1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41 #include "lp_context.h"
42
43 #include <inttypes.h>
44
45 #define NUM_CHANNELS 4
46
47 #if defined(PIPE_ARCH_SSE)
48 #include <emmintrin.h>
49 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
50 #undef bool
51 #include <altivec.h>
52 #define bool _Bool
53 #include "util/u_pwr8.h"
54 #endif
55
56 #if !defined(PIPE_ARCH_SSE)
57
58 static inline int
subpixel_snap(float a)59 subpixel_snap(float a)
60 {
61 return util_iround(FIXED_ONE * a);
62 }
63
64 #endif
65
66 /* Position and area in fixed point coordinates */
67 struct fixed_position {
68 int32_t x[4];
69 int32_t y[4];
70 int32_t dx01;
71 int32_t dy01;
72 int32_t dx20;
73 int32_t dy20;
74 int64_t area;
75 };
76
77
78 /**
79 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
80 * immediately after it.
81 * The memory is allocated from the per-scene pool, not per-tile.
82 * \param tri_size returns number of bytes allocated
83 * \param num_inputs number of fragment shader inputs
84 * \return pointer to triangle space
85 */
86 struct lp_rast_triangle *
lp_setup_alloc_triangle(struct lp_scene * scene,unsigned nr_inputs,unsigned nr_planes,unsigned * tri_size)87 lp_setup_alloc_triangle(struct lp_scene *scene,
88 unsigned nr_inputs,
89 unsigned nr_planes,
90 unsigned *tri_size)
91 {
92 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
93 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
94 struct lp_rast_triangle *tri;
95
96 STATIC_ASSERT(sizeof(struct lp_rast_plane) % 8 == 0);
97
98 *tri_size = (sizeof(struct lp_rast_triangle) +
99 3 * input_array_sz +
100 plane_sz);
101
102 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
103 if (!tri)
104 return NULL;
105
106 tri->inputs.stride = input_array_sz;
107
108 {
109 ASSERTED char *a = (char *)tri;
110 ASSERTED char *b = (char *)&GET_PLANES(tri)[nr_planes];
111
112 assert(b - a == *tri_size);
113 }
114
115 return tri;
116 }
117
118 void
lp_setup_print_vertex(struct lp_setup_context * setup,const char * name,const float (* v)[4])119 lp_setup_print_vertex(struct lp_setup_context *setup,
120 const char *name,
121 const float (*v)[4])
122 {
123 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
124 int i, j;
125
126 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
127 name,
128 v[0][0], v[0][1], v[0][2], v[0][3]);
129
130 for (i = 0; i < key->num_inputs; i++) {
131 const float *in = v[key->inputs[i].src_index];
132
133 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
134 i,
135 name, key->inputs[i].src_index,
136 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
137 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
138 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
139 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
140
141 for (j = 0; j < 4; j++)
142 if (key->inputs[i].usage_mask & (1<<j))
143 debug_printf("%.5f ", in[j]);
144
145 debug_printf("\n");
146 }
147 }
148
149
150 /**
151 * Print triangle vertex attribs (for debug).
152 */
153 void
lp_setup_print_triangle(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])154 lp_setup_print_triangle(struct lp_setup_context *setup,
155 const float (*v0)[4],
156 const float (*v1)[4],
157 const float (*v2)[4])
158 {
159 debug_printf("triangle\n");
160
161 {
162 const float ex = v0[0][0] - v2[0][0];
163 const float ey = v0[0][1] - v2[0][1];
164 const float fx = v1[0][0] - v2[0][0];
165 const float fy = v1[0][1] - v2[0][1];
166
167 /* det = cross(e,f).z */
168 const float det = ex * fy - ey * fx;
169 if (det < 0.0f)
170 debug_printf(" - ccw\n");
171 else if (det > 0.0f)
172 debug_printf(" - cw\n");
173 else
174 debug_printf(" - zero area\n");
175 }
176
177 lp_setup_print_vertex(setup, "v0", v0);
178 lp_setup_print_vertex(setup, "v1", v1);
179 lp_setup_print_vertex(setup, "v2", v2);
180 }
181
182
183 #define MAX_PLANES 8
184 static unsigned
185 lp_rast_tri_tab[MAX_PLANES+1] = {
186 0, /* should be impossible */
187 LP_RAST_OP_TRIANGLE_1,
188 LP_RAST_OP_TRIANGLE_2,
189 LP_RAST_OP_TRIANGLE_3,
190 LP_RAST_OP_TRIANGLE_4,
191 LP_RAST_OP_TRIANGLE_5,
192 LP_RAST_OP_TRIANGLE_6,
193 LP_RAST_OP_TRIANGLE_7,
194 LP_RAST_OP_TRIANGLE_8
195 };
196
197 static unsigned
198 lp_rast_32_tri_tab[MAX_PLANES+1] = {
199 0, /* should be impossible */
200 LP_RAST_OP_TRIANGLE_32_1,
201 LP_RAST_OP_TRIANGLE_32_2,
202 LP_RAST_OP_TRIANGLE_32_3,
203 LP_RAST_OP_TRIANGLE_32_4,
204 LP_RAST_OP_TRIANGLE_32_5,
205 LP_RAST_OP_TRIANGLE_32_6,
206 LP_RAST_OP_TRIANGLE_32_7,
207 LP_RAST_OP_TRIANGLE_32_8
208 };
209
210
211 static unsigned
212 lp_rast_ms_tri_tab[MAX_PLANES+1] = {
213 0, /* should be impossible */
214 LP_RAST_OP_MS_TRIANGLE_1,
215 LP_RAST_OP_MS_TRIANGLE_2,
216 LP_RAST_OP_MS_TRIANGLE_3,
217 LP_RAST_OP_MS_TRIANGLE_4,
218 LP_RAST_OP_MS_TRIANGLE_5,
219 LP_RAST_OP_MS_TRIANGLE_6,
220 LP_RAST_OP_MS_TRIANGLE_7,
221 LP_RAST_OP_MS_TRIANGLE_8
222 };
223
224 /*
225 * Detect big primitives drawn with an alpha == 1.0.
