1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott (cwabbott0@gmail.com)
25  *
26  */
27 
28 #ifndef NIR_H
29 #define NIR_H
30 
31 #include "util/hash_table.h"
32 #include "compiler/glsl/list.h"
33 #include "GL/gl.h" /* GLenum */
34 #include "util/list.h"
35 #include "util/log.h"
36 #include "util/ralloc.h"
37 #include "util/set.h"
38 #include "util/bitscan.h"
39 #include "util/bitset.h"
40 #include "util/compiler.h"
41 #include "util/enum_operators.h"
42 #include "util/macros.h"
43 #include "util/format/u_format.h"
44 #include "compiler/nir_types.h"
45 #include "compiler/shader_enums.h"
46 #include "compiler/shader_info.h"
47 #define XXH_INLINE_ALL
48 #include "util/xxhash.h"
49 #include <stdio.h>
50 
51 #ifndef NDEBUG
52 #include "util/debug.h"
53 #endif /* NDEBUG */
54 
55 #include "nir_opcodes.h"
56 
57 #if defined(_WIN32) && !defined(snprintf)
58 #define snprintf _snprintf
59 #endif
60 
61 #ifdef __cplusplus
62 extern "C" {
63 #endif
64 
65 #define NIR_FALSE 0u
66 #define NIR_TRUE (~0u)
67 #define NIR_MAX_VEC_COMPONENTS 16
68 #define NIR_MAX_MATRIX_COLUMNS 4
69 #define NIR_STREAM_PACKED (1 << 8)
70 typedef uint16_t nir_component_mask_t;
71 
72 static inline bool
nir_num_components_valid(unsigned num_components)73 nir_num_components_valid(unsigned num_components)
74 {
75    return (num_components >= 1  &&
76            num_components <= 5) ||
77            num_components == 8  ||
78            num_components == 16;
79 }
80 
81 bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
82                                         unsigned old_bit_size,
83                                         unsigned new_bit_size);
84 nir_component_mask_t
85 nir_component_mask_reinterpret(nir_component_mask_t mask,
86                                unsigned old_bit_size,
87                                unsigned new_bit_size);
88 
89 /** Defines a cast function
90  *
91  * This macro defines a cast function from in_type to out_type where
92  * out_type is some structure type that contains a field of type out_type.
93  *
94  * Note that you have to be a bit careful as the generated cast function
95  * destroys constness.
96  */
97 #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
98                         type_field, type_value)         \
99 static inline out_type *                                \
100 name(const in_type *parent)                             \
101 {                                                       \
102    assert(parent && parent->type_field == type_value);  \
103    return exec_node_data(out_type, parent, field);      \
104 }
105 
106 struct nir_function;
107 struct nir_shader;
108 struct nir_instr;
109 struct nir_builder;
110 
111 
112 /**
113  * Description of built-in state associated with a uniform
114  *
115  * \sa nir_variable::state_slots
116  */
117 typedef struct {
118    gl_state_index16 tokens[STATE_LENGTH];
119    uint16_t swizzle;
120 } nir_state_slot;
121 
122 typedef enum {
123    nir_var_shader_in       = (1 << 0),
124    nir_var_shader_out      = (1 << 1),
125    nir_var_shader_temp     = (1 << 2),
126    nir_var_function_temp   = (1 << 3),
127    nir_var_uniform         = (1 << 4),
128    nir_var_mem_ubo         = (1 << 5),
129    nir_var_system_value    = (1 << 6),
130    nir_var_mem_ssbo        = (1 << 7),
131    nir_var_mem_shared      = (1 << 8),
132    nir_var_mem_global      = (1 << 9),
133    nir_var_mem_generic     = (nir_var_shader_temp |
134                               nir_var_function_temp |
135                               nir_var_mem_shared |
136                               nir_var_mem_global),
137    nir_var_mem_push_const  = (1 << 10), /* not actually used for variables */
138    nir_var_mem_constant    = (1 << 11),
139    /** Incoming call or ray payload data for ray-tracing shaders */
140    nir_var_shader_call_data = (1 << 12),
141    /** Ray hit attributes */
142    nir_var_ray_hit_attrib  = (1 << 13),
143    nir_var_read_only_modes = nir_var_shader_in | nir_var_uniform |
144                              nir_var_system_value | nir_var_mem_constant |
145                              nir_var_mem_ubo,
146    /** Modes where vector derefs can be indexed as arrays */
147    nir_var_vec_indexable_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
148                                  nir_var_mem_shared | nir_var_mem_global |
149                                  nir_var_mem_push_const,
150    nir_num_variable_modes  = 14,
151    nir_var_all             = (1 << nir_num_variable_modes) - 1,
152 } nir_variable_mode;
153 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
154 
155 /**
156  * Rounding modes.
157  */
158 typedef enum {
159    nir_rounding_mode_undef = 0,
160    nir_rounding_mode_rtne  = 1, /* round to nearest even */
161    nir_rounding_mode_ru    = 2, /* round up */
162    nir_rounding_mode_rd    = 3, /* round down */
163    nir_rounding_mode_rtz   = 4, /* round towards zero */
164 } nir_rounding_mode;
165 
166 typedef union {
167    bool b;
168    float f32;
169    double f64;
170    int8_t i8;
171    uint8_t u8;
172    int16_t i16;
173    uint16_t u16;
174    int32_t i32;
175    uint32_t u32;
176    int64_t i64;
177    uint64_t u64;
178 } nir_const_value;
179 
180 #define nir_const_value_to_array(arr, c, components, m) \
181 { \
182    for (unsigned i = 0; i < components; ++i) \
183       arr[i] = c[i].m; \
184 } while (false)
185 
186 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)187 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
188 {
189    nir_const_value v;
190    memset(&v, 0, sizeof(v));
191 
192    switch (bit_size) {
193    case 1:  v.b   = x;  break;
194    case 8:  v.u8  = x;  break;
195    case 16: v.u16 = x;  break;
196    case 32: v.u32 = x;  break;
197    case 64: v.u64 = x;  break;
198    default:
199       unreachable("Invalid bit size");
200    }
201 
202    return v;
203 }
204 
205 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)206 nir_const_value_for_int(int64_t i, unsigned bit_size)
207 {
208    nir_const_value v;
209    memset(&v, 0, sizeof(v));
210 
211    assert(bit_size <= 64);
212    if (bit_size < 64) {
213       assert(i >= (-(1ll << (bit_size - 1))));
214       assert(i < (1ll << (bit_size - 1)));
215    }
216 
217    return nir_const_value_for_raw_uint(i, bit_size);
218 }
219 
220 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)221 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
222 {
223    nir_const_value v;
224    memset(&v, 0, sizeof(v));
225 
226    assert(bit_size <= 64);
227    if (bit_size < 64)
228       assert(u < (1ull << bit_size));
229 
230    return nir_const_value_for_raw_uint(u, bit_size);
231 }
232 
233 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)234 nir_const_value_for_bool(bool b, unsigned bit_size)
235 {
236    /* Booleans use a 0/-1 convention */
237    return nir_const_value_for_int(-(int)b, bit_size);
238 }
239 
240 /* This one isn't inline because it requires half-float conversion */
241 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
242 
243 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)244 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
245 {
246    switch (bit_size) {
247    /* int1_t uses 0/-1 convention */
248    case 1:  return -(int)value.b;
249    case 8:  return value.i8;
250    case 16: return value.i16;
251    case 32: return value.i32;
252    case 64: return value.i64;
253    default:
254       unreachable("Invalid bit size");
255    }
256 }
257 
258 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)259 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
260 {
261    switch (bit_size) {
262    case 1:  return value.b;
263    case 8:  return value.u8;
264    case 16: return value.u16;
265    case 32: return value.u32;
266    case 64: return value.u64;
267    default:
268       unreachable("Invalid bit size");
269    }
270 }
271 
272 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)273 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
274 {
275    int64_t i = nir_const_value_as_int(value, bit_size);
276 
277    /* Booleans of any size use 0/-1 convention */
278    assert(i == 0 || i == -1);
279 
280    return i;
281 }
282 
283 /* This one isn't inline because it requires half-float conversion */
284 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
285 
286 typedef struct nir_constant {
287    /**
288     * Value of the constant.
289     *
290     * The field used to back the values supplied by the constant is determined
291     * by the type associated with the \c nir_variable.  Constants may be
292     * scalars, vectors, or matrices.
293     */
294    nir_const_value values[NIR_MAX_VEC_COMPONENTS];
295 
296    /* we could get this from the var->type but makes clone *much* easier to
297     * not have to care about the type.
298     */
299    unsigned num_elements;
300 
301    /* Array elements / Structure Fields */
302    struct nir_constant **elements;
303 } nir_constant;
304 
305 /**
306  * \brief Layout qualifiers for gl_FragDepth.
307  *
308  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
309  * with a layout qualifier.
310  */
311 typedef enum {
312     nir_depth_layout_none, /**< No depth layout is specified. */
313     nir_depth_layout_any,
314     nir_depth_layout_greater,
315     nir_depth_layout_less,
316     nir_depth_layout_unchanged
317 } nir_depth_layout;
318 
319 /**
320  * Enum keeping track of how a variable was declared.
321  */
322 typedef enum {
323    /**
324     * Normal declaration.
325     */
326    nir_var_declared_normally = 0,
327 
328    /**
329     * Variable is implicitly generated by the compiler and should not be
330     * visible via the API.
331     */
332    nir_var_hidden,
333 } nir_var_declaration_type;
334 
335 /**
336  * Either a uniform, global variable, shader input, or shader output. Based on
337  * ir_variable - it should be easy to translate between the two.
338  */
339 
340 typedef struct nir_variable {
341    struct exec_node node;
342 
343    /**
344     * Declared type of the variable
345     */
346    const struct glsl_type *type;
347 
348    /**
349     * Declared name of the variable
350     */
351    char *name;
352 
353    struct nir_variable_data {
354       /**
355        * Storage class of the variable.
356        *
357        * \sa nir_variable_mode
358        */
359       unsigned mode:14;
360 
361       /**
362        * Is the variable read-only?
363        *
364        * This is set for variables declared as \c const, shader inputs,
365        * and uniforms.
366        */
367       unsigned read_only:1;
368       unsigned centroid:1;
369       unsigned sample:1;
370       unsigned patch:1;
371       unsigned invariant:1;
372 
373      /**
374        * Precision qualifier.
375        *
376        * In desktop GLSL we do not care about precision qualifiers at all, in
377        * fact, the spec says that precision qualifiers are ignored.
378        *
379        * To make things easy, we make it so that this field is always
380        * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
381        * have the same precision value and the checks we add in the compiler
382        * for this field will never break a desktop shader compile.
383        */
384       unsigned precision:2;
385 
386       /**
387        * Can this variable be coalesced with another?
388        *
389        * This is set by nir_lower_io_to_temporaries to say that any
390        * copies involving this variable should stay put. Propagating it can
391        * duplicate the resulting load/store, which is not wanted, and may
392        * result in a load/store of the variable with an indirect offset which
393        * the backend may not be able to handle.
394        */
395       unsigned cannot_coalesce:1;
396 
397       /**
398        * When separate shader programs are enabled, only input/outputs between
399        * the stages of a multi-stage separate program can be safely removed
400        * from the shader interface. Other input/outputs must remains active.
401        *
402        * This is also used to make sure xfb varyings that are unused by the
403        * fragment shader are not removed.
404        */
405       unsigned always_active_io:1;
406 
407       /**
408        * Interpolation mode for shader inputs / outputs
409        *
410        * \sa glsl_interp_mode
411        */
412       unsigned interpolation:3;
413 
414       /**
415        * If non-zero, then this variable may be packed along with other variables
416        * into a single varying slot, so this offset should be applied when
417        * accessing components.  For example, an offset of 1 means that the x
418        * component of this variable is actually stored in component y of the
419        * location specified by \c location.
420        */
421       unsigned location_frac:2;
422 
423       /**
424        * If true, this variable represents an array of scalars that should
425        * be tightly packed.  In other words, consecutive array elements
426        * should be stored one component apart, rather than one slot apart.
427        */
428       unsigned compact:1;
429 
430       /**
431        * Whether this is a fragment shader output implicitly initialized with
432        * the previous contents of the specified render target at the
433        * framebuffer location corresponding to this shader invocation.
434        */
435       unsigned fb_fetch_output:1;
436 
437       /**
438        * Non-zero if this variable is considered bindless as defined by
439        * ARB_bindless_texture.
440        */
441       unsigned bindless:1;
442 
443       /**
444        * Was an explicit binding set in the shader?
445        */
446       unsigned explicit_binding:1;
447 
448       /**
449        * Was the location explicitly set in the shader?
450        *
451        * If the location is explicitly set in the shader, it \b cannot be changed
452        * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
453        * no effect).
454        */
455       unsigned explicit_location:1;
456 
457       /**
458        * Was a transfer feedback buffer set in the shader?
459        */
460       unsigned explicit_xfb_buffer:1;
461 
462       /**
463        * Was a transfer feedback stride set in the shader?
464        */
465       unsigned explicit_xfb_stride:1;
466 
467       /**
468        * Was an explicit offset set in the shader?
469        */
470       unsigned explicit_offset:1;
471 
472       /**
473        * Layout of the matrix.  Uses glsl_matrix_layout values.
474        */
475       unsigned matrix_layout:2;
476 
477       /**
478        * Non-zero if this variable was created by lowering a named interface
479        * block.
480        */
481       unsigned from_named_ifc_block:1;
482 
483       /**
484        * How the variable was declared.  See nir_var_declaration_type.
485        *
486        * This is used to detect variables generated by the compiler, so should
487        * not be visible via the API.
488        */
489       unsigned how_declared:2;
490 
491       /**
492        * Is this variable per-view?  If so, we know it must be an array with
493        * size corresponding to the number of views.
494        */
495       unsigned per_view:1;
496 
497       /**
498        * Whether the variable is per-primitive.
499        * Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
500        */
501       unsigned per_primitive:1;
502 
503       /**
504        * \brief Layout qualifier for gl_FragDepth. See nir_depth_layout.
505        *
506        * This is not equal to \c ir_depth_layout_none if and only if this
507        * variable is \c gl_FragDepth and a layout qualifier is specified.
508        */
509       unsigned depth_layout:3;
510 
511       /**
512        * Vertex stream output identifier.
513        *
514        * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
515        * indicate the stream of the i-th component.
516        */
517       unsigned stream:9;
518 
519       /**
520        * See gl_access_qualifier.
521        *
522        * Access flags for memory variables (SSBO/global), image uniforms, and
523        * bindless images in uniforms/inputs/outputs.
524        */
525       unsigned access:8;
526 
527       /**
528        * Descriptor set binding for sampler or UBO.
529        */
530       unsigned descriptor_set:5;
531 
532       /**
533        * output index for dual source blending.
534        */
535       unsigned index;
536 
537       /**
538        * Initial binding point for a sampler or UBO.
539        *
540        * For array types, this represents the binding point for the first element.
541        */
542       unsigned binding;
543 
544       /**
545        * Storage location of the base of this variable
546        *
547        * The precise meaning of this field depends on the nature of the variable.
548        *
549        *   - Vertex shader input: one of the values from \c gl_vert_attrib.
550        *   - Vertex shader output: one of the values from \c gl_varying_slot.
551        *   - Geometry shader input: one of the values from \c gl_varying_slot.
552        *   - Geometry shader output: one of the values from \c gl_varying_slot.
553        *   - Fragment shader input: one of the values from \c gl_varying_slot.
554        *   - Fragment shader output: one of the values from \c gl_frag_result.
555        *   - Task shader output: one of the values from \c gl_varying_slot.
556        *   - Mesh shader input: one of the values from \c gl_varying_slot.
557        *   - Mesh shader output: one of the values from \c gl_varying_slot.
558        *   - Uniforms: Per-stage uniform slot number for default uniform block.
559        *   - Uniforms: Index within the uniform block definition for UBO members.
560        *   - Non-UBO Uniforms: uniform slot number.
561        *   - Other: This field is not currently used.
562        *
563        * If the variable is a uniform, shader input, or shader output, and the
564        * slot has not been assigned, the value will be -1.
565        */
566       int location;
567 
568       /**
569        * The actual location of the variable in the IR. Only valid for inputs,
570        * outputs, uniforms (including samplers and images), and for UBO and SSBO
571        * variables in GLSL.
572        */
573       unsigned driver_location;
574 
575       /**
576        * Location an atomic counter or transform feedback is stored at.
577        */
578       unsigned offset;
579 
580       union {
581          struct {
582             /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
583             enum pipe_format format;
584          } image;
585 
586          struct {
587             /**
588              * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
589              */
590             unsigned is_inline_sampler : 1;
591             unsigned addressing_mode : 3;
592             unsigned normalized_coordinates : 1;
593             unsigned filter_mode : 1;
594          } sampler;
595 
596          struct {
597             /**
598              * Transform feedback buffer.
599              */
600             uint16_t buffer:2;
601 
602             /**
603              * Transform feedback stride.
604              */
605             uint16_t stride;
606          } xfb;
607       };
608    } data;
609 
610    /**
611     * Identifier for this variable generated by nir_index_vars() that is unique
612     * among other variables in the same exec_list.
613     */
614    unsigned index;
615 
616    /* Number of nir_variable_data members */
617    uint16_t num_members;
618 
619    /**
620     * Built-in state that backs this uniform
621     *
622     * Once set at variable creation, \c state_slots must remain invariant.
623     * This is because, ideally, this array would be shared by all clones of
624     * this variable in the IR tree.  In other words, we'd really like for it
625     * to be a fly-weight.
626     *
627     * If the variable is not a uniform, \c num_state_slots will be zero and
628     * \c state_slots will be \c NULL.
629     */
630    /*@{*/
631    uint16_t num_state_slots;    /**< Number of state slots used */
632    nir_state_slot *state_slots;  /**< State descriptors. */
633    /*@}*/
634 
635    /**
636     * Constant expression assigned in the initializer of the variable
637     *
638     * This field should only be used temporarily by creators of NIR shaders
639     * and then nir_lower_variable_initializers can be used to get rid of them.
640     * Most of the rest of NIR ignores this field or asserts that it's NULL.
641     */
642    nir_constant *constant_initializer;
643 
644    /**
645     * Global variable assigned in the initializer of the variable
646     * This field should only be used temporarily by creators of NIR shaders
647     * and then nir_lower_variable_initializers can be used to get rid of them.
648     * Most of the rest of NIR ignores this field or asserts that it's NULL.
649     */
650    struct nir_variable *pointer_initializer;
651 
652    /**
653     * For variables that are in an interface block or are an instance of an
654     * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
655     *
656     * \sa ir_variable::location
657     */
658    const struct glsl_type *interface_type;
659 
660    /**
661     * Description of per-member data for per-member struct variables
662     *
663     * This is used for variables which are actually an amalgamation of
664     * multiple entities such as a struct of built-in values or a struct of
665     * inputs each with their own layout specifier.  This is only allowed on
666     * variables with a struct or array of array of struct type.
667     */
668    struct nir_variable_data *members;
669 } nir_variable;
670 
671 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)672 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
673 {
674    /* This isn't a shader variable */
675    assert(!(modes & nir_var_function_temp));
676    return var->data.mode & modes;
677 }
678 
679 #define nir_foreach_variable_in_list(var, var_list) \
680    foreach_list_typed(nir_variable, var, node, var_list)
681 
682 #define nir_foreach_variable_in_list_safe(var, var_list) \
683    foreach_list_typed_safe(nir_variable, var, node, var_list)
684 
685 #define nir_foreach_variable_in_shader(var, shader) \
686    nir_foreach_variable_in_list(var, &(shader)->variables)
687 
688 #define nir_foreach_variable_in_shader_safe(var, shader) \
689    nir_foreach_variable_in_list_safe(var, &(shader)->variables)
690 
691 #define nir_foreach_variable_with_modes(var, shader, modes) \
692    nir_foreach_variable_in_shader(var, shader) \
693       if (_nir_shader_variable_has_mode(var, modes))
694 
695 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
696    nir_foreach_variable_in_shader_safe(var, shader) \
697       if (_nir_shader_variable_has_mode(var, modes))
698 
699 #define nir_foreach_shader_in_variable(var, shader) \
700    nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
701 
702 #define nir_foreach_shader_in_variable_safe(var, shader) \
703    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
704 
705 #define nir_foreach_shader_out_variable(var, shader) \
706    nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
707 
708 #define nir_foreach_shader_out_variable_safe(var, shader) \
709    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
710 
711 #define nir_foreach_uniform_variable(var, shader) \
712    nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
713 
714 #define nir_foreach_uniform_variable_safe(var, shader) \
715    nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
716 
717 static inline bool
nir_variable_is_global(const nir_variable * var)718 nir_variable_is_global(const nir_variable *var)
719 {
720    return var->data.mode != nir_var_function_temp;
721 }
722 
723 typedef struct nir_register {
724    struct exec_node node;
725 
726    unsigned num_components; /** < number of vector components */
727    unsigned num_array_elems; /** < size of array (0 for no array) */
728 
729    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
730    uint8_t bit_size;
731 
732    /**
733     * True if this register may have different values in different SIMD
734     * invocations of the shader.
735     */
736    bool divergent;
737 
738    /** generic register index. */
739    unsigned index;
740 
741    /** set of nir_srcs where this register is used (read from) */
742    struct list_head uses;
743 
744    /** set of nir_dests where this register is defined (written to) */
745    struct list_head defs;
746 
747    /** set of nir_ifs where this register is used as a condition */
748    struct list_head if_uses;
749 } nir_register;
750 
751 #define nir_foreach_register(reg, reg_list) \
752    foreach_list_typed(nir_register, reg, node, reg_list)
753 #define nir_foreach_register_safe(reg, reg_list) \
754    foreach_list_typed_safe(nir_register, reg, node, reg_list)
755 
756 typedef enum PACKED {
757    nir_instr_type_alu,
758    nir_instr_type_deref,
759    nir_instr_type_call,
760    nir_instr_type_tex,
761    nir_instr_type_intrinsic,
762    nir_instr_type_load_const,
763    nir_instr_type_jump,
764    nir_instr_type_ssa_undef,
765    nir_instr_type_phi,
766    nir_instr_type_parallel_copy,
767 } nir_instr_type;
768 
769 typedef struct nir_instr {
770    struct exec_node node;
771    struct list_head gc_node;
772    struct nir_block *block;
773    nir_instr_type type;
774 
775    /* A temporary for optimization and analysis passes to use for storing
776     * flags.  For instance, DCE uses this to store the "dead/live" info.
