1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/FloatingPointMode.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallBitVector.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/IntrinsicsAArch64.h"
50 #include "llvm/IR/IntrinsicsAMDGPU.h"
51 #include "llvm/IR/IntrinsicsARM.h"
52 #include "llvm/IR/IntrinsicsHexagon.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueHandle.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
71 #include "llvm/Transforms/InstCombine/InstCombiner.h"
72 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
73 #include "llvm/Transforms/Utils/Local.h"
74 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <cstring>
79 #include <utility>
80 #include <vector>
81
82 using namespace llvm;
83 using namespace PatternMatch;
84
85 #define DEBUG_TYPE "instcombine"
86
87 STATISTIC(NumSimplified, "Number of library calls simplified");
88
89 static cl::opt<unsigned> GuardWideningWindow(
90 "instcombine-guard-widening-window",
91 cl::init(3),
92 cl::desc("How wide an instruction window to bypass looking for "
93 "another guard"));
94
95 namespace llvm {
96 /// enable preservation of attributes in assume like:
97 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
98 extern cl::opt<bool> EnableKnowledgeRetention;
99 } // namespace llvm
100
101 /// Return the specified type promoted as it would be to pass though a va_arg
102 /// area.
getPromotedType(Type * Ty)103 static Type *getPromotedType(Type *Ty) {
104 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
105 if (ITy->getBitWidth() < 32)
106 return Type::getInt32Ty(Ty->getContext());
107 }
108 return Ty;
109 }
110
SimplifyAnyMemTransfer(AnyMemTransferInst * MI)111 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
112 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
113 MaybeAlign CopyDstAlign = MI->getDestAlign();
114 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
115 MI->setDestAlignment(DstAlign);
116 return MI;
117 }
118
119 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
120 MaybeAlign CopySrcAlign = MI->getSourceAlign();
121 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
122 MI->setSourceAlignment(SrcAlign);
123 return MI;
124 }
125
126 // If we have a store to a location which is known constant, we can conclude
127 // that the store must be storing the constant value (else the memory
128 // wouldn't be constant), and this must be a noop.
129 if (AA->pointsToConstantMemory(MI->getDest())) {
130 // Set the size of the copy to 0, it will be deleted on the next iteration.
131 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
132 return MI;
133 }
134
135 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
136 // load/store.
137 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
138 if (!MemOpLength) return nullptr;
139
140 // Source and destination pointer types are always "i8*" for intrinsic. See
141 // if the size is something we can handle with a single primitive load/store.
142 // A single load+store correctly handles overlapping memory in the memmove
143 // case.
144 uint64_t Size = MemOpLength->getLimitedValue();
145 assert(Size && "0-sized memory transferring should be removed already.");
146
147 if (Size > 8 || (Size&(Size-1)))
148 return nullptr; // If not 1/2/4/8 bytes, exit.
149
150 // If it is an atomic and alignment is less than the size then we will
151 // introduce the unaligned memory access which will be later transformed
152 // into libcall in CodeGen. This is not evident performance gain so disable
153 // it now.
154 if (isa<AtomicMemTransferInst>(MI))
155 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
156 return nullptr;
157
158 // Use an integer load+store unless we can find something better.
159 unsigned SrcAddrSp =
160 cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
161 unsigned DstAddrSp =
162 cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
163
164 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
165 Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
166 Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
167
168 // If the memcpy has metadata describing the members, see if we can get the
169 // TBAA tag describing our copy.
170 MDNode *CopyMD = nullptr;
171 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
172 CopyMD = M;
173 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
174 if (M->getNumOperands() == 3 && M->getOperand(0) &&
175 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
176 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
177 M->getOperand(1) &&
178 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
179 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
180 Size &&
181 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
182 CopyMD = cast<MDNode>(M->getOperand(2));
183 }
184
185 Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
186 Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
187 LoadInst *L = Builder.CreateLoad(IntType, Src);
188 // Alignment from the mem intrinsic will be better, so use it.
189 L->setAlignment(*CopySrcAlign);
190 if (CopyMD)
191 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
192 MDNode *LoopMemParallelMD =
193 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
194 if (LoopMemParallelMD)
195 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
196 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
197 if (AccessGroupMD)
198 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
199
200 StoreInst *S = Builder.CreateStore(L, Dest);
201 // Alignment from the mem intrinsic will be better, so use it.
202 S->setAlignment(*CopyDstAlign);
203 if (CopyMD)
204 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
205 if (LoopMemParallelMD)
206 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
207 if (AccessGroupMD)
208 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
209
210 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
211 // non-atomics can be volatile
212 L->setVolatile(MT->isVolatile());
213 S->setVolatile(MT->isVolatile());
214 }
215 if (isa<AtomicMemTransferInst>(MI)) {
216 // atomics have to be unordered
217 L->setOrdering(AtomicOrdering::Unordered);
218 S->setOrdering(AtomicOrdering::Unordered);
219 }
220
221 // Set the size of the copy to 0, it will be deleted on the next iteration.
222 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
223 return MI;
224 }
225
SimplifyAnyMemSet(AnyMemSetInst * MI)226 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
227 const Align KnownAlignment =
228 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
229 MaybeAlign MemSetAlign = MI->getDestAlign();
230 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
231 MI->setDestAlignment(KnownAlignment);
232 return MI;
233 }
234
235 // If we have a store to a location which is known constant, we can conclude
236 // that the store must be storing the constant value (else the memory
237 // wouldn't be constant), and this must be a noop.
238 if (AA->pointsToConstantMemory(MI->getDest())) {
239 // Set the size of the copy to 0, it will be deleted on the next iteration.
240 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
241 return MI;
242 }
243
244 // Extract the length and alignment and fill if they are constant.
245 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
246 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
248 return nullptr;
249 const uint64_t Len = LenC->getLimitedValue();
250 assert(Len && "0-sized memory setting should be removed already.");
251 const Align Alignment = assumeAligned(MI->getDestAlignment());
252
253 // If it is an atomic and alignment is less than the size then we will
254 // introduce the unaligned memory access which will be later transformed
255 // into libcall in CodeGen. This is not evident performance gain so disable
256 // it now.
257 if (isa<AtomicMemSetInst>(MI))
258 if (Alignment < Len)
259 return nullptr;
260
261 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
263 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
264
265 Value *Dest = MI->getDest();
266 unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
267 Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
268 Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
269
270 // Extract the fill value and store.
271 uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
272 StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
273 MI->isVolatile());
274 S->setAlignment(Alignment);
275 if (isa<AtomicMemSetInst>(MI))
276 S->setOrdering(AtomicOrdering::Unordered);
277
278 // Set the size of the copy to 0, it will be deleted on the next iteration.
279 MI->setLength(Constant::getNullValue(LenC->getType()));
280 return MI;
281 }
282
283 return nullptr;
284 }
285
286 // TODO, Obvious Missing Transforms:
287 // * Narrow width by halfs excluding zero/undef lanes
simplifyMaskedLoad(IntrinsicInst & II)288 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
289 Value *LoadPtr = II.getArgOperand(0);
290 const Align Alignment =
291 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
292
293 // If the mask is all ones or undefs, this is a plain vector load of the 1st
294 // argument.
295 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
296 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
297 "unmaskedload");
298 L->copyMetadata(II);
299 return L;
300 }
301
302 // If we can unconditionally load from this address, replace with a
303 // load/select idiom. TODO: use DT for context sensitive query
304 if (isDereferenceablePointer(LoadPtr, II.getType(),
305 II.getModule()->getDataLayout(), &II, nullptr)) {
306 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
307 "unmaskedload");
308 LI->copyMetadata(II);
309 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
310 }
311
312 return nullptr;
313 }
314
315 // TODO, Obvious Missing Transforms:
316 // * Single constant active lane -> store
317 // * Narrow width by halfs excluding zero/undef lanes
simplifyMaskedStore(IntrinsicInst & II)318 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
319 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
320 if (!ConstMask)
321 return nullptr;
322
323 // If the mask is all zeros, this instruction does nothing.