226 *
227 * This is used when simulating anti-aliasing primitives in shaders, e.g.,
228 * when drawing the windows client area in Aero's flip-3d effect.
229 */
230 static boolean
check_opaque(struct lp_setup_context * setup,const float (* v1)[4],const float (* v2)[4],const float (* v3)[4])231 check_opaque(struct lp_setup_context *setup,
232 const float (*v1)[4],
233 const float (*v2)[4],
234 const float (*v3)[4])
235 {
236 const struct lp_fragment_shader_variant *variant =
237 setup->fs.current.variant;
238 const struct lp_tgsi_channel_info *alpha_info = &variant->shader->info.cbuf[0][3];
239
240 if (variant->opaque)
241 return TRUE;
242
243 if (!variant->potentially_opaque)
244 return FALSE;
245
246 if (alpha_info->file == TGSI_FILE_CONSTANT) {
247 const float *constants = setup->fs.current.jit_context.constants[0];
248 float alpha = constants[alpha_info->u.index*4 +
249 alpha_info->swizzle];
250 return alpha == 1.0f;
251 }
252
253 if (alpha_info->file == TGSI_FILE_INPUT) {
254 return (v1[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
255 v2[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f &&
256 v3[1 + alpha_info->u.index][alpha_info->swizzle] == 1.0f);
257 }
258
259 return FALSE;
260 }
261
262
263
264 /**
265 * Do basic setup for triangle rasterization and determine which
266 * framebuffer tiles are touched. Put the triangle in the scene's
267 * bins for the tiles which we overlap.
268 */
269 static boolean
do_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean frontfacing)270 do_triangle_ccw(struct lp_setup_context *setup,
271 struct fixed_position* position,
272 const float (*v0)[4],
273 const float (*v1)[4],
274 const float (*v2)[4],
275 boolean frontfacing )
276 {
277 struct lp_scene *scene = setup->scene;
278 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
279 struct lp_rast_triangle *tri;
280 struct lp_rast_plane *plane;
281 const struct u_rect *scissor = NULL;
282 struct u_rect bbox, bboxpos;
283 boolean s_planes[4];
284 unsigned tri_bytes;
285 int nr_planes = 3;
286 unsigned viewport_index = 0;
287 unsigned layer = 0;
288 const float (*pv)[4];
289
290 /* Area should always be positive here */
291 assert(position->area > 0);
292
293 if (0)
294 lp_setup_print_triangle(setup, v0, v1, v2);
295
296 if (setup->flatshade_first) {
297 pv = v0;
298 }
299 else {
300 pv = v2;
301 }
302 if (setup->viewport_index_slot > 0) {
303 unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
304 viewport_index = lp_clamp_viewport_idx(*udata);
305 }
306 if (setup->layer_slot > 0) {
307 layer = *(unsigned*)pv[setup->layer_slot];
308 layer = MIN2(layer, scene->fb_max_layer);
309 }
310
311 /* Bounding rectangle (in pixels) */
312 {
313 /* Yes this is necessary to accurately calculate bounding boxes
314 * with the two fill-conventions we support. GL (normally) ends
315 * up needing a bottom-left fill convention, which requires
316 * slightly different rounding.
317 */
318 int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
319
320 /* Inclusive x0, exclusive x1 */
321 bbox.x0 = MIN3(position->x[0], position->x[1], position->x[2]) >> FIXED_ORDER;
322 bbox.x1 = (MAX3(position->x[0], position->x[1], position->x[2]) - 1) >> FIXED_ORDER;
323
324 /* Inclusive / exclusive depending upon adj (bottom-left or top-right) */
325 bbox.y0 = (MIN3(position->y[0], position->y[1], position->y[2]) + adj) >> FIXED_ORDER;
326 bbox.y1 = (MAX3(position->y[0], position->y[1], position->y[2]) - 1 + adj) >> FIXED_ORDER;
327 }
328
329 if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
330 if (0) debug_printf("no intersection\n");
331 LP_COUNT(nr_culled_tris);
332 return TRUE;
333 }
334
335 bboxpos = bbox;
336
337 /* Can safely discard negative regions, but need to keep hold of
338 * information about when the triangle extends past screen
339 * boundaries. See trimmed_box in lp_setup_bin_triangle().
340 */
341 bboxpos.x0 = MAX2(bboxpos.x0, 0);
342 bboxpos.y0 = MAX2(bboxpos.y0, 0);
343
344 nr_planes = 3;
345 /*
346 * Determine how many scissor planes we need, that is drop scissor
347 * edges if the bounding box of the tri is fully inside that edge.
348 */
349 scissor = &setup->draw_regions[viewport_index];
350 scissor_planes_needed(s_planes, &bboxpos, scissor);
351 nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
352
353 tri = lp_setup_alloc_triangle(scene,
354 key->num_inputs,
355 nr_planes,
356 &tri_bytes);
357 if (!tri)
358 return FALSE;
359
360 #ifdef DEBUG
361 tri->v[0][0] = v0[0][0];
362 tri->v[1][0] = v1[0][0];
363 tri->v[2][0] = v2[0][0];
364 tri->v[0][1] = v0[0][1];
365 tri->v[1][1] = v1[0][1];
366 tri->v[2][1] = v2[0][1];
367 #endif
368
369 LP_COUNT(nr_tris);
370
371 /*
372 * Rotate the tri such that v0 is closest to the fb origin.
373 * This can give more accurate a0 value (which is at fb origin)
374 * when calculating the interpolants.
375 * It can't work when there's flat shading for instance in one
376 * of the attributes, hence restrict this to just a single attribute
377 * which is what causes some test failures.
378 * (This does not address the problem that interpolation may be
379 * inaccurate if gradients are relatively steep in small tris far
380 * away from the origin. It does however fix the (silly) wgf11rasterizer
381 * Interpolator test.)
