->image_binds[i].pBinds = sparse_image_binds;
4558
4559 for (uint32_t j = 0; j < deferred->image_binds[i].bindCount; ++j)
4560 *sparse_image_binds++ = submission->image_binds[i].pBinds[j];
4561 }
4562
4563 deferred->flush_caches = submission->flush_caches;
4564 deferred->wait_dst_stage_mask = submission->wait_dst_stage_mask;
4565
4566 deferred->wait_semaphores = (void *)sparse_image_binds;
4567 deferred->wait_semaphore_count = submission->wait_semaphore_count;
4568
4569 deferred->signal_semaphores =
4570 (void *)(deferred->wait_semaphores + deferred->wait_semaphore_count);
4571 deferred->signal_semaphore_count = submission->signal_semaphore_count;
4572
4573 deferred->fence = submission->fence;
4574
4575 deferred->temporary_semaphore_parts =
4576 (void *)(deferred->signal_semaphores + deferred->signal_semaphore_count);
4577 deferred->temporary_semaphore_part_count = temporary_count;
4578
4579 uint32_t temporary_idx = 0;
4580 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4581 RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->wait_semaphores[i]);
4582 if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
4583 deferred->wait_semaphores[i] = &deferred->temporary_semaphore_parts[temporary_idx];
4584 deferred->temporary_semaphore_parts[temporary_idx] = semaphore->temporary;
4585 semaphore->temporary.kind = RADV_SEMAPHORE_NONE;
4586 ++temporary_idx;
4587 } else
4588 deferred->wait_semaphores[i] = &semaphore->permanent;
4589 }
4590
4591 for (uint32_t i = 0; i < submission->signal_semaphore_count; ++i) {
4592 RADV_FROM_HANDLE(radv_semaphore, semaphore, submission->signal_semaphores[i]);
4593 if (semaphore->temporary.kind != RADV_SEMAPHORE_NONE) {
4594 deferred->signal_semaphores[i] = &semaphore->temporary;
4595 } else {
4596 deferred->signal_semaphores[i] = &semaphore->permanent;
4597 }
4598 }
4599
4600 deferred->wait_values = (void *)(deferred->temporary_semaphore_parts + temporary_count);
4601 if (submission->wait_value_count) {
4602 memcpy(deferred->wait_values, submission->wait_values,
4603 submission->wait_value_count * sizeof(uint64_t));
4604 }
4605 deferred->signal_values = deferred->wait_values + submission->wait_value_count;
4606 if (submission->signal_value_count) {
4607 memcpy(deferred->signal_values, submission->signal_values,
4608 submission->signal_value_count * sizeof(uint64_t));
4609 }
4610
4611 deferred->wait_nodes = (void *)(deferred->signal_values + submission->signal_value_count);
4612 /* This is worst-case. radv_queue_enqueue_submission will fill in further, but this
4613 * ensure the submission is not accidentally triggered early when adding wait timelines. */
4614 deferred->submission_wait_count = 1 + submission->wait_semaphore_count;
4615
4616 *out = deferred;
4617 return VK_SUCCESS;
4618 }
4619
4620 static VkResult
radv_queue_enqueue_submission(struct radv_deferred_queue_submission * submission,struct list_head * processing_list)4621 radv_queue_enqueue_submission(struct radv_deferred_queue_submission *submission,
4622 struct list_head *processing_list)
4623 {
4624 uint32_t wait_cnt = 0;
4625 struct radv_timeline_waiter *waiter = submission->wait_nodes;
4626 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4627 if (submission->wait_semaphores[i]->kind == RADV_SEMAPHORE_TIMELINE) {
4628 mtx_lock(&submission->wait_semaphores[i]->timeline.mutex);
4629 if (submission->wait_semaphores[i]->timeline.highest_submitted <
4630 submission->wait_values[i]) {
4631 ++wait_cnt;
4632 waiter->value = submission->wait_values[i];
4633 waiter->submission = submission;
4634 list_addtail(&waiter->list, &submission->wait_semaphores[i]->timeline.waiters);
4635 ++waiter;
4636 }
4637 mtx_unlock(&submission->wait_semaphores[i]->timeline.mutex);
4638 }
4639 }
4640
4641 mtx_lock(&submission->queue->pending_mutex);
4642
4643 bool is_first = list_is_empty(&submission->queue->pending_submissions);
4644 list_addtail(&submission->queue_pending_list, &submission->queue->pending_submissions);
4645
4646 mtx_unlock(&submission->queue->pending_mutex);
4647
4648 /* If there is already a submission in the queue, that will decrement the counter by 1 when
4649 * submitted, but if the queue was empty, we decrement ourselves as there is no previous
4650 * submission. */
4651 uint32_t decrement = submission->wait_semaphore_count - wait_cnt + (is_first ? 1 : 0);
4652
4653 /* if decrement is zero, then we don't have a refcounted reference to the
4654 * submission anymore, so it is not safe to access the submission. */
4655 if (!decrement)
4656 return VK_SUCCESS;
4657
4658 return radv_queue_trigger_submission(submission, decrement, processing_list);
4659 }
4660
4661 static void
radv_queue_submission_update_queue(struct radv_deferred_queue_submission * submission,struct list_head * processing_list)4662 radv_queue_submission_update_queue(struct radv_deferred_queue_submission *submission,
4663 struct list_head *processing_list)
4664 {
4665 mtx_lock(&submission->queue->pending_mutex);
4666 list_del(&submission->queue_pending_list);
4667
4668 /* trigger the next submission in the queue. */
4669 if (!list_is_empty(&submission->queue->pending_submissions)) {
4670 struct radv_deferred_queue_submission *next_submission =
4671 list_first_entry(&submission->queue->pending_submissions,
4672 struct radv_deferred_queue_submission, queue_pending_list);
4673 radv_queue_trigger_submission(next_submission, 1, processing_list);
4674 }
4675 mtx_unlock(&submission->queue->pending_mutex);
4676
4677 u_cnd_monotonic_broadcast(&submission->queue->device->timeline_cond);
4678 }
4679
4680 static VkResult
radv_queue_submit_deferred(struct radv_deferred_queue_submission * submission,struct list_head * processing_list)4681 radv_queue_submit_deferred(struct radv_deferred_queue_submission *submission,
4682 struct list_head *processing_list)
4683 {
4684 struct radv_queue *queue = submission->queue;
4685 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
4686 uint32_t max_cs_submission = queue->device->trace_bo ? 1 : RADV_MAX_IBS_PER_SUBMIT;
4687 bool do_flush = submission->flush_caches || submission->wait_dst_stage_mask;
4688 bool can_patch = true;
4689 uint32_t advance;
4690 struct radv_winsys_sem_info sem_info = {0};
4691 VkResult result;
4692 struct radeon_cmdbuf *initial_preamble_cs = NULL;
4693 struct radeon_cmdbuf *initial_flush_preamble_cs = NULL;
4694 struct radeon_cmdbuf *continue_preamble_cs = NULL;
4695
4696 result =
4697 radv_get_preambles(queue, submission->cmd_buffers, submission->cmd_buffer_count,
4698 &initial_preamble_cs, &initial_flush_preamble_cs, &continue_preamble_cs);
4699 if (result != VK_SUCCESS)
4700 goto fail;
4701
4702 result = radv_alloc_sem_info(queue->device, &sem_info, submission->wait_semaphore_count,
4703 submission->wait_semaphores, submission->wait_values,
4704 submission->signal_semaphore_count, submission->signal_semaphores,
4705 submission->signal_values, submission->fence);
4706 if (result != VK_SUCCESS)
4707 goto fail;
4708
4709 for (uint32_t i = 0; i < submission->buffer_bind_count; ++i) {
4710 result = radv_sparse_buffer_bind_memory(queue->device, submission->buffer_binds + i);
4711 if (result != VK_SUCCESS)
4712 goto fail;
4713 }
4714
4715 for (uint32_t i = 0; i < submission->image_opaque_bind_count; ++i) {
4716 result =
4717 radv_sparse_image_opaque_bind_memory(queue->device, submission->image_opaque_binds + i);
4718 if (result != VK_SUCCESS)
4719 goto fail;
4720 }
4721
4722 for (uint32_t i = 0; i < submission->image_bind_count; ++i) {
4723 result = radv_sparse_image_bind_memory(queue->device, submission->image_binds + i);
4724 if (result != VK_SUCCESS)
4725 goto fail;
4726 }
4727
4728 if (!submission->cmd_buffer_count) {
4729 result = queue->device->ws->cs_submit(ctx, queue->vk.index_in_family,
4730 &queue->device->empty_cs[queue->vk.queue_family_index], 1,
4731 NULL, NULL, &sem_info, false);
4732 if (result != VK_SUCCESS)
4733 goto fail;
4734 } else {
4735 struct radeon_cmdbuf **cs_array =
4736 malloc(sizeof(struct radeon_cmdbuf *) * (submission->cmd_buffer_count));
4737
4738 for (uint32_t j = 0; j < submission->cmd_buffer_count; j++) {
4739 RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, submission->cmd_buffers[j]);
4740 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
4741
4742 cs_array[j] = cmd_buffer->cs;
4743 if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
4744 can_patch = false;
4745
4746 cmd_buffer->status = RADV_CMD_BUFFER_STATUS_PENDING;
4747 }
4748
4749 for (uint32_t j = 0; j < submission->cmd_buffer_count; j += advance) {
4750 struct radeon_cmdbuf *initial_preamble =
4751 (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
4752 advance = MIN2(max_cs_submission, submission->cmd_buffer_count - j);
4753
4754 if (queue->device->trace_bo)
4755 *queue->device->trace_id_ptr = 0;
4756
4757 sem_info.cs_emit_wait = j == 0;
4758 sem_info.cs_emit_signal = j + advance == submission->cmd_buffer_count;
4759
4760 result = queue->device->ws->cs_submit(ctx, queue->vk.index_in_family, cs_array + j, advance,
4761 initial_preamble, continue_preamble_cs, &sem_info,
4762 can_patch);
4763 if (result != VK_SUCCESS) {
4764 free(cs_array);
4765 goto fail;
4766 }
4767
4768 if (queue->device->trace_bo) {
4769 radv_check_gpu_hangs(queue, cs_array[j]);
4770 }
4771
4772 if (queue->device->tma_bo) {
4773 radv_check_trap_handler(queue);
4774 }
4775 }
4776
4777 free(cs_array);
4778 }
4779
4780 radv_finalize_timelines(queue->device, submission->wait_semaphore_count,
4781 submission->wait_semaphores, submission->wait_values,
4782 submission->signal_semaphore_count, submission->signal_semaphores,
4783 submission->signal_values, processing_list);
4784 /* Has to happen after timeline finalization to make sure the
4785 * condition variable is only triggered when timelines and queue have
4786 * been updated. */
4787 radv_queue_submission_update_queue(submission, processing_list);
4788
4789 fail:
4790 if (result != VK_SUCCESS && result != VK_ERROR_DEVICE_LOST) {
4791 /* When something bad happened during the submission, such as
4792 * an out of memory issue, it might be hard to recover from
4793 * this inconsistent state. To avoid this sort of problem, we
4794 * assume that we are in a really bad situation and return
4795 * VK_ERROR_DEVICE_LOST to ensure the clients do not attempt
4796 * to submit the same job again to this device.
4797 */
4798 result = radv_device_set_lost(queue->device, "vkQueueSubmit() failed");
4799 }
4800
4801 radv_free_temp_syncobjs(queue->device, submission->temporary_semaphore_part_count,
4802 submission->temporary_semaphore_parts);
4803 radv_free_sem_info(&sem_info);
4804 free(submission);
4805 return result;
4806 }
4807
4808 static VkResult
radv_process_submissions(struct list_head * processing_list)4809 radv_process_submissions(struct list_head *processing_list)
4810 {
4811 while (!list_is_empty(processing_list)) {
4812 struct radv_deferred_queue_submission *submission =
4813 list_first_entry(processing_list, struct radv_deferred_queue_submission, processing_list);
4814 list_del(&submission->processing_list);
4815
4816 VkResult result = radv_queue_submit_deferred(submission, processing_list);
4817 if (result != VK_SUCCESS)
4818 return result;
4819 }
4820 return VK_SUCCESS;
4821 }
4822
4823 static VkResult
wait_for_submission_timelines_available(struct radv_deferred_queue_submission * submission,uint64_t timeout)4824 wait_for_submission_timelines_available(struct radv_deferred_queue_submission *submission,
4825 uint64_t timeout)
4826 {
4827 struct radv_device *device = submission->queue->device;
4828 uint32_t syncobj_count = 0;
4829 uint32_t syncobj_idx = 0;
4830
4831 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4832 if (submission->wait_semaphores[i]->kind != RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
4833 continue;
4834
4835 if (submission->wait_semaphores[i]->timeline_syncobj.max_point >= submission->wait_values[i])
4836 continue;
4837 ++syncobj_count;
4838 }
4839
4840 if (!syncobj_count)
4841 return VK_SUCCESS;
4842
4843 uint64_t *points = malloc((sizeof(uint64_t) + sizeof(uint32_t)) * syncobj_count);
4844 if (!points)
4845 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
4846
4847 uint32_t *syncobj = (uint32_t *)(points + syncobj_count);
4848
4849 for (uint32_t i = 0; i < submission->wait_semaphore_count; ++i) {
4850 if (submission->wait_semaphores[i]->kind != RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
4851 continue;
4852
4853 if (submission->wait_semaphores[i]->timeline_syncobj.max_point >= submission->wait_values[i])
4854 continue;
4855
4856 syncobj[syncobj_idx] = submission->wait_semaphores[i]->syncobj;
4857 points[syncobj_idx] = submission->wait_values[i];
4858 ++syncobj_idx;
4859 }
4860
4861 bool success = true;
4862 if (syncobj_idx > 0) {
4863 success = device->ws->wait_timeline_syncobj(device->ws, syncobj, points, syncobj_idx, true,
4864 true, timeout);
4865 }
4866
4867 free(points);
4868 return success ? VK_SUCCESS : VK_TIMEOUT;
4869 }
4870
4871 static int
radv_queue_submission_thread_run(void * q)4872 radv_queue_submission_thread_run(void *q)
4873 {
4874 struct radv_queue *queue = q;
4875
4876 mtx_lock(&queue->thread_mutex);
4877 while (!p_atomic_read(&queue->thread_exit)) {
4878 struct radv_deferred_queue_submission *submission = queue->thread_submission;
4879 struct list_head processing_list;
4880 VkResult result = VK_SUCCESS;
4881 if (!submission) {
4882 u_cnd_monotonic_wait(&queue->thread_cond, &queue->thread_mutex);
4883 continue;
4884 }
4885 mtx_unlock(&queue->thread_mutex);
4886
4887 /* Wait at most 5 seconds so we have a chance to notice shutdown when
4888 * a semaphore never gets signaled. If it takes longer we just retry
4889 * the wait next iteration. */
4890 result =
4891 wait_for_submission_timelines_available(submission, radv_get_absolute_timeout(5000000000));
4892 if (result != VK_SUCCESS) {
4893 mtx_lock(&queue->thread_mutex);
4894 continue;
4895 }
4896
4897 /* The lock isn't held but nobody will add one until we finish
4898 * the current submission. */
4899 p_atomic_set(&queue->thread_submission, NULL);
4900
4901 list_inithead(&processing_list);
4902 list_addtail(&submission->processing_list, &processing_list);
4903 result = radv_process_submissions(&processing_list);
4904
4905 mtx_lock(&queue->thread_mutex);
4906 }
4907 mtx_unlock(&queue->thread_mutex);
4908 return 0;
4909 }
4910
4911 static VkResult
radv_queue_trigger_submission(struct radv_deferred_queue_submission * submission,uint32_t decrement,struct list_head * processing_list)4912 radv_queue_trigger_submission(struct radv_deferred_queue_submission *submission, uint32_t decrement,
