1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the MCOperandInfo and MCInstrDesc classes, which
10 // are used to describe target instructions and their operands.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_MC_MCINSTRDESC_H
15 #define LLVM_MC_MCINSTRDESC_H
16 
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/Support/DataTypes.h"
19 
20 namespace llvm {
21 
22 class MCInst;
23 
24 //===----------------------------------------------------------------------===//
25 // Machine Operand Flags and Description
26 //===----------------------------------------------------------------------===//
27 
28 namespace MCOI {
29 /// Operand constraints. These are encoded in 16 bits with one of the
30 /// low-order 3 bits specifying that a constraint is present and the
31 /// corresponding high-order hex digit specifying the constraint value.
32 /// This allows for a maximum of 3 constraints.
33 enum OperandConstraint {
34   TIED_TO = 0,  // Must be allocated the same register as specified value.
35   EARLY_CLOBBER // If present, operand is an early clobber register.
36 };
37 
38 // Define a macro to produce each constraint value.
39 #define MCOI_TIED_TO(op) \
40   ((1 << MCOI::TIED_TO) | ((op) << (4 + MCOI::TIED_TO * 4)))
41 
42 #define MCOI_EARLY_CLOBBER \
43   (1 << MCOI::EARLY_CLOBBER)
44 
45 /// These are flags set on operands, but should be considered
46 /// private, all access should go through the MCOperandInfo accessors.
47 /// See the accessors for a description of what these are.
48 enum OperandFlags {
49   LookupPtrRegClass = 0,
50   Predicate,
51   OptionalDef,
52   BranchTarget
53 };
54 
55 /// Operands are tagged with one of the values of this enum.
56 enum OperandType {
57   OPERAND_UNKNOWN = 0,
58   OPERAND_IMMEDIATE = 1,
59   OPERAND_REGISTER = 2,
60   OPERAND_MEMORY = 3,
61   OPERAND_PCREL = 4,
62 
63   OPERAND_FIRST_GENERIC = 6,
64   OPERAND_GENERIC_0 = 6,
65   OPERAND_GENERIC_1 = 7,
66   OPERAND_GENERIC_2 = 8,
67   OPERAND_GENERIC_3 = 9,
68   OPERAND_GENERIC_4 = 10,
69   OPERAND_GENERIC_5 = 11,
70   OPERAND_LAST_GENERIC = 11,
71 
72   OPERAND_FIRST_GENERIC_IMM = 12,
73   OPERAND_GENERIC_IMM_0 = 12,
74   OPERAND_LAST_GENERIC_IMM = 12,
75 
76   OPERAND_FIRST_TARGET = 13,
77 };
78 
79 }
80 
81 /// This holds information about one operand of a machine instruction,
82 /// indicating the register class for register operands, etc.
83 class MCOperandInfo {
84 public:
85   /// This specifies the register class enumeration of the operand
86   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
87   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
88   /// get a dynamic register class.
89   int16_t RegClass;
90 
91   /// These are flags from the MCOI::OperandFlags enum.
92   uint8_t Flags;
93 
94   /// Information about the type of the operand.
95   uint8_t OperandType;
96 
97   /// Operand constraints (see OperandConstraint enum).
98   uint16_t Constraints;
99 
100   /// Set if this operand is a pointer value and it requires a callback
101   /// to look up its register class.
isLookupPtrRegClass()102   bool isLookupPtrRegClass() const {
103     return Flags & (1 << MCOI::LookupPtrRegClass);
104   }
105 
106   /// Set if this is one of the operands that made up of the predicate
107   /// operand that controls an isPredicable() instruction.
isPredicate()108   bool isPredicate() const { return Flags & (1 << MCOI::Predicate); }
109 
110   /// Set if this operand is a optional def.
isOptionalDef()111   bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); }
112 
113   /// Set if this operand is a branch target.