382 * XXX This causes problems with mipgen -EmuTexture for not yet really
383 * understood reasons (if the vertices would be submitted in a different
384 * order, we'd also generate the same "wrong" results here without
385 * rotation). In any case, that we generate different values if a prim
386 * has the vertices rotated but is otherwise the same (which is due to
387 * numerical issues) is not a nice property. An additional problem by
388 * swapping the vertices here (which is possibly worse) is that
389 * the same primitive coming in twice might generate different values
390 * (in particular for z) due to the swapping potentially not happening
391 * both times, if the attributes to be interpolated are different. For now,
392 * just restrict this to not get used with dx9 (by checking pixel offset),
393 * could also restrict it further to only trigger with wgf11Interpolator
394 * Rasterizer test (the only place which needs it, with always the same
395 * vertices even).
396 */
397 if ((LP_DEBUG & DEBUG_ACCURATE_A0) &&
398 setup->pixel_offset == 0.5f &&
399 key->num_inputs == 1 &&
400 (key->inputs[0].interp == LP_INTERP_LINEAR ||
401 key->inputs[0].interp == LP_INTERP_PERSPECTIVE)) {
402 float dist0 = v0[0][0] * v0[0][0] + v0[0][1] * v0[0][1];
403 float dist1 = v1[0][0] * v1[0][0] + v1[0][1] * v1[0][1];
404 float dist2 = v2[0][0] * v2[0][0] + v2[0][1] * v2[0][1];
405 if (dist0 > dist1 && dist1 < dist2) {
406 const float (*vt)[4];
407 int x, y;
408 vt = v0;
409 v0 = v1;
410 v1 = v2;
411 v2 = vt;
412 x = position->x[0];
413 y = position->y[0];
414 position->x[0] = position->x[1];
415 position->y[0] = position->y[1];
416 position->x[1] = position->x[2];
417 position->y[1] = position->y[2];
418 position->x[2] = x;
419 position->y[2] = y;
420
421 position->dx20 = position->dx01;
422 position->dy20 = position->dy01;
423 position->dx01 = position->x[0] - position->x[1];
424 position->dy01 = position->y[0] - position->y[1];
425 }
426 else if (dist0 > dist2) {
427 const float (*vt)[4];
428 int x, y;
429 vt = v0;
430 v0 = v2;
431 v2 = v1;
432 v1 = vt;
433 x = position->x[0];
434 y = position->y[0];
435 position->x[0] = position->x[2];
436 position->y[0] = position->y[2];
437 position->x[2] = position->x[1];
438 position->y[2] = position->y[1];
439 position->x[1] = x;
440 position->y[1] = y;
441
442 position->dx01 = position->dx20;
443 position->dy01 = position->dy20;
444 position->dx20 = position->x[2] - position->x[0];
445 position->dy20 = position->y[2] - position->y[0];
446 }
447 }
448
449 /* Setup parameter interpolants:
450 */
451 setup->setup.variant->jit_function(v0, v1, v2,
452 frontfacing,
453 GET_A0(&tri->inputs),
454 GET_DADX(&tri->inputs),
455 GET_DADY(&tri->inputs),
456 &setup->setup.variant->key);
457
458 tri->inputs.frontfacing = frontfacing;
459 tri->inputs.disable = FALSE;
460 tri->inputs.is_blit = FALSE;
461 tri->inputs.opaque = check_opaque(setup, v0, v1, v2);
462 tri->inputs.layer = layer;
463 tri->inputs.viewport_index = viewport_index;
464 tri->inputs.view_index = setup->view_index;
465
466 if (0)
467 lp_dump_setup_coef(&setup->setup.variant->key,
468 (const float (*)[4])GET_A0(&tri->inputs),
469 (const float (*)[4])GET_DADX(&tri->inputs),
470 (const float (*)[4])GET_DADY(&tri->inputs));
471
472 plane = GET_PLANES(tri);
473
474 #if defined(PIPE_ARCH_SSE)
475 if (1) {
476 __m128i vertx, verty;
477 __m128i shufx, shufy;
478 __m128i dcdx, dcdy;
479 __m128i cdx02, cdx13, cdy02, cdy13, c02, c13;
480 __m128i c01, c23, unused;
481 __m128i dcdx_neg_mask;
482 __m128i dcdy_neg_mask;
483 __m128i dcdx_zero_mask;
484 __m128i top_left_flag, c_dec;
485 __m128i eo, p0, p1, p2;
486 __m128i zero = _mm_setzero_si128();
487
488 vertx = _mm_load_si128((__m128i *)position->x); /* vertex x coords */
489 verty = _mm_load_si128((__m128i *)position->y); /* vertex y coords */
490
491 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
492 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
493
494 dcdx = _mm_sub_epi32(verty, shufy);
495 dcdy = _mm_sub_epi32(vertx, shufx);
496
497 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
498 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
499 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
500
501 top_left_flag = _mm_set1_epi32((setup->bottom_edge_rule == 0) ? ~0 : 0);
502
503 c_dec = _mm_or_si128(dcdx_neg_mask,
504 _mm_and_si128(dcdx_zero_mask,
505 _mm_xor_si128(dcdy_neg_mask,
506 top_left_flag)));
507
508 /*
509 * 64 bit arithmetic.
510 * Note we need _signed_ mul (_mm_mul_epi32) which we emulate.
511 */
512 cdx02 = mm_mullohi_epi32(dcdx, vertx, &cdx13);
513 cdy02 = mm_mullohi_epi32(dcdy, verty, &cdy13);
514 c02 = _mm_sub_epi64(cdx02, cdy02);
515 c13 = _mm_sub_epi64(cdx13, cdy13);
516 c02 = _mm_sub_epi64(c02, _mm_shuffle_epi32(c_dec,
517 _MM_SHUFFLE(2,2,0,0)));
518 c13 = _mm_sub_epi64(c13, _mm_shuffle_epi32(c_dec,
519 _MM_SHUFFLE(3,3,1,1)));
520
521 /*
522 * Useful for very small fbs/tris (or fewer subpixel bits) only:
523 * c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
524 * mm_mullo_epi32(dcdy, verty));
525 *
526 * c = _mm_sub_epi32(c, c_dec);
527 */
528
529 /* Scale up to match c:
530 */
531 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
532 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
533
534 /*
535 * Calculate trivial reject values:
536 * Note eo cannot overflow even if dcdx/dcdy would already have
537 * 31 bits (which they shouldn't have). This is because eo
538 * is never negative (albeit if we rely on that need to be careful...)
