1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /**
27  * \file rastpos.c
28  * Raster position operations.
29  */
30 
31 #include "glheader.h"
32 #include "context.h"
33 #include "feedback.h"
34 #include "macros.h"
35 #include "mtypes.h"
36 #include "rastpos.h"
37 #include "state.h"
38 #include "main/light.h"
39 #include "main/viewport.h"
40 #include "util/bitscan.h"
41 
42 
43 
44 /**
45  * Clip a point against the view volume.
46  *
47  * \param v vertex vector describing the point to clip.
48  *
49  * \return zero if outside view volume, or one if inside.
50  */
51 static GLuint
viewclip_point_xy(const GLfloat v[])52 viewclip_point_xy( const GLfloat v[] )
53 {
54    if (   v[0] > v[3] || v[0] < -v[3]
55        || v[1] > v[3] || v[1] < -v[3] ) {
56       return 0;
57    }
58    else {
59       return 1;
60    }
61 }
62 
63 
64 /**
65  * Clip a point against the near Z clipping planes.
66  *
67  * \param v vertex vector describing the point to clip.
68  *
69  * \return zero if outside view volume, or one if inside.
70  */
71 static GLuint
viewclip_point_near_z(const GLfloat v[])72 viewclip_point_near_z( const GLfloat v[] )
73 {
74    if (v[2] < -v[3]) {
75       return 0;
76    }
77    else {
78       return 1;
79    }
80 }
81 
82 
83 /**
84  * Clip a point against the far Z clipping planes.
85  *
86  * \param v vertex vector describing the point to clip.
87  *
88  * \return zero if outside view volume, or one if inside.
89  */
90 static GLuint
viewclip_point_far_z(const GLfloat v[])91 viewclip_point_far_z( const GLfloat v[] )
92 {
93    if (v[2] > v[3]) {
94       return 0;
95    }
96    else {
97       return 1;
98    }
99 }
100 
101 
102 /**
103  * Clip a point against the user clipping planes.
104  *
105  * \param ctx GL context.
106  * \param v vertex vector describing the point to clip.
107  *
108  * \return zero if the point was clipped, or one otherwise.
109  */
110 static GLuint
userclip_point(struct gl_context * ctx,const GLfloat v[])111 userclip_point( struct gl_context *ctx, const GLfloat v[] )
112 {
113    GLbitfield mask = ctx->Transform.ClipPlanesEnabled;
114    while (mask) {
115       const int p = u_bit_scan(&mask);
116       GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
117          + v[1] * ctx->Transform._ClipUserPlane[p][1]
118          + v[2] * ctx->Transform._ClipUserPlane[p][2]
119          + v[3] * ctx->Transform._ClipUserPlane[p][3];
120 
121       if (dot < 0.0F) {
122          return 0;
123       }
124    }
125 
126    return 1;
127 }
128 
129 
130 /**
131  * Compute lighting for the raster position.  RGB modes computed.
