1 //===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an abstract sparse conditional propagation algorithm,
10 // modeled after SCCP, but with a customizable lattice function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
15 #define LLVM_ANALYSIS_SPARSEPROPAGATION_H
16 
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/Support/Debug.h"
19 #include <set>
20 
21 #define DEBUG_TYPE "sparseprop"
22 
23 namespace llvm {
24 
25 /// A template for translating between LLVM Values and LatticeKeys. Clients must
26 /// provide a specialization of LatticeKeyInfo for their LatticeKey type.
27 template <class LatticeKey> struct LatticeKeyInfo {
28   // static inline Value *getValueFromLatticeKey(LatticeKey Key);
29   // static inline LatticeKey getLatticeKeyFromValue(Value *V);
30 };
31 
32 template <class LatticeKey, class LatticeVal,
33           class KeyInfo = LatticeKeyInfo<LatticeKey>>
34 class SparseSolver;
35 
36 /// AbstractLatticeFunction - This class is implemented by the dataflow instance
37 /// to specify what the lattice values are and how they handle merges etc.  This
38 /// gives the client the power to compute lattice values from instructions,
39 /// constants, etc.  The current requirement is that lattice values must be
40 /// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
41 /// lattice keys must be able to be used as keys of a mapping data structure.
42 /// Internally, the generic solver currently uses a DenseMap to map lattice keys
43 /// to lattice values.  If the lattice key is a non-standard type, a
44 /// specialization of DenseMapInfo must be provided.
45 template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
46 private:
47   LatticeVal UndefVal, OverdefinedVal, UntrackedVal;
48 
49 public:
AbstractLatticeFunction(LatticeVal undefVal,LatticeVal overdefinedVal,LatticeVal untrackedVal)50   AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
51                           LatticeVal untrackedVal) {
52     UndefVal = undefVal;
53     OverdefinedVal = overdefinedVal;
54     UntrackedVal = untrackedVal;
55   }
56 
57   virtual ~AbstractLatticeFunction() = default;
58 
getUndefVal()59   LatticeVal getUndefVal()       const { return UndefVal; }
getOverdefinedVal()60   LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
getUntrackedVal()61   LatticeVal getUntrackedVal()   const { return UntrackedVal; }
62 
63   /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
64   /// to the analysis (i.e., it would always return UntrackedVal), this
65   /// function can return true to avoid pointless work.
IsUntrackedValue(LatticeKey Key)66   virtual bool IsUntrackedValue(LatticeKey Key) { return false; }
67 
68   /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
69   /// given LatticeKey.
ComputeLatticeVal(LatticeKey Key)70   virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
71     return getOverdefinedVal();
72   }
73 
74   /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
75   /// one that the we want to handle through ComputeInstructionState.
IsSpecialCasedPHI(PHINode * PN)76   virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }
77 
78   /// MergeValues - Compute and return the merge of the two specified lattice
79   /// values.  Merging should only move one direction down the lattice to
80   /// guarantee convergence (toward overdefined).
MergeValues(LatticeVal X,LatticeVal Y)81   virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
82     return getOverdefinedVal(); // always safe, never useful.
83   }
84 
85   /// ComputeInstructionState - Compute the LatticeKeys that change as a result
86   /// of executing instruction \p I. Their associated LatticeVals are store in
87   /// \p ChangedValues.
88   virtual void
89   ComputeInstructionState(Instruction &I,
90                           DenseMap<LatticeKey, LatticeVal> &ChangedValues,
91                           SparseSolver<LatticeKey, LatticeVal> &SS) = 0;
92 
93   /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
94   virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);
95 
96   /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
97   virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);
98 
99   /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
100   /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
101   /// returned value must have the same type. This function is used by the
102   /// generic solver in attempting to resolve branch and switch conditions.
103   virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
104     return nullptr;
105   }
106 };
107 
108 /// SparseSolver - This class is a general purpose solver for Sparse Conditional
109 /// Propagation with a programmable lattice function.
110 template <class LatticeKey, class LatticeVal, class KeyInfo>
111 class SparseSolver {
112 
113   /// LatticeFunc - This is the object that knows the lattice and how to
114   /// compute transfer functions.
115   AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;
116 
117   /// ValueState - Holds the LatticeVals associated with LatticeKeys.
118   DenseMap<LatticeKey, LatticeVal> ValueState;
119 
120   /// BBExecutable - Holds the basic blocks that are executable.
121   SmallPtrSet<BasicBlock *, 16> BBExecutable;
122 
123   /// ValueWorkList - Holds values that should be processed.
124   SmallVector<Value *, 64> ValueWorkList;
125 
126   /// BBWorkList - Holds basic blocks that should be processed.