539 */
540 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
541 _mm_and_si128(dcdx_neg_mask, dcdx));
542
543 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
544
545 /*
546 * Pointless transpose which gets undone immediately in
547 * rasterization.
548 * It is actually difficult to do away with it - would essentially
549 * need GET_PLANES_DX, GET_PLANES_DY etc., but the calculations
550 * for this then would need to depend on the number of planes.
551 * The transpose is quite special here due to c being 64bit...
552 * The store has to be unaligned (unless we'd make the plane size
553 * a multiple of 128), and of course storing eo separately...
554 */
555 c01 = _mm_unpacklo_epi64(c02, c13);
556 c23 = _mm_unpackhi_epi64(c02, c13);
557 transpose2_64_2_32(&c01, &c23, &dcdx, &dcdy,
558 &p0, &p1, &p2, &unused);
559 _mm_storeu_si128((__m128i *)&plane[0], p0);
560 plane[0].eo = (uint32_t)_mm_cvtsi128_si32(eo);
561 _mm_storeu_si128((__m128i *)&plane[1], p1);
562 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(3,2,0,1));
563 plane[1].eo = (uint32_t)_mm_cvtsi128_si32(eo);
564 _mm_storeu_si128((__m128i *)&plane[2], p2);
565 eo = _mm_shuffle_epi32(eo, _MM_SHUFFLE(0,0,0,2));
566 plane[2].eo = (uint32_t)_mm_cvtsi128_si32(eo);
567 } else
568 #elif defined(_ARCH_PWR8) && UTIL_ARCH_LITTLE_ENDIAN
569 /*
570 * XXX this code is effectively disabled for all practical purposes,
571 * as the allowed fb size is tiny if FIXED_ORDER is 8.
572 */
573 if (setup->fb.width <= MAX_FIXED_LENGTH32 &&
574 setup->fb.height <= MAX_FIXED_LENGTH32 &&
575 (bbox.x1 - bbox.x0) <= MAX_FIXED_LENGTH32 &&
576 (bbox.y1 - bbox.y0) <= MAX_FIXED_LENGTH32) {
577 unsigned int bottom_edge;
578 __m128i vertx, verty;
579 __m128i shufx, shufy;
580 __m128i dcdx, dcdy, c;
581 __m128i unused;
582 __m128i dcdx_neg_mask;
583 __m128i dcdy_neg_mask;
584 __m128i dcdx_zero_mask;
585 __m128i top_left_flag;
586 __m128i c_inc_mask, c_inc;
587 __m128i eo, p0, p1, p2;
588 __m128i_union vshuf_mask;
589 __m128i zero = vec_splats((unsigned char) 0);
590 PIPE_ALIGN_VAR(16) int32_t temp_vec[4];
591
592 #if UTIL_ARCH_LITTLE_ENDIAN
593 vshuf_mask.i[0] = 0x07060504;
594 vshuf_mask.i[1] = 0x0B0A0908;
595 vshuf_mask.i[2] = 0x03020100;
596 vshuf_mask.i[3] = 0x0F0E0D0C;
597 #else
598 vshuf_mask.i[0] = 0x00010203;
599 vshuf_mask.i[1] = 0x0C0D0E0F;
600 vshuf_mask.i[2] = 0x04050607;
601 vshuf_mask.i[3] = 0x08090A0B;
602 #endif
603
604 /* vertex x coords */
605 vertx = vec_load_si128((const uint32_t *) position->x);
606 /* vertex y coords */
607 verty = vec_load_si128((const uint32_t *) position->y);
608
609 shufx = vec_perm (vertx, vertx, vshuf_mask.m128i);
610 shufy = vec_perm (verty, verty, vshuf_mask.m128i);
611
612 dcdx = vec_sub_epi32(verty, shufy);
613 dcdy = vec_sub_epi32(vertx, shufx);
614
615 dcdx_neg_mask = vec_srai_epi32(dcdx, 31);
616 dcdx_zero_mask = vec_cmpeq_epi32(dcdx, zero);
617 dcdy_neg_mask = vec_srai_epi32(dcdy, 31);
618
619 bottom_edge = (setup->bottom_edge_rule == 0) ? ~0 : 0;
620 top_left_flag = (__m128i) vec_splats(bottom_edge);
621
622 c_inc_mask = vec_or(dcdx_neg_mask,
623 vec_and(dcdx_zero_mask,
624 vec_xor(dcdy_neg_mask,
625 top_left_flag)));
626
627 c_inc = vec_srli_epi32(c_inc_mask, 31);
628
629 c = vec_sub_epi32(vec_mullo_epi32(dcdx, vertx),
630 vec_mullo_epi32(dcdy, verty));
631
632 c = vec_add_epi32(c, c_inc);
633
634 /* Scale up to match c:
635 */
636 dcdx = vec_slli_epi32(dcdx, FIXED_ORDER);
637 dcdy = vec_slli_epi32(dcdy, FIXED_ORDER);
638
639 /* Calculate trivial reject values:
640 */
641 eo = vec_sub_epi32(vec_andnot_si128(dcdy_neg_mask, dcdy),
642 vec_and(dcdx_neg_mask, dcdx));
643
644 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
645
646 /* Pointless transpose which gets undone immediately in
647 * rasterization:
648 */
649 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
650 &p0, &p1, &p2, &unused);
651
652 #define STORE_PLANE(plane, vec) do { \
653 vec_store_si128((uint32_t *)&temp_vec, vec); \
654 plane.c = (int64_t)temp_vec[0]; \
655 plane.dcdx = temp_vec[1]; \
656 plane.dcdy = temp_vec[2]; \
657 plane.eo = temp_vec[3]; \
658 } while(0)
659
660 STORE_PLANE(plane[0], p0);
661 STORE_PLANE(plane[1], p1);
662 STORE_PLANE(plane[2], p2);
663 #undef STORE_PLANE
664 } else
665 #endif
666 {
667 int i;
668 plane[0].dcdy = position->dx01;
669 plane[1].dcdy = position->x[1] - position->x[2];
670 plane[2].dcdy = position->dx20;
671 plane[0].dcdx = position->dy01;
672 plane[1].dcdx = position->y[1] - position->y[2];
673 plane[2].dcdx = position->dy20;
674
675 for (i = 0; i < 3; i++) {
676 /* half-edge constants, will be iterated over the whole render
677 * target.