132  * \param ctx the context
133  * \param vertex vertex location
134  * \param normal normal vector
135  * \param Rcolor returned color
136  * \param Rspec returned specular color (if separate specular enabled)
137  */
138 static void
shade_rastpos(struct gl_context * ctx,const GLfloat vertex[4],const GLfloat normal[3],GLfloat Rcolor[4],GLfloat Rspec[4])139 shade_rastpos(struct gl_context *ctx,
140               const GLfloat vertex[4],
141               const GLfloat normal[3],
142               GLfloat Rcolor[4],
143               GLfloat Rspec[4])
144 {
145    /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
146    GLbitfield mask;
147    GLfloat diffuseColor[4], specularColor[4];  /* for RGB mode only */
148 
149    _mesa_update_light_materials(ctx);
150 
151    COPY_3V(diffuseColor, base[0]);
152    diffuseColor[3] = CLAMP(
153       ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
154    ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
155 
156    mask = ctx->Light._EnabledLights;
157    while (mask) {
158       const int i = u_bit_scan(&mask);
159       struct gl_light *light = &ctx->Light.Light[i];
160       struct gl_light_uniforms *lu = &ctx->Light.LightSource[i];
161       GLfloat attenuation = 1.0;
162       GLfloat VP[3]; /* vector from vertex to light pos */
163       GLfloat n_dot_VP;
164       GLfloat diffuseContrib[3], specularContrib[3];
165 
166       if (!(light->_Flags & LIGHT_POSITIONAL)) {
167          /* light at infinity */
168 	 COPY_3V(VP, light->_VP_inf_norm);
169 	 attenuation = light->_VP_inf_spot_attenuation;
170       }
171       else {
172          /* local/positional light */
173 	 GLfloat d;
174 
175          /* VP = vector from vertex pos to light[i].pos */
176 	 SUB_3V(VP, light->_Position, vertex);
177          /* d = length(VP) */
178 	 d = (GLfloat) LEN_3FV( VP );
179 	 if (d > 1.0e-6F) {
180             /* normalize VP */
181 	    GLfloat invd = 1.0F / d;
182 	    SELF_SCALE_SCALAR_3V(VP, invd);
183 	 }
184 
185          /* atti */
186 	 attenuation = 1.0F / (lu->ConstantAttenuation + d *
187 			       (lu->LinearAttenuation + d *
188 				lu->QuadraticAttenuation));
189 
190 	 if (light->_Flags & LIGHT_SPOT) {
191 	    GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
192 
193 	    if (PV_dot_dir<lu->_CosCutoff) {
194 	       continue;
195 	    }
196 	    else {
197                GLfloat spot = powf(PV_dot_dir, lu->SpotExponent);
198 	       attenuation *= spot;
199 	    }
200 	 }
201       }
202 
203       if (attenuation < 1e-3F)
204 	 continue;
205 
206       n_dot_VP = DOT3( normal, VP );
207 
208       if (n_dot_VP < 0.0F) {
209 	 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
210 	 continue;
211       }
212 
213       /* Ambient + diffuse */
214       COPY_3V(diffuseContrib, light->_MatAmbient[0]);
215       ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
216 
217       /* Specular */
218       {
219          const GLfloat *h;
220          GLfloat n_dot_h;
221 
222          ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
223 
224 	 if (ctx->Light.Model.LocalViewer) {
225 	    GLfloat v[3];
226 	    COPY_3V(v, vertex);
227 	    NORMALIZE_3FV(v);
228 	    SUB_3V(VP, VP, v);
229             NORMALIZE_3FV(VP);
230 	    h = VP;
231 	 }
232 	 else if (light->_Flags & LIGHT_POSITIONAL) {
233 	    ACC_3V(VP, ctx->_EyeZDir);
234             NORMALIZE_3FV(VP);
235 	    h = VP;
236 	 }
237          else {
238 	    h = light->_h_inf_norm;
239 	 }
240 
241 	 n_dot_h = DOT3(normal, h);
242 
243 	 if (n_dot_h > 0.0F) {
244 	    GLfloat shine;
245 	    GLfloat spec_coef;
246 
247 	    shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
248 	    spec_coef = powf(n_dot_h, shine);
249 
250 	    if (spec_coef > 1.0e-10F) {
251                if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
252                   ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
253                                        light->_MatSpecular[0]);
254                }
255                else {
256                   ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
257                                        light->_MatSpecular[0]);
258                }
259 	    }
260 	 }
261       }
262 
263       ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
264       ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
265    }
266 
267    Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
268    Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
269    Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
270    Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
271    Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
272    Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
273    Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
274    Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
275 }
276 
277 
278 /**
279  * Do texgen needed for glRasterPos.