4913 struct list_head *processing_list)
4914 {
4915 struct radv_queue *queue = submission->queue;
4916 int ret;
4917 if (p_atomic_add_return(&submission->submission_wait_count, -decrement))
4918 return VK_SUCCESS;
4919
4920 if (wait_for_submission_timelines_available(submission, radv_get_absolute_timeout(0)) ==
4921 VK_SUCCESS) {
4922 list_addtail(&submission->processing_list, processing_list);
4923 return VK_SUCCESS;
4924 }
4925
4926 mtx_lock(&queue->thread_mutex);
4927
4928 /* A submission can only be ready for the thread if it doesn't have
4929 * any predecessors in the same queue, so there can only be one such
4930 * submission at a time. */
4931 assert(queue->thread_submission == NULL);
4932
4933 /* Only start the thread on demand to save resources for the many games
4934 * which only use binary semaphores. */
4935 if (!queue->thread_running) {
4936 ret = thrd_create(&queue->submission_thread, radv_queue_submission_thread_run, queue);
4937 if (ret) {
4938 mtx_unlock(&queue->thread_mutex);
4939 return vk_errorf(queue, VK_ERROR_DEVICE_LOST,
4940 "Failed to start submission thread");
4941 }
4942 queue->thread_running = true;
4943 }
4944
4945 queue->thread_submission = submission;
4946 mtx_unlock(&queue->thread_mutex);
4947
4948 u_cnd_monotonic_signal(&queue->thread_cond);
4949 return VK_SUCCESS;
4950 }
4951
4952 static VkResult
radv_queue_submit(struct radv_queue * queue,const struct radv_queue_submission * submission)4953 radv_queue_submit(struct radv_queue *queue, const struct radv_queue_submission *submission)
4954 {
4955 struct radv_deferred_queue_submission *deferred = NULL;
4956
4957 VkResult result = radv_create_deferred_submission(queue, submission, &deferred);
4958 if (result != VK_SUCCESS)
4959 return result;
4960
4961 struct list_head processing_list;
4962 list_inithead(&processing_list);
4963
4964 result = radv_queue_enqueue_submission(deferred, &processing_list);
4965 if (result != VK_SUCCESS) {
4966 /* If anything is in the list we leak. */
4967 assert(list_is_empty(&processing_list));
4968 return result;
4969 }
4970 return radv_process_submissions(&processing_list);
4971 }
4972
4973 bool
radv_queue_internal_submit(struct radv_queue * queue,struct radeon_cmdbuf * cs)4974 radv_queue_internal_submit(struct radv_queue *queue, struct radeon_cmdbuf *cs)
4975 {
4976 struct radeon_winsys_ctx *ctx = queue->hw_ctx;
4977 struct radv_winsys_sem_info sem_info = {0};
4978 VkResult result;
4979
4980 result = radv_alloc_sem_info(queue->device, &sem_info, 0, NULL, 0, 0, 0, NULL, VK_NULL_HANDLE);
4981 if (result != VK_SUCCESS)
4982 return false;
4983
4984 result =
4985 queue->device->ws->cs_submit(ctx, queue->vk.index_in_family, &cs, 1,
4986 NULL, NULL, &sem_info, false);
4987 radv_free_sem_info(&sem_info);
4988 if (result != VK_SUCCESS)
4989 return false;
4990
4991 return true;
4992 }
4993
4994 /* Signals fence as soon as all the work currently put on queue is done. */
4995 static VkResult
radv_signal_fence(struct radv_queue * queue,VkFence fence)4996 radv_signal_fence(struct radv_queue *queue, VkFence fence)
4997 {
4998 return radv_queue_submit(queue, &(struct radv_queue_submission){.fence = fence});
4999 }
5000
5001 static bool
radv_submit_has_effects(const VkSubmitInfo * info)5002 radv_submit_has_effects(const VkSubmitInfo *info)
5003 {
5004 return info->commandBufferCount || info->waitSemaphoreCount || info->signalSemaphoreCount;
5005 }
5006
5007 VkResult
radv_QueueSubmit(VkQueue _queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)5008 radv_QueueSubmit(VkQueue _queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence)
5009 {
5010 RADV_FROM_HANDLE(radv_queue, queue, _queue);
5011 VkResult result;
5012 uint32_t fence_idx = 0;
5013 bool flushed_caches = false;
5014
5015 if (radv_device_is_lost(queue->device))
5016 return VK_ERROR_DEVICE_LOST;
5017
5018 if (fence != VK_NULL_HANDLE) {
5019 for (uint32_t i = 0; i < submitCount; ++i)
5020 if (radv_submit_has_effects(pSubmits + i))
5021 fence_idx = i;
5022 } else
5023 fence_idx = UINT32_MAX;
5024
5025 for (uint32_t i = 0; i < submitCount; i++) {
5026 if (!radv_submit_has_effects(pSubmits + i) && fence_idx != i)
5027 continue;
5028
5029 VkPipelineStageFlags wait_dst_stage_mask = 0;
5030 for (unsigned j = 0; j < pSubmits[i].waitSemaphoreCount; ++j) {
5031 wait_dst_stage_mask |= pSubmits[i].pWaitDstStageMask[j];
5032 }
5033
5034 const VkTimelineSemaphoreSubmitInfo *timeline_info =
5035 vk_find_struct_const(pSubmits[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
5036
5037 result = radv_queue_submit(
5038 queue, &(struct radv_queue_submission){
5039 .cmd_buffers = pSubmits[i].pCommandBuffers,
5040 .cmd_buffer_count = pSubmits[i].commandBufferCount,
5041 .wait_dst_stage_mask = wait_dst_stage_mask,
5042 .flush_caches = !flushed_caches,
5043 .wait_semaphores = pSubmits[i].pWaitSemaphores,
5044 .wait_semaphore_count = pSubmits[i].waitSemaphoreCount,
5045 .signal_semaphores = pSubmits[i].pSignalSemaphores,
5046 .signal_semaphore_count = pSubmits[i].signalSemaphoreCount,
5047 .fence = i == fence_idx ? fence : VK_NULL_HANDLE,
5048 .wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
5049 .wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues
5050 ? timeline_info->waitSemaphoreValueCount
5051 : 0,
5052 .signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
5053 .signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues
5054 ? timeline_info->signalSemaphoreValueCount
5055 : 0,
5056 });
5057 if (result != VK_SUCCESS)
5058 return result;
5059
5060 flushed_caches = true;
5061 }
5062
5063 if (fence != VK_NULL_HANDLE && !submitCount) {
5064 result = radv_signal_fence(queue, fence);
5065 if (result != VK_SUCCESS)
5066 return result;
5067 }
5068
5069 return VK_SUCCESS;
5070 }
5071
5072 static const char *
radv_get_queue_family_name(struct radv_queue * queue)5073 radv_get_queue_family_name(struct radv_queue *queue)
5074 {
5075 switch (queue->vk.queue_family_index) {
5076 case RADV_QUEUE_GENERAL:
5077 return "graphics";
5078 case RADV_QUEUE_COMPUTE:
5079 return "compute";
5080 case RADV_QUEUE_TRANSFER:
5081 return "transfer";
5082 default:
5083 unreachable("Unknown queue family");
5084 }
5085 }
5086
5087 VkResult
radv_QueueWaitIdle(VkQueue _queue)5088 radv_QueueWaitIdle(VkQueue _queue)
5089 {
5090 RADV_FROM_HANDLE(radv_queue, queue, _queue);
5091
5092 if (radv_device_is_lost(queue->device))
5093 return VK_ERROR_DEVICE_LOST;
5094
5095 mtx_lock(&queue->pending_mutex);
5096 while (!list_is_empty(&queue->pending_submissions)) {
5097 u_cnd_monotonic_wait(&queue->device->timeline_cond, &queue->pending_mutex);
5098 }
5099 mtx_unlock(&queue->pending_mutex);
5100
5101 if (!queue->device->ws->ctx_wait_idle(
5102 queue->hw_ctx, radv_queue_family_to_ring(queue->vk.queue_family_index),
5103 queue->vk.index_in_family)) {
5104 return radv_device_set_lost(queue->device,
5105 "Failed to wait for a '%s' queue "
5106 "to be idle. GPU hang ?",
5107 radv_get_queue_family_name(queue));
5108 }
5109
5110 return VK_SUCCESS;
5111 }
5112
5113 VkResult
radv_EnumerateInstanceExtensionProperties(const char * pLayerName,uint32_t * pPropertyCount,VkExtensionProperties * pProperties)5114 radv_EnumerateInstanceExtensionProperties(const char *pLayerName, uint32_t *pPropertyCount,
5115 VkExtensionProperties *pProperties)
5116 {
5117 if (pLayerName)
5118 return vk_error(NULL, VK_ERROR_LAYER_NOT_PRESENT);
5119
5120 return vk_enumerate_instance_extension_properties(&radv_instance_extensions_supported,
5121 pPropertyCount, pProperties);
5122 }
5123
5124 PFN_vkVoidFunction
radv_GetInstanceProcAddr(VkInstance _instance,const char * pName)5125 radv_GetInstanceProcAddr(VkInstance _instance, const char *pName)
5126 {
5127 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5128
5129 /* The Vulkan 1.0 spec for vkGetInstanceProcAddr has a table of exactly
5130 * when we have to return valid function pointers, NULL, or it's left
5131 * undefined. See the table for exact details.
5132 */
5133 if (pName == NULL)
5134 return NULL;
5135
5136 #define LOOKUP_RADV_ENTRYPOINT(entrypoint) \
5137 if (strcmp(pName, "vk" #entrypoint) == 0) \
5138 return (PFN_vkVoidFunction)radv_##entrypoint
5139
5140 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceExtensionProperties);
5141 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceLayerProperties);
5142 LOOKUP_RADV_ENTRYPOINT(EnumerateInstanceVersion);
5143 LOOKUP_RADV_ENTRYPOINT(CreateInstance);
5144
5145 /* GetInstanceProcAddr() can also be called with a NULL instance.
5146 * See https://gitlab.khronos.org/vulkan/vulkan/issues/2057
5147 */
5148 LOOKUP_RADV_ENTRYPOINT(GetInstanceProcAddr);
5149
5150 #undef LOOKUP_RADV_ENTRYPOINT
5151
5152 if (instance == NULL)
5153 return NULL;
5154
5155 return vk_instance_get_proc_addr(&instance->vk, &radv_instance_entrypoints, pName);
5156 }
5157
5158 /* Windows will use a dll definition file to avoid build errors. */
5159 #ifdef _WIN32
5160 #undef PUBLIC
5161 #define PUBLIC
5162 #endif
5163
5164 /* The loader wants us to expose a second GetInstanceProcAddr function
5165 * to work around certain LD_PRELOAD issues seen in apps.
5166 */
5167 PUBLIC
5168 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetInstanceProcAddr(VkInstance instance,const char * pName)5169 vk_icdGetInstanceProcAddr(VkInstance instance, const char *pName)
5170 {
5171 return radv_GetInstanceProcAddr(instance, pName);
5172 }
5173
5174 PUBLIC
5175 VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL
vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance,const char * pName)5176 vk_icdGetPhysicalDeviceProcAddr(VkInstance _instance, const char *pName)
5177 {
5178 RADV_FROM_HANDLE(radv_instance, instance, _instance);
5179 return vk_instance_get_physical_device_proc_addr(&instance->vk, pName);
5180 }
5181
5182 bool
radv_get_memory_fd(struct radv_device * device,struct radv_device_memory * memory,int * pFD)5183 radv_get_memory_fd(struct radv_device *device, struct radv_device_memory *memory, int *pFD)
5184 {
5185 /* Only set BO metadata for the first plane */
5186 if (memory->image && memory->image->offset == 0) {
5187 struct radeon_bo_metadata metadata;
5188 radv_init_metadata(device, memory->image, &metadata);
5189 device->ws->buffer_set_metadata(device->ws, memory->bo, &metadata);
5190 }
5191
5192 return device->ws->buffer_get_fd(device->ws, memory->bo, pFD);
5193 }
5194
5195 void
radv_device_memory_init(struct radv_device_memory * mem,struct radv_device * device,struct radeon_winsys_bo * bo)5196 radv_device_memory_init(struct radv_device_memory *mem, struct radv_device *device,
5197 struct radeon_winsys_bo *bo)
5198 {
5199 memset(mem, 0, sizeof(*mem));
5200 vk_object_base_init(&device->vk, &mem->base, VK_OBJECT_TYPE_DEVICE_MEMORY);
5201
5202 mem->bo = bo;
5203 }
5204
5205 void
radv_device_memory_finish(struct radv_device_memory * mem)5206 radv_device_memory_finish(struct radv_device_memory *mem)
5207 {
5208 vk_object_base_finish(&mem->base);
5209 }
5210
5211 void
radv_free_memory(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_device_memory * mem)5212 radv_free_memory(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
5213 struct radv_device_memory *mem)
5214 {
5215 if (mem == NULL)
5216 return;
5217
5218 #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
5219 if (mem->android_hardware_buffer)
5220 AHardwareBuffer_release(mem->android_hardware_buffer);
5221 #endif
5222
5223 if (mem->bo) {
5224 if (device->overallocation_disallowed) {
5225 mtx_lock(&device->overallocation_mutex);
5226 device->allocated_memory_size[mem->heap_index] -= mem->alloc_size;
5227 mtx_unlock(&device->overallocation_mutex);
5228 }
5229
5230 if (device->use_global_bo_list)
5231 device->ws->buffer_make_resident(device->ws, mem->bo, false);
5232 device->ws->buffer_destroy(device->ws, mem->bo);
5233 mem->bo = NULL;
5234 }
5235
5236 radv_device_memory_finish(mem);
5237 vk_free2(&device->vk.alloc, pAllocator, mem);
5238 }
5239
5240 static VkResult
radv_alloc_memory(struct radv_device * device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)5241 radv_alloc_memory(struct radv_device *device, const VkMemoryAllocateInfo *pAllocateInfo,
5242 const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
5243 {
5244 struct radv_device_memory *mem;
5245 VkResult result;
5246 enum radeon_bo_domain domain;
5247 uint32_t flags = 0;
5248
5249 assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
5250
5251 const VkImportMemoryFdInfoKHR *import_info =
5252 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
5253 const VkMemoryDedicatedAllocateInfo *dedicate_info =
5254 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO);
5255 const VkExportMemoryAllocateInfo *export_info =
5256 vk_find_struct_const(pAllocateInfo->pNext, EXPORT_MEMORY_ALLOCATE_INFO);
5257 const struct VkImportAndroidHardwareBufferInfoANDROID *ahb_import_info =
5258 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_ANDROID_HARDWARE_BUFFER_INFO_ANDROID);
5259 const VkImportMemoryHostPointerInfoEXT *host_ptr_info =
5260 vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_HOST_POINTER_INFO_EXT);
5261
5262 const struct wsi_memory_allocate_info *wsi_info =
5263 vk_find_struct_const(pAllocateInfo->pNext, WSI_MEMORY_ALLOCATE_INFO_MESA);
5264
5265 if (pAllocateInfo->allocationSize == 0 && !ahb_import_info &&
5266 !(export_info && (export_info->handleTypes &
5267 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID))) {
5268 /* Apparently, this is allowed */
5269 *pMem = VK_NULL_HANDLE;
5270 return VK_SUCCESS;
5271 }
5272
5273 mem =
5274 vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*mem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5275 if (mem == NULL)
5276 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
5277
5278 radv_device_memory_init(mem, device, NULL);
5279
5280 if (wsi_info) {
5281 if(wsi_info->implicit_sync)
5282 flags |= RADEON_FLAG_IMPLICIT_SYNC;
5283
5284 /* In case of prime, linear buffer is allocated in default heap which is VRAM.
5285 * Due to this when display is connected to iGPU and render on dGPU, ddx
5286 * function amdgpu_present_check_flip() fails due to which there is blit
5287 * instead of flip. Setting the flag RADEON_FLAG_GTT_WC allows kernel to
5288 * allocate GTT memory in supported hardware where GTT can be directly scanout.
5289 * Using wsi_info variable check to set the flag RADEON_FLAG_GTT_WC so that
5290 * only for memory allocated by driver this flag is set.