isBranchTarget()114   bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); }
115 
isGenericType()116   bool isGenericType() const {
117     return OperandType >= MCOI::OPERAND_FIRST_GENERIC &&
118            OperandType <= MCOI::OPERAND_LAST_GENERIC;
119   }
120 
getGenericTypeIndex()121   unsigned getGenericTypeIndex() const {
122     assert(isGenericType() && "non-generic types don't have an index");
123     return OperandType - MCOI::OPERAND_FIRST_GENERIC;
124   }
125 
isGenericImm()126   bool isGenericImm() const {
127     return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM &&
128            OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM;
129   }
130 
getGenericImmIndex()131   unsigned getGenericImmIndex() const {
132     assert(isGenericImm() && "non-generic immediates don't have an index");
133     return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM;
134   }
135 };
136 
137 //===----------------------------------------------------------------------===//
138 // Machine Instruction Flags and Description
139 //===----------------------------------------------------------------------===//
140 
141 namespace MCID {
142 /// These should be considered private to the implementation of the
143 /// MCInstrDesc class.  Clients should use the predicate methods on MCInstrDesc,
144 /// not use these directly.  These all correspond to bitfields in the
145 /// MCInstrDesc::Flags field.
146 enum Flag {
147   PreISelOpcode = 0,
148   Variadic,
149   HasOptionalDef,
150   Pseudo,
151   Return,
152   EHScopeReturn,
153   Call,
154   Barrier,
155   Terminator,
156   Branch,
157   IndirectBranch,
158   Compare,
159   MoveImm,
160   MoveReg,
161   Bitcast,
162   Select,
163   DelaySlot,
164   FoldableAsLoad,
165   MayLoad,
166   MayStore,
167   MayRaiseFPException,
168   Predicable,
169   NotDuplicable,
170   UnmodeledSideEffects,
171   Commutable,
172   ConvertibleTo3Addr,
173   UsesCustomInserter,
174   HasPostISelHook,
175   Rematerializable,
176   CheapAsAMove,
177   ExtraSrcRegAllocReq,
178   ExtraDefRegAllocReq,
179   RegSequence,
180   ExtractSubreg,
181   InsertSubreg,
182   Convergent,
183   Add,
184   Trap,
185   VariadicOpsAreDefs,
186   Authenticated,
187 };
188 }
189 
190 /// Describe properties that are true of each instruction in the target
191 /// description file.  This captures information about side effects, register
192 /// use and many other things.  There is one instance of this struct for each
193 /// target instruction class, and the MachineInstr class points to this struct
194 /// directly to describe itself.
195 class MCInstrDesc {
196 public:
197   unsigned short Opcode;         // The opcode number
198   unsigned short NumOperands;    // Num of args (may be more if variable_ops)
199   unsigned char NumDefs;         // Num of args that are definitions
200   unsigned char Size;            // Number of bytes in encoding.
201   unsigned short SchedClass;     // enum identifying instr sched class
202   uint64_t Flags;                // Flags identifying machine instr class
203   uint64_t TSFlags;              // Target Specific Flag values
204   const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr
205   const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr
206   const MCOperandInfo *OpInfo;   // 'NumOperands' entries about operands
207 
208   /// Returns the value of the specified operand constraint if
209   /// it is present. Returns -1 if it is not present.
getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)210   int getOperandConstraint(unsigned OpNum,
211                            MCOI::OperandConstraint Constraint) const {
212     if (OpNum < NumOperands &&
213         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
214       unsigned ValuePos = 4 + Constraint * 4;
215       return (int)(OpInfo[OpNum].Constraints >> ValuePos) & 0x0f;
216     }
217     return -1;
218   }
219 
220   /// Return the opcode number for this descriptor.
getOpcode()221   unsigned getOpcode() const { return Opcode; }
222 
223   /// Return the number of declared MachineOperands for this
224   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
225   /// instructions may have additional operands at the end of the list, and note
226   /// that the machine instruction may include implicit register def/uses as
227   /// well.
getNumOperands()228   unsigned getNumOperands() const { return NumOperands; }
229 
230   using const_opInfo_iterator = const MCOperandInfo *;
231 
opInfo_begin()232   const_opInfo_iterator opInfo_begin() const { return OpInfo; }
opInfo_end()233   const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; }
234 
operands()235   iterator_range<const_opInfo_iterator> operands() const {
236     return make_range(opInfo_begin(), opInfo_end());
237   }
238 
239   /// Return the number of MachineOperands that are register
240   /// definitions.  Register definitions always occur at the start of the
241   /// machine operand list.  This is the number of "outs" in the .td file,
242   /// and does not include implicit defs.