280  * \param ctx  rendering context
281  * \param vObj  object-space vertex coordinate
282  * \param vEye  eye-space vertex coordinate
283  * \param normal  vertex normal
284  * \param unit  texture unit number
285  * \param texcoord  incoming texcoord and resulting texcoord
286  */
287 static void
compute_texgen(struct gl_context * ctx,const GLfloat vObj[4],const GLfloat vEye[4],const GLfloat normal[3],GLuint unit,GLfloat texcoord[4])288 compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
289                const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
290 {
291    const struct gl_fixedfunc_texture_unit *texUnit =
292       &ctx->Texture.FixedFuncUnit[unit];
293 
294    /* always compute sphere map terms, just in case */
295    GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
296    COPY_3V(u, vEye);
297    NORMALIZE_3FV(u);
298    two_nu = 2.0F * DOT3(normal, u);
299    rx = u[0] - normal[0] * two_nu;
300    ry = u[1] - normal[1] * two_nu;
301    rz = u[2] - normal[2] * two_nu;
302    m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
303    if (m > 0.0F)
304       mInv = 0.5F * (1.0f / sqrtf(m));
305    else
306       mInv = 0.0F;
307 
308    if (texUnit->TexGenEnabled & S_BIT) {
309       switch (texUnit->GenS.Mode) {
310          case GL_OBJECT_LINEAR:
311             texcoord[0] = DOT4(vObj, texUnit->ObjectPlane[GEN_S]);
312             break;
313          case GL_EYE_LINEAR:
314             texcoord[0] = DOT4(vEye, texUnit->EyePlane[GEN_S]);
315             break;
316          case GL_SPHERE_MAP:
317             texcoord[0] = rx * mInv + 0.5F;
318             break;
319          case GL_REFLECTION_MAP:
320             texcoord[0] = rx;
321             break;
322          case GL_NORMAL_MAP:
323             texcoord[0] = normal[0];
324             break;
325          default:
326             _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
327             return;
328       }
329    }
330 
331    if (texUnit->TexGenEnabled & T_BIT) {
332       switch (texUnit->GenT.Mode) {
333          case GL_OBJECT_LINEAR:
334             texcoord[1] = DOT4(vObj, texUnit->ObjectPlane[GEN_T]);
335             break;
336          case GL_EYE_LINEAR:
337             texcoord[1] = DOT4(vEye, texUnit->EyePlane[GEN_T]);
338             break;
339          case GL_SPHERE_MAP:
340             texcoord[1] = ry * mInv + 0.5F;
341             break;
342          case GL_REFLECTION_MAP:
343             texcoord[1] = ry;
344             break;
345          case GL_NORMAL_MAP:
346             texcoord[1] = normal[1];
347             break;
348          default:
349             _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
350             return;
351       }
352    }
353 
354    if (texUnit->TexGenEnabled & R_BIT) {
355       switch (texUnit->GenR.Mode) {
356          case GL_OBJECT_LINEAR:
357             texcoord[2] = DOT4(vObj, texUnit->ObjectPlane[GEN_R]);
358             break;
359          case GL_EYE_LINEAR:
360             texcoord[2] = DOT4(vEye, texUnit->EyePlane[GEN_R]);
361             break;
362          case GL_REFLECTION_MAP:
363             texcoord[2] = rz;
364             break;
365          case GL_NORMAL_MAP:
366             texcoord[2] = normal[2];
367             break;
368          default:
369             _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
370             return;
371       }
372    }
373 
374    if (texUnit->TexGenEnabled & Q_BIT) {
375       switch (texUnit->GenQ.Mode) {
376          case GL_OBJECT_LINEAR:
377             texcoord[3] = DOT4(vObj, texUnit->ObjectPlane[GEN_Q]);
378             break;
379          case GL_EYE_LINEAR:
380             texcoord[3] = DOT4(vEye, texUnit->EyePlane[GEN_Q]);
381             break;
382          default:
383             _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
384             return;
385       }
386    }
387 }
388 
389 
390 /**
391  * glRasterPos transformation.  Typically called via ctx->Driver.RasterPos().