324 if (ConstMask->isNullValue())
325 return eraseInstFromFunction(II);
326
327 // If the mask is all ones, this is a plain vector store of the 1st argument.
328 if (ConstMask->isAllOnesValue()) {
329 Value *StorePtr = II.getArgOperand(1);
330 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
331 StoreInst *S =
332 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
333 S->copyMetadata(II);
334 return S;
335 }
336
337 if (isa<ScalableVectorType>(ConstMask->getType()))
338 return nullptr;
339
340 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
341 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
342 APInt UndefElts(DemandedElts.getBitWidth(), 0);
343 if (Value *V =
344 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
345 return replaceOperand(II, 0, V);
346
347 return nullptr;
348 }
349
350 // TODO, Obvious Missing Transforms:
351 // * Single constant active lane load -> load
352 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
353 // * Adjacent vector addresses -> masked.load
354 // * Narrow width by halfs excluding zero/undef lanes
355 // * Vector splat address w/known mask -> scalar load
356 // * Vector incrementing address -> vector masked load
simplifyMaskedGather(IntrinsicInst & II)357 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
358 return nullptr;
359 }
360
361 // TODO, Obvious Missing Transforms:
362 // * Single constant active lane -> store
363 // * Adjacent vector addresses -> masked.store
364 // * Narrow store width by halfs excluding zero/undef lanes
365 // * Vector splat address w/known mask -> scalar store
366 // * Vector incrementing address -> vector masked store
simplifyMaskedScatter(IntrinsicInst & II)367 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
368 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
369 if (!ConstMask)
370 return nullptr;
371
372 // If the mask is all zeros, a scatter does nothing.
373 if (ConstMask->isNullValue())
374 return eraseInstFromFunction(II);
375
376 if (isa<ScalableVectorType>(ConstMask->getType()))
377 return nullptr;
378
379 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
380 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
381 APInt UndefElts(DemandedElts.getBitWidth(), 0);
382 if (Value *V =
383 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
384 return replaceOperand(II, 0, V);
385 if (Value *V =
386 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
387 return replaceOperand(II, 1, V);
388
389 return nullptr;
390 }
391
392 /// This function transforms launder.invariant.group and strip.invariant.group
393 /// like:
394 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
395 /// launder(strip(%x)) -> launder(%x)
396 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
397 /// strip(launder(%x)) -> strip(%x)
398 /// This is legal because it preserves the most recent information about
399 /// the presence or absence of invariant.group.
simplifyInvariantGroupIntrinsic(IntrinsicInst & II,InstCombinerImpl & IC)400 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
401 InstCombinerImpl &IC) {
402 auto *Arg = II.getArgOperand(0);
403 auto *StrippedArg = Arg->stripPointerCasts();
404 auto *StrippedInvariantGroupsArg = StrippedArg;
405 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
406 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
407 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
408 break;
409 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
410 }
411 if (StrippedArg == StrippedInvariantGroupsArg)
412 return nullptr; // No launders/strips to remove.
413
414 Value *Result = nullptr;
415
416 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
417 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
418 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
419 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
420 else
421 llvm_unreachable(
422 "simplifyInvariantGroupIntrinsic only handles launder and strip");
423 if (Result->getType()->getPointerAddressSpace() !=
424 II.getType()->getPointerAddressSpace())
425 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
426 if (Result->getType() != II.getType())
427 Result = IC.Builder.CreateBitCast(Result, II.getType());
428
429 return cast<Instruction>(Result);
430 }
431
foldCttzCtlz(IntrinsicInst & II,InstCombinerImpl & IC)432 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
433 assert((II.getIntrinsicID() == Intrinsic::cttz ||
434 II.getIntrinsicID() == Intrinsic::ctlz) &&
435 "Expected cttz or ctlz intrinsic");
436 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
437 Value *Op0 = II.getArgOperand(0);
438 Value *Op1 = II.getArgOperand(1);
439 Value *X;
440 // ctlz(bitreverse(x)) -> cttz(x)
441 // cttz(bitreverse(x)) -> ctlz(x)
442 if (match(Op0, m_BitReverse(m_Value(X)))) {
443 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
444 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
445 return CallInst::Create(F, {X, II.getArgOperand(1)});
446 }
447
448 if (II.getType()->isIntOrIntVectorTy(1)) {
449 // ctlz/cttz i1 Op0 --> not Op0
450 if (match(Op1, m_Zero()))
451 return BinaryOperator::CreateNot(Op0);
452 // If zero is undef, then the input can be assumed to be "true", so the
453 // instruction simplifies to "false".
454 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
455 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
456 }
457
458 // If the operand is a select with constant arm(s), try to hoist ctlz/cttz.
459 if (auto *Sel = dyn_cast<SelectInst>(Op0))
460 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
461 return R;
462
463 if (IsTZ) {
464 // cttz(-x) -> cttz(x)
465 if (match(Op0, m_Neg(m_Value(X))))
466 return IC.replaceOperand(II, 0, X);
467
468 // cttz(sext(x)) -> cttz(zext(x))
469 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
470 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
471 auto *CttzZext =
472 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
473 return IC.replaceInstUsesWith(II, CttzZext);
474 }
475
476 // Zext doesn't change the number of trailing zeros, so narrow:
477 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsUndef' parameter is 'true'.
478 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
479 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
480 IC.Builder.getTrue());
481 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
482 return IC.replaceInstUsesWith(II, ZextCttz);
483 }
484
485 // cttz(abs(x)) -> cttz(x)
486 // cttz(nabs(x)) -> cttz(x)
487 Value *Y;
488 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
489 if (SPF == SPF_ABS || SPF == SPF_NABS)
490 return IC.replaceOperand(II, 0, X);
491
492 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
493 return IC.replaceOperand(II, 0, X);
494 }
495
496 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
497
498 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
499 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
500 : Known.countMaxLeadingZeros();
501 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
502 : Known.countMinLeadingZeros();
503
504 // If all bits above (ctlz) or below (cttz) the first known one are known
505 // zero, this value is constant.
506 // FIXME: This should be in InstSimplify because we're replacing an
507 // instruction with a constant.
508 if (PossibleZeros == DefiniteZeros) {
509 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
510 return IC.replaceInstUsesWith(II, C);
511 }
512
513 // If the input to cttz/ctlz is known to be non-zero,
514 // then change the 'ZeroIsUndef' parameter to 'true'
515 // because we know the zero behavior can't affect the result.
516 if (!Known.One.isNullValue() ||
517 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
518 &IC.getDominatorTree())) {
519 if (!match(II.getArgOperand(1), m_One()))
520 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
521 }
522
523 // Add range metadata since known bits can't completely reflect what we know.
524 // TODO: Handle splat vectors.