678 */
679 plane[i].c = IMUL64(plane[i].dcdx, position->x[i]) -
680 IMUL64(plane[i].dcdy, position->y[i]);
681
682 /* correct for top-left vs. bottom-left fill convention.
683 */
684 if (plane[i].dcdx < 0) {
685 /* both fill conventions want this - adjust for left edges */
686 plane[i].c++;
687 }
688 else if (plane[i].dcdx == 0) {
689 if (setup->bottom_edge_rule == 0){
690 /* correct for top-left fill convention:
691 */
692 if (plane[i].dcdy > 0) plane[i].c++;
693 }
694 else {
695 /* correct for bottom-left fill convention:
696 */
697 if (plane[i].dcdy < 0) plane[i].c++;
698 }
699 }
700
701 /* Scale up to match c:
702 */
703 assert((plane[i].dcdx << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdx);
704 assert((plane[i].dcdy << FIXED_ORDER) >> FIXED_ORDER == plane[i].dcdy);
705 plane[i].dcdx <<= FIXED_ORDER;
706 plane[i].dcdy <<= FIXED_ORDER;
707
708 /* find trivial reject offsets for each edge for a single-pixel
709 * sized block. These will be scaled up at each recursive level to
710 * match the active blocksize. Scaling in this way works best if
711 * the blocks are square.
712 */
713 plane[i].eo = 0;
714 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
715 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
716 }
717 }
718
719 if (0) {
720 debug_printf("p0: %"PRIx64"/%08x/%08x/%08x\n",
721 plane[0].c,
722 plane[0].dcdx,
723 plane[0].dcdy,
724 plane[0].eo);
725
726 debug_printf("p1: %"PRIx64"/%08x/%08x/%08x\n",
727 plane[1].c,
728 plane[1].dcdx,
729 plane[1].dcdy,
730 plane[1].eo);
731
732 debug_printf("p2: %"PRIx64"/%08x/%08x/%08x\n",
733 plane[2].c,
734 plane[2].dcdx,
735 plane[2].dcdy,
736 plane[2].eo);
737 }
738
739 if (nr_planes > 3) {
740 lp_setup_add_scissor_planes(scissor, &plane[3], s_planes, setup->multisample);
741 }
742
743 return lp_setup_bin_triangle(setup, tri, &bbox, &bboxpos, nr_planes, viewport_index);
744 }
745
746 /*
747 * Round to nearest less or equal power of two of the input.
748 *
749 * Undefined if no bit set exists, so code should check against 0 first.
750 */
751 static inline uint32_t
floor_pot(uint32_t n)752 floor_pot(uint32_t n)
753 {
754 #if defined(PIPE_CC_GCC) && (defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64))
755 if (n == 0)
756 return 0;
757
758 __asm__("bsr %1,%0"
759 : "=r" (n)
760 : "rm" (n)
761 : "cc");
762 return 1 << n;
763 #else
764 n |= (n >> 1);
765 n |= (n >> 2);
766 n |= (n >> 4);
767 n |= (n >> 8);
768 n |= (n >> 16);
769 return n - (n >> 1);
770 #endif
771 }
772
773
774 boolean
lp_setup_bin_triangle(struct lp_setup_context * setup,struct lp_rast_triangle * tri,const struct u_rect * bboxorig,const struct u_rect * bbox,int nr_planes,unsigned viewport_index)775 lp_setup_bin_triangle(struct lp_setup_context *setup,
776 struct lp_rast_triangle *tri,
777 const struct u_rect *bboxorig,
778 const struct u_rect *bbox,
779 int nr_planes,
780 unsigned viewport_index)
781 {
782 struct lp_scene *scene = setup->scene;
783 struct u_rect trimmed_box = *bbox;
784 int i;
785 unsigned cmd;
786
787 /* What is the largest power-of-two boundary this triangle crosses:
788 */
789 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
790 (bbox->y0 ^ bbox->y1));
791
792 /* The largest dimension of the rasterized area of the triangle
793 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
794 */
795 int max_sz = ((bbox->x1 - (bbox->x0 & ~3)) |
796 (bbox->y1 - (bbox->y0 & ~3)));
797 int sz = floor_pot(max_sz);
798
799 /*
800 * NOTE: It is important to use the original bounding box
801 * which might contain negative values here, because if the
802 * plane math may overflow or not with the 32bit rasterization
803 * functions depends on the original extent of the triangle.
804 */
805 int max_szorig = ((bboxorig->x1 - (bboxorig->x0 & ~3)) |
806 (bboxorig->y1 - (bboxorig->y0 & ~3)));
807 boolean use_32bits = max_szorig <= MAX_FIXED_LENGTH32;
808
809 /* Now apply scissor, etc to the bounding box. Could do this
810 * earlier, but it confuses the logic for tri-16 and would force
811 * the rasterizer to also respect scissor, etc, just for the rare
812 * cases where a small triangle extends beyond the scissor.