5291 */
5292 flags |= RADEON_FLAG_GTT_WC;
5293 }
5294
5295 if (dedicate_info) {
5296 mem->image = radv_image_from_handle(dedicate_info->image);
5297 mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
5298 } else {
5299 mem->image = NULL;
5300 mem->buffer = NULL;
5301 }
5302
5303 float priority_float = 0.5;
5304 const struct VkMemoryPriorityAllocateInfoEXT *priority_ext =
5305 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_PRIORITY_ALLOCATE_INFO_EXT);
5306 if (priority_ext)
5307 priority_float = priority_ext->priority;
5308
5309 uint64_t replay_address = 0;
5310 const VkMemoryOpaqueCaptureAddressAllocateInfo *replay_info =
5311 vk_find_struct_const(pAllocateInfo->pNext, MEMORY_OPAQUE_CAPTURE_ADDRESS_ALLOCATE_INFO);
5312 if (replay_info && replay_info->opaqueCaptureAddress)
5313 replay_address = replay_info->opaqueCaptureAddress;
5314
5315 unsigned priority = MIN2(RADV_BO_PRIORITY_APPLICATION_MAX - 1,
5316 (int)(priority_float * RADV_BO_PRIORITY_APPLICATION_MAX));
5317
5318 mem->user_ptr = NULL;
5319
5320 #if RADV_SUPPORT_ANDROID_HARDWARE_BUFFER
5321 mem->android_hardware_buffer = NULL;
5322 #endif
5323
5324 if (ahb_import_info) {
5325 result = radv_import_ahb_memory(device, mem, priority, ahb_import_info);
5326 if (result != VK_SUCCESS)
5327 goto fail;
5328 } else if (export_info && (export_info->handleTypes &
5329 VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID)) {
5330 result = radv_create_ahb_memory(device, mem, priority, pAllocateInfo);
5331 if (result != VK_SUCCESS)
5332 goto fail;
5333 } else if (import_info) {
5334 assert(import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
5335 import_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
5336 result = device->ws->buffer_from_fd(device->ws, import_info->fd, priority, &mem->bo, NULL);
5337 if (result != VK_SUCCESS) {
5338 goto fail;
5339 } else {
5340 close(import_info->fd);
5341 }
5342
5343 if (mem->image && mem->image->plane_count == 1 &&
5344 !vk_format_is_depth_or_stencil(mem->image->vk_format) && mem->image->info.samples == 1 &&
5345 mem->image->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
5346 struct radeon_bo_metadata metadata;
5347 device->ws->buffer_get_metadata(device->ws, mem->bo, &metadata);
5348
5349 struct radv_image_create_info create_info = {.no_metadata_planes = true,
5350 .bo_metadata = &metadata};
5351
5352 /* This gives a basic ability to import radeonsi images
5353 * that don't have DCC. This is not guaranteed by any
5354 * spec and can be removed after we support modifiers. */
5355 result = radv_image_create_layout(device, create_info, NULL, mem->image);
5356 if (result != VK_SUCCESS) {
5357 device->ws->buffer_destroy(device->ws, mem->bo);
5358 goto fail;
5359 }
5360 }
5361 } else if (host_ptr_info) {
5362 assert(host_ptr_info->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT);
5363 result = device->ws->buffer_from_ptr(device->ws, host_ptr_info->pHostPointer,
5364 pAllocateInfo->allocationSize, priority, &mem->bo);
5365 if (result != VK_SUCCESS) {
5366 goto fail;
5367 } else {
5368 mem->user_ptr = host_ptr_info->pHostPointer;
5369 }
5370 } else {
5371 uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
5372 uint32_t heap_index;
5373
5374 heap_index =
5375 device->physical_device->memory_properties.memoryTypes[pAllocateInfo->memoryTypeIndex]
5376 .heapIndex;
5377 domain = device->physical_device->memory_domains[pAllocateInfo->memoryTypeIndex];
5378 flags |= device->physical_device->memory_flags[pAllocateInfo->memoryTypeIndex];
5379
5380 if (!import_info && (!export_info || !export_info->handleTypes)) {
5381 flags |= RADEON_FLAG_NO_INTERPROCESS_SHARING;
5382 if (device->use_global_bo_list) {
5383 flags |= RADEON_FLAG_PREFER_LOCAL_BO;
5384 }
5385 }
5386
5387 const VkMemoryAllocateFlagsInfo *flags_info = vk_find_struct_const(pAllocateInfo->pNext, MEMORY_ALLOCATE_FLAGS_INFO);
5388 if (flags_info && flags_info->flags & VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
5389 flags |= RADEON_FLAG_REPLAYABLE;
5390
5391 if (device->overallocation_disallowed) {
5392 uint64_t total_size =
5393 device->physical_device->memory_properties.memoryHeaps[heap_index].size;
5394
5395 mtx_lock(&device->overallocation_mutex);
5396 if (device->allocated_memory_size[heap_index] + alloc_size > total_size) {
5397 mtx_unlock(&device->overallocation_mutex);
5398 result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
5399 goto fail;
5400 }
5401 device->allocated_memory_size[heap_index] += alloc_size;
5402 mtx_unlock(&device->overallocation_mutex);
5403 }
5404
5405 result = device->ws->buffer_create(device->ws, alloc_size,
5406 device->physical_device->rad_info.max_alignment, domain,
5407 flags, priority, replay_address, &mem->bo);
5408
5409 if (result != VK_SUCCESS) {
5410 if (device->overallocation_disallowed) {
5411 mtx_lock(&device->overallocation_mutex);
5412 device->allocated_memory_size[heap_index] -= alloc_size;
5413 mtx_unlock(&device->overallocation_mutex);
5414 }
5415 goto fail;
5416 }
5417
5418 mem->heap_index = heap_index;
5419 mem->alloc_size = alloc_size;
5420 }
5421
5422 if (!wsi_info) {
5423 if (device->use_global_bo_list) {
5424 result = device->ws->buffer_make_resident(device->ws, mem->bo, true);
5425 if (result != VK_SUCCESS)
5426 goto fail;
5427 }
5428 }
5429
5430 *pMem = radv_device_memory_to_handle(mem);
5431
5432 return VK_SUCCESS;
5433
5434 fail:
5435 radv_free_memory(device, pAllocator, mem);
5436
5437 return result;
5438 }
5439
5440 VkResult
radv_AllocateMemory(VkDevice _device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMem)5441 radv_AllocateMemory(VkDevice _device, const VkMemoryAllocateInfo *pAllocateInfo,
5442 const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMem)
5443 {
5444 RADV_FROM_HANDLE(radv_device, device, _device);
5445 return radv_alloc_memory(device, pAllocateInfo, pAllocator, pMem);
5446 }
5447
5448 void
radv_FreeMemory(VkDevice _device,VkDeviceMemory _mem,const VkAllocationCallbacks * pAllocator)5449 radv_FreeMemory(VkDevice _device, VkDeviceMemory _mem, const VkAllocationCallbacks *pAllocator)
5450 {
5451 RADV_FROM_HANDLE(radv_device, device, _device);
5452 RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
5453
5454 radv_free_memory(device, pAllocator, mem);
5455 }
5456
5457 VkResult
radv_MapMemory(VkDevice _device,VkDeviceMemory _memory,VkDeviceSize offset,VkDeviceSize size,VkMemoryMapFlags flags,void ** ppData)5458 radv_MapMemory(VkDevice _device, VkDeviceMemory _memory, VkDeviceSize offset, VkDeviceSize size,
5459 VkMemoryMapFlags flags, void **ppData)
5460 {
5461 RADV_FROM_HANDLE(radv_device, device, _device);
5462 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
5463
5464 if (mem == NULL) {
5465 *ppData = NULL;
5466 return VK_SUCCESS;
5467 }
5468
5469 if (mem->user_ptr)
5470 *ppData = mem->user_ptr;
5471 else
5472 *ppData = device->ws->buffer_map(mem->bo);
5473
5474 if (*ppData) {
5475 *ppData = (uint8_t *)*ppData + offset;
5476 return VK_SUCCESS;
5477 }
5478
5479 return vk_error(device, VK_ERROR_MEMORY_MAP_FAILED);
5480 }
5481
5482 void
radv_UnmapMemory(VkDevice _device,VkDeviceMemory _memory)5483 radv_UnmapMemory(VkDevice _device, VkDeviceMemory _memory)
5484 {
5485 RADV_FROM_HANDLE(radv_device, device, _device);
5486 RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
5487
5488 if (mem == NULL)
5489 return;
5490
5491 if (mem->user_ptr == NULL)
5492 device->ws->buffer_unmap(mem->bo);
5493 }
5494
5495 VkResult
radv_FlushMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)5496 radv_FlushMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
5497 const VkMappedMemoryRange *pMemoryRanges)
5498 {
5499 return VK_SUCCESS;
5500 }
5501
5502 VkResult
radv_InvalidateMappedMemoryRanges(VkDevice _device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)5503 radv_InvalidateMappedMemoryRanges(VkDevice _device, uint32_t memoryRangeCount,
5504 const VkMappedMemoryRange *pMemoryRanges)
5505 {
5506 return VK_SUCCESS;
5507 }
5508
5509 static void
radv_get_buffer_memory_requirements(struct radv_device * device,VkDeviceSize size,VkBufferCreateFlags flags,VkMemoryRequirements2 * pMemoryRequirements)5510 radv_get_buffer_memory_requirements(struct radv_device *device,
5511 VkDeviceSize size,
5512 VkBufferCreateFlags flags,
5513 VkMemoryRequirements2 *pMemoryRequirements)
5514 {
5515 pMemoryRequirements->memoryRequirements.memoryTypeBits =
5516 (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
5517
5518 if (flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
5519 pMemoryRequirements->memoryRequirements.alignment = 4096;
5520 else
5521 pMemoryRequirements->memoryRequirements.alignment = 16;
5522
5523 pMemoryRequirements->memoryRequirements.size =
5524 align64(size, pMemoryRequirements->memoryRequirements.alignment);
5525
5526 vk_foreach_struct(ext, pMemoryRequirements->pNext)
5527 {
5528 switch (ext->sType) {
5529 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
5530 VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
5531 req->requiresDedicatedAllocation = false;
5532 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
5533 break;
5534 }
5535 default:
5536 break;
5537 }
5538 }
5539 }
5540
5541 void
radv_GetBufferMemoryRequirements2(VkDevice _device,const VkBufferMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5542 radv_GetBufferMemoryRequirements2(VkDevice _device, const VkBufferMemoryRequirementsInfo2 *pInfo,
5543 VkMemoryRequirements2 *pMemoryRequirements)
5544 {
5545 RADV_FROM_HANDLE(radv_device, device, _device);
5546 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
5547
5548 radv_get_buffer_memory_requirements(device, buffer->size, buffer->flags, pMemoryRequirements);
5549 }
5550
5551 void
radv_GetDeviceBufferMemoryRequirementsKHR(VkDevice _device,const VkDeviceBufferMemoryRequirementsKHR * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5552 radv_GetDeviceBufferMemoryRequirementsKHR(VkDevice _device,
5553 const VkDeviceBufferMemoryRequirementsKHR* pInfo,
5554 VkMemoryRequirements2 *pMemoryRequirements)
5555 {
5556 RADV_FROM_HANDLE(radv_device, device, _device);
5557
5558 radv_get_buffer_memory_requirements(device, pInfo->pCreateInfo->size, pInfo->pCreateInfo->flags,
5559 pMemoryRequirements);
5560 }
5561
5562 void
radv_GetImageMemoryRequirements2(VkDevice _device,const VkImageMemoryRequirementsInfo2 * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5563 radv_GetImageMemoryRequirements2(VkDevice _device, const VkImageMemoryRequirementsInfo2 *pInfo,
5564 VkMemoryRequirements2 *pMemoryRequirements)
5565 {
5566 RADV_FROM_HANDLE(radv_device, device, _device);
5567 RADV_FROM_HANDLE(radv_image, image, pInfo->image);
5568
5569 pMemoryRequirements->memoryRequirements.memoryTypeBits =
5570 (1u << device->physical_device->memory_properties.memoryTypeCount) - 1;
5571
5572 pMemoryRequirements->memoryRequirements.size = image->size;
5573 pMemoryRequirements->memoryRequirements.alignment = image->alignment;
5574
5575 vk_foreach_struct(ext, pMemoryRequirements->pNext)
5576 {
5577 switch (ext->sType) {
5578 case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
5579 VkMemoryDedicatedRequirements *req = (VkMemoryDedicatedRequirements *)ext;
5580 req->requiresDedicatedAllocation =
5581 image->shareable && image->tiling != VK_IMAGE_TILING_LINEAR;
5582 req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
5583 break;
5584 }
5585 default:
5586 break;
5587 }
5588 }
5589 }
5590
5591 void
radv_GetDeviceImageMemoryRequirementsKHR(VkDevice device,const VkDeviceImageMemoryRequirementsKHR * pInfo,VkMemoryRequirements2 * pMemoryRequirements)5592 radv_GetDeviceImageMemoryRequirementsKHR(VkDevice device,
5593 const VkDeviceImageMemoryRequirementsKHR *pInfo,
5594 VkMemoryRequirements2 *pMemoryRequirements)
5595 {
5596 UNUSED VkResult result;
5597 VkImage image;
5598
5599 /* Determining the image size/alignment require to create a surface, which is complicated without
5600 * creating an image.
5601 * TODO: Avoid creating an image.
5602 */
5603 result = radv_CreateImage(device, pInfo->pCreateInfo, NULL, &image);
5604 assert(result == VK_SUCCESS);
5605
5606 VkImageMemoryRequirementsInfo2 info2 = {
5607 .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
5608 .image = image,
5609 };
5610
5611 radv_GetImageMemoryRequirements2(device, &info2, pMemoryRequirements);
5612
5613 radv_DestroyImage(device, image, NULL);
5614 }
5615
5616 void
radv_GetDeviceMemoryCommitment(VkDevice device,VkDeviceMemory memory,VkDeviceSize * pCommittedMemoryInBytes)5617 radv_GetDeviceMemoryCommitment(VkDevice device, VkDeviceMemory memory,
5618 VkDeviceSize *pCommittedMemoryInBytes)
5619 {
5620 *pCommittedMemoryInBytes = 0;
5621 }
5622
5623 VkResult
radv_BindBufferMemory2(VkDevice _device,uint32_t bindInfoCount,const VkBindBufferMemoryInfo * pBindInfos)5624 radv_BindBufferMemory2(VkDevice _device, uint32_t bindInfoCount,
5625 const VkBindBufferMemoryInfo *pBindInfos)
5626 {
5627 RADV_FROM_HANDLE(radv_device, device, _device);
5628
5629 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5630 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
5631 RADV_FROM_HANDLE(radv_buffer, buffer, pBindInfos[i].buffer);
5632
5633 if (mem) {
5634 if (mem->alloc_size) {
5635 VkBufferMemoryRequirementsInfo2 info = {
5636 .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2,
5637 .buffer = pBindInfos[i].buffer,
5638 };
5639 VkMemoryRequirements2 reqs = {
5640 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
5641 };
5642
5643 radv_GetBufferMemoryRequirements2(_device, &info, &reqs);
5644
5645 if (pBindInfos[i].memoryOffset + reqs.memoryRequirements.size > mem->alloc_size) {
5646 return vk_errorf(device, VK_ERROR_UNKNOWN,
5647 "Device memory object too small for the buffer.\n");
5648 }
5649 }
5650
5651 buffer->bo = mem->bo;
5652 buffer->offset = pBindInfos[i].memoryOffset;
5653 } else {
5654 buffer->bo = NULL;
5655 }
5656 }
5657 return VK_SUCCESS;
5658 }
5659
5660 VkResult
radv_BindImageMemory2(VkDevice _device,uint32_t bindInfoCount,const VkBindImageMemoryInfo * pBindInfos)5661 radv_BindImageMemory2(VkDevice _device, uint32_t bindInfoCount,
5662 const VkBindImageMemoryInfo *pBindInfos)
5663 {
5664 RADV_FROM_HANDLE(radv_device, device, _device);
5665
5666 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5667 RADV_FROM_HANDLE(radv_device_memory, mem, pBindInfos[i].memory);
5668 RADV_FROM_HANDLE(radv_image, image, pBindInfos[i].image);
5669
5670 if (mem) {
5671 if (mem->alloc_size) {
5672 VkImageMemoryRequirementsInfo2 info = {
5673 .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
5674 .image = pBindInfos[i].image,
5675 };
5676 VkMemoryRequirements2 reqs = {
5677 .sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
5678 };
5679
5680 radv_GetImageMemoryRequirements2(_device, &info, &reqs);
5681
5682 if (pBindInfos[i].memoryOffset + reqs.memoryRequirements.size > mem->alloc_size) {
5683 return vk_errorf(device, VK_ERROR_UNKNOWN,
5684 "Device memory object too small for the image.\n");
5685 }
5686 }
5687
5688 image->bo = mem->bo;
5689 image->offset = pBindInfos[i].memoryOffset;
5690 } else {
5691 image->bo = NULL;
5692 image->offset = 0;
5693 }
5694 }
5695 return VK_SUCCESS;
5696 }
5697
5698 static bool
radv_sparse_bind_has_effects(const VkBindSparseInfo * info)5699 radv_sparse_bind_has_effects(const VkBindSparseInfo *info)
5700 {
5701 return info->bufferBindCount || info->imageOpaqueBindCount || info->imageBindCount ||
5702 info->waitSemaphoreCount || info->signalSemaphoreCount;
5703 }
5704
5705 VkResult
radv_QueueBindSparse(VkQueue _queue,uint32_t bindInfoCount,const VkBindSparseInfo * pBindInfo,VkFence fence)5706 radv_QueueBindSparse(VkQueue _queue, uint32_t bindInfoCount, const VkBindSparseInfo *pBindInfo,
5707 VkFence fence)
5708 {
5709 RADV_FROM_HANDLE(radv_queue, queue, _queue);
5710 uint32_t fence_idx = 0;
5711
5712 if (radv_device_is_lost(queue->device))
5713 return VK_ERROR_DEVICE_LOST;
5714
5715 if (fence != VK_NULL_HANDLE) {
5716 for (uint32_t i = 0; i < bindInfoCount; ++i)
5717 if (radv_sparse_bind_has_effects(pBindInfo + i))
5718 fence_idx = i;
5719 } else
5720 fence_idx = UINT32_MAX;
5721
5722 for (uint32_t i = 0; i < bindInfoCount; ++i) {
5723 if (i != fence_idx && !radv_sparse_bind_has_effects(pBindInfo + i))
5724 continue;
5725
5726 const VkTimelineSemaphoreSubmitInfo *timeline_info =
5727 vk_find_struct_const(pBindInfo[i].pNext, TIMELINE_SEMAPHORE_SUBMIT_INFO);
5728
5729 VkResult result = radv_queue_submit(
5730 queue, &(struct radv_queue_submission){
5731 .buffer_binds = pBindInfo[i].pBufferBinds,
5732 .buffer_bind_count = pBindInfo[i].bufferBindCount,
5733 .image_opaque_binds = pBindInfo[i].pImageOpaqueBinds,
5734 .image_opaque_bind_count = pBindInfo[i].imageOpaqueBindCount,
5735 .image_binds = pBindInfo[i].pImageBinds,
5736 .image_bind_count = pBindInfo[i].imageBindCount,
5737 .wait_semaphores = pBindInfo[i].pWaitSemaphores,
5738 .wait_semaphore_count = pBindInfo[i].waitSemaphoreCount,
5739 .signal_semaphores = pBindInfo[i].pSignalSemaphores,
5740 .signal_semaphore_count = pBindInfo[i].signalSemaphoreCount,
5741 .fence = i == fence_idx ? fence : VK_NULL_HANDLE,
5742 .wait_values = timeline_info ? timeline_info->pWaitSemaphoreValues : NULL,
5743 .wait_value_count = timeline_info && timeline_info->pWaitSemaphoreValues
5744 ? timeline_info->waitSemaphoreValueCount
5745 : 0,
5746 .signal_values = timeline_info ? timeline_info->pSignalSemaphoreValues : NULL,
5747 .signal_value_count = timeline_info && timeline_info->pSignalSemaphoreValues
5748 ? timeline_info->signalSemaphoreValueCount
5749 : 0,
5750 });
5751
5752 if (result != VK_SUCCESS)
5753 return result;
5754 }
5755
5756 if (fence != VK_NULL_HANDLE && !bindInfoCount) {
5757 VkResult result = radv_signal_fence(queue, fence);
5758 if (result != VK_SUCCESS)
5759 return result;
5760 }
5761
5762 return VK_SUCCESS;
5763 }
5764
5765 static void
radv_destroy_fence_part(struct radv_device * device,struct radv_fence_part * part)5766 radv_destroy_fence_part(struct radv_device *device, struct radv_fence_part *part)
5767 {
5768 if (part->kind != RADV_FENCE_NONE)
5769 device->ws->destroy_syncobj(device->ws, part->syncobj);
5770 part->kind = RADV_FENCE_NONE;
5771 }
5772
5773 static void
radv_destroy_fence(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_fence * fence)5774 radv_destroy_fence(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
5775 struct radv_fence *fence)
5776 {
5777 radv_destroy_fence_part(device, &fence->temporary);
5778 radv_destroy_fence_part(device, &fence->permanent);
5779
5780 vk_object_base_finish(&fence->base);
5781 vk_free2(&device->vk.alloc, pAllocator, fence);
5782 }
5783
5784 VkResult
radv_CreateFence(VkDevice _device,const VkFenceCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkFence * pFence)5785 radv_CreateFence(VkDevice _device, const VkFenceCreateInfo *pCreateInfo,
5786 const VkAllocationCallbacks *pAllocator, VkFence *pFence)
5787 {
5788 RADV_FROM_HANDLE(radv_device, device, _device);
5789 bool create_signaled = false;
5790 struct radv_fence *fence;
5791 int ret;
5792
5793 fence = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*fence), 8,
5794 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
5795 if (!fence)
5796 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
5797
5798 vk_object_base_init(&device->vk, &fence->base, VK_OBJECT_TYPE_FENCE);
5799
5800 fence->permanent.kind = RADV_FENCE_SYNCOBJ;
5801
5802 if (pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT)
5803 create_signaled = true;
5804
5805 ret = device->ws->create_syncobj(device->ws, create_signaled, &fence->permanent.syncobj);
5806 if (ret) {
5807 radv_destroy_fence(device, pAllocator, fence);
5808 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
5809 }
5810
5811 *pFence = radv_fence_to_handle(fence);
5812
5813 return VK_SUCCESS;
5814 }
5815
5816 void
radv_DestroyFence(VkDevice _device,VkFence _fence,const VkAllocationCallbacks * pAllocator)5817 radv_DestroyFence(VkDevice _device, VkFence _fence, const VkAllocationCallbacks *pAllocator)
5818 {
5819 RADV_FROM_HANDLE(radv_device, device, _device);
5820 RADV_FROM_HANDLE(radv_fence, fence, _fence);
5821
5822 if (!fence)
5823 return;
5824
5825 radv_destroy_fence(device, pAllocator, fence);
5826 }
5827
5828 VkResult
radv_WaitForFences(VkDevice _device,uint32_t fenceCount,const VkFence * pFences,VkBool32 waitAll,uint64_t timeout)5829 radv_WaitForFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences, VkBool32 waitAll,
5830 uint64_t timeout)
5831 {
5832 RADV_FROM_HANDLE(radv_device, device, _device);
5833 uint32_t *handles;
5834
5835 if (radv_device_is_lost(device))
5836 return VK_ERROR_DEVICE_LOST;
5837
5838 timeout = radv_get_absolute_timeout(timeout);
5839
5840 handles = malloc(sizeof(uint32_t) * fenceCount);
5841 if (!handles)
5842 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
5843
5844 for (uint32_t i = 0; i < fenceCount; ++i) {
5845 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5846
5847 struct radv_fence_part *part =
5848 fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
5849
5850 assert(part->kind == RADV_FENCE_SYNCOBJ);
5851 handles[i] = part->syncobj;
5852 }
5853
5854 bool success = device->ws->wait_syncobj(device->ws, handles, fenceCount, waitAll, timeout);
5855 free(handles);
5856 return success ? VK_SUCCESS : VK_TIMEOUT;
5857 }
5858
5859 VkResult
radv_ResetFences(VkDevice _device,uint32_t fenceCount,const VkFence * pFences)5860 radv_ResetFences(VkDevice _device, uint32_t fenceCount, const VkFence *pFences)
5861 {
5862 RADV_FROM_HANDLE(radv_device, device, _device);
5863
5864 for (unsigned i = 0; i < fenceCount; ++i) {
5865 RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
5866
5867 /* From the Vulkan 1.0.53 spec:
5868 *
5869 * "If any member of pFences currently has its payload
5870 * imported with temporary permanence, that fence’s prior
5871 * permanent payload is irst restored. The remaining
5872 * operations described therefore operate on the restored
5873 * payload."