525 auto *IT = dyn_cast<IntegerType>(Op0->getType());
526 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
527 Metadata *LowAndHigh[] = {
528 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
529 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
530 II.setMetadata(LLVMContext::MD_range,
531 MDNode::get(II.getContext(), LowAndHigh));
532 return &II;
533 }
534
535 return nullptr;
536 }
537
foldCtpop(IntrinsicInst & II,InstCombinerImpl & IC)538 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
539 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
540 "Expected ctpop intrinsic");
541 Type *Ty = II.getType();
542 unsigned BitWidth = Ty->getScalarSizeInBits();
543 Value *Op0 = II.getArgOperand(0);
544 Value *X, *Y;
545
546 // ctpop(bitreverse(x)) -> ctpop(x)
547 // ctpop(bswap(x)) -> ctpop(x)
548 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
549 return IC.replaceOperand(II, 0, X);
550
551 // ctpop(rot(x)) -> ctpop(x)
552 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
553 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
554 X == Y)
555 return IC.replaceOperand(II, 0, X);
556
557 // ctpop(x | -x) -> bitwidth - cttz(x, false)
558 if (Op0->hasOneUse() &&
559 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
560 Function *F =
561 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
562 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
563 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
564 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
565 }
566
567 // ctpop(~x & (x - 1)) -> cttz(x, false)
568 if (match(Op0,
569 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
570 Function *F =
571 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
572 return CallInst::Create(F, {X, IC.Builder.getFalse()});
573 }
574
575 // Zext doesn't change the number of set bits, so narrow:
576 // ctpop (zext X) --> zext (ctpop X)
577 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
578 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
579 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
580 }
581
582 // If the operand is a select with constant arm(s), try to hoist ctpop.
583 if (auto *Sel = dyn_cast<SelectInst>(Op0))
584 if (Instruction *R = IC.FoldOpIntoSelect(II, Sel))
585 return R;
586
587 KnownBits Known(BitWidth);
588 IC.computeKnownBits(Op0, Known, 0, &II);
589
590 // If all bits are zero except for exactly one fixed bit, then the result
591 // must be 0 or 1, and we can get that answer by shifting to LSB:
592 // ctpop (X & 32) --> (X & 32) >> 5
593 if ((~Known.Zero).isPowerOf2())
594 return BinaryOperator::CreateLShr(
595 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
596
597 // FIXME: Try to simplify vectors of integers.
598 auto *IT = dyn_cast<IntegerType>(Ty);
599 if (!IT)
600 return nullptr;
601
602 // Add range metadata since known bits can't completely reflect what we know.
603 unsigned MinCount = Known.countMinPopulation();
604 unsigned MaxCount = Known.countMaxPopulation();
605 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
606 Metadata *LowAndHigh[] = {
607 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
608 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
609 II.setMetadata(LLVMContext::MD_range,
610 MDNode::get(II.getContext(), LowAndHigh));
611 return &II;
612 }
613
614 return nullptr;
615 }
616
617 /// Convert a table lookup to shufflevector if the mask is constant.
618 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
619 /// which case we could lower the shufflevector with rev64 instructions
620 /// as it's actually a byte reverse.
simplifyNeonTbl1(const IntrinsicInst & II,InstCombiner::BuilderTy & Builder)621 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
622 InstCombiner::BuilderTy &Builder) {
623 // Bail out if the mask is not a constant.
624 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
625 if (!C)
626 return nullptr;
627
628 auto *VecTy = cast<FixedVectorType>(II.getType());
629 unsigned NumElts = VecTy->getNumElements();
630
631 // Only perform this transformation for <8 x i8> vector types.
632 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
633 return nullptr;
634
635 int Indexes[8];
636
637 for (unsigned I = 0; I < NumElts; ++I) {
638 Constant *COp = C->getAggregateElement(I);
639
640 if (!COp || !isa<ConstantInt>(COp))
641 return nullptr;
642
643 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
644
645 // Make sure the mask indices are in range.
646 if ((unsigned)Indexes[I] >= NumElts)
647 return nullptr;
648 }
649
650 auto *V1 = II.getArgOperand(0);
651 auto *V2 = Constant::getNullValue(V1->getType());
652 return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes));
653 }
654
655 // Returns true iff the 2 intrinsics have the same operands, limiting the
656 // comparison to the first NumOperands.
haveSameOperands(const IntrinsicInst & I,const IntrinsicInst & E,unsigned NumOperands)657 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
658 unsigned NumOperands) {
659 assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
660 assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
661 for (unsigned i = 0; i < NumOperands; i++)
662 if (I.getArgOperand(i) != E.getArgOperand(i))
663 return false;
664 return true;
665 }
666
667 // Remove trivially empty start/end intrinsic ranges, i.e. a start
668 // immediately followed by an end (ignoring debuginfo or other
669 // start/end intrinsics in between). As this handles only the most trivial
670 // cases, tracking the nesting level is not needed:
671 //
672 // call @llvm.foo.start(i1 0)
673 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
674 // call @llvm.foo.end(i1 0)
675 // call @llvm.foo.end(i1 0) ; &I
676 static bool
removeTriviallyEmptyRange(IntrinsicInst & EndI,InstCombinerImpl & IC,std::function<bool (const IntrinsicInst &)> IsStart)677 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
678 std::function<bool(const IntrinsicInst &)> IsStart) {
679 // We start from the end intrinsic and scan backwards, so that InstCombine
680 // has already processed (and potentially removed) all the instructions
681 // before the end intrinsic.
682 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
683 for (; BI != BE; ++BI) {
684 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
685 if (isa<DbgInfoIntrinsic>(I) ||
686 I->getIntrinsicID() == EndI.getIntrinsicID())
687 continue;
688 if (IsStart(*I)) {
689 if (haveSameOperands(EndI, *I, EndI.getNumArgOperands())) {
690 IC.eraseInstFromFunction(*I);
691 IC.eraseInstFromFunction(EndI);
692 return true;
693 }
694 // Skip start intrinsics that don't pair with this end intrinsic.
695 continue;
696 }
697 }
698 break;
699 }
700
701 return false;
702 }
703
visitVAEndInst(VAEndInst & I)704 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
705 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
706 return I.getIntrinsicID() == Intrinsic::vastart ||
707 I.getIntrinsicID() == Intrinsic::vacopy;
708 });
709 return nullptr;
710 }
711
canonicalizeConstantArg0ToArg1(CallInst & Call)712 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
713 assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
714 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
715 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
716 Call.setArgOperand(0, Arg1);
717 Call.setArgOperand(1, Arg0);
718 return &Call;
719 }
720 return nullptr;
721 }
722
723 /// Creates a result tuple for an overflow intrinsic \p II with a given
724 /// \p Result and a constant \p Overflow value.
createOverflowTuple(IntrinsicInst * II,Value * Result,Constant * Overflow)725 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
726 Constant *Overflow) {
727 Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
728 StructType *ST = cast<StructType>(II->getType());
729 Constant *Struct = ConstantStruct::get(ST, V);
730 return InsertValueInst::Create(Struct, Result, 0);
731 }
732
733 Instruction *
foldIntrinsicWithOverflowCommon(IntrinsicInst * II)734 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
735 WithOverflowInst *WO = cast<WithOverflowInst>(II);
736 Value *OperationResult = nullptr;
737 Constant *OverflowResult = nullptr;
738 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
739 WO->getRHS(), *WO, OperationResult, OverflowResult))
740 return createOverflowTuple(WO, OperationResult, OverflowResult);
741 return nullptr;
742 }
743
getKnownSign(Value * Op,Instruction * CxtI,const DataLayout & DL,AssumptionCache * AC,DominatorTree * DT)744 static Optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
745 const DataLayout &DL, AssumptionCache *AC,
746 DominatorTree *DT) {
747 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
748 if (Known.isNonNegative())
749 return false;
750 if (Known.isNegative())
751 return true;
752
753 return isImpliedByDomCondition(
754 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
755 }
756
757 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
758 /// can only be one of two possible constant values -- turn that into a select
759 /// of constants.