392  *
393  * \param vObj  vertex position in object space
394  */
395 void
_mesa_RasterPos(struct gl_context * ctx,const GLfloat vObj[4])396 _mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
397 {
398    ctx->PopAttribState |= GL_CURRENT_BIT;
399 
400    if (_mesa_arb_vertex_program_enabled(ctx)) {
401       /* XXX implement this */
402       _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
403       return;
404    }
405    else {
406       GLfloat eye[4], clip[4], ndc[3], d;
407       GLfloat *norm, eyenorm[3];
408       GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
409       float scale[3], translate[3];
410 
411       /* apply modelview matrix:  eye = MV * obj */
412       TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
413       /* apply projection matrix:  clip = Proj * eye */
414       TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
415 
416       /* clip to view volume. */
417       if (!ctx->Transform.DepthClampNear) {
418          if (viewclip_point_near_z(clip) == 0) {
419             ctx->Current.RasterPosValid = GL_FALSE;
420             return;
421          }
422       }
423       if (!ctx->Transform.DepthClampFar) {
424          if (viewclip_point_far_z(clip) == 0) {
425             ctx->Current.RasterPosValid = GL_FALSE;
426             return;
427          }
428       }
429       if (!ctx->Transform.RasterPositionUnclipped) {
430          if (viewclip_point_xy(clip) == 0) {
431             ctx->Current.RasterPosValid = GL_FALSE;
432             return;
433          }
434       }
435 
436       /* clip to user clipping planes */
437       if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
438          ctx->Current.RasterPosValid = GL_FALSE;
439          return;
440       }
441 
442       /* ndc = clip / W */
443       d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
444       ndc[0] = clip[0] * d;
445       ndc[1] = clip[1] * d;
446       ndc[2] = clip[2] * d;
447       /* wincoord = viewport_mapping(ndc) */
448       _mesa_get_viewport_xform(ctx, 0, scale, translate);
449       ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0];
450       ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1];
451       ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2];
452       ctx->Current.RasterPos[3] = clip[3];
453 
454       if (ctx->Transform.DepthClampNear &&
455           ctx->Transform.DepthClampFar) {
456          ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
457                                            ctx->ViewportArray[0].Near,
458                                            ctx->ViewportArray[0].Far);
459       } else {
460          /* Clamp against near and far plane separately */
461          if (ctx->Transform.DepthClampNear) {
462             ctx->Current.RasterPos[3] = MAX2(ctx->Current.RasterPos[3],
463                                              ctx->ViewportArray[0].Near);
464          }
465 
466          if (ctx->Transform.DepthClampFar) {
467             ctx->Current.RasterPos[3] = MIN2(ctx->Current.RasterPos[3],
468                                              ctx->ViewportArray[0].Far);
469          }
470       }
471 
472       /* compute raster distance */
473       if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
474          ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
475       else
476          ctx->Current.RasterDistance =
477                         sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
478 
479       /* compute transformed normal vector (for lighting or texgen) */
480       if (ctx->_NeedEyeCoords) {
481          const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
482          TRANSFORM_NORMAL( eyenorm, objnorm, inv );
483          norm = eyenorm;
484       }
485       else {
486          norm = objnorm;
487       }
488 
489       /* update raster color */
490       if (ctx->Light.Enabled) {
491          /* lighting */
492          shade_rastpos( ctx, vObj, norm,
493                         ctx->Current.RasterColor,
494                         ctx->Current.RasterSecondaryColor );
495       }
496       else {
497          /* use current color */
498 	 COPY_4FV(ctx->Current.RasterColor,
499 		  ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
500 	 COPY_4FV(ctx->Current.RasterSecondaryColor,
501 		  ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
502       }
503 
504       /* texture coords */
505       {
506          GLuint u;
507          for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
508             GLfloat tc[4];
509             COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
510             if (ctx->Texture.FixedFuncUnit[u].TexGenEnabled) {
511                compute_texgen(ctx, vObj, eye, norm, u, tc);
512             }
513             TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
514                             ctx->TextureMatrixStack[u].Top->m, tc);
515          }
516       }
517 
518       ctx->Current.RasterPosValid = GL_TRUE;
519    }
520 
521    if (ctx->RenderMode == GL_SELECT) {
522       _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
523    }
524 }
525 
526 
527 /**
528  * Helper function for all the RasterPos functions.