777     */
778    uint8_t pass_flags;
779 
780    /** generic instruction index. */
781    uint32_t index;
782 } nir_instr;
783 
784 static inline nir_instr *
nir_instr_next(nir_instr * instr)785 nir_instr_next(nir_instr *instr)
786 {
787    struct exec_node *next = exec_node_get_next(&instr->node);
788    if (exec_node_is_tail_sentinel(next))
789       return NULL;
790    else
791       return exec_node_data(nir_instr, next, node);
792 }
793 
794 static inline nir_instr *
nir_instr_prev(nir_instr * instr)795 nir_instr_prev(nir_instr *instr)
796 {
797    struct exec_node *prev = exec_node_get_prev(&instr->node);
798    if (exec_node_is_head_sentinel(prev))
799       return NULL;
800    else
801       return exec_node_data(nir_instr, prev, node);
802 }
803 
804 static inline bool
nir_instr_is_first(const nir_instr * instr)805 nir_instr_is_first(const nir_instr *instr)
806 {
807    return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
808 }
809 
810 static inline bool
nir_instr_is_last(const nir_instr * instr)811 nir_instr_is_last(const nir_instr *instr)
812 {
813    return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
814 }
815 
816 typedef struct nir_ssa_def {
817    /** Instruction which produces this SSA value. */
818    nir_instr *parent_instr;
819 
820    /** set of nir_instrs where this register is used (read from) */
821    struct list_head uses;
822 
823    /** set of nir_ifs where this register is used as a condition */
824    struct list_head if_uses;
825 
826    /** generic SSA definition index. */
827    unsigned index;
828 
829    uint8_t num_components;
830 
831    /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
832    uint8_t bit_size;
833 
834    /**
835     * True if this SSA value may have different values in different SIMD
836     * invocations of the shader.  This is set by nir_divergence_analysis.
837     */
838    bool divergent;
839 } nir_ssa_def;
840 
841 struct nir_src;
842 
843 typedef struct {
844    nir_register *reg;
845    struct nir_src *indirect; /** < NULL for no indirect offset */
846    unsigned base_offset;
847 
848    /* TODO use-def chain goes here */
849 } nir_reg_src;
850 
851 typedef struct {
852    nir_instr *parent_instr;
853    struct list_head def_link;
854 
855    nir_register *reg;
856    struct nir_src *indirect; /** < NULL for no indirect offset */
857    unsigned base_offset;
858 
859    /* TODO def-use chain goes here */
860 } nir_reg_dest;
861 
862 struct nir_if;
863 
864 typedef struct nir_src {
865    union {
866       /** Instruction that consumes this value as a source. */
867       nir_instr *parent_instr;
868       struct nir_if *parent_if;
869    };
870 
871    struct list_head use_link;
872 
873    union {
874       nir_reg_src reg;
875       nir_ssa_def *ssa;
876    };
877 
878    bool is_ssa;
879 } nir_src;
880 
881 static inline nir_src
nir_src_init(void)882 nir_src_init(void)
883 {
884    nir_src src = { { NULL } };
885    return src;
886 }
887 
888 #define NIR_SRC_INIT nir_src_init()
889 
890 #define nir_foreach_use(src, reg_or_ssa_def) \
891    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
892 
893 #define nir_foreach_use_safe(src, reg_or_ssa_def) \
894    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
895 
896 #define nir_foreach_if_use(src, reg_or_ssa_def) \
897    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
898 
899 #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
900    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
901 
902 typedef struct {
903    union {
904       nir_reg_dest reg;
905       nir_ssa_def ssa;
906    };
907 
908    bool is_ssa;
909 } nir_dest;
910 
911 static inline nir_dest
nir_dest_init(void)912 nir_dest_init(void)
913 {
914    nir_dest dest = { { { NULL } } };
915    return dest;
916 }
917 
918 #define NIR_DEST_INIT nir_dest_init()
919 
920 #define nir_foreach_def(dest, reg) \
921    list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
922 
923 #define nir_foreach_def_safe(dest, reg) \
924    list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
925 
926 static inline nir_src
nir_src_for_ssa(nir_ssa_def * def)927 nir_src_for_ssa(nir_ssa_def *def)
928 {
929    nir_src src = NIR_SRC_INIT;
930 
931    src.is_ssa = true;
932    src.ssa = def;
933 
934    return src;
935 }
936 
937 static inline nir_src
nir_src_for_reg(nir_register * reg)938 nir_src_for_reg(nir_register *reg)
939 {
940    nir_src src = NIR_SRC_INIT;
941 
942    src.is_ssa = false;
943    src.reg.reg = reg;
944    src.reg.indirect = NULL;
945    src.reg.base_offset = 0;
946 
947    return src;
948 }
949 
950 static inline nir_dest
nir_dest_for_reg(nir_register * reg)951 nir_dest_for_reg(nir_register *reg)
952 {
953    nir_dest dest = NIR_DEST_INIT;
954 
955    dest.reg.reg = reg;
956 
957    return dest;
958 }
959 
960 static inline unsigned
nir_src_bit_size(nir_src src)961 nir_src_bit_size(nir_src src)
962 {
963    return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
964 }
965 
966 static inline unsigned
nir_src_num_components(nir_src src)967 nir_src_num_components(nir_src src)
968 {
969    return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
970 }
971 
972 static inline bool
nir_src_is_const(nir_src src)973 nir_src_is_const(nir_src src)
974 {
975    return src.is_ssa &&
976           src.ssa->parent_instr->type == nir_instr_type_load_const;
977 }
978 
979 static inline bool
nir_src_is_undef(nir_src src)980 nir_src_is_undef(nir_src src)
981 {
982    return src.is_ssa &&
983           src.ssa->parent_instr->type == nir_instr_type_ssa_undef;
984 }
985 
986 static inline bool
nir_src_is_divergent(nir_src src)987 nir_src_is_divergent(nir_src src)
988 {
989    return src.is_ssa ? src.ssa->divergent : src.reg.reg->divergent;
990 }
991 
992 static inline unsigned
nir_dest_bit_size(nir_dest dest)993 nir_dest_bit_size(nir_dest dest)
994 {
995    return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
996 }
997 
998 static inline unsigned
nir_dest_num_components(nir_dest dest)999 nir_dest_num_components(nir_dest dest)
1000 {
1001    return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
1002 }
1003 
1004 static inline bool
nir_dest_is_divergent(nir_dest dest)1005 nir_dest_is_divergent(nir_dest dest)
1006 {
1007    return dest.is_ssa ? dest.ssa.divergent : dest.reg.reg->divergent;
1008 }
1009 
1010 /* Are all components the same, ie. .xxxx */
1011 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1012 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1013 {
1014    for (unsigned i = 1; i < nr_comp; i++)
1015       if (swiz[i] != swiz[0])
1016          return false;
1017    return true;
1018 }
1019 
1020 /* Are all components sequential, ie. .yzw */
1021 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1022 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1023 {
1024    for (unsigned i = 1; i < nr_comp; i++)
1025       if (swiz[i] != (swiz[0] + i))
1026          return false;
1027    return true;
1028 }
1029 
1030 void nir_src_copy(nir_src *dest, const nir_src *src);
1031 void nir_dest_copy(nir_dest *dest, const nir_dest *src);
1032 
1033 typedef struct {
1034    /** Base source */
1035    nir_src src;
1036 
1037    /**
1038     * \name input modifiers
1039     */
1040    /*@{*/
1041    /**
1042     * For inputs interpreted as floating point, flips the sign bit. For
1043     * inputs interpreted as integers, performs the two's complement negation.
1044     */
1045    bool negate;
1046 
1047    /**
1048     * Clears the sign bit for floating point values, and computes the integer
1049     * absolute value for integers. Note that the negate modifier acts after
1050     * the absolute value modifier, therefore if both are set then all inputs
1051     * will become negative.
1052     */
1053    bool abs;
1054    /*@}*/
1055 
1056    /**
1057     * For each input component, says which component of the register it is
1058     * chosen from.
1059     *
1060     * Note that which elements of the swizzle are used and which are ignored
1061     * are based on the write mask for most opcodes - for example, a statement
1062     * like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
1063     * of {2, 1, x, 0} where x means "don't care."
1064     */
1065    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1066 } nir_alu_src;
1067 
1068 typedef struct {
1069    /** Base destination */
1070    nir_dest dest;
1071 
1072    /**
1073     * Saturate output modifier
1074     *
1075     * Only valid for opcodes that output floating-point numbers. Clamps the
1076     * output to between 0.0 and 1.0 inclusive.
1077     */
1078    bool saturate;
1079 
1080    /**
1081     * Write-mask
1082     *
1083     * Ignored if dest.is_ssa is true
1084     */
1085    unsigned write_mask : NIR_MAX_VEC_COMPONENTS;
1086 } nir_alu_dest;
1087 
1088 /** NIR sized and unsized types
1089  *
1090  * The values in this enum are carefully chosen so that the sized type is
1091  * just the unsized type OR the number of bits.
1092  */
1093 typedef enum PACKED {
1094    nir_type_invalid = 0, /* Not a valid type */
1095    nir_type_int =       2,
1096    nir_type_uint =      4,
1097    nir_type_bool =      6,
1098    nir_type_float =     128,
1099    nir_type_bool1 =     1  | nir_type_bool,
1100    nir_type_bool8 =     8  | nir_type_bool,
1101    nir_type_bool16 =    16 | nir_type_bool,
1102    nir_type_bool32 =    32 | nir_type_bool,
1103    nir_type_int1 =      1  | nir_type_int,
1104    nir_type_int8 =      8  | nir_type_int,
1105    nir_type_int16 =     16 | nir_type_int,
1106    nir_type_int32 =     32 | nir_type_int,
1107    nir_type_int64 =     64 | nir_type_int,
1108    nir_type_uint1 =     1  | nir_type_uint,
1109    nir_type_uint8 =     8  | nir_type_uint,
1110    nir_type_uint16 =    16 | nir_type_uint,
1111    nir_type_uint32 =    32 | nir_type_uint,
1112    nir_type_uint64 =    64 | nir_type_uint,
1113    nir_type_float16 =   16 | nir_type_float,
1114    nir_type_float32 =   32 | nir_type_float,
1115    nir_type_float64 =   64 | nir_type_float,
1116 } nir_alu_type;
1117 
1118 #define NIR_ALU_TYPE_SIZE_MASK 0x79
1119 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1120 
1121 static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)1122 nir_alu_type_get_type_size(nir_alu_type type)
1123 {
1124    return type & NIR_ALU_TYPE_SIZE_MASK;
1125 }
1126 
1127 static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)1128 nir_alu_type_get_base_type(nir_alu_type type)
1129 {
1130    return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1131 }
1132 
1133 static inline nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)1134 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1135 {
1136    switch (base_type) {
1137    case GLSL_TYPE_BOOL:
1138       return nir_type_bool1;
1139       break;
1140    case GLSL_TYPE_UINT:
1141       return nir_type_uint32;
1142       break;
1143    case GLSL_TYPE_INT:
1144       return nir_type_int32;
1145       break;
1146    case GLSL_TYPE_UINT16:
1147       return nir_type_uint16;
1148       break;
1149    case GLSL_TYPE_INT16:
1150       return nir_type_int16;
1151       break;
1152    case GLSL_TYPE_UINT8:
1153       return nir_type_uint8;
1154    case GLSL_TYPE_INT8:
1155       return nir_type_int8;
1156    case GLSL_TYPE_UINT64:
1157       return nir_type_uint64;
1158       break;
1159    case GLSL_TYPE_INT64:
1160       return nir_type_int64;
1161       break;
1162    case GLSL_TYPE_FLOAT:
1163       return nir_type_float32;
1164       break;
1165    case GLSL_TYPE_FLOAT16:
1166       return nir_type_float16;
1167       break;
1168    case GLSL_TYPE_DOUBLE:
1169       return nir_type_float64;
1170       break;
1171 
1172    case GLSL_TYPE_SAMPLER:
1173    case GLSL_TYPE_IMAGE:
1174    case GLSL_TYPE_ATOMIC_UINT:
1175    case GLSL_TYPE_STRUCT:
1176    case GLSL_TYPE_INTERFACE:
1177    case GLSL_TYPE_ARRAY:
1178    case GLSL_TYPE_VOID:
1179    case GLSL_TYPE_SUBROUTINE:
1180    case GLSL_TYPE_FUNCTION:
1181    case GLSL_TYPE_ERROR:
1182       return nir_type_invalid;
1183    }
1184 
1185    unreachable("unknown type");
1186 }
1187 
1188 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1189 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1190 {
1191    return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1192 }
1193 
1194 static inline enum glsl_base_type
nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type)1195 nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type)
1196 {
1197    switch (base_type) {
1198    case nir_type_bool1:
1199       return GLSL_TYPE_BOOL;
1200    case nir_type_uint32:
1201       return GLSL_TYPE_UINT;
1202    case nir_type_int32:
1203       return GLSL_TYPE_INT;
1204    case nir_type_uint16:
1205       return GLSL_TYPE_UINT16;
1206    case nir_type_int16:
1207       return GLSL_TYPE_INT16;
1208    case nir_type_uint8:
1209       return GLSL_TYPE_UINT8;
1210    case nir_type_int8:
1211       return GLSL_TYPE_INT8;
1212    case nir_type_uint64:
1213       return GLSL_TYPE_UINT64;
1214    case nir_type_int64:
1215       return GLSL_TYPE_INT64;
1216    case nir_type_float32:
1217       return GLSL_TYPE_FLOAT;
1218    case nir_type_float16:
1219       return GLSL_TYPE_FLOAT16;
1220    case nir_type_float64:
1221       return GLSL_TYPE_DOUBLE;
1222 
1223    default: unreachable("Not a sized nir_alu_type");
1224    }
1225 }
1226 
1227 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1228                               nir_rounding_mode rnd);
1229 
1230 static inline nir_op
nir_op_vec(unsigned components)1231 nir_op_vec(unsigned components)
1232 {
1233    switch (components) {
1234    case  1: return nir_op_mov;
1235    case  2: return nir_op_vec2;
1236    case  3: return nir_op_vec3;
1237    case  4: return nir_op_vec4;
1238    case  5: return nir_op_vec5;
1239    case  8: return nir_op_vec8;
1240    case 16: return nir_op_vec16;
1241    default: unreachable("bad component count");
1242    }
1243 }
1244 
1245 static inline bool
nir_op_is_vec(nir_op op)1246 nir_op_is_vec(nir_op op)
1247 {
1248    switch (op) {
1249    case nir_op_mov:
1250    case nir_op_vec2:
1251    case nir_op_vec3:
1252    case nir_op_vec4:
1253    case nir_op_vec5:
1254    case nir_op_vec8:
1255    case nir_op_vec16:
1256       return true;
1257    default:
1258       return false;
1259    }
1260 }
1261 
1262 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1263 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1264 {
1265     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1266         (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1267         (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1268 }
1269 
1270 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1271 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1272 {
1273     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1274         (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1275         (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1276 }
1277 
1278 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1279 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1280 {
1281     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1282         (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1283         (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1284 }
1285 
1286 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1287 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1288 {
1289     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1290         (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1291         (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1292 }
1293 
1294 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1295 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1296 {
1297     return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1298         (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1299         (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1300 }
1301 
1302 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1303 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1304 {
1305     return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1306         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1307         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1308 }
1309 
1310 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1311 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1312 {
1313     return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1314         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1315         (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1316 }
1317 
1318 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1319 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1320                                           nir_alu_type type)
1321 {
1322    if (nir_alu_type_get_base_type(type) != nir_type_float)
1323       return nir_rounding_mode_undef;
1324 
1325    unsigned bit_size = nir_alu_type_get_type_size(type);
1326 
1327    if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1328       return nir_rounding_mode_rtz;
1329    if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1330       return nir_rounding_mode_rtne;
1331    return nir_rounding_mode_undef;
1332 }
1333 
1334 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1335 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1336 {
1337    bool result =
1338       nir_has_any_rounding_mode_rtne(execution_mode) ||
1339       nir_has_any_rounding_mode_rtz(execution_mode);
1340    return result;
1341 }
1342 
1343 typedef enum {
1344    /**
1345     * Operation where the first two sources are commutative.
1346     *
1347     * For 2-source operations, this just mathematical commutativity.  Some
1348     * 3-source operations, like ffma, are only commutative in the first two
1349     * sources.
1350     */
1351    NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1352 
1353    /**
1354     * Operation is associative
1355     */
1356    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1357 } nir_op_algebraic_property;
1358 
1359 /* vec16 is the widest ALU op in NIR, making the max number of input of ALU
1360  * instructions to be the same as NIR_MAX_VEC_COMPONENTS.
1361  */
1362 #define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
1363 
1364 typedef struct nir_op_info {
1365    /** Name of the NIR ALU opcode */
1366    const char *name;
1367 
1368    /** Number of inputs (sources) */
1369    uint8_t num_inputs;
1370 
1371    /**
1372     * The number of components in the output
1373     *
1374     * If non-zero, this is the size of the output and input sizes are
1375     * explicitly given; swizzle and writemask are still in effect, but if
1376     * the output component is masked out, then the input component may
1377     * still be in use.
1378     *
1379     * If zero, the opcode acts in the standard, per-component manner; the
1380     * operation is performed on each component (except the ones that are
1381     * masked out) with the input being taken from the input swizzle for
1382     * that component.
1383     *
1384     * The size of some of the inputs may be given (i.e. non-zero) even
1385     * though output_size is zero; in that case, the inputs with a zero
1386     * size act per-component, while the inputs with non-zero size don't.
1387     */
1388    uint8_t output_size;
1389 
1390    /**
1391     * The type of vector that the instruction outputs. Note that the
1392     * staurate modifier is only allowed on outputs with the float type.
1393     */
1394    nir_alu_type output_type;
1395 
1396    /**
1397     * The number of components in each input
1398     *
1399     * See nir_op_infos::output_size for more detail about the relationship
1400     * between input and output sizes.
1401     */
1402    uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
1403 
1404    /**
1405     * The type of vector that each input takes. Note that negate and
1406     * absolute value are only allowed on inputs with int or float type and
1407     * behave differently on the two.
1408     */
1409    nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
1410 
1411    /** Algebraic properties of this opcode */
1412    nir_op_algebraic_property algebraic_properties;
1413 
1414    /** Whether this represents a numeric conversion opcode */
1415    bool is_conversion;
1416 } nir_op_info;
1417 
1418 /** Metadata for each nir_op, indexed by opcode */
1419 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1420 
1421 typedef struct nir_alu_instr {
1422    /** Base instruction */
1423    nir_instr instr;
1424 
1425    /** Opcode */
1426    nir_op op;
1427 
1428    /** Indicates that this ALU instruction generates an exact value
1429     *
1430     * This is kind of a mixture of GLSL "precise" and "invariant" and not
1431     * really equivalent to either.  This indicates that the value generated by
1432     * this operation is high-precision and any code transformations that touch
1433     * it must ensure that the resulting value is bit-for-bit identical to the
1434     * original.
1435     */
1436    bool exact:1;
1437 
1438    /**
1439     * Indicates that this instruction doese not cause signed integer wrapping
1440     * to occur, in the form of overflow or underflow.
1441     */
1442    bool no_signed_wrap:1;
1443 
1444    /**
1445     * Indicates that this instruction does not cause unsigned integer wrapping
1446     * to occur, in the form of overflow or underflow.
1447     */
1448    bool no_unsigned_wrap:1;
1449 
1450    /** Destination */
1451    nir_alu_dest dest;
1452 
1453    /** Sources
1454     *
1455     * The size of the array is given by nir_op_info::num_inputs.
1456     */
1457    nir_alu_src src[];
1458 } nir_alu_instr;
1459 
1460 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
1461 void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src);
1462 
1463 bool nir_alu_instr_is_copy(nir_alu_instr *instr);
1464 
1465 /* is this source channel used? */
1466 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1467 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1468                            unsigned channel)
1469 {
1470    if (nir_op_infos[instr->op].input_sizes[src] > 0)
1471       return channel < nir_op_infos[instr->op].input_sizes[src];
1472 
1473    return (instr->dest.write_mask >> channel) & 1;
1474 }
1475 
1476 static inline nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr * instr,unsigned src)1477 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1478 {
1479    nir_component_mask_t read_mask = 0;
1480    for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1481       if (!nir_alu_instr_channel_used(instr, src, c))
1482          continue;
1483 
1484       read_mask |= (1 << instr->src[src].swizzle[c]);
1485    }
1486    return read_mask;
1487 }
1488 
1489 /**
1490  * Get the number of channels used for a source
1491  */
1492 static inline unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr * instr,unsigned src)1493 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1494 {
1495    if (nir_op_infos[instr->op].input_sizes[src] > 0)
1496       return nir_op_infos[instr->op].input_sizes[src];
1497 
1498    return nir_dest_num_components(instr->dest.dest);
1499 }
1500 
1501 static inline bool
nir_alu_instr_is_comparison(const nir_alu_instr * instr)1502 nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1503 {
1504    switch (instr->op) {
1505    case nir_op_flt:
1506    case nir_op_fge:
1507    case nir_op_feq:
1508    case nir_op_fneu:
1509    case nir_op_ilt:
1510    case nir_op_ult:
1511    case nir_op_ige:
1512    case nir_op_uge:
1513    case nir_op_ieq:
1514    case nir_op_ine:
1515    case nir_op_i2b1:
1516    case nir_op_f2b1:
1517    case nir_op_inot:
1518       return true;
1519    default:
1520       return false;
1521    }
1522 }
1523 
1524 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1525                                     nir_alu_type full_type);
1526 
1527 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1528                         unsigned src1, unsigned src2);
1529 
1530 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1531                                  const nir_alu_instr *alu2,
1532                                  unsigned src1, unsigned src2);
1533 
1534 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1535 
1536 typedef enum {
1537    nir_deref_type_var,
1538    nir_deref_type_array,
1539    nir_deref_type_array_wildcard,
1540    nir_deref_type_ptr_as_array,
1541    nir_deref_type_struct,
1542    nir_deref_type_cast,
1543 } nir_deref_type;
1544 
1545 typedef struct {
1546    nir_instr instr;
1547 
1548    /** The type of this deref instruction */
1549    nir_deref_type deref_type;
1550 
1551    /** Bitmask what modes the underlying variable might be
1552     *
1553     * For OpenCL-style generic pointers, we may not know exactly what mode it
1554     * is at any given point in time in the compile process.  This bitfield
1555     * contains the set of modes which it MAY be.
1556     *
1557     * Generally, this field should not be accessed directly.  Use one of the
1558     * nir_deref_mode_ helpers instead.
1559     */
1560    nir_variable_mode modes;
1561 
1562    /** The dereferenced type of the resulting pointer value */
1563    const struct glsl_type *type;
1564 
1565    union {
1566       /** Variable being dereferenced if deref_type is a deref_var */
1567       nir_variable *var;
1568 
1569       /** Parent deref if deref_type is not deref_var */
1570       nir_src parent;
1571    };
1572 
1573    /** Additional deref parameters */
1574    union {
1575       struct {
1576          nir_src index;
1577       } arr;
1578 
1579       struct {
1580          unsigned index;
1581       } strct;
1582 
1583       struct {
1584          unsigned ptr_stride;
1585          unsigned align_mul;
1586          unsigned align_offset;
1587       } cast;
1588    };
1589 
1590    /** Destination to store the resulting "pointer" */
1591    nir_dest dest;
1592 } nir_deref_instr;
1593 
1594 /** Returns true if deref might have one of the given modes
1595  *
1596  * For multi-mode derefs, this returns true if any of the possible modes for
1597  * the deref to have any of the specified modes.  This function returning true
1598  * does NOT mean that the deref definitely has one of those modes.  It simply
1599  * means that, with the best information we have at the time, it might.