getNumDefs()243   unsigned getNumDefs() const { return NumDefs; }
244 
245   /// Return flags of this instruction.
getFlags()246   uint64_t getFlags() const { return Flags; }
247 
248   /// \returns true if this instruction is emitted before instruction selection
249   /// and should be legalized/regbankselected/selected.
isPreISelOpcode()250   bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); }
251 
252   /// Return true if this instruction can have a variable number of
253   /// operands.  In this case, the variable operands will be after the normal
254   /// operands but before the implicit definitions and uses (if any are
255   /// present).
isVariadic()256   bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); }
257 
258   /// Set if this instruction has an optional definition, e.g.
259   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()260   bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); }
261 
262   /// Return true if this is a pseudo instruction that doesn't
263   /// correspond to a real machine instruction.
isPseudo()264   bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); }
265 
266   /// Return true if the instruction is a return.
isReturn()267   bool isReturn() const { return Flags & (1ULL << MCID::Return); }
268 
269   /// Return true if the instruction is an add instruction.
isAdd()270   bool isAdd() const { return Flags & (1ULL << MCID::Add); }
271 
272   /// Return true if this instruction is a trap.
isTrap()273   bool isTrap() const { return Flags & (1ULL << MCID::Trap); }
274 
275   /// Return true if the instruction is a register to register move.
isMoveReg()276   bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); }
277 
278   ///  Return true if the instruction is a call.
isCall()279   bool isCall() const { return Flags & (1ULL << MCID::Call); }
280 
281   /// Returns true if the specified instruction stops control flow
282   /// from executing the instruction immediately following it.  Examples include
283   /// unconditional branches and return instructions.
isBarrier()284   bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); }
285 
286   /// Returns true if this instruction part of the terminator for
287   /// a basic block.  Typically this is things like return and branch
288   /// instructions.
289   ///
290   /// Various passes use this to insert code into the bottom of a basic block,
291   /// but before control flow occurs.
isTerminator()292   bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); }
293 
294   /// Returns true if this is a conditional, unconditional, or
295   /// indirect branch.  Predicates below can be used to discriminate between
296   /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
297   /// get more information.
isBranch()298   bool isBranch() const { return Flags & (1ULL << MCID::Branch); }
299 
300   /// Return true if this is an indirect branch, such as a
301   /// branch through a register.
isIndirectBranch()302   bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); }
303 
304   /// Return true if this is a branch which may fall
305   /// through to the next instruction or may transfer control flow to some other
306   /// block.  The TargetInstrInfo::analyzeBranch method can be used to get more
307   /// information about this branch.
isConditionalBranch()308   bool isConditionalBranch() const {
309     return isBranch() && !isBarrier() && !isIndirectBranch();
310   }
311 
312   /// Return true if this is a branch which always
313   /// transfers control flow to some other block.  The
314   /// TargetInstrInfo::analyzeBranch method can be used to get more information
315   /// about this branch.
isUnconditionalBranch()316   bool isUnconditionalBranch() const {
317     return isBranch() && isBarrier() && !isIndirectBranch();
318   }
319 
320   /// Return true if this is a branch or an instruction which directly
321   /// writes to the program counter. Considered 'may' affect rather than
322   /// 'does' affect as things like predication are not taken into account.