5874 */
5875 if (fence->temporary.kind != RADV_FENCE_NONE)
5876 radv_destroy_fence_part(device, &fence->temporary);
5877
5878 device->ws->reset_syncobj(device->ws, fence->permanent.syncobj);
5879 }
5880
5881 return VK_SUCCESS;
5882 }
5883
5884 VkResult
radv_GetFenceStatus(VkDevice _device,VkFence _fence)5885 radv_GetFenceStatus(VkDevice _device, VkFence _fence)
5886 {
5887 RADV_FROM_HANDLE(radv_device, device, _device);
5888 RADV_FROM_HANDLE(radv_fence, fence, _fence);
5889
5890 struct radv_fence_part *part =
5891 fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
5892
5893 if (radv_device_is_lost(device))
5894 return VK_ERROR_DEVICE_LOST;
5895
5896 bool success = device->ws->wait_syncobj(device->ws, &part->syncobj, 1, true, 0);
5897 return success ? VK_SUCCESS : VK_NOT_READY;
5898 }
5899
5900 // Queue semaphore functions
5901
5902 static void
radv_create_timeline(struct radv_timeline * timeline,uint64_t value)5903 radv_create_timeline(struct radv_timeline *timeline, uint64_t value)
5904 {
5905 timeline->highest_signaled = value;
5906 timeline->highest_submitted = value;
5907 list_inithead(&timeline->points);
5908 list_inithead(&timeline->free_points);
5909 list_inithead(&timeline->waiters);
5910 mtx_init(&timeline->mutex, mtx_plain);
5911 }
5912
5913 static void
radv_destroy_timeline(struct radv_device * device,struct radv_timeline * timeline)5914 radv_destroy_timeline(struct radv_device *device, struct radv_timeline *timeline)
5915 {
5916 list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->free_points, list)
5917 {
5918 list_del(&point->list);
5919 device->ws->destroy_syncobj(device->ws, point->syncobj);
5920 free(point);
5921 }
5922 list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->points, list)
5923 {
5924 list_del(&point->list);
5925 device->ws->destroy_syncobj(device->ws, point->syncobj);
5926 free(point);
5927 }
5928 mtx_destroy(&timeline->mutex);
5929 }
5930
5931 static void
radv_timeline_gc_locked(struct radv_device * device,struct radv_timeline * timeline)5932 radv_timeline_gc_locked(struct radv_device *device, struct radv_timeline *timeline)
5933 {
5934 list_for_each_entry_safe(struct radv_timeline_point, point, &timeline->points, list)
5935 {
5936 if (point->wait_count || point->value > timeline->highest_submitted)
5937 return;
5938
5939 if (device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, 0)) {
5940 timeline->highest_signaled = point->value;
5941 list_del(&point->list);
5942 list_add(&point->list, &timeline->free_points);
5943 }
5944 }
5945 }
5946
5947 static struct radv_timeline_point *
radv_timeline_find_point_at_least_locked(struct radv_device * device,struct radv_timeline * timeline,uint64_t p)5948 radv_timeline_find_point_at_least_locked(struct radv_device *device, struct radv_timeline *timeline,
5949 uint64_t p)
5950 {
5951 radv_timeline_gc_locked(device, timeline);
5952
5953 if (p <= timeline->highest_signaled)
5954 return NULL;
5955
5956 list_for_each_entry(struct radv_timeline_point, point, &timeline->points, list)
5957 {
5958 if (point->value >= p) {
5959 ++point->wait_count;
5960 return point;
5961 }
5962 }
5963 return NULL;
5964 }
5965
5966 static struct radv_timeline_point *
radv_timeline_add_point_locked(struct radv_device * device,struct radv_timeline * timeline,uint64_t p)5967 radv_timeline_add_point_locked(struct radv_device *device, struct radv_timeline *timeline,
5968 uint64_t p)
5969 {
5970 radv_timeline_gc_locked(device, timeline);
5971
5972 struct radv_timeline_point *ret = NULL;
5973 struct radv_timeline_point *prev = NULL;
5974 int r;
5975
5976 if (p <= timeline->highest_signaled)
5977 return NULL;
5978
5979 list_for_each_entry(struct radv_timeline_point, point, &timeline->points, list)
5980 {
5981 if (point->value == p) {
5982 return NULL;
5983 }
5984
5985 if (point->value < p)
5986 prev = point;
5987 }
5988
5989 if (list_is_empty(&timeline->free_points)) {
5990 ret = malloc(sizeof(struct radv_timeline_point));
5991 r = device->ws->create_syncobj(device->ws, false, &ret->syncobj);
5992 if (r) {
5993 free(ret);
5994 return NULL;
5995 }
5996 } else {
5997 ret = list_first_entry(&timeline->free_points, struct radv_timeline_point, list);
5998 list_del(&ret->list);
5999
6000 device->ws->reset_syncobj(device->ws, ret->syncobj);
6001 }
6002
6003 ret->value = p;
6004 ret->wait_count = 1;
6005
6006 if (prev) {
6007 list_add(&ret->list, &prev->list);
6008 } else {
6009 list_addtail(&ret->list, &timeline->points);
6010 }
6011 return ret;
6012 }
6013
6014 static VkResult
radv_timeline_wait(struct radv_device * device,struct radv_timeline * timeline,uint64_t value,uint64_t abs_timeout)6015 radv_timeline_wait(struct radv_device *device, struct radv_timeline *timeline, uint64_t value,
6016 uint64_t abs_timeout)
6017 {
6018 mtx_lock(&timeline->mutex);
6019
6020 while (timeline->highest_submitted < value) {
6021 struct timespec abstime;
6022 timespec_from_nsec(&abstime, abs_timeout);
6023
6024 u_cnd_monotonic_timedwait(&device->timeline_cond, &timeline->mutex, &abstime);
6025
6026 if (radv_get_current_time() >= abs_timeout && timeline->highest_submitted < value) {
6027 mtx_unlock(&timeline->mutex);
6028 return VK_TIMEOUT;
6029 }
6030 }
6031
6032 struct radv_timeline_point *point =
6033 radv_timeline_find_point_at_least_locked(device, timeline, value);
6034 mtx_unlock(&timeline->mutex);
6035 if (!point)
6036 return VK_SUCCESS;
6037
6038 bool success = device->ws->wait_syncobj(device->ws, &point->syncobj, 1, true, abs_timeout);
6039
6040 mtx_lock(&timeline->mutex);
6041 point->wait_count--;
6042 mtx_unlock(&timeline->mutex);
6043 return success ? VK_SUCCESS : VK_TIMEOUT;
6044 }
6045
6046 static void
radv_timeline_trigger_waiters_locked(struct radv_timeline * timeline,struct list_head * processing_list)6047 radv_timeline_trigger_waiters_locked(struct radv_timeline *timeline,
6048 struct list_head *processing_list)
6049 {
6050 list_for_each_entry_safe(struct radv_timeline_waiter, waiter, &timeline->waiters, list)
6051 {
6052 if (waiter->value > timeline->highest_submitted)
6053 continue;
6054
6055 radv_queue_trigger_submission(waiter->submission, 1, processing_list);
6056 list_del(&waiter->list);
6057 }
6058 }
6059
6060 static void
radv_destroy_semaphore_part(struct radv_device * device,struct radv_semaphore_part * part)6061 radv_destroy_semaphore_part(struct radv_device *device, struct radv_semaphore_part *part)
6062 {
6063 switch (part->kind) {
6064 case RADV_SEMAPHORE_NONE:
6065 break;
6066 case RADV_SEMAPHORE_TIMELINE:
6067 radv_destroy_timeline(device, &part->timeline);
6068 break;
6069 case RADV_SEMAPHORE_SYNCOBJ:
6070 case RADV_SEMAPHORE_TIMELINE_SYNCOBJ:
6071 device->ws->destroy_syncobj(device->ws, part->syncobj);
6072 break;
6073 }
6074 part->kind = RADV_SEMAPHORE_NONE;
6075 }
6076
6077 static VkSemaphoreTypeKHR
radv_get_semaphore_type(const void * pNext,uint64_t * initial_value)6078 radv_get_semaphore_type(const void *pNext, uint64_t *initial_value)
6079 {
6080 const VkSemaphoreTypeCreateInfo *type_info =
6081 vk_find_struct_const(pNext, SEMAPHORE_TYPE_CREATE_INFO);
6082
6083 if (!type_info)
6084 return VK_SEMAPHORE_TYPE_BINARY;
6085
6086 if (initial_value)
6087 *initial_value = type_info->initialValue;
6088 return type_info->semaphoreType;
6089 }
6090
6091 static void
radv_destroy_semaphore(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_semaphore * sem)6092 radv_destroy_semaphore(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
6093 struct radv_semaphore *sem)
6094 {
6095 radv_destroy_semaphore_part(device, &sem->temporary);
6096 radv_destroy_semaphore_part(device, &sem->permanent);
6097 vk_object_base_finish(&sem->base);
6098 vk_free2(&device->vk.alloc, pAllocator, sem);
6099 }
6100
6101 VkResult
radv_CreateSemaphore(VkDevice _device,const VkSemaphoreCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSemaphore * pSemaphore)6102 radv_CreateSemaphore(VkDevice _device, const VkSemaphoreCreateInfo *pCreateInfo,
6103 const VkAllocationCallbacks *pAllocator, VkSemaphore *pSemaphore)
6104 {
6105 RADV_FROM_HANDLE(radv_device, device, _device);
6106 uint64_t initial_value = 0;
6107 VkSemaphoreTypeKHR type = radv_get_semaphore_type(pCreateInfo->pNext, &initial_value);
6108
6109 struct radv_semaphore *sem =
6110 vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sem), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6111 if (!sem)
6112 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6113
6114 vk_object_base_init(&device->vk, &sem->base, VK_OBJECT_TYPE_SEMAPHORE);
6115
6116 sem->temporary.kind = RADV_SEMAPHORE_NONE;
6117 sem->permanent.kind = RADV_SEMAPHORE_NONE;
6118
6119 if (type == VK_SEMAPHORE_TYPE_TIMELINE &&
6120 device->physical_device->rad_info.has_timeline_syncobj) {
6121 int ret = device->ws->create_syncobj(device->ws, false, &sem->permanent.syncobj);
6122 if (ret) {
6123 radv_destroy_semaphore(device, pAllocator, sem);
6124 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6125 }
6126 device->ws->signal_syncobj(device->ws, sem->permanent.syncobj, initial_value);
6127 sem->permanent.timeline_syncobj.max_point = initial_value;
6128 sem->permanent.kind = RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
6129 } else if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
6130 radv_create_timeline(&sem->permanent.timeline, initial_value);
6131 sem->permanent.kind = RADV_SEMAPHORE_TIMELINE;
6132 } else {
6133 int ret = device->ws->create_syncobj(device->ws, false, &sem->permanent.syncobj);
6134 if (ret) {
6135 radv_destroy_semaphore(device, pAllocator, sem);
6136 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6137 }
6138 sem->permanent.kind = RADV_SEMAPHORE_SYNCOBJ;
6139 }
6140
6141 *pSemaphore = radv_semaphore_to_handle(sem);
6142 return VK_SUCCESS;
6143 }
6144
6145 void
radv_DestroySemaphore(VkDevice _device,VkSemaphore _semaphore,const VkAllocationCallbacks * pAllocator)6146 radv_DestroySemaphore(VkDevice _device, VkSemaphore _semaphore,
6147 const VkAllocationCallbacks *pAllocator)
6148 {
6149 RADV_FROM_HANDLE(radv_device, device, _device);
6150 RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
6151 if (!_semaphore)
6152 return;
6153
6154 radv_destroy_semaphore(device, pAllocator, sem);
6155 }
6156
6157 VkResult
radv_GetSemaphoreCounterValue(VkDevice _device,VkSemaphore _semaphore,uint64_t * pValue)6158 radv_GetSemaphoreCounterValue(VkDevice _device, VkSemaphore _semaphore, uint64_t *pValue)
6159 {
6160 RADV_FROM_HANDLE(radv_device, device, _device);
6161 RADV_FROM_HANDLE(radv_semaphore, semaphore, _semaphore);
6162
6163 if (radv_device_is_lost(device))
6164 return VK_ERROR_DEVICE_LOST;
6165
6166 struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE
6167 ? &semaphore->temporary
6168 : &semaphore->permanent;
6169
6170 switch (part->kind) {
6171 case RADV_SEMAPHORE_TIMELINE: {
6172 mtx_lock(&part->timeline.mutex);
6173 radv_timeline_gc_locked(device, &part->timeline);
6174 *pValue = part->timeline.highest_signaled;
6175 mtx_unlock(&part->timeline.mutex);
6176 return VK_SUCCESS;
6177 }
6178 case RADV_SEMAPHORE_TIMELINE_SYNCOBJ: {
6179 return device->ws->query_syncobj(device->ws, part->syncobj, pValue);
6180 }
6181 case RADV_SEMAPHORE_NONE:
6182 case RADV_SEMAPHORE_SYNCOBJ:
6183 unreachable("Invalid semaphore type");
6184 }
6185 unreachable("Unhandled semaphore type");
6186 }
6187
6188 static VkResult
radv_wait_timelines(struct radv_device * device,const VkSemaphoreWaitInfo * pWaitInfo,uint64_t abs_timeout)6189 radv_wait_timelines(struct radv_device *device, const VkSemaphoreWaitInfo *pWaitInfo,
6190 uint64_t abs_timeout)
6191 {
6192 if ((pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR) && pWaitInfo->semaphoreCount > 1) {
6193 for (;;) {
6194 for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
6195 RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
6196 VkResult result =
6197 radv_timeline_wait(device, &semaphore->permanent.timeline, pWaitInfo->pValues[i], 0);
6198
6199 if (result == VK_SUCCESS)
6200 return VK_SUCCESS;
6201 }
6202 if (radv_get_current_time() > abs_timeout)
6203 return VK_TIMEOUT;
6204 }
6205 }
6206
6207 for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
6208 RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
6209 VkResult result = radv_timeline_wait(device, &semaphore->permanent.timeline,
6210 pWaitInfo->pValues[i], abs_timeout);
6211
6212 if (result != VK_SUCCESS)
6213 return result;
6214 }
6215 return VK_SUCCESS;
6216 }
6217 VkResult
radv_WaitSemaphores(VkDevice _device,const VkSemaphoreWaitInfo * pWaitInfo,uint64_t timeout)6218 radv_WaitSemaphores(VkDevice _device, const VkSemaphoreWaitInfo *pWaitInfo, uint64_t timeout)
6219 {
6220 RADV_FROM_HANDLE(radv_device, device, _device);
6221
6222 if (radv_device_is_lost(device))
6223 return VK_ERROR_DEVICE_LOST;
6224
6225 uint64_t abs_timeout = radv_get_absolute_timeout(timeout);
6226
6227 if (radv_semaphore_from_handle(pWaitInfo->pSemaphores[0])->permanent.kind ==
6228 RADV_SEMAPHORE_TIMELINE)
6229 return radv_wait_timelines(device, pWaitInfo, abs_timeout);
6230
6231 if (pWaitInfo->semaphoreCount > UINT32_MAX / sizeof(uint32_t))
6232 return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
6233 "semaphoreCount integer overflow");
6234
6235 bool wait_all = !(pWaitInfo->flags & VK_SEMAPHORE_WAIT_ANY_BIT_KHR);
6236 uint32_t *handles = malloc(sizeof(*handles) * pWaitInfo->semaphoreCount);
6237 if (!handles)
6238 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6239
6240 for (uint32_t i = 0; i < pWaitInfo->semaphoreCount; ++i) {
6241 RADV_FROM_HANDLE(radv_semaphore, semaphore, pWaitInfo->pSemaphores[i]);
6242 handles[i] = semaphore->permanent.syncobj;
6243 }
6244
6245 bool success =
6246 device->ws->wait_timeline_syncobj(device->ws, handles, pWaitInfo->pValues,
6247 pWaitInfo->semaphoreCount, wait_all, false, abs_timeout);
6248 free(handles);
6249 return success ? VK_SUCCESS : VK_TIMEOUT;
6250 }
6251
6252 VkResult
radv_SignalSemaphore(VkDevice _device,const VkSemaphoreSignalInfo * pSignalInfo)6253 radv_SignalSemaphore(VkDevice _device, const VkSemaphoreSignalInfo *pSignalInfo)
6254 {
6255 RADV_FROM_HANDLE(radv_device, device, _device);
6256 RADV_FROM_HANDLE(radv_semaphore, semaphore, pSignalInfo->semaphore);
6257
6258 struct radv_semaphore_part *part = semaphore->temporary.kind != RADV_SEMAPHORE_NONE
6259 ? &semaphore->temporary
6260 : &semaphore->permanent;
6261
6262 switch (part->kind) {
6263 case RADV_SEMAPHORE_TIMELINE: {
6264 mtx_lock(&part->timeline.mutex);
6265 radv_timeline_gc_locked(device, &part->timeline);
6266 part->timeline.highest_submitted = MAX2(part->timeline.highest_submitted, pSignalInfo->value);
6267 part->timeline.highest_signaled = MAX2(part->timeline.highest_signaled, pSignalInfo->value);
6268
6269 struct list_head processing_list;
6270 list_inithead(&processing_list);
6271 radv_timeline_trigger_waiters_locked(&part->timeline, &processing_list);
6272 mtx_unlock(&part->timeline.mutex);
6273
6274 VkResult result = radv_process_submissions(&processing_list);
6275
6276 /* This needs to happen after radv_process_submissions, so
6277 * that any submitted submissions that are now unblocked get
6278 * processed before we wake the application. This way we
6279 * ensure that any binary semaphores that are now unblocked
6280 * are usable by the application. */
6281 u_cnd_monotonic_broadcast(&device->timeline_cond);
6282
6283 return result;
6284 }
6285 case RADV_SEMAPHORE_TIMELINE_SYNCOBJ: {
6286 part->timeline_syncobj.max_point = MAX2(part->timeline_syncobj.max_point, pSignalInfo->value);
6287 device->ws->signal_syncobj(device->ws, part->syncobj, pSignalInfo->value);
6288 break;
6289 }
6290 case RADV_SEMAPHORE_NONE:
6291 case RADV_SEMAPHORE_SYNCOBJ:
6292 unreachable("Invalid semaphore type");
6293 }
6294 return VK_SUCCESS;
6295 }
6296
6297 static void
radv_destroy_event(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_event * event)6298 radv_destroy_event(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
6299 struct radv_event *event)
6300 {
6301 if (event->bo)
6302 device->ws->buffer_destroy(device->ws, event->bo);
6303
6304 vk_object_base_finish(&event->base);
6305 vk_free2(&device->vk.alloc, pAllocator, event);
6306 }
6307
6308 VkResult
radv_CreateEvent(VkDevice _device,const VkEventCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkEvent * pEvent)6309 radv_CreateEvent(VkDevice _device, const VkEventCreateInfo *pCreateInfo,
6310 const VkAllocationCallbacks *pAllocator, VkEvent *pEvent)
6311 {
6312 RADV_FROM_HANDLE(radv_device, device, _device);
6313 struct radv_event *event = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*event), 8,
6314 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6315
6316 if (!event)
6317 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6318
6319 vk_object_base_init(&device->vk, &event->base, VK_OBJECT_TYPE_EVENT);
6320
6321 VkResult result = device->ws->buffer_create(
6322 device->ws, 8, 8, RADEON_DOMAIN_GTT,
6323 RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING,
6324 RADV_BO_PRIORITY_FENCE, 0, &event->bo);
6325 if (result != VK_SUCCESS) {
6326 radv_destroy_event(device, pAllocator, event);
6327 return vk_error(device, result);
6328 }
6329
6330 event->map = (uint64_t *)device->ws->buffer_map(event->bo);