813 */
814 u_rect_find_intersection(&setup->draw_regions[viewport_index],
815 &trimmed_box);
816
817 /* Determine which tile(s) intersect the triangle's bounding box
818 */
819 if (dx < TILE_SIZE)
820 {
821 int ix0 = bbox->x0 / TILE_SIZE;
822 int iy0 = bbox->y0 / TILE_SIZE;
823 unsigned px = bbox->x0 & 63 & ~3;
824 unsigned py = bbox->y0 & 63 & ~3;
825
826 assert(iy0 == bbox->y1 / TILE_SIZE &&
827 ix0 == bbox->x1 / TILE_SIZE);
828
829 if (nr_planes == 3) {
830 if (sz < 4)
831 {
832 /* Triangle is contained in a single 4x4 stamp:
833 */
834 assert(px + 4 <= TILE_SIZE);
835 assert(py + 4 <= TILE_SIZE);
836 if (setup->multisample)
837 cmd = LP_RAST_OP_MS_TRIANGLE_3_4;
838 else
839 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_4 : LP_RAST_OP_TRIANGLE_3_4;
840 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
841 setup->fs.stored, cmd,
842 lp_rast_arg_triangle_contained(tri, px, py) );
843 }
844
845 if (sz < 16)
846 {
847 /* Triangle is contained in a single 16x16 block:
848 */
849
850 /*
851 * The 16x16 block is only 4x4 aligned, and can exceed the tile
852 * dimensions if the triangle is 16 pixels in one dimension but 4
853 * in the other. So budge the 16x16 back inside the tile.
854 */
855 px = MIN2(px, TILE_SIZE - 16);
856 py = MIN2(py, TILE_SIZE - 16);
857
858 assert(px + 16 <= TILE_SIZE);
859 assert(py + 16 <= TILE_SIZE);
860
861 if (setup->multisample)
862 cmd = LP_RAST_OP_MS_TRIANGLE_3_16;
863 else
864 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_3_16 : LP_RAST_OP_TRIANGLE_3_16;
865 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
866 setup->fs.stored, cmd,
867 lp_rast_arg_triangle_contained(tri, px, py) );
868 }
869 }
870 else if (nr_planes == 4 && sz < 16)
871 {
872 px = MIN2(px, TILE_SIZE - 16);
873 py = MIN2(py, TILE_SIZE - 16);
874
875 assert(px + 16 <= TILE_SIZE);
876 assert(py + 16 <= TILE_SIZE);
877
878 if (setup->multisample)
879 cmd = LP_RAST_OP_MS_TRIANGLE_4_16;
880 else
881 cmd = use_32bits ? LP_RAST_OP_TRIANGLE_32_4_16 : LP_RAST_OP_TRIANGLE_4_16;
882 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
883 setup->fs.stored, cmd,
884 lp_rast_arg_triangle_contained(tri, px, py));
885 }
886
887
888 /* Triangle is contained in a single tile:
889 */
890 if (setup->multisample)
891 cmd = lp_rast_ms_tri_tab[nr_planes];
892 else
893 cmd = use_32bits ? lp_rast_32_tri_tab[nr_planes] : lp_rast_tri_tab[nr_planes];
894 return lp_scene_bin_cmd_with_state(
895 scene, ix0, iy0, setup->fs.stored, cmd,
896 lp_rast_arg_triangle(tri, (1<<nr_planes)-1));
897 }
898 else
899 {
900 struct lp_rast_plane *plane = GET_PLANES(tri);
901 int64_t c[MAX_PLANES];
902 int64_t ei[MAX_PLANES];
903
904 int64_t eo[MAX_PLANES];
905 int64_t xstep[MAX_PLANES];
906 int64_t ystep[MAX_PLANES];
907 int x, y;
908
909 int ix0 = trimmed_box.x0 / TILE_SIZE;
910 int iy0 = trimmed_box.y0 / TILE_SIZE;
911 int ix1 = trimmed_box.x1 / TILE_SIZE;
912 int iy1 = trimmed_box.y1 / TILE_SIZE;
913
914 for (i = 0; i < nr_planes; i++) {
915 c[i] = (plane[i].c +
916 IMUL64(plane[i].dcdy, iy0) * TILE_SIZE -
917 IMUL64(plane[i].dcdx, ix0) * TILE_SIZE);
918
919 ei[i] = (plane[i].dcdy -
920 plane[i].dcdx -
921 (int64_t)plane[i].eo) << TILE_ORDER;
922
923 eo[i] = (int64_t)plane[i].eo << TILE_ORDER;
924 xstep[i] = -(((int64_t)plane[i].dcdx) << TILE_ORDER);
925 ystep[i] = ((int64_t)plane[i].dcdy) << TILE_ORDER;
926 }
927
928 tri->inputs.is_blit = lp_setup_is_blit(setup, &tri->inputs);
929
930 /* Test tile-sized blocks against the triangle.
931 * Discard blocks fully outside the tri. If the block is fully
932 * contained inside the tri, bin an lp_rast_shade_tile command.
933 * Else, bin a lp_rast_triangle command.
934 */
935 for (y = iy0; y <= iy1; y++)
936 {
937 boolean in = FALSE; /* are we inside the triangle? */
938 int64_t cx[MAX_PLANES];
939
940 for (i = 0; i < nr_planes; i++)
941 cx[i] = c[i];
942
943 for (x = ix0; x <= ix1; x++)
944 {
945 int out = 0;
946 int partial = 0;
947
948 for (i = 0; i < nr_planes; i++) {
949 int64_t planeout = cx[i] + eo[i];
950 int64_t planepartial = cx[i] + ei[i] - 1;
951 out |= (int) (planeout >> 63);
952 partial |= ((int) (planepartial >> 63)) & (1<<i);
953 }
954
955 if (out) {
956 /* do nothing */
957 if (in)
958 break; /* exiting triangle, all done with this row */
959 LP_COUNT(nr_empty_64);
960 }
961 else if (partial) {
962 /* Not trivially accepted by at least one plane -
963 * rasterize/shade partial tile
964 */
965 int count = util_bitcount(partial);
966 in = TRUE;
967
968 if (setup->multisample)
969 cmd = lp_rast_ms_tri_tab[count];
970 else
971 cmd = use_32bits ? lp_rast_32_tri_tab[count] : lp_rast_tri_tab[count];
972 if (!lp_scene_bin_cmd_with_state( scene, x, y,
973 setup->fs.stored, cmd,
974 lp_rast_arg_triangle(tri, partial) ))
975 goto fail;
976
977 LP_COUNT(nr_partially_covered_64);
978 }
979 else {
980 /* triangle covers the whole tile- shade whole tile */
981 LP_COUNT(nr_fully_covered_64);
982 in = TRUE;
983 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
984 goto fail;
985 }
986
987 /* Iterate cx values across the region: */
988 for (i = 0; i < nr_planes; i++)
989 cx[i] += xstep[i];
990 }
991
992 /* Iterate c values down the region: */
993 for (i = 0; i < nr_planes; i++)
994 c[i] += ystep[i];
995 }
996 }
997
998 return TRUE;
999
1000 fail:
1001 /* Need to disable any partially binned triangle. This is easier
1002 * than trying to locate all the triangle, shade-tile, etc,
1003 * commands which may have been binned.