1600  */
1601 static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1602 nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1603 {
1604    assert(!(modes & ~nir_var_all));
1605    assert(deref->modes != 0);
1606    return deref->modes & modes;
1607 }
1608 
1609 /** Returns true if deref must have one of the given modes
1610  *
1611  * For multi-mode derefs, this returns true if NIR can prove that the given
1612  * deref has one of the specified modes.  This function returning false does
1613  * NOT mean that deref doesn't have one of the given mode.  It very well may
1614  * have one of those modes, we just don't have enough information to prove
1615  * that it does for sure.
1616  */
1617 static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1618 nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1619 {
1620    assert(!(modes & ~nir_var_all));
1621    assert(deref->modes != 0);
1622    return !(deref->modes & ~modes);
1623 }
1624 
1625 /** Returns true if deref has the given mode
1626  *
1627  * This returns true if the deref has exactly the mode specified.  If the
1628  * deref may have that mode but may also have a different mode (i.e. modes has
1629  * multiple bits set), this will assert-fail.
1630  *
1631  * If you're confused about which nir_deref_mode_ helper to use, use this one
1632  * or nir_deref_mode_is_one_of below.
1633  */
1634 static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1635 nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1636 {
1637    assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1638    assert(deref->modes != 0);
1639 
1640    /* This is only for "simple" cases so, if modes might interact with this
1641     * deref then the deref has to have a single mode.
1642     */
1643    if (nir_deref_mode_may_be(deref, mode)) {
1644       assert(util_bitcount(deref->modes) == 1);
1645       assert(deref->modes == mode);
1646    }
1647 
1648    return deref->modes == mode;
1649 }
1650 
1651 /** Returns true if deref has one of the given modes
1652  *
1653  * This returns true if the deref has exactly one possible mode and that mode
1654  * is one of the modes specified.  If the deref may have one of those modes
1655  * but may also have a different mode (i.e. modes has multiple bits set), this
1656  * will assert-fail.
1657  */
1658 static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1659 nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1660 {
1661    /* This is only for "simple" cases so, if modes might interact with this
1662     * deref then the deref has to have a single mode.
1663     */
1664    if (nir_deref_mode_may_be(deref, modes)) {
1665       assert(util_bitcount(deref->modes) == 1);
1666       assert(nir_deref_mode_must_be(deref, modes));
1667    }
1668 
1669    return nir_deref_mode_may_be(deref, modes);
1670 }
1671 
1672 /** Returns true if deref's possible modes lie in the given set of modes
1673  *
1674  * This returns true if the deref's modes lie in the given set of modes.  If
1675  * the deref's modes overlap with the specified modes but aren't entirely
1676  * contained in the specified set of modes, this will assert-fail.  In
1677  * particular, if this is used in a generic pointers scenario, the specified
1678  * modes has to contain all or none of the possible generic pointer modes.
1679  *
1680  * This is intended mostly for mass-lowering of derefs which might have
1681  * generic pointers.
1682  */
1683 static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1684 nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1685 {
1686    if (nir_deref_mode_may_be(deref, modes))
1687       assert(nir_deref_mode_must_be(deref, modes));
1688 
1689    return nir_deref_mode_may_be(deref, modes);
1690 }
1691 
1692 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1693 
1694 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1695 nir_deref_instr_parent(const nir_deref_instr *instr)
1696 {
1697    if (instr->deref_type == nir_deref_type_var)
1698       return NULL;
1699    else
1700       return nir_src_as_deref(instr->parent);
1701 }
1702 
1703 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1704 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1705 {
1706    while (instr->deref_type != nir_deref_type_var) {
1707       if (instr->deref_type == nir_deref_type_cast)
1708          return NULL;
1709 
1710       instr = nir_deref_instr_parent(instr);
1711    }
1712 
1713    return instr->var;
1714 }
1715 
1716 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1717 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1718 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1719 
1720 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1721 
1722 unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1723 
1724 typedef struct {
1725    nir_instr instr;
1726 
1727    struct nir_function *callee;
1728 
1729    unsigned num_params;
1730    nir_src params[];
1731 } nir_call_instr;
1732 
1733 #include "nir_intrinsics.h"
1734 
1735 #define NIR_INTRINSIC_MAX_CONST_INDEX 5
1736 
1737 /** Represents an intrinsic
1738  *
1739  * An intrinsic is an instruction type for handling things that are
1740  * more-or-less regular operations but don't just consume and produce SSA
1741  * values like ALU operations do.  Intrinsics are not for things that have
1742  * special semantic meaning such as phi nodes and parallel copies.
1743  * Examples of intrinsics include variable load/store operations, system
1744  * value loads, and the like.  Even though texturing more-or-less falls
1745  * under this category, texturing is its own instruction type because
1746  * trying to represent texturing with intrinsics would lead to a
1747  * combinatorial explosion of intrinsic opcodes.
1748  *
1749  * By having a single instruction type for handling a lot of different
1750  * cases, optimization passes can look for intrinsics and, for the most
1751  * part, completely ignore them.  Each intrinsic type also has a few
1752  * possible flags that govern whether or not they can be reordered or
1753  * eliminated.  That way passes like dead code elimination can still work
1754  * on intrisics without understanding the meaning of each.
1755  *
1756  * Each intrinsic has some number of constant indices, some number of
1757  * variables, and some number of sources.  What these sources, variables,
1758  * and indices mean depends on the intrinsic and is documented with the
1759  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1760  * instructions are the only types of instruction that can operate on
1761  * variables.
1762  */
1763 typedef struct {
1764    nir_instr instr;
1765 
1766    nir_intrinsic_op intrinsic;
1767 
1768    nir_dest dest;
1769 
1770    /** number of components if this is a vectorized intrinsic
1771     *
1772     * Similarly to ALU operations, some intrinsics are vectorized.
1773     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1774     * For vectorized intrinsics, the num_components field specifies the
1775     * number of destination components and the number of source components
1776     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1777     */
1778    uint8_t num_components;
1779 
1780    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1781 
1782    nir_src src[];
1783 } nir_intrinsic_instr;
1784 
1785 static inline nir_variable *
nir_intrinsic_get_var(nir_intrinsic_instr * intrin,unsigned i)1786 nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1787 {
1788    return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1789 }
1790 
1791 typedef enum {
1792    /* Memory ordering. */
1793    NIR_MEMORY_ACQUIRE        = 1 << 0,
1794    NIR_MEMORY_RELEASE        = 1 << 1,
1795    NIR_MEMORY_ACQ_REL        = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1796 
1797    /* Memory visibility operations. */
1798    NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1799    NIR_MEMORY_MAKE_VISIBLE   = 1 << 3,
1800 } nir_memory_semantics;
1801 
1802 typedef enum {
1803    NIR_SCOPE_NONE,
1804    NIR_SCOPE_INVOCATION,
1805    NIR_SCOPE_SUBGROUP,
1806    NIR_SCOPE_SHADER_CALL,
1807    NIR_SCOPE_WORKGROUP,
1808    NIR_SCOPE_QUEUE_FAMILY,
1809    NIR_SCOPE_DEVICE,
1810 } nir_scope;
1811 
1812 /**
1813  * \name NIR intrinsics semantic flags
1814  *
1815  * information about what the compiler can do with the intrinsics.
1816  *
1817  * \sa nir_intrinsic_info::flags
1818  */
1819 typedef enum {
1820    /**
1821     * whether the intrinsic can be safely eliminated if none of its output
1822     * value is not being used.
1823     */
1824    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1825 
1826    /**
1827     * Whether the intrinsic can be reordered with respect to any other
1828     * intrinsic, i.e. whether the only reordering dependencies of the
1829     * intrinsic are due to the register reads/writes.
1830     */
1831    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1832 } nir_intrinsic_semantic_flag;
1833 
1834 /**
1835  * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1836  *
1837  * Offsets can be signed, so this is the largest power of two in int32_t.
1838  */
1839 #define NIR_ALIGN_MUL_MAX 0x40000000
1840 
1841 typedef struct nir_io_semantics {
1842    unsigned location:7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1843    unsigned num_slots:6;  /* max 32, may be pessimistic with const indexing */
1844    unsigned dual_source_blend_index:1;
1845    unsigned fb_fetch_output:1; /* for GL_KHR_blend_equation_advanced */
1846    unsigned gs_streams:8; /* xxyyzzww: 2-bit stream index for each component */
1847    unsigned medium_precision:1; /* GLSL mediump qualifier */
1848    unsigned per_view:1;
1849    unsigned high_16bits:1; /* whether accessing low or high half of the slot */
1850    unsigned _pad:6;
1851 } nir_io_semantics;
1852 
1853 #define NIR_INTRINSIC_MAX_INPUTS 11
1854 
1855 typedef struct {
1856    const char *name;
1857 
1858    uint8_t num_srcs; /** < number of register/SSA inputs */
1859 
1860    /** number of components of each input register
1861     *
1862     * If this value is 0, the number of components is given by the
1863     * num_components field of nir_intrinsic_instr.  If this value is -1, the
1864     * intrinsic consumes however many components are provided and it is not
1865     * validated at all.
1866     */
1867    int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1868 
1869    bool has_dest;
1870 
1871    /** number of components of the output register
1872     *
1873     * If this value is 0, the number of components is given by the
1874     * num_components field of nir_intrinsic_instr.
1875     */
1876    uint8_t dest_components;
1877 
1878    /** bitfield of legal bit sizes */
1879    uint8_t dest_bit_sizes;
1880 
1881    /** source which the destination bit size must match
1882     *
1883     * Some intrinsics, such as subgroup intrinsics, are data manipulation
1884     * intrinsics and they have similar bit-size rules to ALU ops. This enables
1885     * validation to validate a bit more and enables auto-generated builder code
1886     * to properly determine destination bit sizes automatically.
1887     */
1888    int8_t bit_size_src;
1889 
1890    /** the number of constant indices used by the intrinsic */
1891    uint8_t num_indices;
1892 
1893    /** list of indices */
1894    uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
1895 
1896    /** indicates the usage of intr->const_index[n] */
1897    uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1898 
1899    /** semantic flags for calls to this intrinsic */
1900    nir_intrinsic_semantic_flag flags;
1901 } nir_intrinsic_info;
1902 
1903 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1904 
1905 static inline unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr * intr,unsigned srcn)1906 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1907 {
1908    const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1909    assert(srcn < info->num_srcs);
1910    if (info->src_components[srcn] > 0)
1911       return info->src_components[srcn];
1912    else if (info->src_components[srcn] == 0)
1913       return intr->num_components;
1914    else
1915       return nir_src_num_components(intr->src[srcn]);
1916 }
1917 
1918 static inline unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr * intr)1919 nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
1920 {
1921    const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1922    if (!info->has_dest)
1923       return 0;
1924    else if (info->dest_components)
1925       return info->dest_components;
1926    else
1927       return intr->num_components;
1928 }
1929 
1930 /**
1931  * Helper to copy const_index[] from src to dst, without assuming they
1932  * match in order.
1933  */
1934 static inline void
nir_intrinsic_copy_const_indices(nir_intrinsic_instr * dst,nir_intrinsic_instr * src)1935 nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
1936 {
1937    if (src->intrinsic == dst->intrinsic) {
1938       memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
1939       return;
1940    }
1941 
1942    const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
1943    const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
1944 
1945    for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
1946       if (src_info->index_map[i] == 0)
1947          continue;
1948 
1949       /* require that dst instruction also uses the same const_index[]: */
1950       assert(dst_info->index_map[i] > 0);
1951 
1952       dst->const_index[dst_info->index_map[i] - 1] =
1953             src->const_index[src_info->index_map[i] - 1];
1954    }
1955 }
1956 
1957 #include "nir_intrinsics_indices.h"
1958 
1959 static inline void
nir_intrinsic_set_align(nir_intrinsic_instr * intrin,unsigned align_mul,unsigned align_offset)1960 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
1961                         unsigned align_mul, unsigned align_offset)
1962 {
1963    assert(util_is_power_of_two_nonzero(align_mul));
1964    assert(align_offset < align_mul);
1965    nir_intrinsic_set_align_mul(intrin, align_mul);
1966    nir_intrinsic_set_align_offset(intrin, align_offset);
1967 }
1968 
1969 /** Returns a simple alignment for a load/store intrinsic offset
1970  *
1971  * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
1972  * and ALIGN_OFFSET parameters, this helper takes both into account and
1973  * provides a single simple alignment parameter.  The offset X is guaranteed
1974  * to satisfy X % align == 0.
1975  */
1976 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)1977 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
1978 {
1979    const unsigned align_mul = nir_intrinsic_align_mul(intrin);
1980    const unsigned align_offset = nir_intrinsic_align_offset(intrin);
1981    assert(align_offset < align_mul);
1982    return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
1983 }
1984 
1985 static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)1986 nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
1987 {
1988    return nir_intrinsic_has_align_mul(intrin) &&
1989           nir_intrinsic_has_align_offset(intrin);
1990 }
1991 
1992 unsigned
1993 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
1994 
1995 /* Converts a image_deref_* intrinsic into a image_* one */
1996 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
1997                                  nir_ssa_def *handle, bool bindless);
1998 
1999 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2000 static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr * instr)2001 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
2002 {
2003    if (instr->intrinsic == nir_intrinsic_load_deref) {
2004       nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
2005       return nir_deref_mode_is_in_set(deref, nir_var_read_only_modes) ||
2006              (nir_intrinsic_access(instr) & ACCESS_CAN_REORDER);
2007    } else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
2008               instr->intrinsic == nir_intrinsic_bindless_image_load ||
2009               instr->intrinsic == nir_intrinsic_image_deref_load ||
2010               instr->intrinsic == nir_intrinsic_image_load) {
2011       return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
2012    } else {
2013       const nir_intrinsic_info *info =
2014          &nir_intrinsic_infos[instr->intrinsic];
2015       return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
2016              (info->flags & NIR_INTRINSIC_CAN_REORDER);
2017    }
2018 }
2019 
2020 bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
2021 
2022 /** Texture instruction source type */
2023 typedef enum {
2024    /** Texture coordinate
2025     *
2026     * Must have nir_tex_instr::coord_components components.
2027     */
2028    nir_tex_src_coord,
2029 
2030    /** Projector
2031     *
2032     * The texture coordinate (except for the array component, if any) is
2033     * divided by this value before LOD computation and sampling.
2034     *
2035     * Must be a float scalar.
2036     */
2037    nir_tex_src_projector,
2038 
2039    /** Shadow comparator
2040     *
2041     * For shadow sampling, the fetched texel values are compared against the
2042     * shadow comparator using the compare op specified by the sampler object
2043     * and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
2044     * Interpolation happens after this conversion so the actual result may be
2045     * anywhere in the range [0.0, 1.0].
2046     *
2047     * Only valid if nir_tex_instr::is_shadow and must be a float scalar.
2048     */
2049    nir_tex_src_comparator,
2050 
2051    /** Coordinate offset
2052     *
2053     * An integer value that is added to the texel address before sampling.
2054     * This is only allowed with operations that take an explicit LOD as it is
2055     * applied in integer texel space after LOD selection and not normalized
2056     * coordinate space.
2057     */
2058    nir_tex_src_offset,
2059 
2060    /** LOD bias
2061     *
2062     * This value is added to the computed LOD before mip-mapping.
2063     */
2064    nir_tex_src_bias,
2065 
2066    /** Explicit LOD */
2067    nir_tex_src_lod,
2068 
2069    /** Min LOD
2070     *
2071     * The computed LOD is clamped to be at least as large as min_lod before
2072     * mip-mapping.
2073     */
2074    nir_tex_src_min_lod,
2075 
2076    /** MSAA sample index */
2077    nir_tex_src_ms_index,
2078 
2079    /** Intel-specific MSAA compression data */
2080    nir_tex_src_ms_mcs_intel,
2081 
2082    /** Explicit horizontal (X-major) coordinate derivative */
2083    nir_tex_src_ddx,
2084 
2085    /** Explicit vertical (Y-major) coordinate derivative */
2086    nir_tex_src_ddy,
2087 
2088    /** Texture variable dereference */
2089    nir_tex_src_texture_deref,
2090 
2091    /** Sampler variable dereference */
2092    nir_tex_src_sampler_deref,
2093 
2094    /** Texture index offset
2095     *
2096     * This is added to nir_tex_instr::texture_index.  Unless
2097     * nir_tex_instr::texture_non_uniform is set, this is guaranteed to be
2098     * dynamically uniform.
2099     */
2100    nir_tex_src_texture_offset,
2101 
2102    /** Dynamically uniform sampler index offset
2103     *
2104     * This is added to nir_tex_instr::sampler_index.  Unless
2105     * nir_tex_instr::sampler_non_uniform is set, this is guaranteed to be
2106     * dynamically uniform.
2107     */
2108    nir_tex_src_sampler_offset,
2109 
2110    /** Bindless texture handle
2111     *
2112     * This is, unfortunately, a bit overloaded at the moment.  There are
2113     * generally two types of bindless handles:
2114     *
2115     *  1. For GL_ARB_bindless bindless handles. These are part of the
2116     *     GL/Gallium-level API and are always a 64-bit integer.
2117     *
2118     *  2. HW-specific handles.  GL_ARB_bindless handles may be lowered to
2119     *     these.  Also, these are used by many Vulkan drivers to implement
2120     *     descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
2121     *     The details of hardware handles (bit size, format, etc.) is
2122     *     HW-specific.
2123     *
2124     * Because of this overloading and the resulting ambiguity, we currently
2125     * don't validate anything for these.
2126     */
2127    nir_tex_src_texture_handle,
2128 
2129    /** Bindless sampler handle
2130     *
2131     * See nir_tex_src_texture_handle,
2132     */
2133    nir_tex_src_sampler_handle,
2134 
2135    /** Plane index for multi-plane YCbCr textures */
2136    nir_tex_src_plane,
2137 
2138    /**
2139     * Backend-specific vec4 tex src argument.
2140     *
2141     * Can be used to have NIR optimization (copy propagation, lower_vec_to_movs)
2142     * apply to the packing of the tex srcs.  This lowering must only happen
2143     * after nir_lower_tex().
2144     *
2145     * The nir_tex_instr_src_type() of this argument is float, so no lowering
2146     * will happen if nir_lower_int_to_float is used.
2147     */
2148    nir_tex_src_backend1,
2149 
2150    /** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
2151    nir_tex_src_backend2,
2152 
2153    nir_num_tex_src_types
2154 } nir_tex_src_type;
2155 
2156 /** A texture instruction source */
2157 typedef struct {
2158    /** Base source */
2159    nir_src src;
2160 
2161    /** Type of this source */
2162    nir_tex_src_type src_type;
2163 } nir_tex_src;
2164 
2165 /** Texture instruction opcode */
2166 typedef enum {
2167    nir_texop_tex,                /**< Regular texture look-up */
2168    nir_texop_txb,                /**< Texture look-up with LOD bias */
2169    nir_texop_txl,                /**< Texture look-up with explicit LOD */
2170    nir_texop_txd,                /**< Texture look-up with partial derivatives */
2171    nir_texop_txf,                /**< Texel fetch with explicit LOD */
2172    nir_texop_txf_ms,             /**< Multisample texture fetch */
2173    nir_texop_txf_ms_fb,          /**< Multisample texture fetch from framebuffer */
2174    nir_texop_txf_ms_mcs_intel,   /**< Multisample compression value fetch */
2175    nir_texop_txs,                /**< Texture size */
2176    nir_texop_lod,                /**< Texture lod query */
2177    nir_texop_tg4,                /**< Texture gather */
2178    nir_texop_query_levels,       /**< Texture levels query */
2179    nir_texop_texture_samples,    /**< Texture samples query */
2180    nir_texop_samples_identical,  /**< Query whether all samples are definitely
2181                                   * identical.
2182                                   */
2183    nir_texop_tex_prefetch,       /**< Regular texture look-up, eligible for pre-dispatch */
2184    nir_texop_fragment_fetch_amd,      /**< Multisample fragment color texture fetch */
2185    nir_texop_fragment_mask_fetch_amd, /**< Multisample fragment mask texture fetch */
2186 } nir_texop;
2187 
2188 /** Represents a texture instruction */
2189 typedef struct {
2190    /** Base instruction */
2191    nir_instr instr;
2192 
2193    /** Dimensionality of the texture operation
2194     *
2195     * This will typically match the dimensionality of the texture deref type
2196     * if a nir_tex_src_texture_deref is present.  However, it may not if
2197     * texture lowering has occurred.
2198     */
2199    enum glsl_sampler_dim sampler_dim;
2200 
2201    /** ALU type of the destination
2202     *
2203     * This is the canonical sampled type for this texture operation and may
2204     * not exactly match the sampled type of the deref type when a
2205     * nir_tex_src_texture_deref is present.  For OpenCL, the sampled type of
2206     * the texture deref will be GLSL_TYPE_VOID and this is allowed to be
2207     * anything.  With SPIR-V, the signedness of integer types is allowed to
2208     * differ.  For all APIs, the bit size may differ if the driver has done
2209     * any sort of mediump or similar lowering since texture types always have
2210     * 32-bit sampled types.
2211     */
2212    nir_alu_type dest_type;
2213 
2214    /** Texture opcode */
2215    nir_texop op;
2216 
2217    /** Destination */
2218    nir_dest dest;
2219 
2220    /** Array of sources
2221     *
2222     * This array has nir_tex_instr::num_srcs elements
2223     */
2224    nir_tex_src *src;
2225 
2226    /** Number of sources */
2227    unsigned num_srcs;
2228 
2229    /** Number of components in the coordinate, if any */
2230    unsigned coord_components;
2231 
2232    /** True if the texture instruction acts on an array texture */
2233    bool is_array;
2234 
2235    /** True if the texture instruction performs a shadow comparison
2236     *
2237     * If this is true, the texture instruction must have a
2238     * nir_tex_src_comparator.
2239     */
2240    bool is_shadow;
2241 
2242    /**
2243     * If is_shadow is true, whether this is the old-style shadow that outputs
2244     * 4 components or the new-style shadow that outputs 1 component.
2245     */
2246    bool is_new_style_shadow;
2247 
2248    /**
2249     * True if this texture instruction should return a sparse residency code.
2250     * The code is in the last component of the result.
2251     */
2252    bool is_sparse;
2253 
2254    /** nir_texop_tg4 component selector
2255     *
2256     * This determines which RGBA component is gathered.
2257     */
2258    unsigned component : 2;
2259 
2260    /** Validation needs to know this for gradient component count */
2261    unsigned array_is_lowered_cube : 1;
2262 
2263    /** Gather offsets */
2264    int8_t tg4_offsets[4][2];
2265 
2266    /** True if the texture index or handle is not dynamically uniform */
2267    bool texture_non_uniform;
2268 
2269    /** True if the sampler index or handle is not dynamically uniform */
2270    bool sampler_non_uniform;
2271 
2272    /** The texture index
2273     *
2274     * If this texture instruction has a nir_tex_src_texture_offset source,
2275     * then the texture index is given by texture_index + texture_offset.
2276     */
2277    unsigned texture_index;
2278 
2279    /** The sampler index
2280     *
2281     * The following operations do not require a sampler and, as such, this
2282     * field should be ignored:
2283     *    - nir_texop_txf
2284     *    - nir_texop_txf_ms
2285     *    - nir_texop_txs
2286     *    - nir_texop_query_levels
2287     *    - nir_texop_texture_samples
2288     *    - nir_texop_samples_identical
2289     *
2290     * If this texture instruction has a nir_tex_src_sampler_offset source,
2291     * then the sampler index is given by sampler_index + sampler_offset.