127   SmallVector<BasicBlock *, 64> BBWorkList;
128 
129   using Edge = std::pair<BasicBlock *, BasicBlock *>;
130 
131   /// KnownFeasibleEdges - Entries in this set are edges which have already had
132   /// PHI nodes retriggered.
133   std::set<Edge> KnownFeasibleEdges;
134 
135 public:
SparseSolver(AbstractLatticeFunction<LatticeKey,LatticeVal> * Lattice)136   explicit SparseSolver(
137       AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
138       : LatticeFunc(Lattice) {}
139   SparseSolver(const SparseSolver &) = delete;
140   SparseSolver &operator=(const SparseSolver &) = delete;
141 
142   /// Solve - Solve for constants and executable blocks.
143   void Solve();
144 
145   void Print(raw_ostream &OS) const;
146 
147   /// getExistingValueState - Return the LatticeVal object corresponding to the
148   /// given value from the ValueState map. If the value is not in the map,
149   /// UntrackedVal is returned, unlike the getValueState method.
getExistingValueState(LatticeKey Key)150   LatticeVal getExistingValueState(LatticeKey Key) const {
151     auto I = ValueState.find(Key);
152     return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
153   }
154 
155   /// getValueState - Return the LatticeVal object corresponding to the given
156   /// value from the ValueState map. If the value is not in the map, its state
157   /// is initialized.
158   LatticeVal getValueState(LatticeKey Key);
159 
160   /// isEdgeFeasible - Return true if the control flow edge from the 'From'
161   /// basic block to the 'To' basic block is currently feasible.  If
162   /// AggressiveUndef is true, then this treats values with unknown lattice
163   /// values as undefined.  This is generally only useful when solving the
164   /// lattice, not when querying it.
165   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
166                       bool AggressiveUndef = false);
167 
168   /// isBlockExecutable - Return true if there are any known feasible
169   /// edges into the basic block.  This is generally only useful when
170   /// querying the lattice.
isBlockExecutable(BasicBlock * BB)171   bool isBlockExecutable(BasicBlock *BB) const {
172     return BBExecutable.count(BB);
173   }
174 
175   /// MarkBlockExecutable - This method can be used by clients to mark all of
176   /// the blocks that are known to be intrinsically live in the processed unit.
177   void MarkBlockExecutable(BasicBlock *BB);
178 
179 private:
180   /// UpdateState - When the state of some LatticeKey is potentially updated to
181   /// the given LatticeVal, this function notices and adds the LLVM value
182   /// corresponding the key to the work list, if needed.
183   void UpdateState(LatticeKey Key, LatticeVal LV);
184 
185   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
186   /// work list if it is not already executable.
187   void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
188 
189   /// getFeasibleSuccessors - Return a vector of booleans to indicate which
190   /// successors are reachable from a given terminator instruction.
191   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
192                              bool AggressiveUndef);
193 
194   void visitInst(Instruction &I);
195   void visitPHINode(PHINode &I);
196   void visitTerminator(Instruction &TI);
197 };
198 
199 //===----------------------------------------------------------------------===//
200 //                  AbstractLatticeFunction Implementation
201 //===----------------------------------------------------------------------===//
202 
203 template <class LatticeKey, class LatticeVal>
PrintLatticeVal(LatticeVal V,raw_ostream & OS)204 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
205     LatticeVal V, raw_ostream &OS) {
206   if (V == UndefVal)
207     OS << "undefined";
208   else if (V == OverdefinedVal)
209     OS << "overdefined";
210   else if (V == UntrackedVal)
211     OS << "untracked";
212   else
213     OS << "unknown lattice value";
214 }
215 
216 template <class LatticeKey, class LatticeVal>
PrintLatticeKey(LatticeKey Key,raw_ostream & OS)217 void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
218     LatticeKey Key, raw_ostream &OS) {
219   OS << "unknown lattice key";
220 }
221 
222 //===----------------------------------------------------------------------===//
223 //                          SparseSolver Implementation
224 //===----------------------------------------------------------------------===//
225 
226 template <class LatticeKey, class LatticeVal, class KeyInfo>
227 LatticeVal
getValueState(LatticeKey Key)228 SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
229   auto I = ValueState.find(Key);
230   if (I != ValueState.end())
231     return I->second; // Common case, in the map
232 
233   if (LatticeFunc->IsUntrackedValue(Key))
234     return LatticeFunc->getUntrackedVal();
235   LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);
236 
237   // If this value is untracked, don't add it to the map.