foldClampRangeOfTwo(IntrinsicInst * II,InstCombiner::BuilderTy & Builder)760 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
761 InstCombiner::BuilderTy &Builder) {
762 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
763 Value *X;
764 const APInt *C0, *C1;
765 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
766 return nullptr;
767
768 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
769 switch (II->getIntrinsicID()) {
770 case Intrinsic::smax:
771 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
772 Pred = ICmpInst::ICMP_SGT;
773 break;
774 case Intrinsic::smin:
775 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
776 Pred = ICmpInst::ICMP_SLT;
777 break;
778 case Intrinsic::umax:
779 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
780 Pred = ICmpInst::ICMP_UGT;
781 break;
782 case Intrinsic::umin:
783 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
784 Pred = ICmpInst::ICMP_ULT;
785 break;
786 default:
787 llvm_unreachable("Expected min/max intrinsic");
788 }
789 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
790 return nullptr;
791
792 // max (min X, 42), 41 --> X > 41 ? 42 : 41
793 // min (max X, 42), 43 --> X < 43 ? 42 : 43
794 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
795 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
796 }
797
798 /// CallInst simplification. This mostly only handles folding of intrinsic
799 /// instructions. For normal calls, it allows visitCallBase to do the heavy
800 /// lifting.
visitCallInst(CallInst & CI)801 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
802 // Don't try to simplify calls without uses. It will not do anything useful,
803 // but will result in the following folds being skipped.
804 if (!CI.use_empty())
805 if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
806 return replaceInstUsesWith(CI, V);
807
808 if (isFreeCall(&CI, &TLI))
809 return visitFree(CI);
810
811 // If the caller function is nounwind, mark the call as nounwind, even if the
812 // callee isn't.
813 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
814 CI.setDoesNotThrow();
815 return &CI;
816 }
817
818 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
819 if (!II) return visitCallBase(CI);
820
821 // For atomic unordered mem intrinsics if len is not a positive or
822 // not a multiple of element size then behavior is undefined.
823 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
824 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
825 if (NumBytes->getSExtValue() < 0 ||
826 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
827 CreateNonTerminatorUnreachable(AMI);
828 assert(AMI->getType()->isVoidTy() &&
829 "non void atomic unordered mem intrinsic");
830 return eraseInstFromFunction(*AMI);
831 }
832
833 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
834 // instead of in visitCallBase.
835 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
836 bool Changed = false;
837
838 // memmove/cpy/set of zero bytes is a noop.
839 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
840 if (NumBytes->isNullValue())
841 return eraseInstFromFunction(CI);
842
843 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
844 if (CI->getZExtValue() == 1) {
845 // Replace the instruction with just byte operations. We would
846 // transform other cases to loads/stores, but we don't know if
847 // alignment is sufficient.
848 }
849 }
850
851 // No other transformations apply to volatile transfers.
852 if (auto *M = dyn_cast<MemIntrinsic>(MI))
853 if (M->isVolatile())
854 return nullptr;
855
856 // If we have a memmove and the source operation is a constant global,
857 // then the source and dest pointers can't alias, so we can change this
858 // into a call to memcpy.
859 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
860 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
861 if (GVSrc->isConstant()) {
862 Module *M = CI.getModule();
863 Intrinsic::ID MemCpyID =
864 isa<AtomicMemMoveInst>(MMI)
865 ? Intrinsic::memcpy_element_unordered_atomic
866 : Intrinsic::memcpy;
867 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
868 CI.getArgOperand(1)->getType(),
869 CI.getArgOperand(2)->getType() };
870 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
871 Changed = true;
872 }
873 }
874
875 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
876 // memmove(x,x,size) -> noop.
877 if (MTI->getSource() == MTI->getDest())
878 return eraseInstFromFunction(CI);
879 }
880
881 // If we can determine a pointer alignment that is bigger than currently
882 // set, update the alignment.
883 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
884 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
885 return I;
886 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
887 if (Instruction *I = SimplifyAnyMemSet(MSI))
888 return I;
889 }
890
891 if (Changed) return II;
892 }
893
894 // For fixed width vector result intrinsics, use the generic demanded vector
895 // support.
896 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
897 auto VWidth = IIFVTy->getNumElements();
898 APInt UndefElts(VWidth, 0);
899 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
900 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
901 if (V != II)
902 return replaceInstUsesWith(*II, V);
903 return II;
904 }
905 }
906
907 if (II->isCommutative()) {
908 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
909 return NewCall;
910 }
911
912 Intrinsic::ID IID = II->getIntrinsicID();
913 switch (IID) {
914 case Intrinsic::objectsize:
915 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
916 return replaceInstUsesWith(CI, V);
917 return nullptr;
918 case Intrinsic::abs: {
919 Value *IIOperand = II->getArgOperand(0);
920 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
921
922 // abs(-x) -> abs(x)
923 // TODO: Copy nsw if it was present on the neg?
924 Value *X;
925 if (match(IIOperand, m_Neg(m_Value(X))))
926 return replaceOperand(*II, 0, X);
927 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
928 return replaceOperand(*II, 0, X);
929 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
930 return replaceOperand(*II, 0, X);
931
932 if (Optional<bool> Sign = getKnownSign(IIOperand, II, DL, &AC, &DT)) {
933 // abs(x) -> x if x >= 0
934 if (!*Sign)
935 return replaceInstUsesWith(*II, IIOperand);
936
937 // abs(x) -> -x if x < 0
938 if (IntMinIsPoison)
939 return BinaryOperator::CreateNSWNeg(IIOperand);
940 return BinaryOperator::CreateNeg(IIOperand);
941 }
942
943 // abs (sext X) --> zext (abs X*)
944 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
945 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
946 Value *NarrowAbs =
947 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
948 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
949 }
950
951 // Match a complicated way to check if a number is odd/even:
952 // abs (srem X, 2) --> and X, 1
953 const APInt *C;
954 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
955 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
956
957 break;
958 }
959 case Intrinsic::umin: {
960 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
961 // umin(x, 1) == zext(x != 0)
962 if (match(I1, m_One())) {
963 Value *Zero = Constant::getNullValue(I0->getType());
964 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
965 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
966 }
967 LLVM_FALLTHROUGH;
968 }
969 case Intrinsic::umax: {
970 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
971 Value *X, *Y;
972 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
973 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
974 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
975 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
976 }
977 Constant *C;
978 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
979 I0->hasOneUse()) {
980 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
981 if (ConstantExpr::getZExt(NarrowC, II->getType()) == C) {
982 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
983 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
984 }
985 }
986 // If both operands of unsigned min/max are sign-extended, it is still ok
987 // to narrow the operation.
988 LLVM_FALLTHROUGH;
989 }
990 case Intrinsic::smax:
991 case Intrinsic::smin: {
992 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
993 Value *X, *Y;
994 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
995 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
996 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
997 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
998 }
999
1000 Constant *C;
1001 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1002 I0->hasOneUse()) {
1003 Constant *NarrowC = ConstantExpr::getTrunc(C, X->getType());
1004 if (ConstantExpr::getSExt(NarrowC, II->getType()) == C) {
1005 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1006 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1007 }
1008 }
1009
1010 if (match(I0, m_Not(m_Value(X)))) {
1011 // max (not X), (not Y) --> not (min X, Y)
1012 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1013 if (match(I1, m_Not(m_Value(Y))) &&
1014 (I0->hasOneUse() || I1->hasOneUse())) {
1015 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1016 return BinaryOperator::CreateNot(InvMaxMin);
1017 }
1018 // max (not X), C --> not(min X, ~C)
1019 if (match(I1, m_Constant(C)) && I0->hasOneUse()) {
1020 Constant *NotC = ConstantExpr::getNot(C);
1021 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotC);
1022 return BinaryOperator::CreateNot(InvMaxMin);
1023 }
1024 }
1025
1026 // smax(X, -X) --> abs(X)
1027 // smin(X, -X) --> -abs(X)
1028 // umax(X, -X) --> -abs(X)
1029 // umin(X, -X) --> abs(X)
1030 if (isKnownNegation(I0, I1)) {
1031 // We can choose either operand as the input to abs(), but if we can
1032 // eliminate the only use of a value, that's better for subsequent
1033 // transforms/analysis.