2292     */
2293    unsigned sampler_index;
2294 } nir_tex_instr;
2295 
2296 /**
2297  * Returns true if the texture operation requires a sampler as a general rule
2298  *
2299  * Note that the specific hw/driver backend could require to a sampler
2300  * object/configuration packet in any case, for some other reason.
2301  *
2302  * @see nir_tex_instr::sampler_index.
2303  */
2304 static inline bool
nir_tex_instr_need_sampler(const nir_tex_instr * instr)2305 nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2306 {
2307    switch (instr->op) {
2308    case nir_texop_txf:
2309    case nir_texop_txf_ms:
2310    case nir_texop_txs:
2311    case nir_texop_query_levels:
2312    case nir_texop_texture_samples:
2313    case nir_texop_samples_identical:
2314       return false;
2315    default:
2316       return true;
2317    }
2318 }
2319 
2320 /** Returns the number of components returned by this nir_tex_instr
2321  *
2322  * Useful for code building texture instructions when you don't want to think
2323  * about how many components a particular texture op returns.  This does not
2324  * include the sparse residency code.
2325  */
2326 static inline unsigned
nir_tex_instr_result_size(const nir_tex_instr * instr)2327 nir_tex_instr_result_size(const nir_tex_instr *instr)
2328 {
2329    switch (instr->op) {
2330    case nir_texop_txs: {
2331       unsigned ret;
2332       switch (instr->sampler_dim) {
2333          case GLSL_SAMPLER_DIM_1D:
2334          case GLSL_SAMPLER_DIM_BUF:
2335             ret = 1;
2336             break;
2337          case GLSL_SAMPLER_DIM_2D:
2338          case GLSL_SAMPLER_DIM_CUBE:
2339          case GLSL_SAMPLER_DIM_MS:
2340          case GLSL_SAMPLER_DIM_RECT:
2341          case GLSL_SAMPLER_DIM_EXTERNAL:
2342          case GLSL_SAMPLER_DIM_SUBPASS:
2343             ret = 2;
2344             break;
2345          case GLSL_SAMPLER_DIM_3D:
2346             ret = 3;
2347             break;
2348          default:
2349             unreachable("not reached");
2350       }
2351       if (instr->is_array)
2352          ret++;
2353       return ret;
2354    }
2355 
2356    case nir_texop_lod:
2357       return 2;
2358 
2359    case nir_texop_texture_samples:
2360    case nir_texop_query_levels:
2361    case nir_texop_samples_identical:
2362    case nir_texop_fragment_mask_fetch_amd:
2363       return 1;
2364 
2365    default:
2366       if (instr->is_shadow && instr->is_new_style_shadow)
2367          return 1;
2368 
2369       return 4;
2370    }
2371 }
2372 
2373 /**
2374  * Returns the destination size of this nir_tex_instr including the sparse
2375  * residency code, if any.
2376  */
2377 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2378 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2379 {
2380    /* One more component is needed for the residency code. */
2381    return nir_tex_instr_result_size(instr) + instr->is_sparse;
2382 }
2383 
2384 /**
2385  * Returns true if this texture operation queries something about the texture
2386  * rather than actually sampling it.
2387  */
2388 static inline bool
nir_tex_instr_is_query(const nir_tex_instr * instr)2389 nir_tex_instr_is_query(const nir_tex_instr *instr)
2390 {
2391    switch (instr->op) {
2392    case nir_texop_txs:
2393    case nir_texop_lod:
2394    case nir_texop_texture_samples:
2395    case nir_texop_query_levels:
2396       return true;
2397    case nir_texop_tex:
2398    case nir_texop_txb:
2399    case nir_texop_txl:
2400    case nir_texop_txd:
2401    case nir_texop_txf:
2402    case nir_texop_txf_ms:
2403    case nir_texop_txf_ms_fb:
2404    case nir_texop_txf_ms_mcs_intel:
2405    case nir_texop_tg4:
2406       return false;
2407    default:
2408       unreachable("Invalid texture opcode");
2409    }
2410 }
2411 
2412 /** Returns true if this texture instruction does implicit derivatives
2413  *
2414  * This is important as there are extra control-flow rules around derivatives
2415  * and texture instructions which perform them implicitly.
2416  */
2417 static inline bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr * instr)2418 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2419 {
2420    switch (instr->op) {
2421    case nir_texop_tex:
2422    case nir_texop_txb:
2423    case nir_texop_lod:
2424       return true;
2425    default:
2426       return false;
2427    }
2428 }
2429 
2430 /** Returns the ALU type of the given texture instruction source */
2431 static inline nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr * instr,unsigned src)2432 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2433 {
2434    switch (instr->src[src].src_type) {
2435    case nir_tex_src_coord:
2436       switch (instr->op) {
2437       case nir_texop_txf:
2438       case nir_texop_txf_ms:
2439       case nir_texop_txf_ms_fb:
2440       case nir_texop_txf_ms_mcs_intel:
2441       case nir_texop_samples_identical:
2442          return nir_type_int;
2443 
2444       default:
2445          return nir_type_float;
2446       }
2447 
2448    case nir_tex_src_lod:
2449       switch (instr->op) {
2450       case nir_texop_txs:
2451       case nir_texop_txf:
2452       case nir_texop_txf_ms:
2453          return nir_type_int;
2454 
2455       default:
2456          return nir_type_float;
2457       }
2458 
2459    case nir_tex_src_projector:
2460    case nir_tex_src_comparator:
2461    case nir_tex_src_bias:
2462    case nir_tex_src_min_lod:
2463    case nir_tex_src_ddx:
2464    case nir_tex_src_ddy:
2465    case nir_tex_src_backend1:
2466    case nir_tex_src_backend2:
2467       return nir_type_float;
2468 
2469    case nir_tex_src_offset:
2470    case nir_tex_src_ms_index:
2471    case nir_tex_src_plane:
2472       return nir_type_int;
2473 
2474    case nir_tex_src_ms_mcs_intel:
2475    case nir_tex_src_texture_deref:
2476    case nir_tex_src_sampler_deref:
2477    case nir_tex_src_texture_offset:
2478    case nir_tex_src_sampler_offset:
2479    case nir_tex_src_texture_handle:
2480    case nir_tex_src_sampler_handle:
2481       return nir_type_uint;
2482 
2483    case nir_num_tex_src_types:
2484       unreachable("nir_num_tex_src_types is not a valid source type");
2485    }
2486 
2487    unreachable("Invalid texture source type");
2488 }
2489 
2490 /**
2491  * Returns the number of components required by the given texture instruction
2492  * source
2493  */
2494 static inline unsigned
nir_tex_instr_src_size(const nir_tex_instr * instr,unsigned src)2495 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2496 {
2497    if (instr->src[src].src_type == nir_tex_src_coord)
2498       return instr->coord_components;
2499 
2500    /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs_intel */
2501    if (instr->src[src].src_type == nir_tex_src_ms_mcs_intel)
2502       return 4;
2503 
2504    if (instr->src[src].src_type == nir_tex_src_ddx ||
2505        instr->src[src].src_type == nir_tex_src_ddy) {
2506 
2507       if (instr->is_array && !instr->array_is_lowered_cube)
2508          return instr->coord_components - 1;
2509       else
2510          return instr->coord_components;
2511    }
2512 
2513    /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2514     * the offset, since a cube maps to a single face.
2515     */
2516    if (instr->src[src].src_type == nir_tex_src_offset) {
2517       if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2518          return 2;
2519       else if (instr->is_array)
2520          return instr->coord_components - 1;
2521       else
2522          return instr->coord_components;
2523    }
2524 
2525    if (instr->src[src].src_type == nir_tex_src_backend1 ||
2526        instr->src[src].src_type == nir_tex_src_backend2)
2527       return nir_src_num_components(instr->src[src].src);
2528 
2529    return 1;
2530 }
2531 
2532 /**
2533  * Returns the index of the texture instruction source with the given
2534  * nir_tex_src_type or -1 if no such source exists.
2535  */
2536 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2537 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2538 {
2539    for (unsigned i = 0; i < instr->num_srcs; i++)
2540       if (instr->src[i].src_type == type)
2541          return (int) i;
2542 
2543    return -1;
2544 }
2545 
2546 /** Adds a source to a texture instruction */
2547 void nir_tex_instr_add_src(nir_tex_instr *tex,
2548                            nir_tex_src_type src_type,
2549                            nir_src src);
2550 
2551 /** Removes a source from a texture instruction */
2552 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2553 
2554 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2555 
2556 typedef struct {
2557    nir_instr instr;
2558 
2559    nir_ssa_def def;
2560 
2561    nir_const_value value[];
2562 } nir_load_const_instr;
2563 
2564 typedef enum {
2565    /** Return from a function
2566     *
2567     * This instruction is a classic function return.  It jumps to
2568     * nir_function_impl::end_block.  No return value is provided in this
2569     * instruction.  Instead, the function is expected to write any return
2570     * data to a deref passed in from the caller.
2571     */
2572    nir_jump_return,
2573 
2574    /** Immediately exit the current shader
2575     *
2576     * This instruction is roughly the equivalent of C's "exit()" in that it
2577     * immediately terminates the current shader invocation.  From a CFG
2578     * perspective, it looks like a jump to nir_function_impl::end_block but
2579     * it actually jumps to the end block of the shader entrypoint.  A halt
2580     * instruction in the shader entrypoint itself is semantically identical
2581     * to a return.
2582     *
2583     * For shaders with built-in I/O, any outputs written prior to a halt
2584     * instruction remain written and any outputs not written prior to the
2585     * halt have undefined values.  It does NOT cause an implicit discard of
2586     * written results.  If one wants discard results in a fragment shader,
2587     * for instance, a discard or demote intrinsic is required.
2588     */
2589    nir_jump_halt,
2590 
2591    /** Break out of the inner-most loop
2592     *
2593     * This has the same semantics as C's "break" statement.
2594     */
2595    nir_jump_break,
2596 
2597    /** Jump back to the top of the inner-most loop
2598     *
2599     * This has the same semantics as C's "continue" statement assuming that a
2600     * NIR loop is implemented as "while (1) { body }".
2601     */
2602    nir_jump_continue,
2603 
2604    /** Jumps for unstructured CFG.
2605     *
2606     * As within an unstructured CFG we can't rely on block ordering we need to
2607     * place explicit jumps at the end of every block.
2608     */
2609    nir_jump_goto,
2610    nir_jump_goto_if,
2611 } nir_jump_type;
2612 
2613 typedef struct {
2614    nir_instr instr;
2615    nir_jump_type type;
2616    nir_src condition;
2617    struct nir_block *target;
2618    struct nir_block *else_target;
2619 } nir_jump_instr;
2620 
2621 /* creates a new SSA variable in an undefined state */
2622 
2623 typedef struct {
2624    nir_instr instr;
2625    nir_ssa_def def;
2626 } nir_ssa_undef_instr;
2627 
2628 typedef struct {
2629    struct exec_node node;
2630 
2631    /* The predecessor block corresponding to this source */
2632    struct nir_block *pred;
2633 
2634    nir_src src;
2635 } nir_phi_src;
2636 
2637 #define nir_foreach_phi_src(phi_src, phi) \
2638    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2639 #define nir_foreach_phi_src_safe(phi_src, phi) \
2640    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2641 
2642 typedef struct {
2643    nir_instr instr;
2644 
2645    struct exec_list srcs; /** < list of nir_phi_src */
2646 
2647    nir_dest dest;
2648 } nir_phi_instr;
2649 
2650 static inline nir_phi_src *
nir_phi_get_src_from_block(nir_phi_instr * phi,struct nir_block * block)2651 nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
2652 {
2653    nir_foreach_phi_src(src, phi) {
2654       if (src->pred == block)
2655          return src;
2656    }
2657 
2658    assert(!"Block is not a predecessor of phi.");
2659    return NULL;
2660 }
2661 
2662 typedef struct {
2663    struct exec_node node;
2664    nir_src src;
2665    nir_dest dest;
2666 } nir_parallel_copy_entry;
2667 
2668 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2669    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2670 
2671 typedef struct {
2672    nir_instr instr;
2673 
2674    /* A list of nir_parallel_copy_entrys.  The sources of all of the
2675     * entries are copied to the corresponding destinations "in parallel".
2676     * In other words, if we have two entries: a -> b and b -> a, the values
2677     * get swapped.
2678     */
2679    struct exec_list entries;
2680 } nir_parallel_copy_instr;
2681 
2682 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2683                 type, nir_instr_type_alu)
2684 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2685                 type, nir_instr_type_deref)
2686 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2687                 type, nir_instr_type_call)
2688 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2689                 type, nir_instr_type_jump)
2690 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2691                 type, nir_instr_type_tex)
2692 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2693                 type, nir_instr_type_intrinsic)
2694 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2695                 type, nir_instr_type_load_const)
2696 NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2697                 type, nir_instr_type_ssa_undef)
2698 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2699                 type, nir_instr_type_phi)
2700 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2701                 nir_parallel_copy_instr, instr,
2702                 type, nir_instr_type_parallel_copy)
2703 
2704 
2705 #define NIR_DEFINE_SRC_AS_CONST(type, suffix)               \
2706 static inline type                                          \
2707 nir_src_comp_as_##suffix(nir_src src, unsigned comp)        \
2708 {                                                           \
2709    assert(nir_src_is_const(src));                           \
2710    nir_load_const_instr *load =                             \
2711       nir_instr_as_load_const(src.ssa->parent_instr);       \
2712    assert(comp < load->def.num_components);                 \
2713    return nir_const_value_as_##suffix(load->value[comp],    \
2714                                       load->def.bit_size);  \
2715 }                                                           \
2716                                                             \
2717 static inline type                                          \
2718 nir_src_as_##suffix(nir_src src)                            \
2719 {                                                           \
2720    assert(nir_src_num_components(src) == 1);                \
2721    return nir_src_comp_as_##suffix(src, 0);                 \
2722 }
2723 
2724 NIR_DEFINE_SRC_AS_CONST(int64_t,    int)
2725 NIR_DEFINE_SRC_AS_CONST(uint64_t,   uint)
2726 NIR_DEFINE_SRC_AS_CONST(bool,       bool)
2727 NIR_DEFINE_SRC_AS_CONST(double,     float)
2728 
2729 #undef NIR_DEFINE_SRC_AS_CONST
2730 
2731 
2732 typedef struct {
2733    nir_ssa_def *def;
2734    unsigned comp;
2735 } nir_ssa_scalar;
2736 
2737 static inline bool
nir_ssa_scalar_is_const(nir_ssa_scalar s)2738 nir_ssa_scalar_is_const(nir_ssa_scalar s)
2739 {
2740    return s.def->parent_instr->type == nir_instr_type_load_const;
2741 }
2742 
2743 static inline nir_const_value
nir_ssa_scalar_as_const_value(nir_ssa_scalar s)2744 nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2745 {
2746    assert(s.comp < s.def->num_components);
2747    nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2748    return load->value[s.comp];
2749 }
2750 
2751 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)                     \
2752 static inline type                                                   \
2753 nir_ssa_scalar_as_##suffix(nir_ssa_scalar s)                         \
2754 {                                                                    \
2755    return nir_const_value_as_##suffix(                               \
2756       nir_ssa_scalar_as_const_value(s), s.def->bit_size);            \
2757 }
2758 
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2759 NIR_DEFINE_SCALAR_AS_CONST(int64_t,    int)
2760 NIR_DEFINE_SCALAR_AS_CONST(uint64_t,   uint)
2761 NIR_DEFINE_SCALAR_AS_CONST(bool,       bool)
2762 NIR_DEFINE_SCALAR_AS_CONST(double,     float)
2763 
2764 #undef NIR_DEFINE_SCALAR_AS_CONST
2765 
2766 static inline bool
2767 nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2768 {
2769    return s.def->parent_instr->type == nir_instr_type_alu;
2770 }
2771 
2772 static inline nir_op
nir_ssa_scalar_alu_op(nir_ssa_scalar s)2773 nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2774 {
2775    return nir_instr_as_alu(s.def->parent_instr)->op;
2776 }
2777 
2778 static inline nir_ssa_scalar
nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s,unsigned alu_src_idx)2779 nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2780 {
2781    nir_ssa_scalar out = { NULL, 0 };
2782 
2783    nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2784    assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2785 
2786    /* Our component must be written */
2787    assert(s.comp < s.def->num_components);
2788    assert(alu->dest.write_mask & (1u << s.comp));
2789 
2790    assert(alu->src[alu_src_idx].src.is_ssa);
2791    out.def = alu->src[alu_src_idx].src.ssa;
2792 
2793    if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2794       /* The ALU src is unsized so the source component follows the
2795        * destination component.
2796        */
2797       out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2798    } else {
2799       /* This is a sized source so all source components work together to
2800        * produce all the destination components.  Since we need to return a
2801        * scalar, this only works if the source is a scalar.
2802        */
2803       assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2804       out.comp = alu->src[alu_src_idx].swizzle[0];
2805    }
2806    assert(out.comp < out.def->num_components);
2807 
2808    return out;
2809 }
2810 
2811 nir_ssa_scalar nir_ssa_scalar_chase_movs(nir_ssa_scalar s);
2812 
2813 /** Returns a nir_ssa_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
2814 static inline nir_ssa_scalar
nir_ssa_scalar_resolved(nir_ssa_def * def,unsigned channel)2815 nir_ssa_scalar_resolved(nir_ssa_def *def, unsigned channel)
2816 {
2817    nir_ssa_scalar s = { def, channel };
2818    return nir_ssa_scalar_chase_movs(s);
2819 }
2820 
2821 
2822 typedef struct {
2823    bool success;
2824 
2825    nir_variable *var;
2826    unsigned desc_set;
2827    unsigned binding;
2828    unsigned num_indices;
2829    nir_src indices[4];
2830    bool read_first_invocation;
2831 } nir_binding;
2832 
2833 nir_binding nir_chase_binding(nir_src rsrc);
2834 nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
2835 
2836 
2837 /*
2838  * Control flow
2839  *
2840  * Control flow consists of a tree of control flow nodes, which include
2841  * if-statements and loops. The leaves of the tree are basic blocks, lists of
2842  * instructions that always run start-to-finish. Each basic block also keeps
2843  * track of its successors (blocks which may run immediately after the current
2844  * block) and predecessors (blocks which could have run immediately before the
2845  * current block). Each function also has a start block and an end block which
2846  * all return statements point to (which is always empty). Together, all the
2847  * blocks with their predecessors and successors make up the control flow
2848  * graph (CFG) of the function. There are helpers that modify the tree of
2849  * control flow nodes while modifying the CFG appropriately; these should be
2850  * used instead of modifying the tree directly.
2851  */
2852 
2853 typedef enum {
2854    nir_cf_node_block,
2855    nir_cf_node_if,
2856    nir_cf_node_loop,
2857    nir_cf_node_function
2858 } nir_cf_node_type;
2859 
2860 typedef struct nir_cf_node {
2861    struct exec_node node;
2862    nir_cf_node_type type;
2863    struct nir_cf_node *parent;
2864 } nir_cf_node;
2865 
2866 typedef struct nir_block {
2867    nir_cf_node cf_node;
2868 
2869    struct exec_list instr_list; /** < list of nir_instr */
2870 
2871    /** generic block index; generated by nir_index_blocks */
2872    unsigned index;
2873 
2874    /*
2875     * Each block can only have up to 2 successors, so we put them in a simple
2876     * array - no need for anything more complicated.
2877     */
2878    struct nir_block *successors[2];
2879 
2880    /* Set of nir_block predecessors in the CFG */
2881    struct set *predecessors;
2882 
2883    /*
2884     * this node's immediate dominator in the dominance tree - set to NULL for
2885     * the start block.
2886     */
2887    struct nir_block *imm_dom;
2888 
2889    /* This node's children in the dominance tree */
2890    unsigned num_dom_children;
2891    struct nir_block **dom_children;
2892 
2893    /* Set of nir_blocks on the dominance frontier of this block */
2894    struct set *dom_frontier;
2895 
2896    /*
2897     * These two indices have the property that dom_{pre,post}_index for each
2898     * child of this block in the dominance tree will always be between
2899     * dom_pre_index and dom_post_index for this block, which makes testing if
2900     * a given block is dominated by another block an O(1) operation.
2901     */
2902    uint32_t dom_pre_index, dom_post_index;
2903 
2904    /**
2905     * Value just before the first nir_instr->index in the block, but after
2906     * end_ip that of any predecessor block.
2907     */
2908    uint32_t start_ip;
2909    /**
2910     * Value just after the last nir_instr->index in the block, but before the
2911     * start_ip of any successor block.
2912     */
2913    uint32_t end_ip;
2914 
2915    /* SSA def live in and out for this block; used for liveness analysis.
2916     * Indexed by ssa_def->index
2917     */
2918    BITSET_WORD *live_in;
2919    BITSET_WORD *live_out;
2920 } nir_block;
2921 
2922 static inline bool
nir_block_is_reachable(nir_block * b)2923 nir_block_is_reachable(nir_block *b)
2924 {
2925    /* See also nir_block_dominates */
2926    return b->dom_post_index != 0;
2927 }
2928 
2929 static inline nir_instr *
nir_block_first_instr(nir_block * block)2930 nir_block_first_instr(nir_block *block)
2931 {
2932    struct exec_node *head = exec_list_get_head(&block->instr_list);
2933    return exec_node_data(nir_instr, head, node);
2934 }
2935 
2936 static inline nir_instr *
nir_block_last_instr(nir_block * block)2937 nir_block_last_instr(nir_block *block)
2938 {
2939    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2940    return exec_node_data(nir_instr, tail, node);
2941 }
2942 
2943 static inline bool
nir_block_ends_in_jump(nir_block * block)2944 nir_block_ends_in_jump(nir_block *block)
2945 {
2946    return !exec_list_is_empty(&block->instr_list) &&
2947           nir_block_last_instr(block)->type == nir_instr_type_jump;
2948 }
2949 
2950 static inline bool
nir_block_ends_in_return_or_halt(nir_block * block)2951 nir_block_ends_in_return_or_halt(nir_block *block)
2952 {
2953    if (exec_list_is_empty(&block->instr_list))
2954       return false;
2955 
2956    nir_instr *instr = nir_block_last_instr(block);
2957    if (instr->type != nir_instr_type_jump)
2958       return false;
2959 
2960    nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
2961    return jump_instr->type == nir_jump_return ||
2962           jump_instr->type == nir_jump_halt;
2963 }
2964 
2965 static inline bool
nir_block_ends_in_break(nir_block * block)2966 nir_block_ends_in_break(nir_block *block)
2967 {
2968    if (exec_list_is_empty(&block->instr_list))
2969       return false;
2970 
2971    nir_instr *instr = nir_block_last_instr(block);
2972    return instr->type == nir_instr_type_jump &&
2973       nir_instr_as_jump(instr)->type == nir_jump_break;
2974 }
2975 
2976 #define nir_foreach_instr(instr, block) \
2977    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2978 #define nir_foreach_instr_reverse(instr, block) \
2979    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2980 #define nir_foreach_instr_safe(instr, block) \
2981    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2982 #define nir_foreach_instr_reverse_safe(instr, block) \
2983    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2984 
2985 static inline nir_phi_instr *
nir_block_last_phi_instr(nir_block * block)2986 nir_block_last_phi_instr(nir_block *block)
2987 {
2988    nir_phi_instr *last_phi = NULL;
2989    nir_foreach_instr(instr, block) {
2990       if (instr->type == nir_instr_type_phi)
2991          last_phi = nir_instr_as_phi(instr);
2992       else
2993          return last_phi;
2994    }
2995    return last_phi;
2996 }
2997 
2998 typedef enum {
2999    nir_selection_control_none = 0x0,
3000    nir_selection_control_flatten = 0x1,
3001    nir_selection_control_dont_flatten = 0x2,
3002 } nir_selection_control;
3003 
3004 typedef struct nir_if {
3005    nir_cf_node cf_node;
3006    nir_src condition;
3007    nir_selection_control control;
3008 
3009    struct exec_list then_list; /** < list of nir_cf_node */
3010    struct exec_list else_list; /** < list of nir_cf_node */
3011 } nir_if;
3012 
3013 typedef struct {
3014    nir_if *nif;
3015 
3016    /** Instruction that generates nif::condition. */
3017    nir_instr *conditional_instr;
3018 
3019    /** Block within ::nif that has the break instruction. */
3020    nir_block *break_block;
3021 
3022    /** Last block for the then- or else-path that does not contain the break. */
3023    nir_block *continue_from_block;
3024 
3025    /** True when ::break_block is in the else-path of ::nif. */
3026    bool continue_from_then;
3027    bool induction_rhs;
3028 
3029    /* This is true if the terminators exact trip count is unknown. For
3030     * example:
3031     *
3032     *    for (int i = 0; i < imin(x, 4); i++)
3033     *       ...