529  */
530 static void
rasterpos(GLfloat x,GLfloat y,GLfloat z,GLfloat w)531 rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
532 {
533    GET_CURRENT_CONTEXT(ctx);
534    GLfloat p[4];
535 
536    p[0] = x;
537    p[1] = y;
538    p[2] = z;
539    p[3] = w;
540 
541    FLUSH_VERTICES(ctx, 0, 0);
542    FLUSH_CURRENT(ctx, 0);
543 
544    if (ctx->NewState)
545       _mesa_update_state( ctx );
546 
547    ctx->Driver.RasterPos(ctx, p);
548 }
549 
550 
551 void GLAPIENTRY
_mesa_RasterPos2d(GLdouble x,GLdouble y)552 _mesa_RasterPos2d(GLdouble x, GLdouble y)
553 {
554    rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0);
555 }
556 
557 void GLAPIENTRY
_mesa_RasterPos2f(GLfloat x,GLfloat y)558 _mesa_RasterPos2f(GLfloat x, GLfloat y)
559 {
560    rasterpos(x, y, 0.0F, 1.0F);
561 }
562 
563 void GLAPIENTRY
_mesa_RasterPos2i(GLint x,GLint y)564 _mesa_RasterPos2i(GLint x, GLint y)
565 {
566    rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
567 }
568 
569 void GLAPIENTRY
_mesa_RasterPos2s(GLshort x,GLshort y)570 _mesa_RasterPos2s(GLshort x, GLshort y)
571 {
572    rasterpos(x, y, 0.0F, 1.0F);
573 }
574 
575 void GLAPIENTRY
_mesa_RasterPos3d(GLdouble x,GLdouble y,GLdouble z)576 _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
577 {
578    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
579 }
580 
581 void GLAPIENTRY
_mesa_RasterPos3f(GLfloat x,GLfloat y,GLfloat z)582 _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
583 {
584    rasterpos(x, y, z, 1.0F);
585 }
586 
587 void GLAPIENTRY
_mesa_RasterPos3i(GLint x,GLint y,GLint z)588 _mesa_RasterPos3i(GLint x, GLint y, GLint z)
589 {
590    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
591 }
592 
593 void GLAPIENTRY
_mesa_RasterPos3s(GLshort x,GLshort y,GLshort z)594 _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
595 {
596    rasterpos(x, y, z, 1.0F);
597 }
598 
599 void GLAPIENTRY
_mesa_RasterPos4d(GLdouble x,GLdouble y,GLdouble z,GLdouble w)600 _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
601 {
602    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
603 }
604 
605 void GLAPIENTRY
_mesa_RasterPos4f(GLfloat x,GLfloat y,GLfloat z,GLfloat w)606 _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
607 {
608    rasterpos(x, y, z, w);
609 }
610 
611 void GLAPIENTRY
_mesa_RasterPos4i(GLint x,GLint y,GLint z,GLint w)612 _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
613 {
614    rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
615 }
616 
617 void GLAPIENTRY
_mesa_RasterPos4s(GLshort x,GLshort y,GLshort z,GLshort w)618 _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
619 {
620    rasterpos(x, y, z, w);
621 }
622 
623 void GLAPIENTRY
_mesa_RasterPos2dv(const GLdouble * v)624 _mesa_RasterPos2dv(const GLdouble *v)
625 {
626    rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
627 }
628 
629 void GLAPIENTRY
_mesa_RasterPos2fv(const GLfloat * v)630 _mesa_RasterPos2fv(const GLfloat *v)
631 {
632    rasterpos(v[0], v[1], 0.0F, 1.0F);
633 }
634 
635 void GLAPIENTRY
_mesa_RasterPos2iv(const GLint * v)636 _mesa_RasterPos2iv(const GLint *v)
637 {
638    rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
639 }
640 
641 void GLAPIENTRY
_mesa_RasterPos2sv(const GLshort * v)642 _mesa_RasterPos2sv(const GLshort *v)
643 {
644    rasterpos(v[0], v[1], 0.0F, 1.0F);
645 }
646 
647 void GLAPIENTRY
_mesa_RasterPos3dv(const GLdouble * v)648 _mesa_RasterPos3dv(const GLdouble *v)
649 {
650    rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
651 }
652 