323   bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const;
324 
325   /// Return true if this instruction has a predicate operand
326   /// that controls execution. It may be set to 'always', or may be set to other
327   /// values. There are various methods in TargetInstrInfo that can be used to
328   /// control and modify the predicate in this instruction.
isPredicable()329   bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); }
330 
331   /// Return true if this instruction is a comparison.
isCompare()332   bool isCompare() const { return Flags & (1ULL << MCID::Compare); }
333 
334   /// Return true if this instruction is a move immediate
335   /// (including conditional moves) instruction.
isMoveImmediate()336   bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); }
337 
338   /// Return true if this instruction is a bitcast instruction.
isBitcast()339   bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); }
340 
341   /// Return true if this is a select instruction.
isSelect()342   bool isSelect() const { return Flags & (1ULL << MCID::Select); }
343 
344   /// Return true if this instruction cannot be safely
345   /// duplicated.  For example, if the instruction has a unique labels attached
346   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()347   bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); }
348 
349   /// Returns true if the specified instruction has a delay slot which
350   /// must be filled by the code generator.
hasDelaySlot()351   bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); }
352 
353   /// Return true for instructions that can be folded as memory operands
354   /// in other instructions. The most common use for this is instructions that
355   /// are simple loads from memory that don't modify the loaded value in any
356   /// way, but it can also be used for instructions that can be expressed as
357   /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be
358   /// folded when it is beneficial.  This should only be set on instructions
359   /// that return a value in their only virtual register definition.
canFoldAsLoad()360   bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); }
361 
362   /// Return true if this instruction behaves
363   /// the same way as the generic REG_SEQUENCE instructions.
364   /// E.g., on ARM,
365   /// dX VMOVDRR rY, rZ
366   /// is equivalent to
367   /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
368   ///
369   /// Note that for the optimizers to be able to take advantage of
370   /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
371   /// override accordingly.
isRegSequenceLike()372   bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); }
373 
374   /// Return true if this instruction behaves
375   /// the same way as the generic EXTRACT_SUBREG instructions.
376   /// E.g., on ARM,
377   /// rX, rY VMOVRRD dZ
378   /// is equivalent to two EXTRACT_SUBREG:
379   /// rX = EXTRACT_SUBREG dZ, ssub_0
380   /// rY = EXTRACT_SUBREG dZ, ssub_1
381   ///
382   /// Note that for the optimizers to be able to take advantage of
383   /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
384   /// override accordingly.
isExtractSubregLike()385   bool isExtractSubregLike() const {
386     return Flags & (1ULL << MCID::ExtractSubreg);
387   }
388 
389   /// Return true if this instruction behaves
390   /// the same way as the generic INSERT_SUBREG instructions.
391   /// E.g., on ARM,
392   /// dX = VSETLNi32 dY, rZ, Imm
393   /// is equivalent to a INSERT_SUBREG:
394   /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
395   ///
396   /// Note that for the optimizers to be able to take advantage of
397   /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
398   /// override accordingly.
isInsertSubregLike()399   bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); }
400 
401 
402   /// Return true if this instruction is convergent.
403   ///
404   /// Convergent instructions may not be made control-dependent on any
405   /// additional values.
isConvergent()406   bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); }
407 
408   /// Return true if variadic operands of this instruction are definitions.
variadicOpsAreDefs()409   bool variadicOpsAreDefs() const {
410     return Flags & (1ULL << MCID::VariadicOpsAreDefs);
411   }
412 
413   /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx
414   /// from ARMv8.3, which perform loads/branches with authentication).
415   ///
416   /// An authenticated instruction may fail in an ABI-defined manner when
417   /// operating on an invalid signed pointer.
isAuthenticated()418   bool isAuthenticated() const {
419     return Flags & (1ULL << MCID::Authenticated);
420   }
421 
422   //===--------------------------------------------------------------------===//
423   // Side Effect Analysis
424   //===--------------------------------------------------------------------===//
425 
426   /// Return true if this instruction could possibly read memory.
427   /// Instructions with this flag set are not necessarily simple load
428   /// instructions, they may load a value and modify it, for example.
mayLoad()429   bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); }
430 
431   /// Return true if this instruction could possibly modify memory.
432   /// Instructions with this flag set are not necessarily simple store
433   /// instructions, they may store a modified value based on their operands, or
434   /// may not actually modify anything, for example.
mayStore()435   bool mayStore() const { return Flags & (1ULL << MCID::MayStore); }
436 
437   /// Return true if this instruction may raise a floating-point exception.
mayRaiseFPException()438   bool mayRaiseFPException() const {
439     return Flags & (1ULL << MCID::MayRaiseFPException);
440   }
441 
442   /// Return true if this instruction has side
443   /// effects that are not modeled by other flags.  This does not return true
444   /// for instructions whose effects are captured by:
445   ///
446   ///  1. Their operand list and implicit definition/use list.  Register use/def
447   ///     info is explicit for instructions.