1004 */
1005 tri->inputs.disable = TRUE;
1006 return FALSE;
1007 }
1008
1009
1010 /**
1011 * Try to draw the triangle, restart the scene on failure.
1012 */
retry_triangle_ccw(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4],boolean front)1013 static void retry_triangle_ccw( struct lp_setup_context *setup,
1014 struct fixed_position* position,
1015 const float (*v0)[4],
1016 const float (*v1)[4],
1017 const float (*v2)[4],
1018 boolean front)
1019 {
1020 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
1021 {
1022 if (!lp_setup_flush_and_restart(setup))
1023 return;
1024
1025 if (!do_triangle_ccw( setup, position, v0, v1, v2, front ))
1026 return;
1027 }
1028 }
1029
1030 /**
1031 * Calculate fixed position data for a triangle
1032 * It is unfortunate we need to do that here (as we need area
1033 * calculated in fixed point), as there's quite some code duplication
1034 * to what is done in the jit setup prog.
1035 */
1036 static inline void
calc_fixed_position(struct lp_setup_context * setup,struct fixed_position * position,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1037 calc_fixed_position(struct lp_setup_context *setup,
1038 struct fixed_position* position,
1039 const float (*v0)[4],
1040 const float (*v1)[4],
1041 const float (*v2)[4])
1042 {
1043 float pixel_offset = setup->multisample ? 0.0 : setup->pixel_offset;
1044 /*
1045 * The rounding may not be quite the same with PIPE_ARCH_SSE
1046 * (util_iround right now only does nearest/even on x87,
1047 * otherwise nearest/away-from-zero).
1048 * Both should be acceptable, I think.
1049 */
1050 #if defined(PIPE_ARCH_SSE)
1051 __m128 v0r, v1r;
1052 __m128 vxy0xy2, vxy1xy0;
1053 __m128i vxy0xy2i, vxy1xy0i;
1054 __m128i dxdy0120, x0x2y0y2, x1x0y1y0, x0120, y0120;
1055 __m128 pix_offset = _mm_set1_ps(pixel_offset);
1056 __m128 fixed_one = _mm_set1_ps((float)FIXED_ONE);
1057 v0r = _mm_castpd_ps(_mm_load_sd((double *)v0[0]));
1058 vxy0xy2 = _mm_loadh_pi(v0r, (__m64 *)v2[0]);
1059 v1r = _mm_castpd_ps(_mm_load_sd((double *)v1[0]));
1060 vxy1xy0 = _mm_movelh_ps(v1r, vxy0xy2);
1061 vxy0xy2 = _mm_sub_ps(vxy0xy2, pix_offset);
1062 vxy1xy0 = _mm_sub_ps(vxy1xy0, pix_offset);
1063 vxy0xy2 = _mm_mul_ps(vxy0xy2, fixed_one);
1064 vxy1xy0 = _mm_mul_ps(vxy1xy0, fixed_one);
1065 vxy0xy2i = _mm_cvtps_epi32(vxy0xy2);
1066 vxy1xy0i = _mm_cvtps_epi32(vxy1xy0);
1067 dxdy0120 = _mm_sub_epi32(vxy0xy2i, vxy1xy0i);
1068 _mm_store_si128((__m128i *)&position->dx01, dxdy0120);
1069 /*
1070 * For the mul, would need some more shuffles, plus emulation
1071 * for the signed mul (without sse41), so don't bother.