653 void GLAPIENTRY
_mesa_RasterPos3fv(const GLfloat * v)654 _mesa_RasterPos3fv(const GLfloat *v)
655 {
656    rasterpos(v[0], v[1], v[2], 1.0F);
657 }
658 
659 void GLAPIENTRY
_mesa_RasterPos3iv(const GLint * v)660 _mesa_RasterPos3iv(const GLint *v)
661 {
662    rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
663 }
664 
665 void GLAPIENTRY
_mesa_RasterPos3sv(const GLshort * v)666 _mesa_RasterPos3sv(const GLshort *v)
667 {
668    rasterpos(v[0], v[1], v[2], 1.0F);
669 }
670 
671 void GLAPIENTRY
_mesa_RasterPos4dv(const GLdouble * v)672 _mesa_RasterPos4dv(const GLdouble *v)
673 {
674    rasterpos((GLfloat) v[0], (GLfloat) v[1],
675 		     (GLfloat) v[2], (GLfloat) v[3]);
676 }
677 
678 void GLAPIENTRY
_mesa_RasterPos4fv(const GLfloat * v)679 _mesa_RasterPos4fv(const GLfloat *v)
680 {
681    rasterpos(v[0], v[1], v[2], v[3]);
682 }
683 
684 void GLAPIENTRY
_mesa_RasterPos4iv(const GLint * v)685 _mesa_RasterPos4iv(const GLint *v)
686 {
687    rasterpos((GLfloat) v[0], (GLfloat) v[1],
688 		     (GLfloat) v[2], (GLfloat) v[3]);
689 }
690 
691 void GLAPIENTRY
_mesa_RasterPos4sv(const GLshort * v)692 _mesa_RasterPos4sv(const GLshort *v)
693 {
694    rasterpos(v[0], v[1], v[2], v[3]);
695 }
696 
697 
698 /**********************************************************************/
699 /***           GL_ARB_window_pos / GL_MESA_window_pos               ***/
700 /**********************************************************************/
701 
702 
703 /**
704  * All glWindowPosMESA and glWindowPosARB commands call this function to
705  * update the current raster position.
706  */
707 static void
window_pos3f(GLfloat x,GLfloat y,GLfloat z)708 window_pos3f(GLfloat x, GLfloat y, GLfloat z)
709 {
710    GET_CURRENT_CONTEXT(ctx);
711    GLfloat z2;
712 
713    FLUSH_VERTICES(ctx, 0, GL_CURRENT_BIT);
714    FLUSH_CURRENT(ctx, 0);
715 
716    z2 = CLAMP(z, 0.0F, 1.0F)
717       * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near)
718       + ctx->ViewportArray[0].Near;
719 
720    /* set raster position */
721    ctx->Current.RasterPos[0] = x;
722    ctx->Current.RasterPos[1] = y;
723    ctx->Current.RasterPos[2] = z2;
724    ctx->Current.RasterPos[3] = 1.0F;
725 
726    ctx->Current.RasterPosValid = GL_TRUE;
727 
728    if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
729       ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
730    else
731       ctx->Current.RasterDistance = 0.0;
732 
733    /* raster color = current color or index */
734    ctx->Current.RasterColor[0]
735       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
736    ctx->Current.RasterColor[1]
737       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
738    ctx->Current.RasterColor[2]
739       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
740    ctx->Current.RasterColor[3]
741       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
742    ctx->Current.RasterSecondaryColor[0]
743       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
744    ctx->Current.RasterSecondaryColor[1]
745       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
746    ctx->Current.RasterSecondaryColor[2]
747       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
748    ctx->Current.RasterSecondaryColor[3]
749       = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
750 
751    /* raster texcoord = current texcoord */
752    {
753       GLuint texSet;
754       for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
755          assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords));