448   ///  2. Memory accesses.  Use mayLoad/mayStore.
449   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
450   ///
451   /// Examples of side effects would be modifying 'invisible' machine state like
452   /// a control register, flushing a cache, modifying a register invisible to
453   /// LLVM, etc.
hasUnmodeledSideEffects()454   bool hasUnmodeledSideEffects() const {
455     return Flags & (1ULL << MCID::UnmodeledSideEffects);
456   }
457 
458   //===--------------------------------------------------------------------===//
459   // Flags that indicate whether an instruction can be modified by a method.
460   //===--------------------------------------------------------------------===//
461 
462   /// Return true if this may be a 2- or 3-address instruction (of the
463   /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are
464   /// exchanged.  If this flag is set, then the
465   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
466   /// instruction.
467   ///
468   /// Note that this flag may be set on instructions that are only commutable
469   /// sometimes.  In these cases, the call to commuteInstruction will fail.
470   /// Also note that some instructions require non-trivial modification to
471   /// commute them.
isCommutable()472   bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); }
473 
474   /// Return true if this is a 2-address instruction which can be changed
475   /// into a 3-address instruction if needed.  Doing this transformation can be
476   /// profitable in the register allocator, because it means that the
477   /// instruction can use a 2-address form if possible, but degrade into a less
478   /// efficient form if the source and dest register cannot be assigned to the
479   /// same register.  For example, this allows the x86 backend to turn a "shl
480   /// reg, 3" instruction into an LEA instruction, which is the same speed as
481   /// the shift but has bigger code size.
482   ///
483   /// If this returns true, then the target must implement the
484   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
485   /// is allowed to fail if the transformation isn't valid for this specific
486   /// instruction (e.g. shl reg, 4 on x86).
487   ///
isConvertibleTo3Addr()488   bool isConvertibleTo3Addr() const {
489     return Flags & (1ULL << MCID::ConvertibleTo3Addr);
490   }
491 
492   /// Return true if this instruction requires custom insertion support
493   /// when the DAG scheduler is inserting it into a machine basic block.  If
494   /// this is true for the instruction, it basically means that it is a pseudo
495   /// instruction used at SelectionDAG time that is expanded out into magic code
496   /// by the target when MachineInstrs are formed.
497   ///
498   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
499   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()500   bool usesCustomInsertionHook() const {
501     return Flags & (1ULL << MCID::UsesCustomInserter);
502   }
503 
504   /// Return true if this instruction requires *adjustment* after
505   /// instruction selection by calling a target hook. For example, this can be
506   /// used to fill in ARM 's' optional operand depending on whether the
507   /// conditional flag register is used.
hasPostISelHook()508   bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); }
509 
510   /// Returns true if this instruction is a candidate for remat. This
511   /// flag is only used in TargetInstrInfo method isTriviallyRematerializable.
512   ///
513   /// If this flag is set, the isReallyTriviallyReMaterializable()
514   /// or isReallyTriviallyReMaterializableGeneric methods are called to verify
515   /// the instruction is really rematable.
isRematerializable()516   bool isRematerializable() const {
517     return Flags & (1ULL << MCID::Rematerializable);
518   }
519 
520   /// Returns true if this instruction has the same cost (or less) than a
521   /// move instruction. This is useful during certain types of optimizations
522   /// (e.g., remat during two-address conversion or machine licm) where we would
523   /// like to remat or hoist the instruction, but not if it costs more than
524   /// moving the instruction into the appropriate register. Note, we are not
525   /// marking copies from and to the same register class with this flag.