6331 if (!event->map) {
6332 radv_destroy_event(device, pAllocator, event);
6333 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
6334 }
6335
6336 *pEvent = radv_event_to_handle(event);
6337
6338 return VK_SUCCESS;
6339 }
6340
6341 void
radv_DestroyEvent(VkDevice _device,VkEvent _event,const VkAllocationCallbacks * pAllocator)6342 radv_DestroyEvent(VkDevice _device, VkEvent _event, const VkAllocationCallbacks *pAllocator)
6343 {
6344 RADV_FROM_HANDLE(radv_device, device, _device);
6345 RADV_FROM_HANDLE(radv_event, event, _event);
6346
6347 if (!event)
6348 return;
6349
6350 radv_destroy_event(device, pAllocator, event);
6351 }
6352
6353 VkResult
radv_GetEventStatus(VkDevice _device,VkEvent _event)6354 radv_GetEventStatus(VkDevice _device, VkEvent _event)
6355 {
6356 RADV_FROM_HANDLE(radv_device, device, _device);
6357 RADV_FROM_HANDLE(radv_event, event, _event);
6358
6359 if (radv_device_is_lost(device))
6360 return VK_ERROR_DEVICE_LOST;
6361
6362 if (*event->map == 1)
6363 return VK_EVENT_SET;
6364 return VK_EVENT_RESET;
6365 }
6366
6367 VkResult
radv_SetEvent(VkDevice _device,VkEvent _event)6368 radv_SetEvent(VkDevice _device, VkEvent _event)
6369 {
6370 RADV_FROM_HANDLE(radv_event, event, _event);
6371 *event->map = 1;
6372
6373 return VK_SUCCESS;
6374 }
6375
6376 VkResult
radv_ResetEvent(VkDevice _device,VkEvent _event)6377 radv_ResetEvent(VkDevice _device, VkEvent _event)
6378 {
6379 RADV_FROM_HANDLE(radv_event, event, _event);
6380 *event->map = 0;
6381
6382 return VK_SUCCESS;
6383 }
6384
6385 void
radv_buffer_init(struct radv_buffer * buffer,struct radv_device * device,struct radeon_winsys_bo * bo,uint64_t size,uint64_t offset)6386 radv_buffer_init(struct radv_buffer *buffer, struct radv_device *device,
6387 struct radeon_winsys_bo *bo, uint64_t size,
6388 uint64_t offset)
6389 {
6390 vk_object_base_init(&device->vk, &buffer->base, VK_OBJECT_TYPE_BUFFER);
6391
6392 buffer->usage = 0;
6393 buffer->flags = 0;
6394 buffer->bo = bo;
6395 buffer->size = size;
6396 buffer->offset = offset;
6397 }
6398
6399 void
radv_buffer_finish(struct radv_buffer * buffer)6400 radv_buffer_finish(struct radv_buffer *buffer)
6401 {
6402 vk_object_base_finish(&buffer->base);
6403 }
6404
6405 static void
radv_destroy_buffer(struct radv_device * device,const VkAllocationCallbacks * pAllocator,struct radv_buffer * buffer)6406 radv_destroy_buffer(struct radv_device *device, const VkAllocationCallbacks *pAllocator,
6407 struct radv_buffer *buffer)
6408 {
6409 if ((buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) && buffer->bo)
6410 device->ws->buffer_destroy(device->ws, buffer->bo);
6411
6412 radv_buffer_finish(buffer);
6413 vk_free2(&device->vk.alloc, pAllocator, buffer);
6414 }
6415
6416 VkResult
radv_CreateBuffer(VkDevice _device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)6417 radv_CreateBuffer(VkDevice _device, const VkBufferCreateInfo *pCreateInfo,
6418 const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer)
6419 {
6420 RADV_FROM_HANDLE(radv_device, device, _device);
6421 struct radv_buffer *buffer;
6422
6423 if (pCreateInfo->size > RADV_MAX_MEMORY_ALLOCATION_SIZE)
6424 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
6425
6426 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
6427
6428 buffer = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*buffer), 8,
6429 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
6430 if (buffer == NULL)
6431 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
6432
6433 radv_buffer_init(buffer, device, NULL, pCreateInfo->size, 0);
6434
6435 buffer->usage = pCreateInfo->usage;
6436 buffer->flags = pCreateInfo->flags;
6437
6438 buffer->shareable =
6439 vk_find_struct_const(pCreateInfo->pNext, EXTERNAL_MEMORY_BUFFER_CREATE_INFO) != NULL;
6440
6441 if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
6442 enum radeon_bo_flag flags = RADEON_FLAG_VIRTUAL;
6443 if (pCreateInfo->flags & VK_BUFFER_CREATE_DEVICE_ADDRESS_CAPTURE_REPLAY_BIT)
6444 flags |= RADEON_FLAG_REPLAYABLE;
6445
6446 uint64_t replay_address = 0;
6447 const VkBufferOpaqueCaptureAddressCreateInfo *replay_info =
6448 vk_find_struct_const(pCreateInfo->pNext, BUFFER_OPAQUE_CAPTURE_ADDRESS_CREATE_INFO);
6449 if (replay_info && replay_info->opaqueCaptureAddress)
6450 replay_address = replay_info->opaqueCaptureAddress;
6451
6452 VkResult result = device->ws->buffer_create(device->ws, align64(buffer->size, 4096), 4096, 0,
6453 flags, RADV_BO_PRIORITY_VIRTUAL,
6454 replay_address, &buffer->bo);
6455 if (result != VK_SUCCESS) {
6456 radv_destroy_buffer(device, pAllocator, buffer);
6457 return vk_error(device, result);
6458 }
6459 }
6460
6461 *pBuffer = radv_buffer_to_handle(buffer);
6462
6463 return VK_SUCCESS;
6464 }
6465
6466 void
radv_DestroyBuffer(VkDevice _device,VkBuffer _buffer,const VkAllocationCallbacks * pAllocator)6467 radv_DestroyBuffer(VkDevice _device, VkBuffer _buffer, const VkAllocationCallbacks *pAllocator)
6468 {
6469 RADV_FROM_HANDLE(radv_device, device, _device);
6470 RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
6471
6472 if (!buffer)
6473 return;
6474
6475 radv_destroy_buffer(device, pAllocator, buffer);
6476 }
6477
6478 VkDeviceAddress
radv_GetBufferDeviceAddress(VkDevice device,const VkBufferDeviceAddressInfo * pInfo)6479 radv_GetBufferDeviceAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
6480 {
6481 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
6482 return radv_buffer_get_va(buffer->bo) + buffer->offset;
6483 }
6484
6485 uint64_t
radv_GetBufferOpaqueCaptureAddress(VkDevice device,const VkBufferDeviceAddressInfo * pInfo)6486 radv_GetBufferOpaqueCaptureAddress(VkDevice device, const VkBufferDeviceAddressInfo *pInfo)
6487 {
6488 RADV_FROM_HANDLE(radv_buffer, buffer, pInfo->buffer);
6489 return buffer->bo ? radv_buffer_get_va(buffer->bo) + buffer->offset : 0;
6490 }
6491
6492 uint64_t
radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,const VkDeviceMemoryOpaqueCaptureAddressInfo * pInfo)6493 radv_GetDeviceMemoryOpaqueCaptureAddress(VkDevice device,
6494 const VkDeviceMemoryOpaqueCaptureAddressInfo *pInfo)
6495 {
6496 RADV_FROM_HANDLE(radv_device_memory, mem, pInfo->memory);
6497 return radv_buffer_get_va(mem->bo);
6498 }
6499
6500 static inline unsigned
si_tile_mode_index(const struct radv_image_plane * plane,unsigned level,bool stencil)6501 si_tile_mode_index(const struct radv_image_plane *plane, unsigned level, bool stencil)
6502 {
6503 if (stencil)
6504 return plane->surface.u.legacy.zs.stencil_tiling_index[level];
6505 else
6506 return plane->surface.u.legacy.tiling_index[level];
6507 }
6508
6509 static uint32_t
radv_surface_max_layer_count(struct radv_image_view * iview)6510 radv_surface_max_layer_count(struct radv_image_view *iview)
6511 {
6512 return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth
6513 : (iview->base_layer + iview->layer_count);
6514 }
6515
6516 static unsigned
get_dcc_max_uncompressed_block_size(const struct radv_device * device,const struct radv_image_view * iview)6517 get_dcc_max_uncompressed_block_size(const struct radv_device *device,
6518 const struct radv_image_view *iview)
6519 {
6520 if (device->physical_device->rad_info.chip_class < GFX10 && iview->image->info.samples > 1) {
6521 if (iview->image->planes[0].surface.bpe == 1)
6522 return V_028C78_MAX_BLOCK_SIZE_64B;
6523 else if (iview->image->planes[0].surface.bpe == 2)
6524 return V_028C78_MAX_BLOCK_SIZE_128B;
6525 }
6526
6527 return V_028C78_MAX_BLOCK_SIZE_256B;
6528 }
6529
6530 static unsigned
get_dcc_min_compressed_block_size(const struct radv_device * device)6531 get_dcc_min_compressed_block_size(const struct radv_device *device)
6532 {
6533 if (!device->physical_device->rad_info.has_dedicated_vram) {
6534 /* amdvlk: [min-compressed-block-size] should be set to 32 for
6535 * dGPU and 64 for APU because all of our APUs to date use
6536 * DIMMs which have a request granularity size of 64B while all
6537 * other chips have a 32B request size.
6538 */
6539 return V_028C78_MIN_BLOCK_SIZE_64B;
6540 }
6541
6542 return V_028C78_MIN_BLOCK_SIZE_32B;
6543 }
6544
6545 static uint32_t
radv_init_dcc_control_reg(struct radv_device * device,struct radv_image_view * iview)6546 radv_init_dcc_control_reg(struct radv_device *device, struct radv_image_view *iview)
6547 {
6548 unsigned max_uncompressed_block_size = get_dcc_max_uncompressed_block_size(device, iview);
6549 unsigned min_compressed_block_size = get_dcc_min_compressed_block_size(device);
6550 unsigned max_compressed_block_size;
6551 unsigned independent_128b_blocks;
6552 unsigned independent_64b_blocks;
6553
6554 if (!radv_dcc_enabled(iview->image, iview->base_mip))
6555 return 0;
6556
6557 /* For GFX9+ ac_surface computes values for us (except min_compressed
6558 * and max_uncompressed) */
6559 if (device->physical_device->rad_info.chip_class >= GFX9) {
6560 max_compressed_block_size =
6561 iview->image->planes[0].surface.u.gfx9.color.dcc.max_compressed_block_size;
6562 independent_128b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_128B_blocks;
6563 independent_64b_blocks = iview->image->planes[0].surface.u.gfx9.color.dcc.independent_64B_blocks;
6564 } else {
6565 independent_128b_blocks = 0;
6566
6567 if (iview->image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
6568 VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
6569 /* If this DCC image is potentially going to be used in texture
6570 * fetches, we need some special settings.
6571 */
6572 independent_64b_blocks = 1;
6573 max_compressed_block_size = V_028C78_MAX_BLOCK_SIZE_64B;
6574 } else {
6575 /* MAX_UNCOMPRESSED_BLOCK_SIZE must be >=
6576 * MAX_COMPRESSED_BLOCK_SIZE. Set MAX_COMPRESSED_BLOCK_SIZE as
6577 * big as possible for better compression state.
6578 */
6579 independent_64b_blocks = 0;
6580 max_compressed_block_size = max_uncompressed_block_size;
6581 }
6582 }
6583
6584 return S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
6585 S_028C78_MAX_COMPRESSED_BLOCK_SIZE(max_compressed_block_size) |
6586 S_028C78_MIN_COMPRESSED_BLOCK_SIZE(min_compressed_block_size) |
6587 S_028C78_INDEPENDENT_64B_BLOCKS(independent_64b_blocks) |
6588 S_028C78_INDEPENDENT_128B_BLOCKS(independent_128b_blocks);
6589 }
6590
6591 void
radv_initialise_color_surface(struct radv_device * device,struct radv_color_buffer_info * cb,struct radv_image_view * iview)6592 radv_initialise_color_surface(struct radv_device *device, struct radv_color_buffer_info *cb,
6593 struct radv_image_view *iview)
6594 {
6595 const struct util_format_description *desc;
6596 unsigned ntype, format, swap, endian;
6597 unsigned blend_clamp = 0, blend_bypass = 0;
6598 uint64_t va;
6599 const struct radv_image_plane *plane = &iview->image->planes[iview->plane_id];
6600 const struct radeon_surf *surf = &plane->surface;
6601
6602 desc = vk_format_description(iview->vk_format);
6603
6604 memset(cb, 0, sizeof(*cb));
6605
6606 /* Intensity is implemented as Red, so treat it that way. */
6607 cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == PIPE_SWIZZLE_1);
6608
6609 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
6610
6611 cb->cb_color_base = va >> 8;
6612
6613 if (device->physical_device->rad_info.chip_class >= GFX9) {
6614 if (device->physical_device->rad_info.chip_class >= GFX10) {
6615 cb->cb_color_attrib3 |= S_028EE0_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
6616 S_028EE0_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
6617 S_028EE0_CMASK_PIPE_ALIGNED(1) |
6618 S_028EE0_DCC_PIPE_ALIGNED(surf->u.gfx9.color.dcc.pipe_aligned);
6619 } else {
6620 struct gfx9_surf_meta_flags meta = {
6621 .rb_aligned = 1,
6622 .pipe_aligned = 1,
6623 };
6624
6625 if (surf->meta_offset)
6626 meta = surf->u.gfx9.color.dcc;
6627
6628 cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(surf->u.gfx9.swizzle_mode) |
6629 S_028C74_FMASK_SW_MODE(surf->u.gfx9.color.fmask_swizzle_mode) |
6630 S_028C74_RB_ALIGNED(meta.rb_aligned) |
6631 S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
6632 cb->cb_mrt_epitch = S_0287A0_EPITCH(surf->u.gfx9.epitch);
6633 }
6634
6635 cb->cb_color_base += surf->u.gfx9.surf_offset >> 8;
6636 cb->cb_color_base |= surf->tile_swizzle;
6637 } else {
6638 const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
6639 unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
6640
6641 cb->cb_color_base += level_info->offset_256B;
6642 if (level_info->mode == RADEON_SURF_MODE_2D)
6643 cb->cb_color_base |= surf->tile_swizzle;
6644
6645 pitch_tile_max = level_info->nblk_x / 8 - 1;
6646 slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
6647 tile_mode_index = si_tile_mode_index(plane, iview->base_mip, false);
6648
6649 cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
6650 cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
6651 cb->cb_color_cmask_slice = surf->u.legacy.color.cmask_slice_tile_max;
6652
6653 cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
6654
6655 if (radv_image_has_fmask(iview->image)) {
6656 if (device->physical_device->rad_info.chip_class >= GFX7)
6657 cb->cb_color_pitch |=
6658 S_028C64_FMASK_TILE_MAX(surf->u.legacy.color.fmask.pitch_in_pixels / 8 - 1);
6659 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(surf->u.legacy.color.fmask.tiling_index);
6660 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(surf->u.legacy.color.fmask.slice_tile_max);
6661 } else {
6662 /* This must be set for fast clear to work without FMASK. */
6663 if (device->physical_device->rad_info.chip_class >= GFX7)
6664 cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
6665 cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
6666 cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
6667 }
6668 }
6669
6670 /* CMASK variables */
6671 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
6672 va += surf->cmask_offset;
6673 cb->cb_color_cmask = va >> 8;
6674
6675 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
6676 va += surf->meta_offset;
6677
6678 if (radv_dcc_enabled(iview->image, iview->base_mip) &&
6679 device->physical_device->rad_info.chip_class <= GFX8)
6680 va += plane->surface.u.legacy.color.dcc_level[iview->base_mip].dcc_offset;
6681
6682 unsigned dcc_tile_swizzle = surf->tile_swizzle;
6683 dcc_tile_swizzle &= ((1 << surf->meta_alignment_log2) - 1) >> 8;
6684
6685 cb->cb_dcc_base = va >> 8;
6686 cb->cb_dcc_base |= dcc_tile_swizzle;
6687
6688 /* GFX10 field has the same base shift as the GFX6 field. */
6689 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
6690 cb->cb_color_view =
6691 S_028C6C_SLICE_START(iview->base_layer) | S_028C6C_SLICE_MAX_GFX10(max_slice);
6692
6693 if (iview->image->info.samples > 1) {
6694 unsigned log_samples = util_logbase2(iview->image->info.samples);
6695
6696 cb->cb_color_attrib |=
6697 S_028C74_NUM_SAMPLES(log_samples) | S_028C74_NUM_FRAGMENTS(log_samples);
6698 }
6699
6700 if (radv_image_has_fmask(iview->image)) {
6701 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset + surf->fmask_offset;
6702 cb->cb_color_fmask = va >> 8;
6703 cb->cb_color_fmask |= surf->fmask_tile_swizzle;
6704 } else {
6705 cb->cb_color_fmask = cb->cb_color_base;
6706 }
6707
6708 ntype = radv_translate_color_numformat(iview->vk_format, desc,
6709 vk_format_get_first_non_void_channel(iview->vk_format));
6710 format = radv_translate_colorformat(iview->vk_format);
6711 assert(format != V_028C70_COLOR_INVALID);
6712
6713 swap = radv_translate_colorswap(iview->vk_format, false);
6714 endian = radv_colorformat_endian_swap(format);
6715
6716 /* blend clamp should be set for all NORM/SRGB types */
6717 if (ntype == V_028C70_NUMBER_UNORM || ntype == V_028C70_NUMBER_SNORM ||
6718 ntype == V_028C70_NUMBER_SRGB)
6719 blend_clamp = 1;
6720
6721 /* set blend bypass according to docs if SINT/UINT or
6722 8/24 COLOR variants */
6723 if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
6724 format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
6725 format == V_028C70_COLOR_X24_8_32_FLOAT) {
6726 blend_clamp = 0;
6727 blend_bypass = 1;
6728 }
6729 #if 0
6730 if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
6731 (format == V_028C70_COLOR_8 ||
6732 format == V_028C70_COLOR_8_8 ||
6733 format == V_028C70_COLOR_8_8_8_8))
6734 ->color_is_int8 = true;
6735 #endif
6736 cb->cb_color_info =
6737 S_028C70_FORMAT(format) | S_028C70_COMP_SWAP(swap) | S_028C70_BLEND_CLAMP(blend_clamp) |
6738 S_028C70_BLEND_BYPASS(blend_bypass) | S_028C70_SIMPLE_FLOAT(1) |
6739 S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM && ntype != V_028C70_NUMBER_SNORM &&
6740 ntype != V_028C70_NUMBER_SRGB && format != V_028C70_COLOR_8_24 &&
6741 format != V_028C70_COLOR_24_8) |
6742 S_028C70_NUMBER_TYPE(ntype) | S_028C70_ENDIAN(endian);
6743 if (radv_image_has_fmask(iview->image)) {
6744 cb->cb_color_info |= S_028C70_COMPRESSION(1);
6745 if (device->physical_device->rad_info.chip_class == GFX6) {
6746 unsigned fmask_bankh = util_logbase2(surf->u.legacy.color.fmask.bankh);
6747 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
6748 }
6749
6750 if (radv_image_is_tc_compat_cmask(iview->image)) {
6751 /* Allow the texture block to read FMASK directly
6752 * without decompressing it. This bit must be cleared
6753 * when performing FMASK_DECOMPRESS or DCC_COMPRESS,
6754 * otherwise the operation doesn't happen.