1034 if (I0->hasOneUse() && !I1->hasOneUse())
1035 std::swap(I0, I1);
1036
1037 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1038 // operation and potentially its negation.
1039 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1040 Value *Abs = Builder.CreateBinaryIntrinsic(
1041 Intrinsic::abs, I0,
1042 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1043
1044 // We don't have a "nabs" intrinsic, so negate if needed based on the
1045 // max/min operation.
1046 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1047 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1048 return replaceInstUsesWith(CI, Abs);
1049 }
1050
1051 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1052 return Sel;
1053
1054 if (match(I1, m_ImmConstant()))
1055 if (auto *Sel = dyn_cast<SelectInst>(I0))
1056 if (Instruction *R = FoldOpIntoSelect(*II, Sel))
1057 return R;
1058
1059 break;
1060 }
1061 case Intrinsic::bswap: {
1062 Value *IIOperand = II->getArgOperand(0);
1063 Value *X = nullptr;
1064
1065 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1066 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1067 unsigned C = X->getType()->getScalarSizeInBits() -
1068 IIOperand->getType()->getScalarSizeInBits();
1069 Value *CV = ConstantInt::get(X->getType(), C);
1070 Value *V = Builder.CreateLShr(X, CV);
1071 return new TruncInst(V, IIOperand->getType());
1072 }
1073 break;
1074 }
1075 case Intrinsic::masked_load:
1076 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1077 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1078 break;
1079 case Intrinsic::masked_store:
1080 return simplifyMaskedStore(*II);
1081 case Intrinsic::masked_gather:
1082 return simplifyMaskedGather(*II);
1083 case Intrinsic::masked_scatter:
1084 return simplifyMaskedScatter(*II);
1085 case Intrinsic::launder_invariant_group:
1086 case Intrinsic::strip_invariant_group:
1087 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1088 return replaceInstUsesWith(*II, SkippedBarrier);
1089 break;
1090 case Intrinsic::powi:
1091 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1092 // 0 and 1 are handled in instsimplify
1093 // powi(x, -1) -> 1/x
1094 if (Power->isMinusOne())
1095 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1096 II->getArgOperand(0), II);
1097 // powi(x, 2) -> x*x
1098 if (Power->equalsInt(2))
1099 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1100 II->getArgOperand(0), II);
1101 }
1102 break;
1103
1104 case Intrinsic::cttz:
1105 case Intrinsic::ctlz:
1106 if (auto *I = foldCttzCtlz(*II, *this))
1107 return I;
1108 break;
1109
1110 case Intrinsic::ctpop:
1111 if (auto *I = foldCtpop(*II, *this))
1112 return I;
1113 break;
1114
1115 case Intrinsic::fshl:
1116 case Intrinsic::fshr: {
1117 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1118 Type *Ty = II->getType();
1119 unsigned BitWidth = Ty->getScalarSizeInBits();
1120 Constant *ShAmtC;
1121 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC)) &&
1122 !ShAmtC->containsConstantExpression()) {
1123 // Canonicalize a shift amount constant operand to modulo the bit-width.
1124 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1125 Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
1126 if (ModuloC != ShAmtC)
1127 return replaceOperand(*II, 2, ModuloC);
1128
1129 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1130 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1131 "Shift amount expected to be modulo bitwidth");
1132
1133 // Canonicalize funnel shift right by constant to funnel shift left. This
1134 // is not entirely arbitrary. For historical reasons, the backend may
1135 // recognize rotate left patterns but miss rotate right patterns.
1136 if (IID == Intrinsic::fshr) {
1137 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1138 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1139 Module *Mod = II->getModule();
1140 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1141 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1142 }
1143 assert(IID == Intrinsic::fshl &&
1144 "All funnel shifts by simple constants should go left");
1145
1146 // fshl(X, 0, C) --> shl X, C
1147 // fshl(X, undef, C) --> shl X, C
1148 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1149 return BinaryOperator::CreateShl(Op0, ShAmtC);
1150
1151 // fshl(0, X, C) --> lshr X, (BW-C)
1152 // fshl(undef, X, C) --> lshr X, (BW-C)
1153 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1154 return BinaryOperator::CreateLShr(Op1,
1155 ConstantExpr::getSub(WidthC, ShAmtC));
1156
1157 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1158 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1159 Module *Mod = II->getModule();
1160 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1161 return CallInst::Create(Bswap, { Op0 });
1162 }
1163 }
1164
1165 // Left or right might be masked.
1166 if (SimplifyDemandedInstructionBits(*II))
1167 return &CI;
1168
1169 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1170 // so only the low bits of the shift amount are demanded if the bitwidth is
1171 // a power-of-2.
1172 if (!isPowerOf2_32(BitWidth))
1173 break;
1174 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1175 KnownBits Op2Known(BitWidth);
1176 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1177 return &CI;
1178 break;
1179 }
1180 case Intrinsic::uadd_with_overflow:
1181 case Intrinsic::sadd_with_overflow: {
1182 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1183 return I;
1184
1185 // Given 2 constant operands whose sum does not overflow:
1186 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1187 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1188 Value *X;
1189 const APInt *C0, *C1;
1190 Value *Arg0 = II->getArgOperand(0);
1191 Value *Arg1 = II->getArgOperand(1);
1192 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1193 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1194 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1195 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1196 bool Overflow;
1197 APInt NewC =
1198 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1199 if (!Overflow)
1200 return replaceInstUsesWith(
1201 *II, Builder.CreateBinaryIntrinsic(
1202 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
1203 }
1204 break;
1205 }
1206
1207 case Intrinsic::umul_with_overflow:
1208 case Intrinsic::smul_with_overflow:
1209 case Intrinsic::usub_with_overflow:
1210 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1211 return I;
1212 break;
1213
1214 case Intrinsic::ssub_with_overflow: {
1215 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1216 return I;
1217
1218 Constant *C;
1219 Value *Arg0 = II->getArgOperand(0);
1220 Value *Arg1 = II->getArgOperand(1);
1221 // Given a constant C that is not the minimum signed value
1222 // for an integer of a given bit width:
1223 //
1224 // ssubo X, C -> saddo X, -C
1225 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
1226 Value *NegVal = ConstantExpr::getNeg(C);
1227 // Build a saddo call that is equivalent to the discovered
1228 // ssubo call.
1229 return replaceInstUsesWith(
1230 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
1231 Arg0, NegVal));
1232 }
1233
1234 break;
1235 }
1236
1237 case Intrinsic::uadd_sat:
1238 case Intrinsic::sadd_sat:
1239 case Intrinsic::usub_sat:
1240 case Intrinsic::ssub_sat: {
1241 SaturatingInst *SI = cast<SaturatingInst>(II);
1242 Type *Ty = SI->getType();
1243 Value *Arg0 = SI->getLHS();
1244 Value *Arg1 = SI->getRHS();
1245
1246 // Make use of known overflow information.