526   ///
527   /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove
528   /// for different subtargets.
isAsCheapAsAMove()529   bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); }
530 
531   /// Returns true if this instruction source operands have special
532   /// register allocation requirements that are not captured by the operand
533   /// register classes. e.g. ARM::STRD's two source registers must be an even /
534   /// odd pair, ARM::STM registers have to be in ascending order.  Post-register
535   /// allocation passes should not attempt to change allocations for sources of
536   /// instructions with this flag.
hasExtraSrcRegAllocReq()537   bool hasExtraSrcRegAllocReq() const {
538     return Flags & (1ULL << MCID::ExtraSrcRegAllocReq);
539   }
540 
541   /// Returns true if this instruction def operands have special register
542   /// allocation requirements that are not captured by the operand register
543   /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair,
544   /// ARM::LDM registers have to be in ascending order.  Post-register
545   /// allocation passes should not attempt to change allocations for definitions
546   /// of instructions with this flag.
hasExtraDefRegAllocReq()547   bool hasExtraDefRegAllocReq() const {
548     return Flags & (1ULL << MCID::ExtraDefRegAllocReq);
549   }
550 
551   /// Return a list of registers that are potentially read by any
552   /// instance of this machine instruction.  For example, on X86, the "adc"
553   /// instruction adds two register operands and adds the carry bit in from the
554   /// flags register.  In this case, the instruction is marked as implicitly
555   /// reading the flags.  Likewise, the variable shift instruction on X86 is
556   /// marked as implicitly reading the 'CL' register, which it always does.
557   ///
558   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()559   const MCPhysReg *getImplicitUses() const { return ImplicitUses; }
560 
561   /// Return the number of implicit uses this instruction has.
getNumImplicitUses()562   unsigned getNumImplicitUses() const {
563     if (!ImplicitUses)
564       return 0;
565     unsigned i = 0;
566     for (; ImplicitUses[i]; ++i) /*empty*/
567       ;
568     return i;
569   }
570 
571   /// Return a list of registers that are potentially written by any
572   /// instance of this machine instruction.  For example, on X86, many
573   /// instructions implicitly set the flags register.  In this case, they are
574   /// marked as setting the FLAGS.  Likewise, many instructions always deposit
575   /// their result in a physical register.  For example, the X86 divide
576   /// instruction always deposits the quotient and remainder in the EAX/EDX
577   /// registers.  For that instruction, this will return a list containing the
578   /// EAX/EDX/EFLAGS registers.
579   ///
580   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()581   const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; }
582 
583   /// Return the number of implicit defs this instruct has.
getNumImplicitDefs()584   unsigned getNumImplicitDefs() const {
585     if (!ImplicitDefs)
586       return 0;
587     unsigned i = 0;
588     for (; ImplicitDefs[i]; ++i) /*empty*/
589       ;
590     return i;
591   }
592 
593   /// Return true if this instruction implicitly
594   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)595   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
596     if (const MCPhysReg *ImpUses = ImplicitUses)
597       for (; *ImpUses; ++ImpUses)
598         if (*ImpUses == Reg)
599           return true;
600     return false;
601   }
602 
603   /// Return true if this instruction implicitly
604   /// defines the specified physical register.
605   bool hasImplicitDefOfPhysReg(unsigned Reg,
606                                const MCRegisterInfo *MRI = nullptr) const;
607 
608   /// Return the scheduling class for this instruction.  The
609   /// scheduling class is an index into the InstrItineraryData table.  This
610   /// returns zero if there is no known scheduling information for the
611   /// instruction.
getSchedClass()612   unsigned getSchedClass() const { return SchedClass; }
613 
614   /// Return the number of bytes in the encoding of this instruction,
615   /// or zero if the encoding size cannot be known from the opcode.
getSize()616   unsigned getSize() const { return Size; }
617 
618   /// Find the index of the first operand in the
619   /// operand list that is used to represent the predicate. It returns -1 if
620   /// none is found.
findFirstPredOperandIdx()621   int findFirstPredOperandIdx() const {
622     if (isPredicable()) {
623       for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
624         if (OpInfo[i].isPredicate())
625           return i;
626     }
627     return -1;
628   }
629 
630   /// Return true if this instruction defines the specified physical
631   /// register, either explicitly or implicitly.
632   bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg,
633                        const MCRegisterInfo &RI) const;
634 };
635 
636 } // end namespace llvm
637 
638 #endif
639