3034     *
3035     * Here loop analysis would have set a max_trip_count of 4 however we dont
3036     * know for sure that this is the exact trip count.
3037     */
3038    bool exact_trip_count_unknown;
3039 
3040    struct list_head loop_terminator_link;
3041 } nir_loop_terminator;
3042 
3043 typedef struct {
3044    /* Induction variable. */
3045    nir_ssa_def *def;
3046 
3047    /* Init statement with only uniform. */
3048    nir_src *init_src;
3049 
3050    /* Update statement with only uniform. */
3051    nir_alu_src *update_src;
3052 } nir_loop_induction_variable;
3053 
3054 typedef struct {
3055    /* Estimated cost (in number of instructions) of the loop */
3056    unsigned instr_cost;
3057 
3058    /* Guessed trip count based on array indexing */
3059    unsigned guessed_trip_count;
3060 
3061    /* Maximum number of times the loop is run (if known) */
3062    unsigned max_trip_count;
3063 
3064    /* Do we know the exact number of times the loop will be run */
3065    bool exact_trip_count_known;
3066 
3067    /* Unroll the loop regardless of its size */
3068    bool force_unroll;
3069 
3070    /* Does the loop contain complex loop terminators, continues or other
3071     * complex behaviours? If this is true we can't rely on
3072     * loop_terminator_list to be complete or accurate.
3073     */
3074    bool complex_loop;
3075 
3076    nir_loop_terminator *limiting_terminator;
3077 
3078    /* A list of loop_terminators terminating this loop. */
3079    struct list_head loop_terminator_list;
3080 
3081    /* array of induction variables for this loop */
3082    nir_loop_induction_variable *induction_vars;
3083    unsigned num_induction_vars;
3084 } nir_loop_info;
3085 
3086 typedef enum {
3087    nir_loop_control_none = 0x0,
3088    nir_loop_control_unroll = 0x1,
3089    nir_loop_control_dont_unroll = 0x2,
3090 } nir_loop_control;
3091 
3092 typedef struct {
3093    nir_cf_node cf_node;
3094 
3095    struct exec_list body; /** < list of nir_cf_node */
3096 
3097    nir_loop_info *info;
3098    nir_loop_control control;
3099    bool partially_unrolled;
3100    bool divergent;
3101 } nir_loop;
3102 
3103 /**
3104  * Various bits of metadata that can may be created or required by
3105  * optimization and analysis passes
3106  */
3107 typedef enum {
3108    nir_metadata_none = 0x0,
3109 
3110    /** Indicates that nir_block::index values are valid.
3111     *
3112     * The start block has index 0 and they increase through a natural walk of
3113     * the CFG.  nir_function_impl::num_blocks is the number of blocks and
3114     * every block index is in the range [0, nir_function_impl::num_blocks].
3115     *
3116     * A pass can preserve this metadata type if it doesn't touch the CFG.
3117     */
3118    nir_metadata_block_index = 0x1,
3119 
3120    /** Indicates that block dominance information is valid
3121     *
3122     * This includes:
3123     *
3124     *   - nir_block::num_dom_children
3125     *   - nir_block::dom_children
3126     *   - nir_block::dom_frontier
3127     *   - nir_block::dom_pre_index
3128     *   - nir_block::dom_post_index
3129     *
3130     * A pass can preserve this metadata type if it doesn't touch the CFG.
3131     */
3132    nir_metadata_dominance = 0x2,
3133 
3134    /** Indicates that SSA def data-flow liveness information is valid
3135     *
3136     * This includes:
3137     *
3138     *   - nir_block::live_in
3139     *   - nir_block::live_out
3140     *
3141     * A pass can preserve this metadata type if it never adds or removes any
3142     * SSA defs or uses of SSA defs (most passes shouldn't preserve this
3143     * metadata type).
3144     */
3145    nir_metadata_live_ssa_defs = 0x4,
3146 
3147    /** A dummy metadata value to track when a pass forgot to call
3148     * nir_metadata_preserve.
3149     *
3150     * A pass should always clear this value even if it doesn't make any
3151     * progress to indicate that it thought about preserving metadata.
3152     */
3153    nir_metadata_not_properly_reset = 0x8,
3154 
3155    /** Indicates that loop analysis information is valid.
3156     *
3157     * This includes everything pointed to by nir_loop::info.
3158     *
3159     * A pass can preserve this metadata type if it is guaranteed to not affect
3160     * any loop metadata.  However, since loop metadata includes things like
3161     * loop counts which depend on arithmetic in the loop, this is very hard to
3162     * determine.  Most passes shouldn't preserve this metadata type.
3163     */
3164    nir_metadata_loop_analysis = 0x10,
3165 
3166    /** Indicates that nir_instr::index values are valid.
3167     *
3168     * The start instruction has index 0 and they increase through a natural
3169     * walk of instructions in blocks in the CFG.  The indices my have holes
3170     * after passes such as DCE.
3171     *
3172     * A pass can preserve this metadata type if it never adds or moves any
3173     * instructions (most passes shouldn't preserve this metadata type), but
3174     * can preserve it if it only removes instructions.
3175     */
3176    nir_metadata_instr_index = 0x20,
3177 
3178    /** All metadata
3179     *
3180     * This includes all nir_metadata flags except not_properly_reset.  Passes
3181     * which do not change the shader in any way should call
3182     *
3183     *    nir_metadata_preserve(impl, nir_metadata_all);
3184     */
3185    nir_metadata_all = ~nir_metadata_not_properly_reset,
3186 } nir_metadata;
3187 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3188 
3189 typedef struct {
3190    nir_cf_node cf_node;
3191 
3192    /** pointer to the function of which this is an implementation */
3193    struct nir_function *function;
3194 
3195    struct exec_list body; /** < list of nir_cf_node */
3196 
3197    nir_block *end_block;
3198 
3199    /** list for all local variables in the function */
3200    struct exec_list locals;
3201 
3202    /** list of local registers in the function */
3203    struct exec_list registers;
3204 
3205    /** next available local register index */
3206    unsigned reg_alloc;
3207 
3208    /** next available SSA value index */
3209    unsigned ssa_alloc;
3210 
3211    /* total number of basic blocks, only valid when block_index_dirty = false */
3212    unsigned num_blocks;
3213 
3214    /** True if this nir_function_impl uses structured control-flow
3215     *
3216     * Structured nir_function_impls have different validation rules.
3217     */
3218    bool structured;
3219 
3220    nir_metadata valid_metadata;
3221 } nir_function_impl;
3222 
3223 #define nir_foreach_function_temp_variable(var, impl) \
3224    foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3225 
3226 #define nir_foreach_function_temp_variable_safe(var, impl) \
3227    foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3228 
3229 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3230 nir_start_block(nir_function_impl *impl)
3231 {
3232    return (nir_block *) impl->body.head_sentinel.next;
3233 }
3234 
3235 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3236 nir_impl_last_block(nir_function_impl *impl)
3237 {
3238    return (nir_block *) impl->body.tail_sentinel.prev;
3239 }
3240 
3241 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3242 nir_cf_node_next(nir_cf_node *node)
3243 {
3244    struct exec_node *next = exec_node_get_next(&node->node);
3245    if (exec_node_is_tail_sentinel(next))
3246       return NULL;
3247    else
3248       return exec_node_data(nir_cf_node, next, node);
3249 }
3250 
3251 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3252 nir_cf_node_prev(nir_cf_node *node)
3253 {
3254    struct exec_node *prev = exec_node_get_prev(&node->node);
3255    if (exec_node_is_head_sentinel(prev))
3256       return NULL;
3257    else
3258       return exec_node_data(nir_cf_node, prev, node);
3259 }
3260 
3261 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3262 nir_cf_node_is_first(const nir_cf_node *node)
3263 {
3264    return exec_node_is_head_sentinel(node->node.prev);
3265 }
3266 
3267 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3268 nir_cf_node_is_last(const nir_cf_node *node)
3269 {
3270    return exec_node_is_tail_sentinel(node->node.next);
3271 }
3272 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3273 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3274                 type, nir_cf_node_block)
3275 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3276                 type, nir_cf_node_if)
3277 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3278                 type, nir_cf_node_loop)
3279 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3280                 nir_function_impl, cf_node, type, nir_cf_node_function)
3281 
3282 static inline nir_block *
3283 nir_if_first_then_block(nir_if *if_stmt)
3284 {
3285    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3286    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3287 }
3288 
3289 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3290 nir_if_last_then_block(nir_if *if_stmt)
3291 {
3292    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3293    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3294 }
3295 
3296 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3297 nir_if_first_else_block(nir_if *if_stmt)
3298 {
3299    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3300    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3301 }
3302 
3303 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3304 nir_if_last_else_block(nir_if *if_stmt)
3305 {
3306    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3307    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3308 }
3309 
3310 static inline nir_block *
nir_loop_first_block(nir_loop * loop)3311 nir_loop_first_block(nir_loop *loop)
3312 {
3313    struct exec_node *head = exec_list_get_head(&loop->body);
3314    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3315 }
3316 
3317 static inline nir_block *
nir_loop_last_block(nir_loop * loop)3318 nir_loop_last_block(nir_loop *loop)
3319 {
3320    struct exec_node *tail = exec_list_get_tail(&loop->body);
3321    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3322 }
3323 
3324 /**
3325  * Return true if this list of cf_nodes contains a single empty block.
3326  */
3327 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3328 nir_cf_list_is_empty_block(struct exec_list *cf_list)
3329 {
3330    if (exec_list_is_singular(cf_list)) {
3331       struct exec_node *head = exec_list_get_head(cf_list);
3332       nir_block *block =
3333          nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3334       return exec_list_is_empty(&block->instr_list);
3335    }
3336    return false;
3337 }
3338 
3339 typedef struct {
3340    uint8_t num_components;
3341    uint8_t bit_size;
3342 } nir_parameter;
3343 
3344 typedef struct nir_printf_info {
3345    unsigned num_args;
3346    unsigned *arg_sizes;
3347    unsigned string_size;
3348    char *strings;
3349 } nir_printf_info;
3350 
3351 typedef struct nir_function {
3352    struct exec_node node;
3353 
3354    const char *name;
3355    struct nir_shader *shader;
3356 
3357    unsigned num_params;
3358    nir_parameter *params;
3359 
3360    /** The implementation of this function.
3361     *
3362     * If the function is only declared and not implemented, this is NULL.
3363     */
3364    nir_function_impl *impl;
3365 
3366    bool is_entrypoint;
3367 } nir_function;
3368 
3369 typedef enum {
3370    nir_lower_imul64 = (1 << 0),
3371    nir_lower_isign64 = (1 << 1),
3372    /** Lower all int64 modulus and division opcodes */
3373    nir_lower_divmod64 = (1 << 2),
3374    /** Lower all 64-bit umul_high and imul_high opcodes */
3375    nir_lower_imul_high64 = (1 << 3),
3376    nir_lower_mov64 = (1 << 4),
3377    nir_lower_icmp64 = (1 << 5),
3378    nir_lower_iadd64 = (1 << 6),
3379    nir_lower_iabs64 = (1 << 7),
3380    nir_lower_ineg64 = (1 << 8),
3381    nir_lower_logic64 = (1 << 9),
3382    nir_lower_minmax64 = (1 << 10),
3383    nir_lower_shift64 = (1 << 11),
3384    nir_lower_imul_2x32_64 = (1 << 12),
3385    nir_lower_extract64 = (1 << 13),
3386    nir_lower_ufind_msb64 = (1 << 14),
3387    nir_lower_bit_count64 = (1 << 15),
3388    nir_lower_subgroup_shuffle64 = (1 << 16),
3389    nir_lower_scan_reduce_bitwise64 = (1 << 17),
3390    nir_lower_scan_reduce_iadd64 = (1 << 18),
3391    nir_lower_vote_ieq64 = (1 << 19),
3392 } nir_lower_int64_options;
3393 
3394 typedef enum {
3395    nir_lower_drcp = (1 << 0),
3396    nir_lower_dsqrt = (1 << 1),
3397    nir_lower_drsq = (1 << 2),
3398    nir_lower_dtrunc = (1 << 3),
3399    nir_lower_dfloor = (1 << 4),
3400    nir_lower_dceil = (1 << 5),
3401    nir_lower_dfract = (1 << 6),
3402    nir_lower_dround_even = (1 << 7),
3403    nir_lower_dmod = (1 << 8),
3404    nir_lower_dsub = (1 << 9),
3405    nir_lower_ddiv = (1 << 10),
3406    nir_lower_fp64_full_software = (1 << 11),
3407 } nir_lower_doubles_options;
3408 
3409 typedef enum {
3410    nir_divergence_single_prim_per_subgroup = (1 << 0),
3411    nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3412    nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3413    nir_divergence_view_index_uniform = (1 << 3),
3414    nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
3415    nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
3416 } nir_divergence_options;
3417 
3418 typedef enum {
3419    nir_pack_varying_interp_mode_none          = (1 << 0),
3420    nir_pack_varying_interp_mode_smooth        = (1 << 1),
3421    nir_pack_varying_interp_mode_flat          = (1 << 2),
3422    nir_pack_varying_interp_mode_noperspective = (1 << 3),
3423    nir_pack_varying_interp_loc_sample         = (1 << 16),
3424    nir_pack_varying_interp_loc_centroid       = (1 << 17),
3425    nir_pack_varying_interp_loc_center         = (1 << 18),
3426 } nir_pack_varying_options;
3427 
3428 /** An instruction filtering callback
3429  *
3430  * Returns true if the instruction should be processed and false otherwise.
3431  */
3432 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3433 
3434 typedef struct nir_shader_compiler_options {
3435    bool lower_fdiv;
3436    bool lower_ffma16;
3437    bool lower_ffma32;
3438    bool lower_ffma64;
3439    bool fuse_ffma16;
3440    bool fuse_ffma32;
3441    bool fuse_ffma64;
3442    bool lower_flrp16;
3443    bool lower_flrp32;
3444    /** Lowers flrp when it does not support doubles */
3445    bool lower_flrp64;
3446    bool lower_fpow;
3447    bool lower_fsat;
3448    bool lower_fsqrt;
3449    bool lower_sincos;
3450    bool lower_fmod;
3451    /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
3452    bool lower_bitfield_extract;
3453    /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
3454    bool lower_bitfield_extract_to_shifts;
3455    /** Lowers bitfield_insert to bfi/bfm */
3456    bool lower_bitfield_insert;
3457    /** Lowers bitfield_insert to compares, and shifts. */
3458    bool lower_bitfield_insert_to_shifts;
3459    /** Lowers bitfield_insert to bfm/bitfield_select. */
3460    bool lower_bitfield_insert_to_bitfield_select;
3461    /** Lowers bitfield_reverse to shifts. */
3462    bool lower_bitfield_reverse;
3463    /** Lowers bit_count to shifts. */
3464    bool lower_bit_count;
3465    /** Lowers ifind_msb to compare and ufind_msb */
3466    bool lower_ifind_msb;
3467    /** Lowers ifind_msb and ufind_msb to reverse variants */
3468    bool lower_find_msb_to_reverse;
3469    /** Lowers find_lsb to ufind_msb and logic ops */
3470    bool lower_find_lsb;
3471    bool lower_uadd_carry;
3472    bool lower_usub_borrow;
3473    /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3474    bool lower_mul_high;
3475    /** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
3476    bool lower_fneg;
3477    /** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
3478    bool lower_ineg;
3479    /** lowers fisnormal to alu ops. */
3480    bool lower_fisnormal;
3481 
3482    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3483    bool lower_scmp;
3484 
3485    /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3486    bool lower_vector_cmp;
3487 
3488    /** enable rules to avoid bit ops */
3489    bool lower_bitops;
3490 
3491    /** enables rules to lower isign to imin+imax */
3492    bool lower_isign;
3493 
3494    /** enables rules to lower fsign to fsub and flt */
3495    bool lower_fsign;
3496 
3497    /** enables rules to lower iabs to ineg+imax */
3498    bool lower_iabs;
3499 
3500    /** enable rules that avoid generating umax from signed integer ops */
3501    bool lower_umax;
3502 
3503    /** enable rules that avoid generating umin from signed integer ops */
3504    bool lower_umin;
3505 
3506    /* lower fdph to fdot4 */
3507    bool lower_fdph;
3508 
3509    /** lower fdot to fmul and fsum/fadd. */
3510    bool lower_fdot;
3511 
3512    /* Does the native fdot instruction replicate its result for four
3513     * components?  If so, then opt_algebraic_late will turn all fdotN
3514     * instructions into fdotN_replicated instructions.
3515     */
3516    bool fdot_replicates;
3517 
3518    /** lowers ffloor to fsub+ffract: */
3519    bool lower_ffloor;
3520 
3521    /** lowers ffract to fsub+ffloor: */
3522    bool lower_ffract;
3523 
3524    /** lowers fceil to fneg+ffloor+fneg: */
3525    bool lower_fceil;
3526 
3527    bool lower_ftrunc;
3528 
3529    bool lower_ldexp;
3530 
3531    bool lower_pack_half_2x16;
3532    bool lower_pack_unorm_2x16;
3533    bool lower_pack_snorm_2x16;
3534    bool lower_pack_unorm_4x8;
3535    bool lower_pack_snorm_4x8;
3536    bool lower_pack_64_2x32;
3537    bool lower_pack_64_4x16;
3538    bool lower_pack_32_2x16;
3539    bool lower_pack_64_2x32_split;
3540    bool lower_pack_32_2x16_split;
3541    bool lower_unpack_half_2x16;
3542    bool lower_unpack_unorm_2x16;
3543    bool lower_unpack_snorm_2x16;
3544    bool lower_unpack_unorm_4x8;
3545    bool lower_unpack_snorm_4x8;
3546    bool lower_unpack_64_2x32_split;
3547    bool lower_unpack_32_2x16_split;
3548 
3549    bool lower_pack_split;
3550 
3551    bool lower_extract_byte;
3552    bool lower_extract_word;
3553    bool lower_insert_byte;
3554    bool lower_insert_word;
3555 
3556    bool lower_all_io_to_temps;
3557    bool lower_all_io_to_elements;
3558 
3559    /* Indicates that the driver only has zero-based vertex id */
3560    bool vertex_id_zero_based;
3561 
3562    /**
3563     * If enabled, gl_BaseVertex will be lowered as:
3564     * is_indexed_draw (~0/0) & firstvertex
3565     */
3566    bool lower_base_vertex;
3567 
3568    /**
3569     * If enabled, gl_HelperInvocation will be lowered as:
3570     *
3571     *   !((1 << sample_id) & sample_mask_in))
3572     *
3573     * This depends on some possibly hw implementation details, which may
3574     * not be true for all hw.  In particular that the FS is only executed
3575     * for covered samples or for helper invocations.  So, do not blindly
3576     * enable this option.
3577     *
3578     * Note: See also issue #22 in ARB_shader_image_load_store
3579     */
3580    bool lower_helper_invocation;
3581 
3582    /**
3583     * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3584     *
3585     *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3586     *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3587     */
3588    bool optimize_sample_mask_in;
3589 
3590    bool lower_cs_local_index_from_id;
3591    bool lower_cs_local_id_from_index;
3592 
3593    /* Prevents lowering global_invocation_id to be in terms of workgroup_id */
3594    bool has_cs_global_id;
3595 
3596    bool lower_device_index_to_zero;
3597 
3598    /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
3599     * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
3600     * is GL_LOWER_LEFT.
3601     */
3602    bool lower_wpos_pntc;
3603 
3604    /**
3605     * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3606     * lowered to simple arithmetic.
3607     *
3608     * If this flag is set, the lowering will be applied to all bit-sizes of
3609     * these instructions.
3610     *
3611     * \sa ::lower_hadd64
3612     */
3613    bool lower_hadd;
3614 
3615    /**
3616     * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3617     * should be lowered to simple arithmetic.
3618     *
3619     * If this flag is set, the lowering will be applied to only 64-bit
3620     * versions of these instructions.
3621     *
3622     * \sa ::lower_hadd
3623     */
3624    bool lower_hadd64;
3625 
3626    /**
3627     * Set if nir_op_uadd_sat and nir_op_usub_sat should be lowered to simple
3628     * arithmetic.
3629     *
3630     * If this flag is set, the lowering will be applied to all bit-sizes of
3631     * these instructions.
3632     *
3633     * \sa ::lower_usub_sat64
3634     */
3635    bool lower_uadd_sat;
3636 
3637    /**
3638     * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3639     * arithmetic.
3640     *
3641     * \sa ::lower_add_sat
3642     */
3643    bool lower_usub_sat64;
3644 
3645    /**
3646     * Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
3647     * arithmetic.
3648     *
3649     * If this flag is set, the lowering will be applied to all bit-sizes of
3650     * these instructions.
3651     */
3652    bool lower_iadd_sat;
3653 
3654    /**
3655     * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
3656     * for IO purposes and would prefer loads/stores be vectorized.
3657     */
3658    bool vectorize_io;
3659    bool lower_to_scalar;
3660    nir_instr_filter_cb lower_to_scalar_filter;
3661 
3662    /**
3663     * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3664     */
3665    bool vectorize_vec2_16bit;
3666 
3667    /**
3668     * Should the linker unify inputs_read/outputs_written between adjacent
3669     * shader stages which are linked into a single program?
3670     */
3671    bool unify_interfaces;
3672 
3673    /**
3674     * Should nir_lower_io() create load_interpolated_input intrinsics?