1247 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
1248 Arg0, Arg1, SI);
1249 switch (OR) {
1250 case OverflowResult::MayOverflow:
1251 break;
1252 case OverflowResult::NeverOverflows:
1253 if (SI->isSigned())
1254 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
1255 else
1256 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
1257 case OverflowResult::AlwaysOverflowsLow: {
1258 unsigned BitWidth = Ty->getScalarSizeInBits();
1259 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
1260 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
1261 }
1262 case OverflowResult::AlwaysOverflowsHigh: {
1263 unsigned BitWidth = Ty->getScalarSizeInBits();
1264 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
1265 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
1266 }
1267 }
1268
1269 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
1270 Constant *C;
1271 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
1272 C->isNotMinSignedValue()) {
1273 Value *NegVal = ConstantExpr::getNeg(C);
1274 return replaceInstUsesWith(
1275 *II, Builder.CreateBinaryIntrinsic(
1276 Intrinsic::sadd_sat, Arg0, NegVal));
1277 }
1278
1279 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
1280 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
1281 // if Val and Val2 have the same sign
1282 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
1283 Value *X;
1284 const APInt *Val, *Val2;
1285 APInt NewVal;
1286 bool IsUnsigned =
1287 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
1288 if (Other->getIntrinsicID() == IID &&
1289 match(Arg1, m_APInt(Val)) &&
1290 match(Other->getArgOperand(0), m_Value(X)) &&
1291 match(Other->getArgOperand(1), m_APInt(Val2))) {
1292 if (IsUnsigned)
1293 NewVal = Val->uadd_sat(*Val2);
1294 else if (Val->isNonNegative() == Val2->isNonNegative()) {
1295 bool Overflow;
1296 NewVal = Val->sadd_ov(*Val2, Overflow);
1297 if (Overflow) {
1298 // Both adds together may add more than SignedMaxValue
1299 // without saturating the final result.
1300 break;
1301 }
1302 } else {
1303 // Cannot fold saturated addition with different signs.
1304 break;
1305 }
1306
1307 return replaceInstUsesWith(
1308 *II, Builder.CreateBinaryIntrinsic(
1309 IID, X, ConstantInt::get(II->getType(), NewVal)));
1310 }
1311 }
1312 break;
1313 }
1314
1315 case Intrinsic::minnum:
1316 case Intrinsic::maxnum:
1317 case Intrinsic::minimum:
1318 case Intrinsic::maximum: {
1319 Value *Arg0 = II->getArgOperand(0);
1320 Value *Arg1 = II->getArgOperand(1);
1321 Value *X, *Y;
1322 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
1323 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
1324 // If both operands are negated, invert the call and negate the result:
1325 // min(-X, -Y) --> -(max(X, Y))
1326 // max(-X, -Y) --> -(min(X, Y))
1327 Intrinsic::ID NewIID;
1328 switch (IID) {
1329 case Intrinsic::maxnum:
1330 NewIID = Intrinsic::minnum;
1331 break;
1332 case Intrinsic::minnum:
1333 NewIID = Intrinsic::maxnum;
1334 break;
1335 case Intrinsic::maximum:
1336 NewIID = Intrinsic::minimum;
1337 break;
1338 case Intrinsic::minimum:
1339 NewIID = Intrinsic::maximum;
1340 break;
1341 default:
1342 llvm_unreachable("unexpected intrinsic ID");
1343 }
1344 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
1345 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
1346 FNeg->copyIRFlags(II);
1347 return FNeg;
1348 }
1349
1350 // m(m(X, C2), C1) -> m(X, C)
1351 const APFloat *C1, *C2;
1352 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
1353 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
1354 ((match(M->getArgOperand(0), m_Value(X)) &&
1355 match(M->getArgOperand(1), m_APFloat(C2))) ||
1356 (match(M->getArgOperand(1), m_Value(X)) &&
1357 match(M->getArgOperand(0), m_APFloat(C2))))) {
1358 APFloat Res(0.0);
1359 switch (IID) {
1360 case Intrinsic::maxnum:
1361 Res = maxnum(*C1, *C2);
1362 break;
1363 case Intrinsic::minnum:
1364 Res = minnum(*C1, *C2);
1365 break;
1366 case Intrinsic::maximum:
1367 Res = maximum(*C1, *C2);
1368 break;
1369 case Intrinsic::minimum:
1370 Res = minimum(*C1, *C2);
1371 break;
1372 default:
1373 llvm_unreachable("unexpected intrinsic ID");
1374 }
1375 Instruction *NewCall = Builder.CreateBinaryIntrinsic(
1376 IID, X, ConstantFP::get(Arg0->getType(), Res), II);
1377 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
1378 // was a simplification (so Arg0 and its original flags could
1379 // propagate?)
1380 NewCall->andIRFlags(M);
1381 return replaceInstUsesWith(*II, NewCall);
1382 }
1383 }
1384
1385 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
1386 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
1387 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
1388 X->getType() == Y->getType()) {
1389 Value *NewCall =
1390 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
1391 return new FPExtInst(NewCall, II->getType());
1392 }
1393
1394 // max X, -X --> fabs X
1395 // min X, -X --> -(fabs X)
1396 // TODO: Remove one-use limitation? That is obviously better for max.
1397 // It would be an extra instruction for min (fnabs), but that is
1398 // still likely better for analysis and codegen.
1399 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
1400 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
1401 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
1402 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
1403 R = Builder.CreateFNegFMF(R, II);
1404 return replaceInstUsesWith(*II, R);
1405 }
1406
1407 break;
1408 }
1409 case Intrinsic::fmuladd: {
1410 // Canonicalize fast fmuladd to the separate fmul + fadd.
1411 if (II->isFast()) {
1412 BuilderTy::FastMathFlagGuard Guard(Builder);
1413 Builder.setFastMathFlags(II->getFastMathFlags());
1414 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
1415 II->getArgOperand(1));
1416 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
1417 Add->takeName(II);
1418 return replaceInstUsesWith(*II, Add);
1419 }
1420
1421 // Try to simplify the underlying FMul.
1422 if (Value *V = SimplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
1423 II->getFastMathFlags(),
1424 SQ.getWithInstruction(II))) {
1425 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1426 FAdd->copyFastMathFlags(II);
1427 return FAdd;
1428 }
1429
1430 LLVM_FALLTHROUGH;
1431 }
1432 case Intrinsic::fma: {
1433 // fma fneg(x), fneg(y), z -> fma x, y, z
1434 Value *Src0 = II->getArgOperand(0);
1435 Value *Src1 = II->getArgOperand(1);
1436 Value *X, *Y;
1437 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
1438 replaceOperand(*II, 0, X);
1439 replaceOperand(*II, 1, Y);
1440 return II;
1441 }
1442
1443 // fma fabs(x), fabs(x), z -> fma x, x, z
1444 if (match(Src0, m_FAbs(m_Value(X))) &&
1445 match(Src1, m_FAbs(m_Specific(X)))) {
1446 replaceOperand(*II, 0, X);
1447 replaceOperand(*II, 1, X);
1448 return II;
1449 }
1450
1451 // Try to simplify the underlying FMul. We can only apply simplifications
1452 // that do not require rounding.