6755 */
6756 cb->cb_color_info |= S_028C70_FMASK_COMPRESS_1FRAG_ONLY(1);
6757
6758 if (device->physical_device->rad_info.chip_class == GFX8) {
6759 /* Set CMASK into a tiling format that allows
6760 * the texture block to read it.
6761 */
6762 cb->cb_color_info |= S_028C70_CMASK_ADDR_TYPE(2);
6763 }
6764 }
6765 }
6766
6767 if (radv_image_has_cmask(iview->image) &&
6768 !(device->instance->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
6769 cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
6770
6771 if (radv_dcc_enabled(iview->image, iview->base_mip))
6772 cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
6773
6774 cb->cb_dcc_control = radv_init_dcc_control_reg(device, iview);
6775
6776 /* This must be set for fast clear to work without FMASK. */
6777 if (!radv_image_has_fmask(iview->image) &&
6778 device->physical_device->rad_info.chip_class == GFX6) {
6779 unsigned bankh = util_logbase2(surf->u.legacy.bankh);
6780 cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
6781 }
6782
6783 if (device->physical_device->rad_info.chip_class >= GFX9) {
6784 unsigned mip0_depth = iview->image->type == VK_IMAGE_TYPE_3D
6785 ? (iview->extent.depth - 1)
6786 : (iview->image->info.array_size - 1);
6787 unsigned width =
6788 vk_format_get_plane_width(iview->image->vk_format, iview->plane_id, iview->extent.width);
6789 unsigned height =
6790 vk_format_get_plane_height(iview->image->vk_format, iview->plane_id, iview->extent.height);
6791
6792 if (device->physical_device->rad_info.chip_class >= GFX10) {
6793 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX10(iview->base_mip);
6794
6795 cb->cb_color_attrib3 |= S_028EE0_MIP0_DEPTH(mip0_depth) |
6796 S_028EE0_RESOURCE_TYPE(surf->u.gfx9.resource_type) |
6797 S_028EE0_RESOURCE_LEVEL(1);
6798 } else {
6799 cb->cb_color_view |= S_028C6C_MIP_LEVEL_GFX9(iview->base_mip);
6800 cb->cb_color_attrib |=
6801 S_028C74_MIP0_DEPTH(mip0_depth) | S_028C74_RESOURCE_TYPE(surf->u.gfx9.resource_type);
6802 }
6803
6804 cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(width - 1) | S_028C68_MIP0_HEIGHT(height - 1) |
6805 S_028C68_MAX_MIP(iview->image->info.levels - 1);
6806 }
6807 }
6808
6809 static unsigned
radv_calc_decompress_on_z_planes(struct radv_device * device,struct radv_image_view * iview)6810 radv_calc_decompress_on_z_planes(struct radv_device *device, struct radv_image_view *iview)
6811 {
6812 unsigned max_zplanes = 0;
6813
6814 assert(radv_image_is_tc_compat_htile(iview->image));
6815
6816 if (device->physical_device->rad_info.chip_class >= GFX9) {
6817 /* Default value for 32-bit depth surfaces. */
6818 max_zplanes = 4;
6819
6820 if (iview->vk_format == VK_FORMAT_D16_UNORM && iview->image->info.samples > 1)
6821 max_zplanes = 2;
6822
6823 /* Workaround for a DB hang when ITERATE_256 is set to 1. Only affects 4X MSAA D/S images. */
6824 if (device->physical_device->rad_info.has_two_planes_iterate256_bug &&
6825 radv_image_get_iterate256(device, iview->image) &&
6826 !radv_image_tile_stencil_disabled(device, iview->image) &&
6827 iview->image->info.samples == 4) {
6828 max_zplanes = 1;
6829 }
6830
6831 max_zplanes = max_zplanes + 1;
6832 } else {
6833 if (iview->vk_format == VK_FORMAT_D16_UNORM) {
6834 /* Do not enable Z plane compression for 16-bit depth
6835 * surfaces because isn't supported on GFX8. Only
6836 * 32-bit depth surfaces are supported by the hardware.
6837 * This allows to maintain shader compatibility and to
6838 * reduce the number of depth decompressions.
6839 */
6840 max_zplanes = 1;
6841 } else {
6842 if (iview->image->info.samples <= 1)
6843 max_zplanes = 5;
6844 else if (iview->image->info.samples <= 4)
6845 max_zplanes = 3;
6846 else
6847 max_zplanes = 2;
6848 }
6849 }
6850
6851 return max_zplanes;
6852 }
6853
6854 void
radv_initialise_vrs_surface(struct radv_image * image,struct radv_buffer * htile_buffer,struct radv_ds_buffer_info * ds)6855 radv_initialise_vrs_surface(struct radv_image *image, struct radv_buffer *htile_buffer,
6856 struct radv_ds_buffer_info *ds)
6857 {
6858 const struct radeon_surf *surf = &image->planes[0].surface;
6859
6860 assert(image->vk_format == VK_FORMAT_D16_UNORM);
6861 memset(ds, 0, sizeof(*ds));
6862
6863 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
6864
6865 ds->db_z_info = S_028038_FORMAT(V_028040_Z_16) |
6866 S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
6867 S_028038_ZRANGE_PRECISION(1) |
6868 S_028038_TILE_SURFACE_ENABLE(1);
6869 ds->db_stencil_info = S_02803C_FORMAT(V_028044_STENCIL_INVALID);
6870
6871 ds->db_depth_size = S_02801C_X_MAX(image->info.width - 1) |
6872 S_02801C_Y_MAX(image->info.height - 1);
6873
6874 ds->db_htile_data_base = radv_buffer_get_va(htile_buffer->bo) >> 8;
6875 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1) |
6876 S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
6877 }
6878
6879 void
radv_initialise_ds_surface(struct radv_device * device,struct radv_ds_buffer_info * ds,struct radv_image_view * iview)6880 radv_initialise_ds_surface(struct radv_device *device, struct radv_ds_buffer_info *ds,
6881 struct radv_image_view *iview)
6882 {
6883 unsigned level = iview->base_mip;
6884 unsigned format, stencil_format;
6885 uint64_t va, s_offs, z_offs;
6886 bool stencil_only = iview->image->vk_format == VK_FORMAT_S8_UINT;
6887 const struct radv_image_plane *plane = &iview->image->planes[0];
6888 const struct radeon_surf *surf = &plane->surface;
6889
6890 assert(vk_format_get_plane_count(iview->image->vk_format) == 1);
6891
6892 memset(ds, 0, sizeof(*ds));
6893 if (!device->instance->absolute_depth_bias) {
6894 switch (iview->image->vk_format) {
6895 case VK_FORMAT_D24_UNORM_S8_UINT:
6896 case VK_FORMAT_X8_D24_UNORM_PACK32:
6897 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
6898 break;
6899 case VK_FORMAT_D16_UNORM:
6900 case VK_FORMAT_D16_UNORM_S8_UINT:
6901 ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
6902 break;
6903 case VK_FORMAT_D32_SFLOAT:
6904 case VK_FORMAT_D32_SFLOAT_S8_UINT:
6905 ds->pa_su_poly_offset_db_fmt_cntl =
6906 S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) | S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
6907 break;
6908 default:
6909 break;
6910 }
6911 }
6912
6913 format = radv_translate_dbformat(iview->image->vk_format);
6914 stencil_format = surf->has_stencil ? V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
6915
6916 uint32_t max_slice = radv_surface_max_layer_count(iview) - 1;
6917 ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) | S_028008_SLICE_MAX(max_slice);
6918 if (device->physical_device->rad_info.chip_class >= GFX10) {
6919 ds->db_depth_view |=
6920 S_028008_SLICE_START_HI(iview->base_layer >> 11) | S_028008_SLICE_MAX_HI(max_slice >> 11);
6921 }
6922
6923 ds->db_htile_data_base = 0;
6924 ds->db_htile_surface = 0;
6925
6926 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset;
6927 s_offs = z_offs = va;
6928
6929 if (device->physical_device->rad_info.chip_class >= GFX9) {
6930 assert(surf->u.gfx9.surf_offset == 0);
6931 s_offs += surf->u.gfx9.zs.stencil_offset;
6932
6933 ds->db_z_info = S_028038_FORMAT(format) |
6934 S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
6935 S_028038_SW_MODE(surf->u.gfx9.swizzle_mode) |
6936 S_028038_MAXMIP(iview->image->info.levels - 1) | S_028038_ZRANGE_PRECISION(1);
6937 ds->db_stencil_info =
6938 S_02803C_FORMAT(stencil_format) | S_02803C_SW_MODE(surf->u.gfx9.zs.stencil_swizzle_mode);
6939
6940 if (device->physical_device->rad_info.chip_class == GFX9) {
6941 ds->db_z_info2 = S_028068_EPITCH(surf->u.gfx9.epitch);
6942 ds->db_stencil_info2 = S_02806C_EPITCH(surf->u.gfx9.zs.stencil_epitch);
6943 }
6944
6945 ds->db_depth_view |= S_028008_MIPID(level);
6946 ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
6947 S_02801C_Y_MAX(iview->image->info.height - 1);
6948
6949 if (radv_htile_enabled(iview->image, level)) {
6950 ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
6951
6952 if (radv_image_is_tc_compat_htile(iview->image)) {
6953 unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
6954
6955 ds->db_z_info |= S_028038_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
6956
6957 if (device->physical_device->rad_info.chip_class >= GFX10) {
6958 bool iterate256 = radv_image_get_iterate256(device, iview->image);
6959
6960 ds->db_z_info |= S_028040_ITERATE_FLUSH(1);
6961 ds->db_stencil_info |= S_028044_ITERATE_FLUSH(1);
6962 ds->db_z_info |= S_028040_ITERATE_256(iterate256);
6963 ds->db_stencil_info |= S_028044_ITERATE_256(iterate256);
6964 } else {
6965 ds->db_z_info |= S_028038_ITERATE_FLUSH(1);
6966 ds->db_stencil_info |= S_02803C_ITERATE_FLUSH(1);
6967 }
6968 }
6969
6970 if (radv_image_tile_stencil_disabled(device, iview->image)) {
6971 ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
6972 }
6973
6974 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset + surf->meta_offset;
6975 ds->db_htile_data_base = va >> 8;
6976 ds->db_htile_surface = S_028ABC_FULL_CACHE(1) | S_028ABC_PIPE_ALIGNED(1);
6977
6978 if (device->physical_device->rad_info.chip_class == GFX9) {
6979 ds->db_htile_surface |= S_028ABC_RB_ALIGNED(1);
6980 }
6981
6982 if (radv_image_has_vrs_htile(device, iview->image)) {
6983 ds->db_htile_surface |= S_028ABC_VRS_HTILE_ENCODING(V_028ABC_VRS_HTILE_4BIT_ENCODING);
6984 }
6985 }
6986 } else {
6987 const struct legacy_surf_level *level_info = &surf->u.legacy.level[level];
6988
6989 if (stencil_only)
6990 level_info = &surf->u.legacy.zs.stencil_level[level];
6991
6992 z_offs += (uint64_t)surf->u.legacy.level[level].offset_256B * 256;
6993 s_offs += (uint64_t)surf->u.legacy.zs.stencil_level[level].offset_256B * 256;
6994
6995 ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(!radv_image_is_tc_compat_htile(iview->image));
6996 ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
6997 ds->db_stencil_info = S_028044_FORMAT(stencil_format);
6998
6999 if (iview->image->info.samples > 1)
7000 ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
7001
7002 if (device->physical_device->rad_info.chip_class >= GFX7) {
7003 struct radeon_info *info = &device->physical_device->rad_info;
7004 unsigned tiling_index = surf->u.legacy.tiling_index[level];
7005 unsigned stencil_index = surf->u.legacy.zs.stencil_tiling_index[level];
7006 unsigned macro_index = surf->u.legacy.macro_tile_index;
7007 unsigned tile_mode = info->si_tile_mode_array[tiling_index];
7008 unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
7009 unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
7010
7011 if (stencil_only)
7012 tile_mode = stencil_tile_mode;
7013
7014 ds->db_depth_info |= S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
7015 S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
7016 S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
7017 S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
7018 S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
7019 S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
7020 ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
7021 ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
7022 } else {
7023 unsigned tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, false);
7024 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
7025 tile_mode_index = si_tile_mode_index(&iview->image->planes[0], level, true);
7026 ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
7027 if (stencil_only)
7028 ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
7029 }
7030
7031 ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
7032 S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
7033 ds->db_depth_slice =
7034 S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
7035
7036 if (radv_htile_enabled(iview->image, level)) {
7037 ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
7038
7039 if (radv_image_tile_stencil_disabled(device, iview->image)) {
7040 ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
7041 }
7042
7043 va = radv_buffer_get_va(iview->image->bo) + iview->image->offset + surf->meta_offset;
7044 ds->db_htile_data_base = va >> 8;
7045 ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
7046
7047 if (radv_image_is_tc_compat_htile(iview->image)) {
7048 unsigned max_zplanes = radv_calc_decompress_on_z_planes(device, iview);
7049
7050 ds->db_htile_surface |= S_028ABC_TC_COMPATIBLE(1);
7051 ds->db_z_info |= S_028040_DECOMPRESS_ON_N_ZPLANES(max_zplanes);
7052 }
7053 }
7054 }
7055
7056 ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
7057 ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
7058 }
7059
7060 VkResult
radv_CreateFramebuffer(VkDevice _device,const VkFramebufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkFramebuffer * pFramebuffer)7061 radv_CreateFramebuffer(VkDevice _device, const VkFramebufferCreateInfo *pCreateInfo,
7062 const VkAllocationCallbacks *pAllocator, VkFramebuffer *pFramebuffer)
7063 {
7064 RADV_FROM_HANDLE(radv_device, device, _device);
7065 struct radv_framebuffer *framebuffer;
7066 const VkFramebufferAttachmentsCreateInfo *imageless_create_info =
7067 vk_find_struct_const(pCreateInfo->pNext, FRAMEBUFFER_ATTACHMENTS_CREATE_INFO);
7068
7069 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
7070
7071 size_t size = sizeof(*framebuffer);
7072 if (!imageless_create_info)
7073 size += sizeof(struct radv_image_view *) * pCreateInfo->attachmentCount;
7074 framebuffer =
7075 vk_alloc2(&device->vk.alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
7076 if (framebuffer == NULL)
7077 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
7078
7079 vk_object_base_init(&device->vk, &framebuffer->base, VK_OBJECT_TYPE_FRAMEBUFFER);
7080
7081 framebuffer->attachment_count = pCreateInfo->attachmentCount;
7082 framebuffer->width = pCreateInfo->width;
7083 framebuffer->height = pCreateInfo->height;
7084 framebuffer->layers = pCreateInfo->layers;
7085 framebuffer->imageless = !!imageless_create_info;
7086
7087 if (!imageless_create_info) {
7088 for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
7089 VkImageView _iview = pCreateInfo->pAttachments[i];
7090 struct radv_image_view *iview = radv_image_view_from_handle(_iview);
7091 framebuffer->attachments[i] = iview;
7092 }
7093 }
7094
7095 *pFramebuffer = radv_framebuffer_to_handle(framebuffer);
7096 return VK_SUCCESS;
7097 }
7098
7099 void
radv_DestroyFramebuffer(VkDevice _device,VkFramebuffer _fb,const VkAllocationCallbacks * pAllocator)7100 radv_DestroyFramebuffer(VkDevice _device, VkFramebuffer _fb,
7101 const VkAllocationCallbacks *pAllocator)
7102 {
7103 RADV_FROM_HANDLE(radv_device, device, _device);
7104 RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
7105
7106 if (!fb)
7107 return;
7108 vk_object_base_finish(&fb->base);
7109 vk_free2(&device->vk.alloc, pAllocator, fb);
7110 }
7111
7112 static unsigned
radv_tex_wrap(VkSamplerAddressMode address_mode)7113 radv_tex_wrap(VkSamplerAddressMode address_mode)
7114 {
7115 switch (address_mode) {
7116 case VK_SAMPLER_ADDRESS_MODE_REPEAT:
7117 return V_008F30_SQ_TEX_WRAP;
7118 case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
7119 return V_008F30_SQ_TEX_MIRROR;
7120 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
7121 return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
7122 case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
7123 return V_008F30_SQ_TEX_CLAMP_BORDER;
7124 case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
7125 return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
7126 default:
7127 unreachable("illegal tex wrap mode");
7128 break;
7129 }
7130 }
7131
7132 static unsigned
radv_tex_compare(VkCompareOp op)7133 radv_tex_compare(VkCompareOp op)
7134 {
7135 switch (op) {
7136 case VK_COMPARE_OP_NEVER:
7137 return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
7138 case VK_COMPARE_OP_LESS:
7139 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
7140 case VK_COMPARE_OP_EQUAL:
7141 return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
7142 case VK_COMPARE_OP_LESS_OR_EQUAL:
7143 return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
7144 case VK_COMPARE_OP_GREATER:
7145 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