238   if (LV == LatticeFunc->getUntrackedVal())
239     return LV;
240   return ValueState[Key] = std::move(LV);
241 }
242 
243 template <class LatticeKey, class LatticeVal, class KeyInfo>
UpdateState(LatticeKey Key,LatticeVal LV)244 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
245                                                                 LatticeVal LV) {
246   auto I = ValueState.find(Key);
247   if (I != ValueState.end() && I->second == LV)
248     return; // No change.
249 
250   // Update the state of the given LatticeKey and add its corresponding LLVM
251   // value to the work list.
252   ValueState[Key] = std::move(LV);
253   if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
254     ValueWorkList.push_back(V);
255 }
256 
257 template <class LatticeKey, class LatticeVal, class KeyInfo>
MarkBlockExecutable(BasicBlock * BB)258 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
259     BasicBlock *BB) {
260   if (!BBExecutable.insert(BB).second)
261     return;
262   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
263   BBWorkList.push_back(BB); // Add the block to the work list!
264 }
265 
266 template <class LatticeKey, class LatticeVal, class KeyInfo>
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)267 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
268     BasicBlock *Source, BasicBlock *Dest) {
269   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
270     return; // This edge is already known to be executable!
271 
272   LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
273                     << " -> " << Dest->getName() << "\n");
274 
275   if (BBExecutable.count(Dest)) {
276     // The destination is already executable, but we just made an edge
277     // feasible that wasn't before.  Revisit the PHI nodes in the block
278     // because they have potentially new operands.
279     for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
280       visitPHINode(*cast<PHINode>(I));
281   } else {
282     MarkBlockExecutable(Dest);
283   }
284 }
285 
286 template <class LatticeKey, class LatticeVal, class KeyInfo>
getFeasibleSuccessors(Instruction & TI,SmallVectorImpl<bool> & Succs,bool AggressiveUndef)287 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
288     Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
289   Succs.resize(TI.getNumSuccessors());
290   if (TI.getNumSuccessors() == 0)
291     return;
292 
293   if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
294     if (BI->isUnconditional()) {
295       Succs[0] = true;
296       return;
297     }
298 
299     LatticeVal BCValue;
300     if (AggressiveUndef)
301       BCValue =
302           getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
303     else
304       BCValue = getExistingValueState(
305           KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
306 
307     if (BCValue == LatticeFunc->getOverdefinedVal() ||
308         BCValue == LatticeFunc->getUntrackedVal()) {
309       // Overdefined condition variables can branch either way.
310       Succs[0] = Succs[1] = true;
311       return;
312     }
313 
314     // If undefined, neither is feasible yet.
315     if (BCValue == LatticeFunc->getUndefVal())
316       return;
317 
318     Constant *C =
319         dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
320             std::move(BCValue), BI->getCondition()->getType()));
321     if (!C || !isa<ConstantInt>(C)) {
322       // Non-constant values can go either way.
323       Succs[0] = Succs[1] = true;
324       return;
325     }
326 
327     // Constant condition variables mean the branch can only go a single way
328     Succs[C->isNullValue()] = true;
329     return;
330   }
331 
332   if (TI.isExceptionalTerminator() ||
333       TI.isIndirectTerminator()) {
334     Succs.assign(Succs.size(), true);
335     return;
336   }
337 
338   SwitchInst &SI = cast<SwitchInst>(TI);
339   LatticeVal SCValue;
340   if (AggressiveUndef)
341     SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
342   else
343     SCValue = getExistingValueState(
344         KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
345 
346   if (SCValue == LatticeFunc->getOverdefinedVal() ||
347       SCValue == LatticeFunc->getUntrackedVal()) {
348     // All destinations are executable!
349     Succs.assign(TI.getNumSuccessors(), true);
350     return;
351   }
352 
353   // If undefined, neither is feasible yet.
354   if (SCValue == LatticeFunc->getUndefVal())
355     return;
356 
357   Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
358       std::move(SCValue), SI.getCondition()->getType()));
359   if (!C || !isa<ConstantInt>(C)) {
360     // All destinations are executable!
361     Succs.assign(TI.getNumSuccessors(), true);
362     return;
363   }
364   SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
365   Succs[Case.getSuccessorIndex()] = true;
366 }
367 
368 template <class LatticeKey, class LatticeVal, class KeyInfo>
isEdgeFeasible(BasicBlock * From,BasicBlock * To,bool AggressiveUndef)369 bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
370     BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
371   SmallVector<bool, 16> SuccFeasible;
372   Instruction *TI = From->getTerminator();
373   getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);
374 
375   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
376     if (TI->getSuccessor(i) == To && SuccFeasible[i])
377       return true;
378 
379   return false;
380 }
381 
382 template <class LatticeKey, class LatticeVal, class KeyInfo>
visitTerminator(Instruction & TI)383 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
384     Instruction &TI) {
385   SmallVector<bool, 16> SuccFeasible;
386   getFeasibleSuccessors(TI, SuccFeasible, true);
387 
388   BasicBlock *BB = TI.getParent();
389 
390   // Mark all feasible successors executable...