3675     *
3676     * If not, it generates regular load_input intrinsics and interpolation
3677     * information must be inferred from the list of input nir_variables.
3678     */
3679    bool use_interpolated_input_intrinsics;
3680 
3681 
3682    /**
3683     * Whether nir_lower_io() will lower interpolateAt functions to
3684     * load_interpolated_input intrinsics.
3685     *
3686     * Unlike use_interpolated_input_intrinsics this will only lower these
3687     * functions and leave input load intrinsics untouched.
3688     */
3689    bool lower_interpolate_at;
3690 
3691    /* Lowers when 32x32->64 bit multiplication is not supported */
3692    bool lower_mul_2x32_64;
3693 
3694    /* Lowers when rotate instruction is not supported */
3695    bool lower_rotate;
3696 
3697    /** Backend supports ternary addition */
3698    bool has_iadd3;
3699 
3700    /**
3701     * Backend supports imul24, and would like to use it (when possible)
3702     * for address/offset calculation.  If true, driver should call
3703     * nir_lower_amul().  (If not set, amul will automatically be lowered
3704     * to imul.)
3705     */
3706    bool has_imul24;
3707 
3708    /** Backend supports umul24, if not set  umul24 will automatically be lowered
3709     * to imul with masked inputs */
3710    bool has_umul24;
3711 
3712    /** Backend supports umad24, if not set  umad24 will automatically be lowered
3713     * to imul with masked inputs and iadd */
3714    bool has_umad24;
3715 
3716    /* Backend supports fused comapre against zero and csel */
3717    bool has_fused_comp_and_csel;
3718 
3719    /** Backend supports fsub, if not set fsub will automatically be lowered to
3720     * fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
3721    bool has_fsub;
3722 
3723    /** Backend supports isub, if not set isub will automatically be lowered to
3724     * iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
3725    bool has_isub;
3726 
3727    /** Backend supports pack_32_4x8 or pack_32_4x8_split. */
3728    bool has_pack_32_4x8;
3729 
3730    /** Backend supports txs, if not nir_lower_tex(..) uses txs-free variants
3731     * for rect texture lowering. */
3732    bool has_txs;
3733 
3734    /** Backend supports sdot_4x8 and udot_4x8 opcodes. */
3735    bool has_dot_4x8;
3736 
3737    /** Backend supports sudot_4x8 opcodes. */
3738    bool has_sudot_4x8;
3739 
3740    /** Backend supports sdot_2x16 and udot_2x16 opcodes. */
3741    bool has_dot_2x16;
3742 
3743    /* Whether to generate only scoped_barrier intrinsics instead of the set of
3744     * memory and control barrier intrinsics based on GLSL.
3745     */
3746    bool use_scoped_barrier;
3747 
3748    /**
3749     * Is this the Intel vec4 backend?
3750     *
3751     * Used to inhibit algebraic optimizations that are known to be harmful on
3752     * the Intel vec4 backend.  This is generally applicable to any
3753     * optimization that might cause more immediate values to be used in
3754     * 3-source (e.g., ffma and flrp) instructions.
3755     */
3756    bool intel_vec4;
3757 
3758    /**
3759     * For most Intel GPUs, all ternary operations such as FMA and BFE cannot
3760     * have immediates, so two to three instructions may eventually be needed.
3761     */
3762    bool avoid_ternary_with_two_constants;
3763 
3764    /** Whether 8-bit ALU is supported. */
3765    bool support_8bit_alu;
3766 
3767    /** Whether 16-bit ALU is supported. */
3768    bool support_16bit_alu;
3769 
3770    unsigned max_unroll_iterations;
3771    unsigned max_unroll_iterations_aggressive;
3772 
3773    bool lower_uniforms_to_ubo;
3774 
3775    /* If the precision is ignored, backends that don't handle
3776     * different precisions when passing data between stages and use
3777     * vectorized IO can pack more varyings when linking. */
3778    bool linker_ignore_precision;
3779 
3780    /**
3781     * Specifies which type of indirectly accessed variables should force
3782     * loop unrolling.
3783     */
3784    nir_variable_mode force_indirect_unrolling;
3785 
3786    nir_lower_int64_options lower_int64_options;
3787    nir_lower_doubles_options lower_doubles_options;
3788    nir_divergence_options divergence_analysis_options;
3789 
3790    /**
3791     * Support pack varyings with different interpolation location
3792     * (center, centroid, sample) and mode (flat, noperspective, smooth)
3793     * into same slot.
3794     */
3795    nir_pack_varying_options pack_varying_options;
3796 } nir_shader_compiler_options;
3797 
3798 typedef struct nir_shader {
3799    /** list of uniforms (nir_variable) */
3800    struct exec_list variables;
3801 
3802    /** Set of driver-specific options for the shader.
3803     *
3804     * The memory for the options is expected to be kept in a single static
3805     * copy by the driver.
3806     */
3807    const struct nir_shader_compiler_options *options;
3808 
3809    /** Various bits of compile-time information about a given shader */
3810    struct shader_info info;
3811 
3812    struct exec_list functions; /** < list of nir_function */
3813 
3814    struct list_head gc_list; /** < list of all nir_instrs allocated on the shader but not yet freed. */
3815 
3816    /**
3817     * The size of the variable space for load_input_*, load_uniform_*, etc.
3818     * intrinsics.  This is in back-end specific units which is likely one of
3819     * bytes, dwords, or vec4s depending on context and back-end.
3820     */
3821    unsigned num_inputs, num_uniforms, num_outputs;
3822 
3823    /** Size in bytes of required scratch space */
3824    unsigned scratch_size;
3825 
3826    /** Constant data associated with this shader.
3827     *
3828     * Constant data is loaded through load_constant intrinsics (as compared to
3829     * the NIR load_const instructions which have the constant value inlined
3830     * into them).  This is usually generated by nir_opt_large_constants (so
3831     * shaders don't have to load_const into a temporary array when they want
3832     * to indirect on a const array).
3833     */
3834    void *constant_data;
3835    /** Size of the constant data associated with the shader, in bytes */
3836    unsigned constant_data_size;
3837 
3838    unsigned printf_info_count;
3839    nir_printf_info *printf_info;
3840 } nir_shader;
3841 
3842 #define nir_foreach_function(func, shader) \
3843    foreach_list_typed(nir_function, func, node, &(shader)->functions)
3844 
3845 static inline nir_function_impl *
nir_shader_get_entrypoint(nir_shader * shader)3846 nir_shader_get_entrypoint(nir_shader *shader)
3847 {
3848    nir_function *func = NULL;
3849 
3850    nir_foreach_function(function, shader) {
3851       assert(func == NULL);
3852       if (function->is_entrypoint) {
3853          func = function;
3854 #ifndef NDEBUG
3855          break;
3856 #endif
3857       }
3858    }
3859 
3860    if (!func)
3861       return NULL;
3862 
3863    assert(func->num_params == 0);
3864    assert(func->impl);
3865    return func->impl;
3866 }
3867 
3868 typedef struct nir_liveness_bounds {
3869    uint32_t start;
3870    uint32_t end;
3871 } nir_liveness_bounds;
3872 
3873 typedef struct nir_instr_liveness {
3874    /**
3875     * nir_instr->index for the start and end of a single live interval for SSA
3876     * defs.  ssa values last used by a nir_if condition will have an interval
3877     * ending at the first instruction after the last one before the if
3878     * condition.
3879     *
3880     * Indexed by def->index (impl->ssa_alloc elements).
3881     */
3882    struct nir_liveness_bounds *defs;
3883 } nir_instr_liveness;
3884 
3885 nir_instr_liveness *
3886 nir_live_ssa_defs_per_instr(nir_function_impl *impl);
3887 
3888 nir_shader *nir_shader_create(void *mem_ctx,
3889                               gl_shader_stage stage,
3890                               const nir_shader_compiler_options *options,
3891                               shader_info *si);
3892 
3893 nir_register *nir_local_reg_create(nir_function_impl *impl);
3894 
3895 void nir_reg_remove(nir_register *reg);
3896 
3897 /** Adds a variable to the appropriate list in nir_shader */
3898 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3899 
3900 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)3901 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3902 {
3903    assert(var->data.mode == nir_var_function_temp);
3904    exec_list_push_tail(&impl->locals, &var->node);
3905 }
3906 
3907 /** creates a variable, sets a few defaults, and adds it to the list */
3908 nir_variable *nir_variable_create(nir_shader *shader,
3909                                   nir_variable_mode mode,
3910                                   const struct glsl_type *type,
3911                                   const char *name);
3912 /** creates a local variable and adds it to the list */
3913 nir_variable *nir_local_variable_create(nir_function_impl *impl,
3914                                         const struct glsl_type *type,
3915                                         const char *name);
3916 
3917 nir_variable *nir_find_variable_with_location(nir_shader *shader,
3918                                               nir_variable_mode mode,
3919                                               unsigned location);
3920 
3921 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3922                                                      nir_variable_mode mode,
3923                                                      unsigned location);
3924 
3925 void nir_sort_variables_with_modes(nir_shader *shader,
3926                                    int (*compar)(const nir_variable *,
3927                                                  const nir_variable *),
3928                                    nir_variable_mode modes);
3929 
3930 /** creates a function and adds it to the shader's list of functions */
3931 nir_function *nir_function_create(nir_shader *shader, const char *name);
3932 
3933 nir_function_impl *nir_function_impl_create(nir_function *func);
3934 /** creates a function_impl that isn't tied to any particular function */
3935 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3936 
3937 nir_block *nir_block_create(nir_shader *shader);
3938 nir_if *nir_if_create(nir_shader *shader);
3939 nir_loop *nir_loop_create(nir_shader *shader);
3940 
3941 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3942 
3943 /** requests that the given pieces of metadata be generated */
3944 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3945 /** dirties all but the preserved metadata */
3946 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3947 /** Preserves all metadata for the given shader */
3948 void nir_shader_preserve_all_metadata(nir_shader *shader);
3949 
3950 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3951 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3952 
3953 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3954                                         nir_deref_type deref_type);
3955 
3956 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3957 
3958 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3959                                                   unsigned num_components,
3960                                                   unsigned bit_size);
3961 
3962 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3963                                                 nir_intrinsic_op op);
3964 
3965 nir_call_instr *nir_call_instr_create(nir_shader *shader,
3966                                       nir_function *callee);
3967 
3968 /** Creates a NIR texture instruction */
3969 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3970 
3971 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3972 nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr, nir_block *pred, nir_src src);
3973 
3974 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3975 
3976 nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3977                                                 unsigned num_components,
3978                                                 unsigned bit_size);
3979 
3980 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3981 
3982 /**
3983  * NIR Cursors and Instruction Insertion API
3984  * @{
3985  *
3986  * A tiny struct representing a point to insert/extract instructions or
3987  * control flow nodes.  Helps reduce the combinatorial explosion of possible
3988  * points to insert/extract.
3989  *
3990  * \sa nir_control_flow.h
3991  */
3992 typedef enum {
3993    nir_cursor_before_block,
3994    nir_cursor_after_block,
3995    nir_cursor_before_instr,
3996    nir_cursor_after_instr,
3997 } nir_cursor_option;
3998 
3999 typedef struct {
4000    nir_cursor_option option;
4001    union {
4002       nir_block *block;
4003       nir_instr *instr;
4004    };
4005 } nir_cursor;
4006 
4007 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)4008 nir_cursor_current_block(nir_cursor cursor)
4009 {
4010    if (cursor.option == nir_cursor_before_instr ||
4011        cursor.option == nir_cursor_after_instr) {
4012       return cursor.instr->block;
4013    } else {
4014       return cursor.block;
4015    }
4016 }
4017 
4018 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
4019 
4020 static inline nir_cursor
nir_before_block(nir_block * block)4021 nir_before_block(nir_block *block)
4022 {
4023    nir_cursor cursor;
4024    cursor.option = nir_cursor_before_block;
4025    cursor.block = block;
4026    return cursor;
4027 }
4028 
4029 static inline nir_cursor
nir_after_block(nir_block * block)4030 nir_after_block(nir_block *block)
4031 {
4032    nir_cursor cursor;
4033    cursor.option = nir_cursor_after_block;
4034    cursor.block = block;
4035    return cursor;
4036 }
4037 
4038 static inline nir_cursor
nir_before_instr(nir_instr * instr)4039 nir_before_instr(nir_instr *instr)
4040 {
4041    nir_cursor cursor;
4042    cursor.option = nir_cursor_before_instr;
4043    cursor.instr = instr;
4044    return cursor;
4045 }
4046 
4047 static inline nir_cursor
nir_after_instr(nir_instr * instr)4048 nir_after_instr(nir_instr *instr)
4049 {
4050    nir_cursor cursor;
4051    cursor.option = nir_cursor_after_instr;
4052    cursor.instr = instr;
4053    return cursor;
4054 }
4055 
4056 static inline nir_cursor
nir_before_block_after_phis(nir_block * block)4057 nir_before_block_after_phis(nir_block *block)
4058 {
4059    nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
4060    if (last_phi)
4061       return nir_after_instr(&last_phi->instr);
4062    else
4063       return nir_before_block(block);
4064 }
4065 
4066 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)4067 nir_after_block_before_jump(nir_block *block)
4068 {
4069    nir_instr *last_instr = nir_block_last_instr(block);
4070    if (last_instr && last_instr->type == nir_instr_type_jump) {
4071       return nir_before_instr(last_instr);
4072    } else {
4073       return nir_after_block(block);
4074    }
4075 }
4076 
4077 static inline nir_cursor
nir_before_src(nir_src * src,bool is_if_condition)4078 nir_before_src(nir_src *src, bool is_if_condition)
4079 {
4080    if (is_if_condition) {
4081       nir_block *prev_block =
4082          nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
4083       assert(!nir_block_ends_in_jump(prev_block));
4084       return nir_after_block(prev_block);
4085    } else if (src->parent_instr->type == nir_instr_type_phi) {
4086 #ifndef NDEBUG
4087       nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
4088       bool found = false;
4089       nir_foreach_phi_src(phi_src, cond_phi) {
4090          if (phi_src->src.ssa == src->ssa) {
4091             found = true;
4092             break;
4093          }
4094       }
4095       assert(found);
4096 #endif
4097       /* The LIST_ENTRY macro is a generic container-of macro, it just happens
4098        * to have a more specific name.
4099        */
4100       nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
4101       return nir_after_block_before_jump(phi_src->pred);
4102    } else {
4103       return nir_before_instr(src->parent_instr);
4104    }
4105 }
4106 
4107 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)4108 nir_before_cf_node(nir_cf_node *node)
4109 {
4110    if (node->type == nir_cf_node_block)
4111       return nir_before_block(nir_cf_node_as_block(node));
4112 
4113    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
4114 }
4115 
4116 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)4117 nir_after_cf_node(nir_cf_node *node)
4118 {
4119    if (node->type == nir_cf_node_block)
4120       return nir_after_block(nir_cf_node_as_block(node));
4121 
4122    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
4123 }
4124 
4125 static inline nir_cursor
nir_after_phis(nir_block * block)4126 nir_after_phis(nir_block *block)
4127 {
4128    nir_foreach_instr(instr, block) {
4129       if (instr->type != nir_instr_type_phi)
4130          return nir_before_instr(instr);
4131    }
4132    return nir_after_block(block);
4133 }
4134 
4135 static inline nir_cursor
nir_after_instr_and_phis(nir_instr * instr)4136 nir_after_instr_and_phis(nir_instr *instr)
4137 {
4138    if (instr->type == nir_instr_type_phi)
4139       return nir_after_phis(instr->block);
4140    else
4141       return nir_after_instr(instr);
4142 }
4143 
4144 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)4145 nir_after_cf_node_and_phis(nir_cf_node *node)
4146 {
4147    if (node->type == nir_cf_node_block)
4148       return nir_after_block(nir_cf_node_as_block(node));
4149 
4150    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
4151 
4152    return nir_after_phis(block);
4153 }
4154 
4155 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)4156 nir_before_cf_list(struct exec_list *cf_list)
4157 {
4158    nir_cf_node *first_node = exec_node_data(nir_cf_node,
4159                                             exec_list_get_head(cf_list), node);
4160    return nir_before_cf_node(first_node);
4161 }
4162 
4163 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)4164 nir_after_cf_list(struct exec_list *cf_list)
4165 {
4166    nir_cf_node *last_node = exec_node_data(nir_cf_node,
4167                                            exec_list_get_tail(cf_list), node);
4168    return nir_after_cf_node(last_node);
4169 }
4170 
4171 /**
4172  * Insert a NIR instruction at the given cursor.
4173  *
4174  * Note: This does not update the cursor.
4175  */
4176 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
4177 
4178 bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
4179 
4180 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)4181 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
4182 {
4183    nir_instr_insert(nir_before_instr(instr), before);
4184 }
4185 
4186 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)4187 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
4188 {
4189    nir_instr_insert(nir_after_instr(instr), after);
4190 }
4191 
4192 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)4193 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
4194 {
4195    nir_instr_insert(nir_before_block(block), before);
4196 }
4197 
4198 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)4199 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
4200 {
4201    nir_instr_insert(nir_after_block(block), after);
4202 }
4203 
4204 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)4205 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
4206 {
4207    nir_instr_insert(nir_before_cf_node(node), before);
4208 }
4209 
4210 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)4211 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
4212 {
4213    nir_instr_insert(nir_after_cf_node(node), after);
4214 }
4215 
4216 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)4217 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
4218 {
4219    nir_instr_insert(nir_before_cf_list(list), before);
4220 }
4221 
4222 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)4223 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
4224 {
4225    nir_instr_insert(nir_after_cf_list(list), after);
4226 }
4227 
4228 void nir_instr_remove_v(nir_instr *instr);
4229 void nir_instr_free(nir_instr *instr);
4230 void nir_instr_free_list(struct exec_list *list);
4231 
4232 static inline nir_cursor
nir_instr_remove(nir_instr * instr)4233 nir_instr_remove(nir_instr *instr)
4234 {
4235    nir_cursor cursor;
4236    nir_instr *prev = nir_instr_prev(instr);
4237    if (prev) {
4238       cursor = nir_after_instr(prev);
4239    } else {
4240       cursor = nir_before_block(instr->block);
4241    }
4242    nir_instr_remove_v(instr);
4243    return cursor;
4244 }
4245 
4246 nir_cursor nir_instr_free_and_dce(nir_instr *instr);
4247 
4248 /** @} */
4249 
4250 nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
4251 
4252 typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
4253 typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
4254 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
4255 bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
4256                          void *state);
4257 static inline bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
4258 static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
4259 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
4260                                        nir_foreach_src_cb cb,
4261                                        void *state);
4262 
4263 nir_const_value *nir_src_as_const_value(nir_src src);
4264 
4265 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro)                \
4266 static inline c_type *                                                  \
4267 nir_src_as_ ## name (nir_src src)                                       \
4268 {                                                                       \
4269     return src.is_ssa && src.ssa->parent_instr->type == type_enum       \
4270            ? cast_macro(src.ssa->parent_instr) : NULL;                  \
4271 }
4272 
4273 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
4274 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
4275             nir_instr_type_intrinsic, nir_instr_as_intrinsic)
4276 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
4277 
4278 bool nir_src_is_dynamically_uniform(nir_src src);
4279 bool nir_srcs_equal(nir_src src1, nir_src src2);
4280 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
4281 
4282 static inline void
nir_instr_rewrite_src_ssa(ASSERTED nir_instr * instr,nir_src * src,nir_ssa_def * new_ssa)4283 nir_instr_rewrite_src_ssa(ASSERTED nir_instr *instr,
4284                           nir_src *src, nir_ssa_def *new_ssa)
4285 {
4286    assert(src->parent_instr == instr);
4287    assert(src->is_ssa && src->ssa);
4288    list_del(&src->use_link);
4289    src->ssa = new_ssa;
4290    list_addtail(&src->use_link, &new_ssa->uses);
4291 }
4292 
4293 void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
4294 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
4295 
4296 static inline void
nir_if_rewrite_condition_ssa(ASSERTED nir_if * if_stmt,nir_src * src,nir_ssa_def * new_ssa)4297 nir_if_rewrite_condition_ssa(ASSERTED nir_if *if_stmt,
4298                              nir_src *src, nir_ssa_def *new_ssa)
4299 {
4300    assert(src->parent_if == if_stmt);
4301    assert(src->is_ssa && src->ssa);
4302    list_del(&src->use_link);
4303    src->ssa = new_ssa;
4304    list_addtail(&src->use_link, &new_ssa->if_uses);
4305 }
4306 
4307 void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
4308 void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
4309                             nir_dest new_dest);
4310 
4311 void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
4312                        unsigned num_components, unsigned bit_size,
4313                        const char *name);
4314 void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
4315                       unsigned num_components, unsigned bit_size);
4316 static inline void
nir_ssa_dest_init_for_type(nir_instr * instr,nir_dest * dest,const struct glsl_type * type,const char * name)4317 nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
4318                            const struct glsl_type *type,
4319                            const char *name)
4320 {
4321    assert(glsl_type_is_vector_or_scalar(type));
4322    nir_ssa_dest_init(instr, dest, glsl_get_components(type),
4323                      glsl_get_bit_size(type), name);
4324 }
4325 void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_ssa_def *new_ssa);
4326 void nir_ssa_def_rewrite_uses_src(nir_ssa_def *def, nir_src new_src);
4327 void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_ssa_def *new_ssa,
4328                                     nir_instr *after_me);
4329 
4330 nir_component_mask_t nir_src_components_read(const nir_src *src);
4331 nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
4332 
4333 static inline bool
nir_ssa_def_is_unused(nir_ssa_def * ssa)4334 nir_ssa_def_is_unused(nir_ssa_def *ssa)
4335 {
4336    return list_is_empty(&ssa->uses) && list_is_empty(&ssa->if_uses);
4337 }
4338 
4339 
4340 /** Returns the next block, disregarding structure
4341  *
4342  * The ordering is deterministic but has no guarantees beyond that.  In
4343  * particular, it is not guaranteed to be dominance-preserving.