7146 case VK_COMPARE_OP_NOT_EQUAL:
7147 return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
7148 case VK_COMPARE_OP_GREATER_OR_EQUAL:
7149 return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
7150 case VK_COMPARE_OP_ALWAYS:
7151 return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
7152 default:
7153 unreachable("illegal compare mode");
7154 break;
7155 }
7156 }
7157
7158 static unsigned
radv_tex_filter(VkFilter filter,unsigned max_ansio)7159 radv_tex_filter(VkFilter filter, unsigned max_ansio)
7160 {
7161 switch (filter) {
7162 case VK_FILTER_NEAREST:
7163 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT
7164 : V_008F38_SQ_TEX_XY_FILTER_POINT);
7165 case VK_FILTER_LINEAR:
7166 return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR
7167 : V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
7168 case VK_FILTER_CUBIC_IMG:
7169 default:
7170 fprintf(stderr, "illegal texture filter");
7171 return 0;
7172 }
7173 }
7174
7175 static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)7176 radv_tex_mipfilter(VkSamplerMipmapMode mode)
7177 {
7178 switch (mode) {
7179 case VK_SAMPLER_MIPMAP_MODE_NEAREST:
7180 return V_008F38_SQ_TEX_Z_FILTER_POINT;
7181 case VK_SAMPLER_MIPMAP_MODE_LINEAR:
7182 return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
7183 default:
7184 return V_008F38_SQ_TEX_Z_FILTER_NONE;
7185 }
7186 }
7187
7188 static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)7189 radv_tex_bordercolor(VkBorderColor bcolor)
7190 {
7191 switch (bcolor) {
7192 case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
7193 case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
7194 return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
7195 case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
7196 case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
7197 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
7198 case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
7199 case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
7200 return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
7201 case VK_BORDER_COLOR_FLOAT_CUSTOM_EXT:
7202 case VK_BORDER_COLOR_INT_CUSTOM_EXT:
7203 return V_008F3C_SQ_TEX_BORDER_COLOR_REGISTER;
7204 default:
7205 break;
7206 }
7207 return 0;
7208 }
7209
7210 static unsigned
radv_tex_aniso_filter(unsigned filter)7211 radv_tex_aniso_filter(unsigned filter)
7212 {
7213 if (filter < 2)
7214 return 0;
7215 if (filter < 4)
7216 return 1;
7217 if (filter < 8)
7218 return 2;
7219 if (filter < 16)
7220 return 3;
7221 return 4;
7222 }
7223
7224 static unsigned
radv_tex_filter_mode(VkSamplerReductionMode mode)7225 radv_tex_filter_mode(VkSamplerReductionMode mode)
7226 {
7227 switch (mode) {
7228 case VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT:
7229 return V_008F30_SQ_IMG_FILTER_MODE_BLEND;
7230 case VK_SAMPLER_REDUCTION_MODE_MIN_EXT:
7231 return V_008F30_SQ_IMG_FILTER_MODE_MIN;
7232 case VK_SAMPLER_REDUCTION_MODE_MAX_EXT:
7233 return V_008F30_SQ_IMG_FILTER_MODE_MAX;
7234 default:
7235 break;
7236 }
7237 return 0;
7238 }
7239
7240 static uint32_t
radv_get_max_anisotropy(struct radv_device * device,const VkSamplerCreateInfo * pCreateInfo)7241 radv_get_max_anisotropy(struct radv_device *device, const VkSamplerCreateInfo *pCreateInfo)
7242 {
7243 if (device->force_aniso >= 0)
7244 return device->force_aniso;
7245
7246 if (pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0f)
7247 return (uint32_t)pCreateInfo->maxAnisotropy;
7248
7249 return 0;
7250 }
7251
7252 static inline int
S_FIXED(float value,unsigned frac_bits)7253 S_FIXED(float value, unsigned frac_bits)
7254 {
7255 return value * (1 << frac_bits);
7256 }
7257
7258 static uint32_t
radv_register_border_color(struct radv_device * device,VkClearColorValue value)7259 radv_register_border_color(struct radv_device *device, VkClearColorValue value)
7260 {
7261 uint32_t slot;
7262
7263 mtx_lock(&device->border_color_data.mutex);
7264
7265 for (slot = 0; slot < RADV_BORDER_COLOR_COUNT; slot++) {
7266 if (!device->border_color_data.used[slot]) {
7267 /* Copy to the GPU wrt endian-ness. */
7268 util_memcpy_cpu_to_le32(&device->border_color_data.colors_gpu_ptr[slot], &value,
7269 sizeof(VkClearColorValue));
7270
7271 device->border_color_data.used[slot] = true;
7272 break;
7273 }
7274 }
7275
7276 mtx_unlock(&device->border_color_data.mutex);
7277
7278 return slot;
7279 }
7280
7281 static void
radv_unregister_border_color(struct radv_device * device,uint32_t slot)7282 radv_unregister_border_color(struct radv_device *device, uint32_t slot)
7283 {
7284 mtx_lock(&device->border_color_data.mutex);
7285
7286 device->border_color_data.used[slot] = false;
7287
7288 mtx_unlock(&device->border_color_data.mutex);
7289 }
7290
7291 static void
radv_init_sampler(struct radv_device * device,struct radv_sampler * sampler,const VkSamplerCreateInfo * pCreateInfo)7292 radv_init_sampler(struct radv_device *device, struct radv_sampler *sampler,
7293 const VkSamplerCreateInfo *pCreateInfo)
7294 {
7295 uint32_t max_aniso = radv_get_max_anisotropy(device, pCreateInfo);
7296 uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
7297 bool compat_mode = device->physical_device->rad_info.chip_class == GFX8 ||
7298 device->physical_device->rad_info.chip_class == GFX9;
7299 unsigned filter_mode = V_008F30_SQ_IMG_FILTER_MODE_BLEND;
7300 unsigned depth_compare_func = V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
7301 bool trunc_coord =
7302 pCreateInfo->minFilter == VK_FILTER_NEAREST && pCreateInfo->magFilter == VK_FILTER_NEAREST;
7303 bool uses_border_color = pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
7304 pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
7305 pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER;
7306 VkBorderColor border_color =
7307 uses_border_color ? pCreateInfo->borderColor : VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
7308 uint32_t border_color_ptr;
7309
7310 const struct VkSamplerReductionModeCreateInfo *sampler_reduction =
7311 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_REDUCTION_MODE_CREATE_INFO);
7312 if (sampler_reduction)
7313 filter_mode = radv_tex_filter_mode(sampler_reduction->reductionMode);
7314
7315 if (pCreateInfo->compareEnable)
7316 depth_compare_func = radv_tex_compare(pCreateInfo->compareOp);
7317
7318 sampler->border_color_slot = RADV_BORDER_COLOR_COUNT;
7319
7320 if (border_color == VK_BORDER_COLOR_FLOAT_CUSTOM_EXT ||
7321 border_color == VK_BORDER_COLOR_INT_CUSTOM_EXT) {
7322 const VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
7323 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT);
7324
7325 assert(custom_border_color);
7326
7327 sampler->border_color_slot =
7328 radv_register_border_color(device, custom_border_color->customBorderColor);
7329
7330 /* Did we fail to find a slot? */
7331 if (sampler->border_color_slot == RADV_BORDER_COLOR_COUNT) {
7332 fprintf(stderr, "WARNING: no free border color slots, defaulting to TRANS_BLACK.\n");
7333 border_color = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK;
7334 }
7335 }
7336
7337 /* If we don't have a custom color, set the ptr to 0 */
7338 border_color_ptr =
7339 sampler->border_color_slot != RADV_BORDER_COLOR_COUNT ? sampler->border_color_slot : 0;
7340
7341 sampler->state[0] =
7342 (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
7343 S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
7344 S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
7345 S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) | S_008F30_DEPTH_COMPARE_FUNC(depth_compare_func) |
7346 S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
7347 S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) | S_008F30_ANISO_BIAS(max_aniso_ratio) |
7348 S_008F30_DISABLE_CUBE_WRAP(0) | S_008F30_COMPAT_MODE(compat_mode) |
7349 S_008F30_FILTER_MODE(filter_mode) | S_008F30_TRUNC_COORD(trunc_coord));
7350 sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
7351 S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
7352 S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
7353 sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
7354 S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
7355 S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
7356 S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
7357 S_008F38_MIP_POINT_PRECLAMP(0));
7358 sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(border_color_ptr) |
7359 S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(border_color)));
7360
7361 if (device->physical_device->rad_info.chip_class >= GFX10) {
7362 sampler->state[2] |= S_008F38_ANISO_OVERRIDE_GFX10(1);
7363 } else {
7364 sampler->state[2] |=
7365 S_008F38_DISABLE_LSB_CEIL(device->physical_device->rad_info.chip_class <= GFX8) |
7366 S_008F38_FILTER_PREC_FIX(1) |
7367 S_008F38_ANISO_OVERRIDE_GFX8(device->physical_device->rad_info.chip_class >= GFX8);
7368 }
7369 }
7370
7371 VkResult
radv_CreateSampler(VkDevice _device,const VkSamplerCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkSampler * pSampler)7372 radv_CreateSampler(VkDevice _device, const VkSamplerCreateInfo *pCreateInfo,
7373 const VkAllocationCallbacks *pAllocator, VkSampler *pSampler)
7374 {
7375 RADV_FROM_HANDLE(radv_device, device, _device);
7376 struct radv_sampler *sampler;
7377
7378 const struct VkSamplerYcbcrConversionInfo *ycbcr_conversion =
7379 vk_find_struct_const(pCreateInfo->pNext, SAMPLER_YCBCR_CONVERSION_INFO);
7380
7381 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
7382
7383 sampler = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*sampler), 8,
7384 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
7385 if (!sampler)
7386 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
7387
7388 vk_object_base_init(&device->vk, &sampler->base, VK_OBJECT_TYPE_SAMPLER);
7389
7390 radv_init_sampler(device, sampler, pCreateInfo);
7391
7392 sampler->ycbcr_sampler =
7393 ycbcr_conversion ? radv_sampler_ycbcr_conversion_from_handle(ycbcr_conversion->conversion)
7394 : NULL;
7395 *pSampler = radv_sampler_to_handle(sampler);
7396
7397 return VK_SUCCESS;
7398 }
7399
7400 void
radv_DestroySampler(VkDevice _device,VkSampler _sampler,const VkAllocationCallbacks * pAllocator)7401 radv_DestroySampler(VkDevice _device, VkSampler _sampler, const VkAllocationCallbacks *pAllocator)
7402 {
7403 RADV_FROM_HANDLE(radv_device, device, _device);
7404 RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
7405
7406 if (!sampler)
7407 return;
7408
7409 if (sampler->border_color_slot != RADV_BORDER_COLOR_COUNT)
7410 radv_unregister_border_color(device, sampler->border_color_slot);
7411
7412 vk_object_base_finish(&sampler->base);
7413 vk_free2(&device->vk.alloc, pAllocator, sampler);
7414 }
7415
7416 PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t * pSupportedVersion)7417 vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
7418 {
7419 /* For the full details on loader interface versioning, see
7420 * <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
7421 * What follows is a condensed summary, to help you navigate the large and
7422 * confusing official doc.
7423 *
7424 * - Loader interface v0 is incompatible with later versions. We don't
7425 * support it.
7426 *
7427 * - In loader interface v1:
7428 * - The first ICD entrypoint called by the loader is
7429 * vk_icdGetInstanceProcAddr(). The ICD must statically expose this
7430 * entrypoint.
7431 * - The ICD must statically expose no other Vulkan symbol unless it is
7432 * linked with -Bsymbolic.
7433 * - Each dispatchable Vulkan handle created by the ICD must be
7434 * a pointer to a struct whose first member is VK_LOADER_DATA. The
7435 * ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
7436 * - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
7437 * vkDestroySurfaceKHR(). The ICD must be capable of working with
7438 * such loader-managed surfaces.
7439 *
7440 * - Loader interface v2 differs from v1 in:
7441 * - The first ICD entrypoint called by the loader is
7442 * vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
7443 * statically expose this entrypoint.
7444 *
7445 * - Loader interface v3 differs from v2 in:
7446 * - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
7447 * vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
7448 * because the loader no longer does so.
7449 */
7450 *pSupportedVersion = MIN2(*pSupportedVersion, 4u);
7451 return VK_SUCCESS;
7452 }
7453
7454 VkResult
radv_GetMemoryFdKHR(VkDevice _device,const VkMemoryGetFdInfoKHR * pGetFdInfo,int * pFD)7455 radv_GetMemoryFdKHR(VkDevice _device, const VkMemoryGetFdInfoKHR *pGetFdInfo, int *pFD)
7456 {
7457 RADV_FROM_HANDLE(radv_device, device, _device);
7458 RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
7459
7460 assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
7461
7462 /* At the moment, we support only the below handle types. */
7463 assert(pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT ||
7464 pGetFdInfo->handleType == VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT);
7465
7466 bool ret = radv_get_memory_fd(device, memory, pFD);
7467 if (ret == false)
7468 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
7469 return VK_SUCCESS;
7470 }
7471
7472 static uint32_t
radv_compute_valid_memory_types_attempt(struct radv_physical_device * dev,enum radeon_bo_domain domains,enum radeon_bo_flag flags,enum radeon_bo_flag ignore_flags)7473 radv_compute_valid_memory_types_attempt(struct radv_physical_device *dev,
7474 enum radeon_bo_domain domains, enum radeon_bo_flag flags,
7475 enum radeon_bo_flag ignore_flags)
7476 {
7477 /* Don't count GTT/CPU as relevant:
7478 *
7479 * - We're not fully consistent between the two.
7480 * - Sometimes VRAM gets VRAM|GTT.
7481 */
7482 const enum radeon_bo_domain relevant_domains =
7483 RADEON_DOMAIN_VRAM | RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA;
7484 uint32_t bits = 0;
7485 for (unsigned i = 0; i < dev->memory_properties.memoryTypeCount; ++i) {
7486 if ((domains & relevant_domains) != (dev->memory_domains[i] & relevant_domains))
7487 continue;
7488
7489 if ((flags & ~ignore_flags) != (dev->memory_flags[i] & ~ignore_flags))
7490 continue;
7491
7492 bits |= 1u << i;
7493 }
7494
7495 return bits;
7496 }
7497
7498 static uint32_t
radv_compute_valid_memory_types(struct radv_physical_device * dev,enum radeon_bo_domain domains,enum radeon_bo_flag flags)7499 radv_compute_valid_memory_types(struct radv_physical_device *dev, enum radeon_bo_domain domains,
7500 enum radeon_bo_flag flags)
7501 {
7502 enum radeon_bo_flag ignore_flags = ~(RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_GTT_WC);
7503 uint32_t bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
7504
7505 if (!bits) {
7506 ignore_flags |= RADEON_FLAG_GTT_WC;
7507 bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
7508 }
7509
7510 if (!bits) {
7511 ignore_flags |= RADEON_FLAG_NO_CPU_ACCESS;
7512 bits = radv_compute_valid_memory_types_attempt(dev, domains, flags, ignore_flags);
7513 }
7514
7515 return bits;
7516 }
7517 VkResult
radv_GetMemoryFdPropertiesKHR(VkDevice _device,VkExternalMemoryHandleTypeFlagBits handleType,int fd,VkMemoryFdPropertiesKHR * pMemoryFdProperties)7518 radv_GetMemoryFdPropertiesKHR(VkDevice _device, VkExternalMemoryHandleTypeFlagBits handleType,
7519 int fd, VkMemoryFdPropertiesKHR *pMemoryFdProperties)
7520 {
7521 RADV_FROM_HANDLE(radv_device, device, _device);
7522
7523 switch (handleType) {
7524 case VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT: {
7525 enum radeon_bo_domain domains;
7526 enum radeon_bo_flag flags;
7527 if (!device->ws->buffer_get_flags_from_fd(device->ws, fd, &domains, &flags))
7528 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7529
7530 pMemoryFdProperties->memoryTypeBits =
7531 radv_compute_valid_memory_types(device->physical_device, domains, flags);
7532 return VK_SUCCESS;
7533 }
7534 default:
7535 /* The valid usage section for this function says:
7536 *
7537 * "handleType must not be one of the handle types defined as
7538 * opaque."
7539 *
7540 * So opaque handle types fall into the default "unsupported" case.