1072 */
1073 x0x2y0y2 = _mm_shuffle_epi32(vxy0xy2i, _MM_SHUFFLE(3,1,2,0));
1074 x1x0y1y0 = _mm_shuffle_epi32(vxy1xy0i, _MM_SHUFFLE(3,1,2,0));
1075 x0120 = _mm_unpacklo_epi32(x0x2y0y2, x1x0y1y0);
1076 y0120 = _mm_unpackhi_epi32(x0x2y0y2, x1x0y1y0);
1077 _mm_store_si128((__m128i *)&position->x[0], x0120);
1078 _mm_store_si128((__m128i *)&position->y[0], y0120);
1079
1080 #else
1081 position->x[0] = subpixel_snap(v0[0][0] - pixel_offset);
1082 position->x[1] = subpixel_snap(v1[0][0] - pixel_offset);
1083 position->x[2] = subpixel_snap(v2[0][0] - pixel_offset);
1084 position->x[3] = 0; // should be unused
1085
1086 position->y[0] = subpixel_snap(v0[0][1] - pixel_offset);
1087 position->y[1] = subpixel_snap(v1[0][1] - pixel_offset);
1088 position->y[2] = subpixel_snap(v2[0][1] - pixel_offset);
1089 position->y[3] = 0; // should be unused
1090
1091 position->dx01 = position->x[0] - position->x[1];
1092 position->dy01 = position->y[0] - position->y[1];
1093
1094 position->dx20 = position->x[2] - position->x[0];
1095 position->dy20 = position->y[2] - position->y[0];
1096 #endif
1097
1098 position->area = IMUL64(position->dx01, position->dy20) -
1099 IMUL64(position->dx20, position->dy01);
1100 }
1101
1102
1103 /**
1104 * Rotate a triangle, flipping its clockwise direction,
1105 * Swaps values for xy[0] and xy[1]
1106 */
1107 static inline void
rotate_fixed_position_01(struct fixed_position * position)1108 rotate_fixed_position_01( struct fixed_position* position )
1109 {
1110 int x, y;
1111
1112 x = position->x[1];
1113 y = position->y[1];
1114 position->x[1] = position->x[0];
1115 position->y[1] = position->y[0];
1116 position->x[0] = x;
1117 position->y[0] = y;
1118
1119 position->dx01 = -position->dx01;
1120 position->dy01 = -position->dy01;
1121 position->dx20 = position->x[2] - position->x[0];
1122 position->dy20 = position->y[2] - position->y[0];
1123
1124 position->area = -position->area;
1125 }
1126
1127
1128 /**
1129 * Rotate a triangle, flipping its clockwise direction,
1130 * Swaps values for xy[1] and xy[2]
1131 */
1132 static inline void
rotate_fixed_position_12(struct fixed_position * position)1133 rotate_fixed_position_12( struct fixed_position* position )
1134 {
1135 int x, y;
1136
1137 x = position->x[2];
1138 y = position->y[2];
1139 position->x[2] = position->x[1];
1140 position->y[2] = position->y[1];
1141 position->x[1] = x;
1142 position->y[1] = y;
1143
1144 x = position->dx01;
1145 y = position->dy01;
1146 position->dx01 = -position->dx20;
1147 position->dy01 = -position->dy20;
1148 position->dx20 = -x;
1149 position->dy20 = -y;
1150
1151 position->area = -position->area;
1152 }
1153
1154
1155 /**
1156 * Draw triangle if it's CW, cull otherwise.
1157 */
triangle_cw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1158 static void triangle_cw(struct lp_setup_context *setup,
1159 const float (*v0)[4],
1160 const float (*v1)[4],
1161 const float (*v2)[4])
1162 {
1163 PIPE_ALIGN_VAR(16) struct fixed_position position;
1164 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1165
1166 if (lp_context->active_statistics_queries) {
1167 lp_context->pipeline_statistics.c_primitives++;
1168 }
1169
1170 calc_fixed_position(setup, &position, v0, v1, v2);
1171
1172 if (position.area < 0) {
1173 if (setup->flatshade_first) {
1174 rotate_fixed_position_12(&position);
1175 retry_triangle_ccw(setup, &position, v0, v2, v1, !setup->ccw_is_frontface);
1176 } else {
1177 rotate_fixed_position_01(&position);
1178 retry_triangle_ccw(setup, &position, v1, v0, v2, !setup->ccw_is_frontface);
1179 }
1180 }
1181 }
1182
1183
triangle_ccw(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1184 static void triangle_ccw(struct lp_setup_context *setup,
1185 const float (*v0)[4],
1186 const float (*v1)[4],
1187 const float (*v2)[4])
1188 {
1189 PIPE_ALIGN_VAR(16) struct fixed_position position;
1190 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1191
1192 if (lp_context->active_statistics_queries) {
1193 lp_context->pipeline_statistics.c_primitives++;
1194 }
1195
1196 calc_fixed_position(setup, &position, v0, v1, v2);
1197
1198 if (position.area > 0)
1199 retry_triangle_ccw(setup, &position, v0, v1, v2, setup->ccw_is_frontface);
1200 }
1201
1202 /**
1203 * Draw triangle whether it's CW or CCW.
1204 */
triangle_both(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1205 static void triangle_both(struct lp_setup_context *setup,
1206 const float (*v0)[4],
1207 const float (*v1)[4],
1208 const float (*v2)[4])
1209 {
1210 PIPE_ALIGN_VAR(16) struct fixed_position position;
1211 struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
1212
1213 if (lp_context->active_statistics_queries) {
1214 lp_context->pipeline_statistics.c_primitives++;
1215 }
1216
1217 calc_fixed_position(setup, &position, v0, v1, v2);
1218
1219 if (0) {
1220 assert(!util_is_inf_or_nan(v0[0][0]));
1221 assert(!util_is_inf_or_nan(v0[0][1]));
1222 assert(!util_is_inf_or_nan(v1[0][0]));
1223 assert(!util_is_inf_or_nan(v1[0][1]));
1224 assert(!util_is_inf_or_nan(v2[0][0]));
1225 assert(!util_is_inf_or_nan(v2[0][1]));
1226 }
1227
1228 if (position.area > 0)
1229 retry_triangle_ccw( setup, &position, v0, v1, v2, setup->ccw_is_frontface );
1230 else if (position.area < 0) {
1231 if (setup->flatshade_first) {
1232 rotate_fixed_position_12( &position );
1233 retry_triangle_ccw( setup, &position, v0, v2, v1, !setup->ccw_is_frontface );
1234 } else {
1235 rotate_fixed_position_01( &position );
1236 retry_triangle_ccw( setup, &position, v1, v0, v2, !setup->ccw_is_frontface );
1237 }
1238 }
1239 }
1240
1241
triangle_noop(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4],const float (* v2)[4])1242 static void triangle_noop(struct lp_setup_context *setup,
1243 const float (*v0)[4],
1244 const float (*v1)[4],
1245 const float (*v2)[4])
1246 {
1247 }
1248
1249
1250 void
lp_setup_choose_triangle(struct lp_setup_context * setup)1251 lp_setup_choose_triangle(struct lp_setup_context *setup)
1252 {
1253 if (setup->rasterizer_discard) {
1254 setup->triangle = triangle_noop;
1255 return;
1256 }
1257 switch (setup->cullmode) {
1258 case PIPE_FACE_NONE:
1259 setup->triangle = triangle_both;
1260 break;
1261 case PIPE_FACE_BACK:
1262 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
1263 break;
1264 case PIPE_FACE_FRONT:
1265 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
1266 break;
1267 default:
1268 setup->triangle = triangle_noop;
1269 break;
1270 }
1271 }
1272