756          COPY_4FV( ctx->Current.RasterTexCoords[texSet],
757                   ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
758       }
759    }
760 
761    if (ctx->RenderMode==GL_SELECT) {
762       _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
763    }
764 }
765 
766 
767 /* This is just to support the GL_MESA_window_pos version */
768 static void
window_pos4f(GLfloat x,GLfloat y,GLfloat z,GLfloat w)769 window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
770 {
771    GET_CURRENT_CONTEXT(ctx);
772    window_pos3f(x, y, z);
773    ctx->Current.RasterPos[3] = w;
774 }
775 
776 
777 void GLAPIENTRY
_mesa_WindowPos2d(GLdouble x,GLdouble y)778 _mesa_WindowPos2d(GLdouble x, GLdouble y)
779 {
780    window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
781 }
782 
783 void GLAPIENTRY
_mesa_WindowPos2f(GLfloat x,GLfloat y)784 _mesa_WindowPos2f(GLfloat x, GLfloat y)
785 {
786    window_pos4f(x, y, 0.0F, 1.0F);
787 }
788 
789 void GLAPIENTRY
_mesa_WindowPos2i(GLint x,GLint y)790 _mesa_WindowPos2i(GLint x, GLint y)
791 {
792    window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
793 }
794 
795 void GLAPIENTRY
_mesa_WindowPos2s(GLshort x,GLshort y)796 _mesa_WindowPos2s(GLshort x, GLshort y)
797 {
798    window_pos4f(x, y, 0.0F, 1.0F);
799 }
800 
801 void GLAPIENTRY
_mesa_WindowPos3d(GLdouble x,GLdouble y,GLdouble z)802 _mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z)
803 {
804    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
805 }
806 
807 void GLAPIENTRY
_mesa_WindowPos3f(GLfloat x,GLfloat y,GLfloat z)808 _mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z)
809 {
810    window_pos4f(x, y, z, 1.0F);
811 }
812 
813 void GLAPIENTRY
_mesa_WindowPos3i(GLint x,GLint y,GLint z)814 _mesa_WindowPos3i(GLint x, GLint y, GLint z)
815 {
816    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
817 }
818 
819 void GLAPIENTRY
_mesa_WindowPos3s(GLshort x,GLshort y,GLshort z)820 _mesa_WindowPos3s(GLshort x, GLshort y, GLshort z)
821 {
822    window_pos4f(x, y, z, 1.0F);
823 }
824 
825 void GLAPIENTRY
_mesa_WindowPos4dMESA(GLdouble x,GLdouble y,GLdouble z,GLdouble w)826 _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
827 {
828    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
829 }
830 
831 void GLAPIENTRY
_mesa_WindowPos4fMESA(GLfloat x,GLfloat y,GLfloat z,GLfloat w)832 _mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
833 {
834    window_pos4f(x, y, z, w);
835 }
836 
837 void GLAPIENTRY
_mesa_WindowPos4iMESA(GLint x,GLint y,GLint z,GLint w)838 _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
839 {
840    window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
841 }
842 
843 void GLAPIENTRY
_mesa_WindowPos4sMESA(GLshort x,GLshort y,GLshort z,GLshort w)844 _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
845 {
846    window_pos4f(x, y, z, w);
847 }
848 
849 void GLAPIENTRY
_mesa_WindowPos2dv(const GLdouble * v)850 _mesa_WindowPos2dv(const GLdouble *v)
851 {
852    window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
853 }
854 
855 void GLAPIENTRY
_mesa_WindowPos2fv(const GLfloat * v)856 _mesa_WindowPos2fv(const GLfloat *v)
857 {
858    window_pos4f(v[0], v[1], 0.0F, 1.0F);
859 }
860 
861 void GLAPIENTRY
_mesa_WindowPos2iv(const GLint * v)862 _mesa_WindowPos2iv(const GLint *v)
863 {
864    window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
865 }
866 
867 void GLAPIENTRY
_mesa_WindowPos2sv(const GLshort * v)868 _mesa_WindowPos2sv(const GLshort *v)
869 {