1453 if (Value *V = SimplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
1454 II->getFastMathFlags(),
1455 SQ.getWithInstruction(II))) {
1456 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
1457 FAdd->copyFastMathFlags(II);
1458 return FAdd;
1459 }
1460
1461 // fma x, y, 0 -> fmul x, y
1462 // This is always valid for -0.0, but requires nsz for +0.0 as
1463 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
1464 if (match(II->getArgOperand(2), m_NegZeroFP()) ||
1465 (match(II->getArgOperand(2), m_PosZeroFP()) &&
1466 II->getFastMathFlags().noSignedZeros()))
1467 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
1468
1469 break;
1470 }
1471 case Intrinsic::copysign: {
1472 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
1473 if (SignBitMustBeZero(Sign, &TLI)) {
1474 // If we know that the sign argument is positive, reduce to FABS:
1475 // copysign Mag, +Sign --> fabs Mag
1476 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1477 return replaceInstUsesWith(*II, Fabs);
1478 }
1479 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
1480 const APFloat *C;
1481 if (match(Sign, m_APFloat(C)) && C->isNegative()) {
1482 // If we know that the sign argument is negative, reduce to FNABS:
1483 // copysign Mag, -Sign --> fneg (fabs Mag)
1484 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
1485 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
1486 }
1487
1488 // Propagate sign argument through nested calls:
1489 // copysign Mag, (copysign ?, X) --> copysign Mag, X
1490 Value *X;
1491 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
1492 return replaceOperand(*II, 1, X);
1493
1494 // Peek through changes of magnitude's sign-bit. This call rewrites those:
1495 // copysign (fabs X), Sign --> copysign X, Sign
1496 // copysign (fneg X), Sign --> copysign X, Sign
1497 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
1498 return replaceOperand(*II, 0, X);
1499
1500 break;
1501 }
1502 case Intrinsic::fabs: {
1503 Value *Cond, *TVal, *FVal;
1504 if (match(II->getArgOperand(0),
1505 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
1506 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
1507 if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
1508 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
1509 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
1510 return SelectInst::Create(Cond, AbsT, AbsF);
1511 }
1512 // fabs (select Cond, -FVal, FVal) --> fabs FVal
1513 if (match(TVal, m_FNeg(m_Specific(FVal))))
1514 return replaceOperand(*II, 0, FVal);
1515 // fabs (select Cond, TVal, -TVal) --> fabs TVal
1516 if (match(FVal, m_FNeg(m_Specific(TVal))))
1517 return replaceOperand(*II, 0, TVal);
1518 }
1519
1520 LLVM_FALLTHROUGH;
1521 }
1522 case Intrinsic::ceil:
1523 case Intrinsic::floor:
1524 case Intrinsic::round:
1525 case Intrinsic::roundeven:
1526 case Intrinsic::nearbyint:
1527 case Intrinsic::rint:
1528 case Intrinsic::trunc: {
1529 Value *ExtSrc;
1530 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
1531 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
1532 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
1533 return new FPExtInst(NarrowII, II->getType());
1534 }
1535 break;
1536 }
1537 case Intrinsic::cos:
1538 case Intrinsic::amdgcn_cos: {
1539 Value *X;
1540 Value *Src = II->getArgOperand(0);
1541 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
1542 // cos(-x) -> cos(x)
1543 // cos(fabs(x)) -> cos(x)
1544 return replaceOperand(*II, 0, X);
1545 }
1546 break;
1547 }
1548 case Intrinsic::sin: {
1549 Value *X;
1550 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
1551 // sin(-x) --> -sin(x)
1552 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
1553 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
1554 FNeg->copyFastMathFlags(II);
1555 return FNeg;
1556 }
1557 break;
1558 }
1559
1560 case Intrinsic::arm_neon_vtbl1:
1561 case Intrinsic::aarch64_neon_tbl1:
1562 if (Value *V = simplifyNeonTbl1(*II, Builder))
1563 return replaceInstUsesWith(*II, V);
1564 break;
1565
1566 case Intrinsic::arm_neon_vmulls:
1567 case Intrinsic::arm_neon_vmullu:
1568 case Intrinsic::aarch64_neon_smull:
1569 case Intrinsic::aarch64_neon_umull: {
1570 Value *Arg0 = II->getArgOperand(0);
1571 Value *Arg1 = II->getArgOperand(1);
1572
1573 // Handle mul by zero first:
1574 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
1575 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
1576 }
1577
1578 // Check for constant LHS & RHS - in this case we just simplify.
1579 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
1580 IID == Intrinsic::aarch64_neon_umull);
1581 VectorType *NewVT = cast<VectorType>(II->getType());
1582 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
1583 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
1584 CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
1585 CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
1586
1587 return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
1588 }
1589
1590 // Couldn't simplify - canonicalize constant to the RHS.
1591 std::swap(Arg0, Arg1);
1592 }
1593
1594 // Handle mul by one:
1595 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
1596 if (ConstantInt *Splat =
1597 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
1598 if (Splat->isOne())
1599 return CastInst::CreateIntegerCast(Arg0, II->getType(),
1600 /*isSigned=*/!Zext);
1601
1602 break;
1603 }
1604 case Intrinsic::arm_neon_aesd:
1605 case Intrinsic::arm_neon_aese:
1606 case Intrinsic::aarch64_crypto_aesd:
1607 case Intrinsic::aarch64_crypto_aese: {
1608 Value *DataArg = II->getArgOperand(0);
1609 Value *KeyArg = II->getArgOperand(1);
1610
1611 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
1612 Value *Data, *Key;
1613 if (match(KeyArg, m_ZeroInt()) &&
1614 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
1615 replaceOperand(*II, 0, Data);
1616 replaceOperand(*II, 1, Key);
1617 return II;
1618 }
1619 break;
1620 }
1621 case Intrinsic::hexagon_V6_vandvrt:
1622 case Intrinsic::hexagon_V6_vandvrt_128B: {
1623 // Simplify Q -> V -> Q conversion.
1624 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1625 Intrinsic::ID ID0 = Op0->getIntrinsicID();
1626 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
1627 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
1628 break;
1629 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
1630 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
1631 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
1632 // Check if every byte has common bits in Bytes and Mask.
1633 uint64_t C = Bytes1 & Mask1;
1634 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
1635 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
1636 }
1637 break;
1638 }
1639 case Intrinsic::stackrestore: {
1640 // If the save is right next to the restore, remove the restore. This can
1641 // happen when variable allocas are DCE'd.
1642 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
1643 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
1644 // Skip over debug info.
1645 if (SS->getNextNonDebugInstruction() == II) {
1646 return eraseInstFromFunction(CI);
1647 }
1648 }
1649 }
1650
1651 // Scan down this block to see if there is another stack restore in the
1652 // same block without an intervening call/alloca.
1653 BasicBlock::iterator BI(II);
1654 Instruction *TI = II->getParent()->getTerminator();
1655 bool CannotRemove = false;
1656 for (++BI; &*BI != TI; ++BI) {
1657 if (isa<AllocaInst>(BI)) {
1658 CannotRemove = true;
1659 break;
1660 }
1661 if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
1662 if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
1663 // If there is a stackrestore below this one, remove this one.
1664 if (II2->getIntrinsicID() == Intrinsic::stackrestore)
1665 return eraseInstFromFunction(CI);
1666
1667 // Bail if we cross over an intrinsic with side effects, such as
1668 // llvm.stacksave, or llvm.read_register.
1669 if (II2->mayHaveSideEffects()) {
1670 CannotRemove = true;
1671 break;
1672 }
1673 } else {
1674 // If we found a non-intrinsic call, we can't remove the stack
1675 // restore.
1676 CannotRemove = true;
1677 break;
1678 }
1679 }
1680 }
1681
1682 // If the stack restore is in a return, resume, or unwind block and if there
1683 // are no allocas or calls between the restore and the return, nuke the
1684 // restore.
1685 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
1686 return eraseInstFromFunction(CI);
1687 break;
1688 }
1689 case Intrinsic::lifetime_end:
1690 // Asan needs to poison memory to detect invalid access which is possible
1691 // even for empty lifetime range.
1692 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
1693 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
1694 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
1695 break;
1696
1697 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
1698 return I.getIntrinsicID() == Intrinsic::lifetime_start;
1699 }))
1700 return nullptr;
1701 break;
1702 case Intrinsic::assume: {
1703 Value *IIOperand = II->getArgOperand(0);
1704 SmallVector<OperandBundleDef, 4> OpBundles;
1705 II->getOperandBundlesAsDefs(OpBundles);
1706
1707 /// This will remove the boolean Condition from the assume given as
1708 /// argument and remove the assume if it becomes useless.