7541 */
7542 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7543 }
7544 }
7545
7546 static VkResult
radv_import_opaque_fd(struct radv_device * device,int fd,uint32_t * syncobj)7547 radv_import_opaque_fd(struct radv_device *device, int fd, uint32_t *syncobj)
7548 {
7549 uint32_t syncobj_handle = 0;
7550 int ret = device->ws->import_syncobj(device->ws, fd, &syncobj_handle);
7551 if (ret != 0)
7552 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7553
7554 if (*syncobj)
7555 device->ws->destroy_syncobj(device->ws, *syncobj);
7556
7557 *syncobj = syncobj_handle;
7558 close(fd);
7559
7560 return VK_SUCCESS;
7561 }
7562
7563 static VkResult
radv_import_sync_fd(struct radv_device * device,int fd,uint32_t * syncobj)7564 radv_import_sync_fd(struct radv_device *device, int fd, uint32_t *syncobj)
7565 {
7566 /* If we create a syncobj we do it locally so that if we have an error, we don't
7567 * leave a syncobj in an undetermined state in the fence. */
7568 uint32_t syncobj_handle = *syncobj;
7569 if (!syncobj_handle) {
7570 bool create_signaled = fd == -1 ? true : false;
7571
7572 int ret = device->ws->create_syncobj(device->ws, create_signaled, &syncobj_handle);
7573 if (ret) {
7574 return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
7575 }
7576 } else {
7577 if (fd == -1)
7578 device->ws->signal_syncobj(device->ws, syncobj_handle, 0);
7579 }
7580
7581 if (fd != -1) {
7582 int ret = device->ws->import_syncobj_from_sync_file(device->ws, syncobj_handle, fd);
7583 if (ret)
7584 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
7585 close(fd);
7586 }
7587
7588 *syncobj = syncobj_handle;
7589
7590 return VK_SUCCESS;
7591 }
7592
7593 VkResult
radv_ImportSemaphoreFdKHR(VkDevice _device,const VkImportSemaphoreFdInfoKHR * pImportSemaphoreFdInfo)7594 radv_ImportSemaphoreFdKHR(VkDevice _device,
7595 const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
7596 {
7597 RADV_FROM_HANDLE(radv_device, device, _device);
7598 RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
7599 VkResult result;
7600 struct radv_semaphore_part *dst = NULL;
7601 bool timeline = sem->permanent.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
7602
7603 if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT) {
7604 assert(!timeline);
7605 dst = &sem->temporary;
7606 } else {
7607 dst = &sem->permanent;
7608 }
7609
7610 uint32_t syncobj =
7611 (dst->kind == RADV_SEMAPHORE_SYNCOBJ || dst->kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ)
7612 ? dst->syncobj
7613 : 0;
7614
7615 switch (pImportSemaphoreFdInfo->handleType) {
7616 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
7617 result = radv_import_opaque_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
7618 break;
7619 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
7620 assert(!timeline);
7621 result = radv_import_sync_fd(device, pImportSemaphoreFdInfo->fd, &syncobj);
7622 break;
7623 default:
7624 unreachable("Unhandled semaphore handle type");
7625 }
7626
7627 if (result == VK_SUCCESS) {
7628 dst->syncobj = syncobj;
7629 dst->kind = RADV_SEMAPHORE_SYNCOBJ;
7630 if (timeline) {
7631 dst->kind = RADV_SEMAPHORE_TIMELINE_SYNCOBJ;
7632 dst->timeline_syncobj.max_point = 0;
7633 }
7634 }
7635
7636 return result;
7637 }
7638
7639 VkResult
radv_GetSemaphoreFdKHR(VkDevice _device,const VkSemaphoreGetFdInfoKHR * pGetFdInfo,int * pFd)7640 radv_GetSemaphoreFdKHR(VkDevice _device, const VkSemaphoreGetFdInfoKHR *pGetFdInfo, int *pFd)
7641 {
7642 RADV_FROM_HANDLE(radv_device, device, _device);
7643 RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
7644 int ret;
7645 uint32_t syncobj_handle;
7646
7647 if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
7648 assert(sem->temporary.kind == RADV_SEMAPHORE_SYNCOBJ ||
7649 sem->temporary.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ);
7650 syncobj_handle = sem->temporary.syncobj;
7651 } else {
7652 assert(sem->permanent.kind == RADV_SEMAPHORE_SYNCOBJ ||
7653 sem->permanent.kind == RADV_SEMAPHORE_TIMELINE_SYNCOBJ);
7654 syncobj_handle = sem->permanent.syncobj;
7655 }
7656
7657 switch (pGetFdInfo->handleType) {
7658 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT:
7659 ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
7660 if (ret)
7661 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
7662 break;
7663 case VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT:
7664 ret = device->ws->export_syncobj_to_sync_file(device->ws, syncobj_handle, pFd);
7665 if (ret)
7666 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
7667
7668 if (sem->temporary.kind != RADV_SEMAPHORE_NONE) {
7669 radv_destroy_semaphore_part(device, &sem->temporary);
7670 } else {
7671 device->ws->reset_syncobj(device->ws, syncobj_handle);
7672 }
7673 break;
7674 default:
7675 unreachable("Unhandled semaphore handle type");
7676 }
7677
7678 return VK_SUCCESS;
7679 }
7680
7681 void
radv_GetPhysicalDeviceExternalSemaphoreProperties(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceExternalSemaphoreInfo * pExternalSemaphoreInfo,VkExternalSemaphoreProperties * pExternalSemaphoreProperties)7682 radv_GetPhysicalDeviceExternalSemaphoreProperties(
7683 VkPhysicalDevice physicalDevice,
7684 const VkPhysicalDeviceExternalSemaphoreInfo *pExternalSemaphoreInfo,
7685 VkExternalSemaphoreProperties *pExternalSemaphoreProperties)
7686 {
7687 RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
7688 VkSemaphoreTypeKHR type = radv_get_semaphore_type(pExternalSemaphoreInfo->pNext, NULL);
7689
7690 if (type == VK_SEMAPHORE_TYPE_TIMELINE && pdevice->rad_info.has_timeline_syncobj &&
7691 pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
7692 pExternalSemaphoreProperties->exportFromImportedHandleTypes =
7693 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
7694 pExternalSemaphoreProperties->compatibleHandleTypes =
7695 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
7696 pExternalSemaphoreProperties->externalSemaphoreFeatures =
7697 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
7698 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7699 } else if (type == VK_SEMAPHORE_TYPE_TIMELINE) {
7700 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
7701 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
7702 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
7703 } else if (pExternalSemaphoreInfo->handleType ==
7704 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT ||
7705 pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT) {
7706 pExternalSemaphoreProperties->exportFromImportedHandleTypes =
7707 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT |
7708 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
7709 pExternalSemaphoreProperties->compatibleHandleTypes =
7710 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT |
7711 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT;
7712 pExternalSemaphoreProperties->externalSemaphoreFeatures =
7713 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
7714 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7715 } else if (pExternalSemaphoreInfo->handleType ==
7716 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT) {
7717 pExternalSemaphoreProperties->exportFromImportedHandleTypes =
7718 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
7719 pExternalSemaphoreProperties->compatibleHandleTypes =
7720 VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT;
7721 pExternalSemaphoreProperties->externalSemaphoreFeatures =
7722 VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT |
7723 VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7724 } else {
7725 pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
7726 pExternalSemaphoreProperties->compatibleHandleTypes = 0;
7727 pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
7728 }
7729 }
7730
7731 VkResult
radv_ImportFenceFdKHR(VkDevice _device,const VkImportFenceFdInfoKHR * pImportFenceFdInfo)7732 radv_ImportFenceFdKHR(VkDevice _device, const VkImportFenceFdInfoKHR *pImportFenceFdInfo)
7733 {
7734 RADV_FROM_HANDLE(radv_device, device, _device);
7735 RADV_FROM_HANDLE(radv_fence, fence, pImportFenceFdInfo->fence);
7736 struct radv_fence_part *dst = NULL;
7737 VkResult result;
7738
7739 if (pImportFenceFdInfo->flags & VK_FENCE_IMPORT_TEMPORARY_BIT) {
7740 dst = &fence->temporary;
7741 } else {
7742 dst = &fence->permanent;
7743 }
7744
7745 uint32_t syncobj = dst->kind == RADV_FENCE_SYNCOBJ ? dst->syncobj : 0;
7746
7747 switch (pImportFenceFdInfo->handleType) {
7748 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
7749 result = radv_import_opaque_fd(device, pImportFenceFdInfo->fd, &syncobj);
7750 break;
7751 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
7752 result = radv_import_sync_fd(device, pImportFenceFdInfo->fd, &syncobj);
7753 break;
7754 default:
7755 unreachable("Unhandled fence handle type");
7756 }
7757
7758 if (result == VK_SUCCESS) {
7759 dst->syncobj = syncobj;
7760 dst->kind = RADV_FENCE_SYNCOBJ;
7761 }
7762
7763 return result;
7764 }
7765
7766 VkResult
radv_GetFenceFdKHR(VkDevice _device,const VkFenceGetFdInfoKHR * pGetFdInfo,int * pFd)7767 radv_GetFenceFdKHR(VkDevice _device, const VkFenceGetFdInfoKHR *pGetFdInfo, int *pFd)
7768 {
7769 RADV_FROM_HANDLE(radv_device, device, _device);
7770 RADV_FROM_HANDLE(radv_fence, fence, pGetFdInfo->fence);
7771 int ret;
7772
7773 struct radv_fence_part *part =
7774 fence->temporary.kind != RADV_FENCE_NONE ? &fence->temporary : &fence->permanent;
7775
7776 switch (pGetFdInfo->handleType) {
7777 case VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT:
7778 ret = device->ws->export_syncobj(device->ws, part->syncobj, pFd);
7779 if (ret)
7780 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
7781 break;
7782 case VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT:
7783 ret = device->ws->export_syncobj_to_sync_file(device->ws, part->syncobj, pFd);
7784 if (ret)
7785 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
7786
7787 if (part == &fence->temporary) {
7788 radv_destroy_fence_part(device, part);
7789 } else {
7790 device->ws->reset_syncobj(device->ws, part->syncobj);
7791 }
7792 break;
7793 default:
7794 unreachable("Unhandled fence handle type");
7795 }
7796
7797 return VK_SUCCESS;
7798 }
7799
7800 void
radv_GetPhysicalDeviceExternalFenceProperties(VkPhysicalDevice physicalDevice,const VkPhysicalDeviceExternalFenceInfo * pExternalFenceInfo,VkExternalFenceProperties * pExternalFenceProperties)7801 radv_GetPhysicalDeviceExternalFenceProperties(
7802 VkPhysicalDevice physicalDevice, const VkPhysicalDeviceExternalFenceInfo *pExternalFenceInfo,
7803 VkExternalFenceProperties *pExternalFenceProperties)
7804 {
7805 if (pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT ||
7806 pExternalFenceInfo->handleType == VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT) {
7807 pExternalFenceProperties->exportFromImportedHandleTypes =
7808 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
7809 pExternalFenceProperties->compatibleHandleTypes =
7810 VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT | VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT;
7811 pExternalFenceProperties->externalFenceFeatures =
7812 VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT | VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT;
7813 } else {
7814 pExternalFenceProperties->exportFromImportedHandleTypes = 0;
7815 pExternalFenceProperties->compatibleHandleTypes = 0;
7816 pExternalFenceProperties->externalFenceFeatures = 0;
7817 }
7818 }
7819
7820 void
radv_GetDeviceGroupPeerMemoryFeatures(VkDevice device,uint32_t heapIndex,uint32_t localDeviceIndex,uint32_t remoteDeviceIndex,VkPeerMemoryFeatureFlags * pPeerMemoryFeatures)7821 radv_GetDeviceGroupPeerMemoryFeatures(VkDevice device, uint32_t heapIndex,
7822 uint32_t localDeviceIndex, uint32_t remoteDeviceIndex,
7823 VkPeerMemoryFeatureFlags *pPeerMemoryFeatures)
7824 {
7825 assert(localDeviceIndex == remoteDeviceIndex);
7826
7827 *pPeerMemoryFeatures =
7828 VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT | VK_PEER_MEMORY_FEATURE_COPY_DST_BIT |
7829 VK_PEER_MEMORY_FEATURE_GENERIC_SRC_BIT | VK_PEER_MEMORY_FEATURE_GENERIC_DST_BIT;
7830 }
7831
7832 static const VkTimeDomainEXT radv_time_domains[] = {
7833 VK_TIME_DOMAIN_DEVICE_EXT,
7834 VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT,
7835 #ifdef CLOCK_MONOTONIC_RAW
7836 VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT,
7837 #endif
7838 };
7839
7840 VkResult
radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,uint32_t * pTimeDomainCount,VkTimeDomainEXT * pTimeDomains)7841 radv_GetPhysicalDeviceCalibrateableTimeDomainsEXT(VkPhysicalDevice physicalDevice,
7842 uint32_t *pTimeDomainCount,
7843 VkTimeDomainEXT *pTimeDomains)
7844 {
7845 int d;
7846 VK_OUTARRAY_MAKE_TYPED(VkTimeDomainEXT, out, pTimeDomains, pTimeDomainCount);
7847
7848 for (d = 0; d < ARRAY_SIZE(radv_time_domains); d++) {
7849 vk_outarray_append_typed(VkTimeDomainEXT, &out, i)
7850 {
7851 *i = radv_time_domains[d];
7852 }
7853 }
7854
7855 return vk_outarray_status(&out);
7856 }
7857
7858 #ifndef _WIN32
7859 static uint64_t
radv_clock_gettime(clockid_t clock_id)7860 radv_clock_gettime(clockid_t clock_id)
7861 {
7862 struct timespec current;
7863 int ret;
7864
7865 ret = clock_gettime(clock_id, ¤t);
7866 #ifdef CLOCK_MONOTONIC_RAW
7867 if (ret < 0 && clock_id == CLOCK_MONOTONIC_RAW)
7868 ret = clock_gettime(CLOCK_MONOTONIC, ¤t);
7869 #endif
7870 if (ret < 0)
7871 return 0;
7872
7873 return (uint64_t)current.tv_sec * 1000000000ULL + current.tv_nsec;
7874 }
7875
7876 VkResult
radv_GetCalibratedTimestampsEXT(VkDevice _device,uint32_t timestampCount,const VkCalibratedTimestampInfoEXT * pTimestampInfos,uint64_t * pTimestamps,uint64_t * pMaxDeviation)7877 radv_GetCalibratedTimestampsEXT(VkDevice _device, uint32_t timestampCount,
7878 const VkCalibratedTimestampInfoEXT *pTimestampInfos,
7879 uint64_t *pTimestamps, uint64_t *pMaxDeviation)
7880 {
7881 RADV_FROM_HANDLE(radv_device, device, _device);
7882 uint32_t clock_crystal_freq = device->physical_device->rad_info.clock_crystal_freq;
7883 int d;
7884 uint64_t begin, end;
7885 uint64_t max_clock_period = 0;
7886
7887 #ifdef CLOCK_MONOTONIC_RAW
7888 begin = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
7889 #else
7890 begin = radv_clock_gettime(CLOCK_MONOTONIC);
7891 #endif
7892
7893 for (d = 0; d < timestampCount; d++) {
7894 switch (pTimestampInfos[d].timeDomain) {
7895 case VK_TIME_DOMAIN_DEVICE_EXT:
7896 pTimestamps[d] = device->ws->query_value(device->ws, RADEON_TIMESTAMP);
7897 uint64_t device_period = DIV_ROUND_UP(1000000, clock_crystal_freq);
7898 max_clock_period = MAX2(max_clock_period, device_period);
7899 break;
7900 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT:
7901 pTimestamps[d] = radv_clock_gettime(CLOCK_MONOTONIC);
7902 max_clock_period = MAX2(max_clock_period, 1);
7903 break;
7904
7905 #ifdef CLOCK_MONOTONIC_RAW
7906 case VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT:
7907 pTimestamps[d] = begin;
7908 break;
7909 #endif
7910 default:
7911 pTimestamps[d] = 0;
7912 break;
7913 }
7914 }
7915
7916 #ifdef CLOCK_MONOTONIC_RAW
7917 end = radv_clock_gettime(CLOCK_MONOTONIC_RAW);
7918 #else
7919 end = radv_clock_gettime(CLOCK_MONOTONIC);
7920 #endif
7921
7922 /*
7923 * The maximum deviation is the sum of the interval over which we
7924 * perform the sampling and the maximum period of any sampled
7925 * clock. That's because the maximum skew between any two sampled
7926 * clock edges is when the sampled clock with the largest period is
7927 * sampled at the end of that period but right at the beginning of the
7928 * sampling interval and some other clock is sampled right at the
7929 * begining of its sampling period and right at the end of the
7930 * sampling interval. Let's assume the GPU has the longest clock
7931 * period and that the application is sampling GPU and monotonic:
7932 *
7933 * s e
7934 * w x y z 0 1 2 3 4 5 6 7 8 9 a b c d e f
7935 * Raw -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
7936 *
7937 * g
7938 * 0 1 2 3
7939 * GPU -----_____-----_____-----_____-----_____
7940 *
7941 * m
7942 * x y z 0 1 2 3 4 5 6 7 8 9 a b c
7943 * Monotonic -_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-
7944 *
7945 * Interval <----------------->
7946 * Deviation <-------------------------->
7947 *
7948 * s = read(raw) 2
7949 * g = read(GPU) 1
7950 * m = read(monotonic) 2
7951 * e = read(raw) b
7952 *
7953 * We round the sample interval up by one tick to cover sampling error
7954 * in the interval clock
7955 */
7956
7957 uint64_t sample_interval = end - begin + 1;
7958
7959 *pMaxDeviation = sample_interval + max_clock_period;
7960
7961 return VK_SUCCESS;
7962 }
7963 #endif
7964
7965 void
radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,VkSampleCountFlagBits samples,VkMultisamplePropertiesEXT * pMultisampleProperties)7966 radv_GetPhysicalDeviceMultisamplePropertiesEXT(VkPhysicalDevice physicalDevice,
7967 VkSampleCountFlagBits samples,
7968 VkMultisamplePropertiesEXT *pMultisampleProperties)
7969 {
7970 VkSampleCountFlagBits supported_samples = VK_SAMPLE_COUNT_2_BIT | VK_SAMPLE_COUNT_4_BIT |
7971 VK_SAMPLE_COUNT_8_BIT;
7972
7973 if (samples & supported_samples) {
7974 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){2, 2};
7975 } else {
7976 pMultisampleProperties->maxSampleLocationGridSize = (VkExtent2D){0, 0};
7977 }
7978 }
7979
7980 VkResult
radv_GetPhysicalDeviceFragmentShadingRatesKHR(VkPhysicalDevice physicalDevice,uint32_t * pFragmentShadingRateCount,VkPhysicalDeviceFragmentShadingRateKHR * pFragmentShadingRates)7981 radv_GetPhysicalDeviceFragmentShadingRatesKHR(
7982 VkPhysicalDevice physicalDevice, uint32_t *pFragmentShadingRateCount,
7983 VkPhysicalDeviceFragmentShadingRateKHR *pFragmentShadingRates)
7984 {
7985 VK_OUTARRAY_MAKE_TYPED(VkPhysicalDeviceFragmentShadingRateKHR, out, pFragmentShadingRates,
7986 pFragmentShadingRateCount);
7987
7988 #define append_rate(w, h, s) \
7989 { \
7990 VkPhysicalDeviceFragmentShadingRateKHR rate = { \
7991 .sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_PROPERTIES_KHR, \
7992 .sampleCounts = s, \
7993 .fragmentSize = {.width = w, .height = h}, \
7994 }; \
7995 vk_outarray_append_typed(VkPhysicalDeviceFragmentShadingRateKHR, &out, r) *r = rate; \
7996 }
7997
7998 for (uint32_t x = 2; x >= 1; x--) {
7999 for (uint32_t y = 2; y >= 1; y--) {
8000 VkSampleCountFlagBits samples;
8001
8002 if (x == 1 && y == 1) {
8003 samples = ~0;
8004 } else {
8005 samples = VK_SAMPLE_COUNT_1_BIT | VK_SAMPLE_COUNT_2_BIT |
8006 VK_SAMPLE_COUNT_4_BIT | VK_SAMPLE_COUNT_8_BIT;
8007 }
8008
8009 append_rate(x, y, samples);
8010 }
8011 }
8012 #undef append_rate
8013
8014 return vk_outarray_status(&out);
8015 }
8016