391   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
392     if (SuccFeasible[i])
393       markEdgeExecutable(BB, TI.getSuccessor(i));
394 }
395 
396 template <class LatticeKey, class LatticeVal, class KeyInfo>
visitPHINode(PHINode & PN)397 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
398   // The lattice function may store more information on a PHINode than could be
399   // computed from its incoming values.  For example, SSI form stores its sigma
400   // functions as PHINodes with a single incoming value.
401   if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
402     DenseMap<LatticeKey, LatticeVal> ChangedValues;
403     LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
404     for (auto &ChangedValue : ChangedValues)
405       if (ChangedValue.second != LatticeFunc->getUntrackedVal())
406         UpdateState(std::move(ChangedValue.first),
407                     std::move(ChangedValue.second));
408     return;
409   }
410 
411   LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
412   LatticeVal PNIV = getValueState(Key);
413   LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();
414 
415   // If this value is already overdefined (common) just return.
416   if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
417     return; // Quick exit
418 
419   // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
420   // and slow us down a lot.  Just mark them overdefined.
421   if (PN.getNumIncomingValues() > 64) {
422     UpdateState(Key, Overdefined);
423     return;
424   }
425 
426   // Look at all of the executable operands of the PHI node.  If any of them
427   // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
428   // transfer function to give us the merge of the incoming values.
429   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
430     // If the edge is not yet known to be feasible, it doesn't impact the PHI.
431     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
432       continue;
433 
434     // Merge in this value.
435     LatticeVal OpVal =
436         getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
437     if (OpVal != PNIV)
438       PNIV = LatticeFunc->MergeValues(PNIV, OpVal);
439 
440     if (PNIV == Overdefined)
441       break; // Rest of input values don't matter.
442   }
443 
444   // Update the PHI with the compute value, which is the merge of the inputs.
445   UpdateState(Key, PNIV);
446 }
447 
448 template <class LatticeKey, class LatticeVal, class KeyInfo>
visitInst(Instruction & I)449 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
450   // PHIs are handled by the propagation logic, they are never passed into the
451   // transfer functions.
452   if (PHINode *PN = dyn_cast<PHINode>(&I))
453     return visitPHINode(*PN);
454 
455   // Otherwise, ask the transfer function what the result is.  If this is
456   // something that we care about, remember it.
457   DenseMap<LatticeKey, LatticeVal> ChangedValues;
458   LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
459   for (auto &ChangedValue : ChangedValues)
460     if (ChangedValue.second != LatticeFunc->getUntrackedVal())
461       UpdateState(ChangedValue.first, ChangedValue.second);
462 
463   if (I.isTerminator())
464     visitTerminator(I);
465 }
466 
467 template <class LatticeKey, class LatticeVal, class KeyInfo>
Solve()468 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
469   // Process the work lists until they are empty!
470   while (!BBWorkList.empty() || !ValueWorkList.empty()) {
471     // Process the value work list.
472     while (!ValueWorkList.empty()) {
473       Value *V = ValueWorkList.pop_back_val();
474 
475       LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");
476 
477       // "V" got into the work list because it made a transition. See if any
478       // users are both live and in need of updating.
479       for (User *U : V->users())
480         if (Instruction *Inst = dyn_cast<Instruction>(U))
481           if (BBExecutable.count(Inst->getParent())) // Inst is executable?
482             visitInst(*Inst);
483     }
484 
485     // Process the basic block work list.
486     while (!BBWorkList.empty()) {
487       BasicBlock *BB = BBWorkList.pop_back_val();
488 
489       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);
490 
491       // Notify all instructions in this basic block that they are newly
492       // executable.
493       for (Instruction &I : *BB)
494         visitInst(I);
495     }
496   }
497 }
498 
499 template <class LatticeKey, class LatticeVal, class KeyInfo>
Print(raw_ostream & OS)500 void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
501     raw_ostream &OS) const {
502   if (ValueState.empty())
503     return;
504 
505   LatticeKey Key;
506   LatticeVal LV;
507 
508   OS << "ValueState:\n";
509   for (auto &Entry : ValueState) {
510     std::tie(Key, LV) = Entry;
511     if (LV == LatticeFunc->getUntrackedVal())
512       continue;
513     OS << "\t";
514     LatticeFunc->PrintLatticeVal(LV, OS);
515     OS << ": ";
516     LatticeFunc->PrintLatticeKey(Key, OS);
517     OS << "\n";
518   }
519 }
520 } // end namespace llvm
521 
522 #undef DEBUG_TYPE
523 
524 #endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H
525