4344  */
4345 nir_block *nir_block_unstructured_next(nir_block *block);
4346 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
4347 
4348 #define nir_foreach_block_unstructured(block, impl) \
4349    for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
4350         block = nir_block_unstructured_next(block))
4351 
4352 #define nir_foreach_block_unstructured_safe(block, impl) \
4353    for (nir_block *block = nir_unstructured_start_block(impl), \
4354         *next = nir_block_unstructured_next(block); \
4355         block != NULL; \
4356         block = next, next = nir_block_unstructured_next(block))
4357 
4358 /*
4359  * finds the next basic block in source-code order, returns NULL if there is
4360  * none
4361  */
4362 
4363 nir_block *nir_block_cf_tree_next(nir_block *block);
4364 
4365 /* Performs the opposite of nir_block_cf_tree_next() */
4366 
4367 nir_block *nir_block_cf_tree_prev(nir_block *block);
4368 
4369 /* Gets the first block in a CF node in source-code order */
4370 
4371 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
4372 
4373 /* Gets the last block in a CF node in source-code order */
4374 
4375 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
4376 
4377 /* Gets the next block after a CF node in source-code order */
4378 
4379 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
4380 
4381 /* Macros for loops that visit blocks in source-code order */
4382 
4383 #define nir_foreach_block(block, impl) \
4384    for (nir_block *block = nir_start_block(impl); block != NULL; \
4385         block = nir_block_cf_tree_next(block))
4386 
4387 #define nir_foreach_block_safe(block, impl) \
4388    for (nir_block *block = nir_start_block(impl), \
4389         *next = nir_block_cf_tree_next(block); \
4390         block != NULL; \
4391         block = next, next = nir_block_cf_tree_next(block))
4392 
4393 #define nir_foreach_block_reverse(block, impl) \
4394    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
4395         block = nir_block_cf_tree_prev(block))
4396 
4397 #define nir_foreach_block_reverse_safe(block, impl) \
4398    for (nir_block *block = nir_impl_last_block(impl), \
4399         *prev = nir_block_cf_tree_prev(block); \
4400         block != NULL; \
4401         block = prev, prev = nir_block_cf_tree_prev(block))
4402 
4403 #define nir_foreach_block_in_cf_node(block, node) \
4404    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
4405         block != nir_cf_node_cf_tree_next(node); \
4406         block = nir_block_cf_tree_next(block))
4407 
4408 /* If the following CF node is an if, this function returns that if.
4409  * Otherwise, it returns NULL.
4410  */
4411 nir_if *nir_block_get_following_if(nir_block *block);
4412 
4413 nir_loop *nir_block_get_following_loop(nir_block *block);
4414 
4415 nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
4416 
4417 void nir_index_local_regs(nir_function_impl *impl);
4418 void nir_index_ssa_defs(nir_function_impl *impl);
4419 unsigned nir_index_instrs(nir_function_impl *impl);
4420 
4421 void nir_index_blocks(nir_function_impl *impl);
4422 
4423 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
4424 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
4425 
4426 void nir_print_shader(nir_shader *shader, FILE *fp);
4427 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
4428 void nir_print_instr(const nir_instr *instr, FILE *fp);
4429 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
4430 void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
4431 #define nir_log_shadere(s) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
4432 #define nir_log_shaderw(s) nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
4433 #define nir_log_shaderi(s) nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
4434 #define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
4435 
4436 char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
4437 char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
4438 
4439 /** Shallow clone of a single instruction. */
4440 nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
4441 
4442 /** Shallow clone of a single ALU instruction. */
4443 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
4444 
4445 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
4446 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
4447                                            const nir_function_impl *fi);
4448 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
4449 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
4450 
4451 void nir_shader_replace(nir_shader *dest, nir_shader *src);
4452 
4453 void nir_shader_serialize_deserialize(nir_shader *s);
4454 
4455 #ifndef NDEBUG
4456 void nir_validate_shader(nir_shader *shader, const char *when);
4457 void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
4458 void nir_metadata_set_validation_flag(nir_shader *shader);
4459 void nir_metadata_check_validation_flag(nir_shader *shader);
4460 
4461 static inline bool
should_skip_nir(const char * name)4462 should_skip_nir(const char *name)
4463 {
4464    static const char *list = NULL;
4465    if (!list) {
4466       /* Comma separated list of names to skip. */
4467       list = getenv("NIR_SKIP");
4468       if (!list)
4469          list = "";
4470    }
4471 
4472    if (!list[0])
4473       return false;
4474 
4475    return comma_separated_list_contains(list, name);
4476 }
4477 
4478 static inline bool
should_clone_nir(void)4479 should_clone_nir(void)
4480 {
4481    static int should_clone = -1;
4482    if (should_clone < 0)
4483       should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
4484 
4485    return should_clone;
4486 }
4487 
4488 static inline bool
should_serialize_deserialize_nir(void)4489 should_serialize_deserialize_nir(void)
4490 {
4491    static int test_serialize = -1;
4492    if (test_serialize < 0)
4493       test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
4494 
4495    return test_serialize;
4496 }
4497 
4498 static inline bool
should_print_nir(nir_shader * shader)4499 should_print_nir(nir_shader *shader)
4500 {
4501    static int should_print = -1;
4502    if (should_print < 0)
4503       should_print = env_var_as_unsigned("NIR_PRINT", 0);
4504 
4505    if (should_print == 1)
4506       return !shader->info.internal;
4507 
4508    return should_print;
4509 }
4510 #else
nir_validate_shader(nir_shader * shader,const char * when)4511 static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_validate_ssa_dominance(nir_shader * shader,const char * when)4512 static inline void nir_validate_ssa_dominance(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_metadata_set_validation_flag(nir_shader * shader)4513 static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
nir_metadata_check_validation_flag(nir_shader * shader)4514 static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
should_skip_nir(UNUSED const char * pass_name)4515 static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
should_clone_nir(void)4516 static inline bool should_clone_nir(void) { return false; }
should_serialize_deserialize_nir(void)4517 static inline bool should_serialize_deserialize_nir(void) { return false; }
should_print_nir(nir_shader * shader)4518 static inline bool should_print_nir(nir_shader *shader) { return false; }
4519 #endif /* NDEBUG */
4520 
4521 #define _PASS(pass, nir, do_pass) do {                               \
4522    if (should_skip_nir(#pass)) {                                     \
4523       printf("skipping %s\n", #pass);                                \
4524       break;                                                         \
4525    }                                                                 \
4526    do_pass                                                           \
4527    if (should_clone_nir()) {                                         \
4528       nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
4529       nir_shader_replace(nir, clone);                                \
4530    }                                                                 \
4531    if (should_serialize_deserialize_nir()) {                         \
4532       nir_shader_serialize_deserialize(nir);                         \
4533    }                                                                 \
4534 } while (0)
4535 
4536 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir,          \
4537    nir_metadata_set_validation_flag(nir);                            \
4538    if (should_print_nir(nir))                                           \
4539       printf("%s\n", #pass);                                         \
4540    if (pass(nir, ##__VA_ARGS__)) {                                   \
4541       nir_validate_shader(nir, "after " #pass);                      \
4542       progress = true;                                               \
4543       if (should_print_nir(nir))                                        \
4544          nir_print_shader(nir, stdout);                              \
4545       nir_metadata_check_validation_flag(nir);                       \
4546    }                                                                 \
4547 )
4548 
4549 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir,                  \
4550    if (should_print_nir(nir))                                           \
4551       printf("%s\n", #pass);                                         \
4552    pass(nir, ##__VA_ARGS__);                                         \
4553    nir_validate_shader(nir, "after " #pass);                         \
4554    if (should_print_nir(nir))                                           \
4555       nir_print_shader(nir, stdout);                                 \
4556 )
4557 
4558 #define NIR_SKIP(name) should_skip_nir(#name)
4559 
4560 /** An instruction filtering callback with writemask
4561  *
4562  * Returns true if the instruction should be processed with the associated
4563  * writemask and false otherwise.
4564  */
4565 typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
4566                                               unsigned writemask, const void *);
4567 
4568 /** A simple instruction lowering callback
4569  *
4570  * Many instruction lowering passes can be written as a simple function which
4571  * takes an instruction as its input and returns a sequence of instructions
4572  * that implement the consumed instruction.  This function type represents
4573  * such a lowering function.  When called, a function with this prototype
4574  * should either return NULL indicating that no lowering needs to be done or
4575  * emit a sequence of instructions using the provided builder (whose cursor
4576  * will already be placed after the instruction to be lowered) and return the
4577  * resulting nir_ssa_def.
4578  */
4579 typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
4580                                            nir_instr *, void *);
4581 
4582 /**
4583  * Special return value for nir_lower_instr_cb when some progress occurred
4584  * (like changing an input to the instr) that didn't result in a replacement
4585  * SSA def being generated.
4586  */
4587 #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
4588 
4589 /**
4590  * Special return value for nir_lower_instr_cb when some progress occurred
4591  * that should remove the current instruction that doesn't create an output
4592  * (like a store)
4593  */
4594 
4595 #define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_ssa_def *)(uintptr_t)2)
4596 
4597 /** Iterate over all the instructions in a nir_function_impl and lower them
4598  *  using the provided callbacks
4599  *
4600  * This function implements the guts of a standard lowering pass for you.  It
4601  * iterates over all of the instructions in a nir_function_impl and calls the
4602  * filter callback on each one.  If the filter callback returns true, it then
4603  * calls the lowering call back on the instruction.  (Splitting it this way
4604  * allows us to avoid some save/restore work for instructions we know won't be
4605  * lowered.)  If the instruction is dead after the lowering is complete, it
4606  * will be removed.  If new instructions are added, the lowering callback will
4607  * also be called on them in case multiple lowerings are required.
4608  *
4609  * If the callback indicates that the original instruction is replaced (either
4610  * through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
4611  * instruction is removed along with any now-dead SSA defs it used.
4612  *
4613  * The metadata for the nir_function_impl will also be updated.  If any blocks
4614  * are added (they cannot be removed), dominance and block indices will be
4615  * invalidated.
4616  */
4617 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
4618                                           nir_instr_filter_cb filter,
4619                                           nir_lower_instr_cb lower,
4620                                           void *cb_data);
4621 bool nir_shader_lower_instructions(nir_shader *shader,
4622                                    nir_instr_filter_cb filter,
4623                                    nir_lower_instr_cb lower,
4624                                    void *cb_data);
4625 
4626 void nir_calc_dominance_impl(nir_function_impl *impl);
4627 void nir_calc_dominance(nir_shader *shader);
4628 
4629 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
4630 bool nir_block_dominates(nir_block *parent, nir_block *child);
4631 bool nir_block_is_unreachable(nir_block *block);
4632 
4633 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
4634 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
4635 
4636 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
4637 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
4638 
4639 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
4640 void nir_dump_cfg(nir_shader *shader, FILE *fp);
4641 
4642 void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
4643                                           int *out_vtxcnt,
4644                                           int *out_prmcnt,
4645                                           unsigned num_streams);
4646 
4647 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
4648 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
4649 bool nir_split_var_copies(nir_shader *shader);
4650 bool nir_split_per_member_structs(nir_shader *shader);
4651 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
4652 
4653 bool nir_lower_returns_impl(nir_function_impl *impl);
4654 bool nir_lower_returns(nir_shader *shader);
4655 
4656 void nir_inline_function_impl(struct nir_builder *b,
4657                               const nir_function_impl *impl,
4658                               nir_ssa_def **params,
4659                               struct hash_table *shader_var_remap);
4660 bool nir_inline_functions(nir_shader *shader);
4661 
4662 void nir_find_inlinable_uniforms(nir_shader *shader);
4663 void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
4664                          const uint32_t *uniform_values,
4665                          const uint16_t *uniform_dw_offsets);
4666 
4667 bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
4668 
4669 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
4670 void nir_lower_deref_copy_instr(struct nir_builder *b,
4671                                 nir_intrinsic_instr *copy);
4672 bool nir_lower_var_copies(nir_shader *shader);
4673 
4674 bool nir_opt_memcpy(nir_shader *shader);
4675 bool nir_lower_memcpy(nir_shader *shader);
4676 
4677 void nir_fixup_deref_modes(nir_shader *shader);
4678 
4679 bool nir_lower_global_vars_to_local(nir_shader *shader);
4680 
4681 typedef enum {
4682    nir_lower_direct_array_deref_of_vec_load     = (1 << 0),
4683    nir_lower_indirect_array_deref_of_vec_load   = (1 << 1),
4684    nir_lower_direct_array_deref_of_vec_store    = (1 << 2),
4685    nir_lower_indirect_array_deref_of_vec_store  = (1 << 3),
4686 } nir_lower_array_deref_of_vec_options;
4687 
4688 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
4689                                   nir_lower_array_deref_of_vec_options options);
4690 
4691 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
4692                                uint32_t max_lower_array_len);
4693 
4694 bool nir_lower_indirect_builtin_uniform_derefs(nir_shader *shader);
4695 
4696 bool nir_lower_locals_to_regs(nir_shader *shader);
4697 
4698 void nir_lower_io_to_temporaries(nir_shader *shader,
4699                                  nir_function_impl *entrypoint,
4700                                  bool outputs, bool inputs);
4701 
4702 bool nir_lower_vars_to_scratch(nir_shader *shader,
4703                                nir_variable_mode modes,
4704                                int size_threshold,
4705                                glsl_type_size_align_func size_align);
4706 
4707 void nir_lower_clip_halfz(nir_shader *shader);
4708 
4709 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
4710 
4711 void nir_gather_ssa_types(nir_function_impl *impl,
4712                           BITSET_WORD *float_types,
4713                           BITSET_WORD *int_types);
4714 
4715 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
4716                               unsigned *size,
4717                               int (*type_size)(const struct glsl_type *, bool));
4718 
4719 /* Some helpers to do very simple linking */
4720 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
4721 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
4722                                uint64_t *used_by_other_stage,
4723                                uint64_t *used_by_other_stage_patches);
4724 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4725                           bool default_to_smooth_interp);
4726 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4727 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4728 void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
4729 
4730 bool nir_lower_amul(nir_shader *shader,
4731                     int (*type_size)(const struct glsl_type *, bool));
4732 
4733 bool nir_lower_ubo_vec4(nir_shader *shader);
4734 
4735 void nir_assign_io_var_locations(nir_shader *shader,
4736                                  nir_variable_mode mode,
4737                                  unsigned *size,
4738                                  gl_shader_stage stage);
4739 
4740 typedef struct {
4741    uint8_t num_linked_io_vars;
4742    uint8_t num_linked_patch_io_vars;
4743 } nir_linked_io_var_info;
4744 
4745 nir_linked_io_var_info
4746 nir_assign_linked_io_var_locations(nir_shader *producer,
4747                                    nir_shader *consumer);
4748 
4749 typedef enum {
4750    /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4751     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
4752     * modes.
4753     */
4754    nir_lower_io_lower_64bit_to_32 = (1 << 0),
4755 
4756    /* If set, this forces all non-flat fragment shader inputs to be
4757     * interpolated as if with the "sample" qualifier.  This requires
4758     * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4759     */
4760    nir_lower_io_force_sample_interpolation = (1 << 1),
4761 } nir_lower_io_options;
4762 bool nir_lower_io(nir_shader *shader,
4763                   nir_variable_mode modes,
4764                   int (*type_size)(const struct glsl_type *, bool),
4765                   nir_lower_io_options);
4766 
4767 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
4768 
4769 bool
4770 nir_lower_vars_to_explicit_types(nir_shader *shader,
4771                                  nir_variable_mode modes,
4772                                  glsl_type_size_align_func type_info);
4773 void
4774 nir_gather_explicit_io_initializers(nir_shader *shader,
4775                                     void *dst, size_t dst_size,
4776                                     nir_variable_mode mode);
4777 
4778 bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
4779 
4780 typedef enum {
4781    /**
4782     * An address format which is a simple 32-bit global GPU address.
4783     */
4784    nir_address_format_32bit_global,
4785 
4786    /**
4787     * An address format which is a simple 64-bit global GPU address.
4788     */
4789    nir_address_format_64bit_global,
4790 
4791    /**
4792     * An address format which is a 64-bit global base address and a 32-bit
4793     * offset.
4794     *
4795     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4796     * address stored with the low bits in .x and high bits in .y, .z is
4797     * undefined, and .w is an offset.  This is intended to match
4798     * 64bit_bounded_global but without the bounds checking.
4799     */
4800    nir_address_format_64bit_global_32bit_offset,
4801 
4802    /**
4803     * An address format which is a bounds-checked 64-bit global GPU address.
4804     *
4805     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4806     * address stored with the low bits in .x and high bits in .y, .z is a
4807     * size, and .w is an offset.  When the final I/O operation is lowered, .w
4808     * is checked against .z and the operation is predicated on the result.
4809     */
4810    nir_address_format_64bit_bounded_global,
4811 
4812    /**
4813     * An address format which is comprised of a vec2 where the first
4814     * component is a buffer index and the second is an offset.
4815     */
4816    nir_address_format_32bit_index_offset,
4817 
4818    /**
4819     * An address format which is a 64-bit value, where the high 32 bits
4820     * are a buffer index, and the low 32 bits are an offset.
4821     */
4822     nir_address_format_32bit_index_offset_pack64,
4823 
4824    /**
4825     * An address format which is comprised of a vec3 where the first two
4826     * components specify the buffer and the third is an offset.
4827     */
4828    nir_address_format_vec2_index_32bit_offset,
4829 
4830    /**
4831     * An address format which represents generic pointers with a 62-bit
4832     * pointer and a 2-bit enum in the top two bits.  The top two bits have
4833     * the following meanings:
4834     *
4835     *  - 0x0: Global memory
4836     *  - 0x1: Shared memory
4837     *  - 0x2: Scratch memory
4838     *  - 0x3: Global memory
4839     *
4840     * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
4841     * addresses.  Valid global memory addresses may naturally have either 0 or
4842     * ~0 as their high bits.
4843     *
4844     * Shared and scratch pointers are represented as 32-bit offsets with the
4845     * top 32 bits only being used for the enum.  This allows us to avoid
4846     * 64-bit address calculations in a bunch of cases.
4847     */
4848    nir_address_format_62bit_generic,
4849 
4850    /**
4851     * An address format which is a simple 32-bit offset.
4852     */
4853    nir_address_format_32bit_offset,
4854 
4855    /**
4856     * An address format which is a simple 32-bit offset cast to 64-bit.
4857     */
4858     nir_address_format_32bit_offset_as_64bit,
4859 
4860    /**
4861     * An address format representing a purely logical addressing model.  In
4862     * this model, all deref chains must be complete from the dereference
4863     * operation to the variable.  Cast derefs are not allowed.  These
4864     * addresses will be 32-bit scalars but the format is immaterial because
4865     * you can always chase the chain.
4866     */
4867    nir_address_format_logical,
4868 } nir_address_format;
4869 
4870 static inline unsigned
nir_address_format_bit_size(nir_address_format addr_format)4871 nir_address_format_bit_size(nir_address_format addr_format)
4872 {
4873    switch (addr_format) {
4874    case nir_address_format_32bit_global:              return 32;
4875    case nir_address_format_64bit_global:              return 64;
4876    case nir_address_format_64bit_global_32bit_offset: return 32;
4877    case nir_address_format_64bit_bounded_global:      return 32;
4878    case nir_address_format_32bit_index_offset:        return 32;
4879    case nir_address_format_32bit_index_offset_pack64: return 64;
4880    case nir_address_format_vec2_index_32bit_offset:   return 32;
4881    case nir_address_format_62bit_generic:             return 64;
4882    case nir_address_format_32bit_offset:              return 32;
4883    case nir_address_format_32bit_offset_as_64bit:     return 64;
4884    case nir_address_format_logical:                   return 32;
4885    }
4886    unreachable("Invalid address format");
4887 }
4888 
4889 static inline unsigned
nir_address_format_num_components(nir_address_format addr_format)4890 nir_address_format_num_components(nir_address_format addr_format)
4891 {
4892    switch (addr_format) {
4893    case nir_address_format_32bit_global:              return 1;
4894    case nir_address_format_64bit_global:              return 1;
4895    case nir_address_format_64bit_global_32bit_offset: return 4;
4896    case nir_address_format_64bit_bounded_global:      return 4;
4897    case nir_address_format_32bit_index_offset:        return 2;
4898    case nir_address_format_32bit_index_offset_pack64: return 1;
4899    case nir_address_format_vec2_index_32bit_offset:   return 3;
4900    case nir_address_format_62bit_generic:             return 1;
4901    case nir_address_format_32bit_offset:              return 1;
4902    case nir_address_format_32bit_offset_as_64bit:     return 1;
4903    case nir_address_format_logical:                   return 1;
4904    }
4905    unreachable("Invalid address format");
4906 }
4907 
4908 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)4909 nir_address_format_to_glsl_type(nir_address_format addr_format)
4910 {
4911    unsigned bit_size = nir_address_format_bit_size(addr_format);
4912    assert(bit_size == 32 || bit_size == 64);
4913    return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4914                            nir_address_format_num_components(addr_format));
4915 }
4916 
4917 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4918 
4919 nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4920                                 nir_address_format addr_format);
4921 
4922 nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4923                                  nir_address_format addr_format);
4924 
4925 nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4926                                                  nir_deref_instr *deref,
4927                                                  nir_ssa_def *base_addr,
4928                                                  nir_address_format addr_format);
4929 
4930 bool nir_get_explicit_deref_align(nir_deref_instr *deref,
4931                                   bool default_to_type_align,
4932                                   uint32_t *align_mul,
4933                                   uint32_t *align_offset);
4934 
4935 void nir_lower_explicit_io_instr(struct nir_builder *b,
4936                                  nir_intrinsic_instr *io_instr,
4937                                  nir_ssa_def *addr,
4938                                  nir_address_format addr_format);
4939 
4940 bool nir_lower_explicit_io(nir_shader *shader,
4941                            nir_variable_mode modes,
4942                            nir_address_format);
4943 
4944 bool
4945 nir_lower_shader_calls(nir_shader *shader,
4946                        nir_address_format address_format,
4947                        unsigned stack_alignment,
4948                        nir_shader ***resume_shaders_out,
4949                        uint32_t *num_resume_shaders_out,
4950                        void *mem_ctx);
4951 
4952 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4953 nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4954 nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
4955 
4956 bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
4957 
4958 bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4959 bool nir_lower_regs_to_ssa(nir_shader *shader);
4960 bool nir_lower_vars_to_ssa(nir_shader *shader);
4961 
4962 bool nir_remove_dead_derefs(nir_shader *shader);
4963 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4964 
4965 typedef struct nir_remove_dead_variables_options {
4966    bool (*can_remove_var)(nir_variable *var, void *data);
4967    void *can_remove_var_data;
4968 } nir_remove_dead_variables_options;
4969 
4970 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4971                                const nir_remove_dead_variables_options *options);
4972 
4973 bool nir_lower_variable_initializers(nir_shader *shader,
4974                                      nir_variable_mode modes);
4975 bool nir_zero_initialize_shared_memory(nir_shader *shader,
4976                                        const unsigned shared_size,
4977                                        const unsigned chunk_size);
4978 
4979 bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4980 bool nir_lower_vec_to_movs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
4981                            const void *_data);
4982 void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4983                           bool alpha_to_one,
4984                           const gl_state_index16 *alpha_ref_state_tokens);
4985 bool nir_lower_alu(nir_shader *shader);
4986 
4987 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4988                     bool always_precise);
4989 
4990 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4991 bool nir_lower_bool_to_bitsize(nir_shader *shader);
4992 bool nir_lower_bool_to_float(nir_shader *shader);
4993 bool nir_lower_bool_to_int32(nir_shader *shader);
4994 bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
4995 bool nir_lower_convert_alu_types(nir_shader *shader,
4996                                  bool (*should_lower)(nir_intrinsic_instr *));
4997 bool nir_lower_constant_convert_alu_types(nir_shader *shader);
4998 bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
4999 bool nir_lower_int_to_float(nir_shader *shader);
5000 bool nir_lower_load_const_to_scalar(nir_shader *shader);
5001 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
5002 bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
5003 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
5004 void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
5005                                                   bool outputs_only);
5006 void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
5007 bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
5008 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
5009 bool nir_vectorize_tess_levels(nir_shader *shader);
5010 
5011 bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
5012 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
5013 void nir_lower_viewport_transform(nir_shader *shader);
5014 bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
5015 
5016 bool nir_lower_is_helper_invocation(nir_shader *shader);
5017 
5018 typedef struct nir_lower_subgroups_options {
5019    uint8_t subgroup_size;
5020    uint8_t ballot_bit_size;
5021    uint8_t ballot_components;
5022    bool lower_to_scalar:1;
5023    bool lower_vote_trivial:1;
5024    bool lower_vote_eq:1;
5025    bool lower_subgroup_masks:1;
5026    bool lower_shuffle:1;
5027    bool lower_shuffle_to_32bit:1;
5028    bool lower_shuffle_to_swizzle_amd:1;
5029    bool lower_quad:1;
5030    bool lower_quad_broadcast_dynamic:1;
5031    bool lower_quad_broadcast_dynamic_to_const:1;
5032    bool lower_elect:1;
5033    bool lower_read_invocation_to_cond:1;
5034 } nir_lower_subgroups_options;
5035 
5036 bool nir_lower_subgroups(nir_shader *shader,
5037                          const nir_lower_subgroups_options *options);
5038 
5039 bool nir_lower_system_values(nir_shader *shader);
5040 
5041 typedef struct nir_lower_compute_system_values_options {
5042    bool has_base_global_invocation_id:1;
5043    bool has_base_workgroup_id:1;
5044    bool shuffle_local_ids_for_quad_derivatives:1;
5045    bool lower_local_invocation_index:1;
5046 } nir_lower_compute_system_values_options;
5047 
5048 bool nir_lower_compute_system_values(nir_shader *shader,
5049                                      const nir_lower_compute_system_values_options *options);
5050 
5051 struct nir_lower_sysvals_to_varyings_options {
5052    bool frag_coord:1;
5053    bool front_face:1;
5054    bool point_coord:1;
5055 };
5056 
5057 bool
5058 nir_lower_sysvals_to_varyings(nir_shader *shader,
5059                               const struct nir_lower_sysvals_to_varyings_options *options);
5060 
5061 enum PACKED nir_lower_tex_packing {
5062    /** No packing */
5063    nir_lower_tex_packing_none = 0,
5064    /**
5065     * The sampler returns up to 2 32-bit words of half floats or 16-bit signed
5066     * or unsigned ints based on the sampler type
5067     */
5068    nir_lower_tex_packing_16,
5069    /** The sampler returns 1 32-bit word of 4x8 unorm */
5070    nir_lower_tex_packing_8,
5071 };
5072 
5073 typedef struct nir_lower_tex_options {
5074    /**
5075     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
5076     * sampler types a texture projector is lowered.