870    window_pos4f(v[0], v[1], 0.0F, 1.0F);
871 }
872 
873 void GLAPIENTRY
_mesa_WindowPos3dv(const GLdouble * v)874 _mesa_WindowPos3dv(const GLdouble *v)
875 {
876    window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
877 }
878 
879 void GLAPIENTRY
_mesa_WindowPos3fv(const GLfloat * v)880 _mesa_WindowPos3fv(const GLfloat *v)
881 {
882    window_pos4f(v[0], v[1], v[2], 1.0);
883 }
884 
885 void GLAPIENTRY
_mesa_WindowPos3iv(const GLint * v)886 _mesa_WindowPos3iv(const GLint *v)
887 {
888    window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
889 }
890 
891 void GLAPIENTRY
_mesa_WindowPos3sv(const GLshort * v)892 _mesa_WindowPos3sv(const GLshort *v)
893 {
894    window_pos4f(v[0], v[1], v[2], 1.0F);
895 }
896 
897 void GLAPIENTRY
_mesa_WindowPos4dvMESA(const GLdouble * v)898 _mesa_WindowPos4dvMESA(const GLdouble *v)
899 {
900    window_pos4f((GLfloat) v[0], (GLfloat) v[1],
901 			 (GLfloat) v[2], (GLfloat) v[3]);
902 }
903 
904 void GLAPIENTRY
_mesa_WindowPos4fvMESA(const GLfloat * v)905 _mesa_WindowPos4fvMESA(const GLfloat *v)
906 {
907    window_pos4f(v[0], v[1], v[2], v[3]);
908 }
909 
910 void GLAPIENTRY
_mesa_WindowPos4ivMESA(const GLint * v)911 _mesa_WindowPos4ivMESA(const GLint *v)
912 {
913    window_pos4f((GLfloat) v[0], (GLfloat) v[1],
914 			 (GLfloat) v[2], (GLfloat) v[3]);
915 }
916 
917 void GLAPIENTRY
_mesa_WindowPos4svMESA(const GLshort * v)918 _mesa_WindowPos4svMESA(const GLshort *v)
919 {
920    window_pos4f(v[0], v[1], v[2], v[3]);
921 }
922 
923 
924 #if 0
925 
926 /*
927  * OpenGL implementation of glWindowPos*MESA()
928  */
929 void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
930 {
931    GLfloat fx, fy;
932 
933    /* Push current matrix mode and viewport attributes */
934    glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
935 
936    /* Setup projection parameters */
937    glMatrixMode( GL_PROJECTION );
938    glPushMatrix();
939    glLoadIdentity();
940    glMatrixMode( GL_MODELVIEW );
941    glPushMatrix();
942    glLoadIdentity();
943 
944    glDepthRange( z, z );
945    glViewport( (int) x - 1, (int) y - 1, 2, 2 );
946 
947    /* set the raster (window) position */
948    fx = x - (int) x;
949    fy = y - (int) y;
950    glRasterPos4f( fx, fy, 0.0, w );
951 
952    /* restore matrices, viewport and matrix mode */
953    glPopMatrix();
954    glMatrixMode( GL_PROJECTION );
955    glPopMatrix();
956 
957    glPopAttrib();
958 }
959 
960 #endif
961 
962 
963 /**********************************************************************/
964 /** \name Initialization                                              */
965 /**********************************************************************/
966 /*@{*/
967 
968 /**
969  * Initialize the context current raster position information.
970  *
971  * \param ctx GL context.
972  *
973  * Initialize the current raster position information in
974  * __struct gl_contextRec::Current, and adds the extension entry points to the
975  * dispatcher.
976  */
_mesa_init_rastpos(struct gl_context * ctx)977 void _mesa_init_rastpos( struct gl_context * ctx )
978 {
979    unsigned i;
980 
981    ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
982    ctx->Current.RasterDistance = 0.0;
983    ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
984    ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
985    for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++)
986       ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
987    ctx->Current.RasterPosValid = GL_TRUE;
988 }
989 
990 /*@}*/
991