5077     */
5078    unsigned lower_txp;
5079 
5080    /**
5081     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
5082     */
5083    bool lower_txf_offset;
5084 
5085    /**
5086     * If true, lower away nir_tex_src_offset for all rect textures.
5087     */
5088    bool lower_rect_offset;
5089 
5090    /**
5091     * If true, lower rect textures to 2D, using txs to fetch the
5092     * texture dimensions and dividing the texture coords by the
5093     * texture dims to normalize.
5094     */
5095    bool lower_rect;
5096 
5097    /**
5098     * If true, convert yuv to rgb.
5099     */
5100    unsigned lower_y_uv_external;
5101    unsigned lower_y_u_v_external;
5102    unsigned lower_yx_xuxv_external;
5103    unsigned lower_xy_uxvx_external;
5104    unsigned lower_ayuv_external;
5105    unsigned lower_xyuv_external;
5106    unsigned lower_yuv_external;
5107    unsigned lower_yu_yv_external;
5108    unsigned lower_y41x_external;
5109    unsigned bt709_external;
5110    unsigned bt2020_external;
5111 
5112    /**
5113     * To emulate certain texture wrap modes, this can be used
5114     * to saturate the specified tex coord to [0.0, 1.0].  The
5115     * bits are according to sampler #, ie. if, for example:
5116     *
5117     *   (conf->saturate_s & (1 << n))
5118     *
5119     * is true, then the s coord for sampler n is saturated.
5120     *
5121     * Note that clamping must happen *after* projector lowering
5122     * so any projected texture sample instruction with a clamped
5123     * coordinate gets automatically lowered, regardless of the
5124     * 'lower_txp' setting.
5125     */
5126    unsigned saturate_s;
5127    unsigned saturate_t;
5128    unsigned saturate_r;
5129 
5130    /* Bitmask of textures that need swizzling.
5131     *
5132     * If (swizzle_result & (1 << texture_index)), then the swizzle in
5133     * swizzles[texture_index] is applied to the result of the texturing
5134     * operation.
5135     */
5136    unsigned swizzle_result;
5137 
5138    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
5139     * while 4 and 5 represent 0 and 1 respectively.
5140     *
5141     * Indexed by texture-id.
5142     */
5143    uint8_t swizzles[32][4];
5144 
5145    /* Can be used to scale sampled values in range required by the
5146     * format.
5147     *
5148     * Indexed by texture-id.
5149     */
5150    float scale_factors[32];
5151 
5152    /**
5153     * Bitmap of textures that need srgb to linear conversion.  If
5154     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
5155     * of the texture are lowered to linear.
5156     */
5157    unsigned lower_srgb;
5158 
5159    /**
5160     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
5161     */
5162    bool lower_txd_cube_map;
5163 
5164    /**
5165     * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
5166     */
5167    bool lower_txd_3d;
5168 
5169    /**
5170     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
5171     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
5172     * with lower_txd_cube_map.
5173     */
5174    bool lower_txd_shadow;
5175 
5176    /**
5177     * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
5178     * Implies lower_txd_cube_map and lower_txd_shadow.
5179     */
5180    bool lower_txd;
5181 
5182    /**
5183     * If true, lower nir_texop_txb that try to use shadow compare and min_lod
5184     * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
5185     */
5186    bool lower_txb_shadow_clamp;
5187 
5188    /**
5189     * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
5190     * with nir_texop_txl.  This includes cube maps.
5191     */
5192    bool lower_txd_shadow_clamp;
5193 
5194    /**
5195     * If true, lower nir_texop_txd on when it uses both offset and min_lod
5196     * with nir_texop_txl.  This includes cube maps.
5197     */
5198    bool lower_txd_offset_clamp;
5199 
5200    /**
5201     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
5202     * sampler is bindless.
5203     */
5204    bool lower_txd_clamp_bindless_sampler;
5205 
5206    /**
5207     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
5208     * sampler index is not statically determinable to be less than 16.
5209     */
5210    bool lower_txd_clamp_if_sampler_index_not_lt_16;
5211 
5212    /**
5213     * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
5214     * 0-lod followed by a nir_ishr.
5215     */
5216    bool lower_txs_lod;
5217 
5218    /**
5219     * If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
5220     * 2D array type followed by a nir_idiv by 6.
5221     */
5222    bool lower_txs_cube_array;
5223 
5224    /**
5225     * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
5226     * mixed-up tg4 locations.
5227     */
5228    bool lower_tg4_broadcom_swizzle;
5229 
5230    /**
5231     * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
5232     */
5233    bool lower_tg4_offsets;
5234 
5235    /**
5236     * Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
5237     * fragment_mask_fetch.
5238     */
5239    bool lower_to_fragment_fetch_amd;
5240 
5241    /**
5242     * To lower packed sampler return formats.
5243     *
5244     * Indexed by sampler-id.
5245     */
5246    enum nir_lower_tex_packing lower_tex_packing[32];
5247 } nir_lower_tex_options;
5248 
5249 /** Lowers complex texture instructions to simpler ones */
5250 bool nir_lower_tex(nir_shader *shader,
5251                    const nir_lower_tex_options *options);
5252 
5253 typedef struct nir_lower_image_options {
5254    /**
5255     * If true, lower cube size operations.
5256     */
5257    bool lower_cube_size;
5258 } nir_lower_image_options;
5259 
5260 bool nir_lower_image(nir_shader *nir,
5261                      const nir_lower_image_options *options);
5262 
5263 bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
5264 
5265 enum nir_lower_non_uniform_access_type {
5266    nir_lower_non_uniform_ubo_access     = (1 << 0),
5267    nir_lower_non_uniform_ssbo_access    = (1 << 1),
5268    nir_lower_non_uniform_texture_access = (1 << 2),
5269    nir_lower_non_uniform_image_access   = (1 << 3),
5270 };
5271 
5272 /* Given the nir_src used for the resource, return the channels which might be non-uniform. */
5273 typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
5274 
5275 typedef struct nir_lower_non_uniform_access_options {
5276    enum nir_lower_non_uniform_access_type types;
5277    nir_lower_non_uniform_access_callback callback;
5278    void *callback_data;
5279 } nir_lower_non_uniform_access_options;
5280 
5281 bool nir_lower_non_uniform_access(nir_shader *shader,
5282                                   const nir_lower_non_uniform_access_options *options);
5283 
5284 typedef struct {
5285    /* If true, a 32-bit division lowering based on NV50LegalizeSSA::handleDIV()
5286     * is used. It is the faster of the two but it is not exact in some cases
5287     * (for example, 1091317713u / 1034u gives 5209173 instead of 1055432).
5288     *
5289     * If false, a lowering based on AMDGPUTargetLowering::LowerUDIVREM() and
5290     * AMDGPUTargetLowering::LowerSDIVREM() is used. It requires more
5291     * instructions than the nv50 path and many of them are integer
5292     * multiplications, so it is probably slower. It should always return the
5293     * correct result, though.
5294     */
5295    bool imprecise_32bit_lowering;
5296 
5297    /* Whether 16-bit floating point arithmetic should be allowed in 8-bit
5298     * division lowering
5299     */
5300    bool allow_fp16;
5301 } nir_lower_idiv_options;
5302 
5303 bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
5304 
5305 typedef struct nir_input_attachment_options {
5306    bool use_fragcoord_sysval;
5307    bool use_layer_id_sysval;
5308    bool use_view_id_for_layer;
5309 } nir_input_attachment_options;
5310 
5311 bool nir_lower_input_attachments(nir_shader *shader,
5312                                  const nir_input_attachment_options *options);
5313 
5314 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
5315                        bool use_vars,
5316                        bool use_clipdist_array,
5317                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
5318 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
5319                        bool use_clipdist_array,
5320                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
5321 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
5322                        bool use_clipdist_array);
5323 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
5324 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
5325 
5326 void nir_lower_point_size_mov(nir_shader *shader,
5327                               const gl_state_index16 *pointsize_state_tokens);
5328 
5329 bool nir_lower_frexp(nir_shader *nir);
5330 
5331 void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
5332 
5333 bool nir_lower_clamp_color_outputs(nir_shader *shader);
5334 
5335 bool nir_lower_flatshade(nir_shader *shader);
5336 
5337 void nir_lower_passthrough_edgeflags(nir_shader *shader);
5338 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
5339                               const gl_state_index16 *uniform_state_tokens);
5340 
5341 typedef struct nir_lower_wpos_ytransform_options {
5342    gl_state_index16 state_tokens[STATE_LENGTH];
5343    bool fs_coord_origin_upper_left :1;
5344    bool fs_coord_origin_lower_left :1;
5345    bool fs_coord_pixel_center_integer :1;
5346    bool fs_coord_pixel_center_half_integer :1;
5347 } nir_lower_wpos_ytransform_options;
5348 
5349 bool nir_lower_wpos_ytransform(nir_shader *shader,
5350                                const nir_lower_wpos_ytransform_options *options);
5351 bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
5352 
5353 bool nir_lower_pntc_ytransform(nir_shader *shader,
5354                                const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
5355 
5356 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
5357 
5358 bool nir_lower_fb_read(nir_shader *shader);
5359 
5360 typedef struct nir_lower_drawpixels_options {
5361    gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
5362    gl_state_index16 scale_state_tokens[STATE_LENGTH];
5363    gl_state_index16 bias_state_tokens[STATE_LENGTH];
5364    unsigned drawpix_sampler;
5365    unsigned pixelmap_sampler;
5366    bool pixel_maps :1;
5367    bool scale_and_bias :1;
5368 } nir_lower_drawpixels_options;
5369 
5370 void nir_lower_drawpixels(nir_shader *shader,
5371                           const nir_lower_drawpixels_options *options);
5372 
5373 typedef struct nir_lower_bitmap_options {
5374    unsigned sampler;
5375    bool swizzle_xxxx;
5376 } nir_lower_bitmap_options;
5377 
5378 void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
5379 
5380 bool nir_lower_atomics_to_ssbo(nir_shader *shader);
5381 
5382 typedef enum  {
5383    nir_lower_int_source_mods = 1 << 0,
5384    nir_lower_float_source_mods = 1 << 1,
5385    nir_lower_64bit_source_mods = 1 << 2,
5386    nir_lower_triop_abs = 1 << 3,
5387    nir_lower_all_source_mods = (1 << 4) - 1
5388 } nir_lower_to_source_mods_flags;
5389 
5390 
5391 bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
5392 
5393 typedef enum {
5394    nir_lower_gs_intrinsics_per_stream = 1 << 0,
5395    nir_lower_gs_intrinsics_count_primitives = 1 << 1,
5396    nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
5397    nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
5398 } nir_lower_gs_intrinsics_flags;
5399 
5400 bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
5401 
5402 typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
5403 
5404 bool nir_lower_bit_size(nir_shader *shader,
5405                         nir_lower_bit_size_callback callback,
5406                         void *callback_data);
5407 bool nir_lower_64bit_phis(nir_shader *shader);
5408 
5409 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
5410 bool nir_lower_int64(nir_shader *shader);
5411 
5412 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
5413 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
5414                        nir_lower_doubles_options options);
5415 bool nir_lower_pack(nir_shader *shader);
5416 
5417 bool nir_recompute_io_bases(nir_function_impl *impl, nir_variable_mode modes);
5418 bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
5419                           uint64_t varying_mask, bool use_16bit_slots);
5420 bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
5421                           nir_alu_type types);
5422 bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
5423 bool nir_fold_16bit_sampler_conversions(nir_shader *nir,
5424                                         unsigned tex_src_types);
5425 
5426 typedef struct {
5427    bool legalize_type;         /* whether this src should be legalized */
5428    uint8_t bit_size;           /* bit_size to enforce */
5429    nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
5430 } nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
5431 
5432 bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
5433                                      nir_tex_src_type_constraints constraints);
5434 
5435 bool nir_lower_point_size(nir_shader *shader, float min, float max);
5436 
5437 void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
5438                                 bool point_coord_is_sysval, bool yinvert);
5439 
5440 typedef enum {
5441    nir_lower_interpolation_at_sample = (1 << 1),
5442    nir_lower_interpolation_at_offset = (1 << 2),
5443    nir_lower_interpolation_centroid  = (1 << 3),
5444    nir_lower_interpolation_pixel     = (1 << 4),
5445    nir_lower_interpolation_sample    = (1 << 5),
5446 } nir_lower_interpolation_options;
5447 
5448 bool nir_lower_interpolation(nir_shader *shader,
5449                              nir_lower_interpolation_options options);
5450 
5451 bool nir_lower_discard_or_demote(nir_shader *shader,
5452                                  bool force_correct_quad_ops_after_discard);
5453 
5454 bool nir_lower_memory_model(nir_shader *shader);
5455 
5456 bool nir_lower_goto_ifs(nir_shader *shader);
5457 
5458 bool nir_shader_uses_view_index(nir_shader *shader);
5459 bool nir_can_lower_multiview(nir_shader *shader);
5460 bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
5461 
5462 
5463 bool nir_lower_fp16_casts(nir_shader *shader);
5464 bool nir_normalize_cubemap_coords(nir_shader *shader);
5465 
5466 bool nir_shader_supports_implicit_lod(nir_shader *shader);
5467 
5468 void nir_live_ssa_defs_impl(nir_function_impl *impl);
5469 
5470 const BITSET_WORD *nir_get_live_ssa_defs(nir_cursor cursor, void *mem_ctx);
5471 
5472 void nir_loop_analyze_impl(nir_function_impl *impl,
5473                            nir_variable_mode indirect_mask);
5474 
5475 bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
5476 
5477 bool nir_repair_ssa_impl(nir_function_impl *impl);
5478 bool nir_repair_ssa(nir_shader *shader);
5479 
5480 void nir_convert_loop_to_lcssa(nir_loop *loop);
5481 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
5482 void nir_divergence_analysis(nir_shader *shader);
5483 bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
5484 
5485 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
5486  * registers.  If false, convert all values (even those not involved in a phi
5487  * node) to registers.
5488  */
5489 bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
5490 
5491 bool nir_lower_phis_to_regs_block(nir_block *block);
5492 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
5493 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
5494 
5495 bool nir_lower_samplers(nir_shader *shader);
5496 bool nir_lower_ssbo(nir_shader *shader);
5497 
5498 typedef struct nir_lower_printf_options {
5499    bool treat_doubles_as_floats : 1;
5500    unsigned max_buffer_size;
5501 } nir_lower_printf_options;
5502 
5503 bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
5504 
5505 /* This is here for unit tests. */
5506 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
5507 
5508 bool nir_opt_comparison_pre(nir_shader *shader);
5509 
5510 typedef struct nir_opt_access_options {
5511    bool is_vulkan;
5512    bool infer_non_readable;
5513 } nir_opt_access_options;
5514 
5515 bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
5516 bool nir_opt_algebraic(nir_shader *shader);
5517 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
5518 bool nir_opt_algebraic_late(nir_shader *shader);
5519 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
5520 bool nir_opt_constant_folding(nir_shader *shader);
5521 
5522 /* Try to combine a and b into a.  Return true if combination was possible,
5523  * which will result in b being removed by the pass.  Return false if
5524  * combination wasn't possible.
5525  */
5526 typedef bool (*nir_combine_memory_barrier_cb)(
5527    nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
5528 
5529 bool nir_opt_combine_memory_barriers(nir_shader *shader,
5530                                      nir_combine_memory_barrier_cb combine_cb,
5531                                      void *data);
5532 
5533 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
5534 
5535 bool nir_copy_prop_impl(nir_function_impl *impl);
5536 bool nir_copy_prop(nir_shader *shader);
5537 
5538 bool nir_opt_copy_prop_vars(nir_shader *shader);
5539 
5540 bool nir_opt_cse(nir_shader *shader);
5541 
5542 bool nir_opt_dce(nir_shader *shader);
5543 
5544 bool nir_opt_dead_cf(nir_shader *shader);
5545 
5546 bool nir_opt_dead_write_vars(nir_shader *shader);
5547 
5548 bool nir_opt_deref_impl(nir_function_impl *impl);
5549 bool nir_opt_deref(nir_shader *shader);
5550 
5551 bool nir_opt_find_array_copies(nir_shader *shader);
5552 
5553 bool nir_opt_fragdepth(nir_shader *shader);
5554 
5555 bool nir_opt_gcm(nir_shader *shader, bool value_number);
5556 
5557 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
5558 
5559 bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
5560 
5561 bool nir_opt_intrinsics(nir_shader *shader);
5562 
5563 bool nir_opt_large_constants(nir_shader *shader,
5564                              glsl_type_size_align_func size_align,
5565                              unsigned threshold);
5566 
5567 bool nir_opt_loop_unroll(nir_shader *shader);
5568 
5569 typedef enum {
5570     nir_move_const_undef = (1 << 0),
5571     nir_move_load_ubo    = (1 << 1),
5572     nir_move_load_input  = (1 << 2),
5573     nir_move_comparisons = (1 << 3),
5574     nir_move_copies      = (1 << 4),
5575     nir_move_load_ssbo   = (1 << 5),
5576 } nir_move_options;
5577 
5578 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
5579 
5580 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
5581 
5582 bool nir_opt_move(nir_shader *shader, nir_move_options options);
5583 
5584 bool nir_opt_offsets(nir_shader *shader);
5585 
5586 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
5587                              bool indirect_load_ok, bool expensive_alu_ok);
5588 
5589 bool nir_opt_rematerialize_compares(nir_shader *shader);
5590 
5591 bool nir_opt_remove_phis(nir_shader *shader);
5592 bool nir_opt_remove_phis_block(nir_block *block);
5593 
5594 bool nir_opt_phi_precision(nir_shader *shader);
5595 
5596 bool nir_opt_shrink_vectors(nir_shader *shader, bool shrink_image_store);
5597 
5598 bool nir_opt_trivial_continues(nir_shader *shader);
5599 
5600 bool nir_opt_undef(nir_shader *shader);
5601 
5602 bool nir_lower_undef_to_zero(nir_shader *shader);
5603 
5604 bool nir_opt_uniform_atomics(nir_shader *shader);
5605 
5606 typedef bool (*nir_opt_vectorize_cb)(const nir_instr *instr, void *data);
5607 
5608 bool nir_opt_vectorize(nir_shader *shader, nir_opt_vectorize_cb filter,
5609                        void *data);
5610 
5611 bool nir_opt_conditional_discard(nir_shader *shader);
5612 bool nir_opt_move_discards_to_top(nir_shader *shader);
5613 
5614 typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5615                                               unsigned align_offset,
5616                                               unsigned bit_size,
5617                                               unsigned num_components,
5618                                               nir_intrinsic_instr *low, nir_intrinsic_instr *high,
5619                                               void *data);
5620 
5621 typedef struct {
5622    nir_should_vectorize_mem_func callback;
5623    nir_variable_mode modes;
5624    nir_variable_mode robust_modes;
5625    void *cb_data;
5626 } nir_load_store_vectorize_options;
5627 
5628 bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
5629 
5630 void nir_sweep(nir_shader *shader);
5631 
5632 void nir_remap_dual_slot_attributes(nir_shader *shader,
5633                                     uint64_t *dual_slot_inputs);
5634 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
5635 
5636 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
5637 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
5638 
5639 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)5640 nir_variable_is_in_ubo(const nir_variable *var)
5641 {
5642    return (var->data.mode == nir_var_mem_ubo &&
5643            var->interface_type != NULL);
5644 }
5645 
5646 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)5647 nir_variable_is_in_ssbo(const nir_variable *var)
5648 {
5649    return (var->data.mode == nir_var_mem_ssbo &&
5650            var->interface_type != NULL);
5651 }
5652 
5653 static inline bool
nir_variable_is_in_block(const nir_variable * var)5654 nir_variable_is_in_block(const nir_variable *var)
5655 {
5656    return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
5657 }
5658 
5659 typedef struct nir_unsigned_upper_bound_config {
5660    unsigned min_subgroup_size;
5661    unsigned max_subgroup_size;
5662    unsigned max_workgroup_invocations;
5663    unsigned max_workgroup_count[3];
5664    unsigned max_workgroup_size[3];
5665 
5666    uint32_t vertex_attrib_max[32];
5667 } nir_unsigned_upper_bound_config;
5668 
5669 uint32_t
5670 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
5671                          nir_ssa_scalar scalar,
5672                          const nir_unsigned_upper_bound_config *config);
5673 
5674 bool
5675 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
5676                             nir_ssa_scalar ssa, unsigned const_val,
5677                             const nir_unsigned_upper_bound_config *config);
5678 
5679 #include "nir_inline_helpers.h"
5680 
5681 #ifdef __cplusplus
5682 } /* extern "C" */
5683 #endif
5684 
5685 #endif /* NIR_H */
5686