1709 /// always returns nullptr for use as a return values.
1710 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
1711 assert(isa<AssumeInst>(Assume));
1712 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
1713 return eraseInstFromFunction(CI);
1714 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
1715 return nullptr;
1716 };
1717 // Remove an assume if it is followed by an identical assume.
1718 // TODO: Do we need this? Unless there are conflicting assumptions, the
1719 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
1720 Instruction *Next = II->getNextNonDebugInstruction();
1721 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
1722 return RemoveConditionFromAssume(Next);
1723
1724 // Canonicalize assume(a && b) -> assume(a); assume(b);
1725 // Note: New assumption intrinsics created here are registered by
1726 // the InstCombineIRInserter object.
1727 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
1728 Value *AssumeIntrinsic = II->getCalledOperand();
1729 Value *A, *B;
1730 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
1731 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
1732 II->getName());
1733 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
1734 return eraseInstFromFunction(*II);
1735 }
1736 // assume(!(a || b)) -> assume(!a); assume(!b);
1737 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
1738 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1739 Builder.CreateNot(A), OpBundles, II->getName());
1740 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
1741 Builder.CreateNot(B), II->getName());
1742 return eraseInstFromFunction(*II);
1743 }
1744
1745 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
1746 // (if assume is valid at the load)
1747 CmpInst::Predicate Pred;
1748 Instruction *LHS;
1749 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
1750 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
1751 LHS->getType()->isPointerTy() &&
1752 isValidAssumeForContext(II, LHS, &DT)) {
1753 MDNode *MD = MDNode::get(II->getContext(), None);
1754 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
1755 return RemoveConditionFromAssume(II);
1756
1757 // TODO: apply nonnull return attributes to calls and invokes
1758 // TODO: apply range metadata for range check patterns?
1759 }
1760
1761 // Convert nonnull assume like:
1762 // %A = icmp ne i32* %PTR, null
1763 // call void @llvm.assume(i1 %A)
1764 // into
1765 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
1766 if (EnableKnowledgeRetention &&
1767 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
1768 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
1769 if (auto *Replacement = buildAssumeFromKnowledge(
1770 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
1771
1772 Replacement->insertBefore(Next);
1773 AC.registerAssumption(Replacement);
1774 return RemoveConditionFromAssume(II);
1775 }
1776 }
1777
1778 // Convert alignment assume like:
1779 // %B = ptrtoint i32* %A to i64
1780 // %C = and i64 %B, Constant
1781 // %D = icmp eq i64 %C, 0
1782 // call void @llvm.assume(i1 %D)
1783 // into
1784 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
1785 uint64_t AlignMask;
1786 if (EnableKnowledgeRetention &&
1787 match(IIOperand,
1788 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
1789 m_Zero())) &&
1790 Pred == CmpInst::ICMP_EQ) {
1791 if (isPowerOf2_64(AlignMask + 1)) {
1792 uint64_t Offset = 0;
1793 match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
1794 if (match(A, m_PtrToInt(m_Value(A)))) {
1795 /// Note: this doesn't preserve the offset information but merges
1796 /// offset and alignment.
1797 /// TODO: we can generate a GEP instead of merging the alignment with
1798 /// the offset.
1799 RetainedKnowledge RK{Attribute::Alignment,
1800 (unsigned)MinAlign(Offset, AlignMask + 1), A};
1801 if (auto *Replacement =
1802 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
1803
1804 Replacement->insertAfter(II);
1805 AC.registerAssumption(Replacement);
1806 }
1807 return RemoveConditionFromAssume(II);
1808 }
1809 }
1810 }
1811
1812 /// Canonicalize Knowledge in operand bundles.
1813 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
1814 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
1815 auto &BOI = II->bundle_op_info_begin()[Idx];
1816 RetainedKnowledge RK =
1817 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
1818 if (BOI.End - BOI.Begin > 2)
1819 continue; // Prevent reducing knowledge in an align with offset since
1820 // extracting a RetainedKnowledge form them looses offset
1821 // information
1822 RetainedKnowledge CanonRK =
1823 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
1824 &getAssumptionCache(),
1825 &getDominatorTree());
1826 if (CanonRK == RK)
1827 continue;
1828 if (!CanonRK) {
1829 if (BOI.End - BOI.Begin > 0) {
1830 Worklist.pushValue(II->op_begin()[BOI.Begin]);
1831 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
1832 }
1833 continue;
1834 }
1835 assert(RK.AttrKind == CanonRK.AttrKind);
1836 if (BOI.End - BOI.Begin > 0)
1837 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
1838 if (BOI.End - BOI.Begin > 1)
1839 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
1840 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
1841 if (RK.WasOn)
1842 Worklist.pushValue(RK.WasOn);
1843 return II;
1844 }
1845 }
1846
1847 // If there is a dominating assume with the same condition as this one,
1848 // then this one is redundant, and should be removed.
1849 KnownBits Known(1);
1850 computeKnownBits(IIOperand, Known, 0, II);
1851 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
1852 return eraseInstFromFunction(*II);
1853
1854 // Update the cache of affected values for this assumption (we might be
1855 // here because we just simplified the condition).
1856 AC.updateAffectedValues(cast<AssumeInst>(II));
1857 break;
1858 }
1859 case Intrinsic::experimental_guard: {
1860 // Is this guard followed by another guard? We scan forward over a small
1861 // fixed window of instructions to handle common cases with conditions
1862 // computed between guards.
1863 Instruction *NextInst = II->getNextNonDebugInstruction();
1864 for (unsigned i = 0; i < GuardWideningWindow; i++) {
1865 // Note: Using context-free form to avoid compile time blow up
1866 if (!isSafeToSpeculativelyExecute(NextInst))
1867 break;
1868 NextInst = NextInst->getNextNonDebugInstruction();
1869 }
1870 Value *NextCond = nullptr;
1871 if (match(NextInst,
1872 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
1873 Value *CurrCond = II->getArgOperand(0);
1874
1875 // Remove a guard that it is immediately preceded by an identical guard.
1876 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
1877 if (CurrCond != NextCond) {
1878 Instruction *MoveI = II->getNextNonDebugInstruction();
1879 while (MoveI != NextInst) {
1880 auto *Temp = MoveI;
1881 MoveI = MoveI->getNextNonDebugInstruction();
1882 Temp->moveBefore(II);
1883 }
1884 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
1885 }
1886 eraseInstFromFunction(*NextInst);
1887 return II;
1888 }
1889 break;
1890 }
1891 case Intrinsic::experimental_vector_insert: {
1892 Value *Vec = II->getArgOperand(0);
1893 Value *SubVec = II->getArgOperand(1);
1894 Value *Idx = II->getArgOperand(2);
1895 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
1896 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
1897 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
1898
1899 // Only canonicalize if the destination vector, Vec, and SubVec are all
1900 // fixed vectors.
1901 if (DstTy && VecTy && SubVecTy) {
1902 unsigned DstNumElts = DstTy->getNumElements();
1903 unsigned VecNumElts = VecTy->getNumElements();
1904 unsigned SubVecNumElts = SubVecTy->getNumElements();
1905 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
1906
1907 // An insert that entirely overwrites Vec with SubVec is a nop.
1908 if (VecNumElts == SubVecNumElts)
1909 return replaceInstUsesWith(CI, SubVec);
1910
1911 // Widen SubVec into a vector of the same width as Vec, since
1912 // shufflevector requires the two input vectors to be the same width.
1913 // Elements beyond the bounds of SubVec within the widened vector are
1914 // undefined.
1915 SmallVector<int, 8> WidenMask;
1916 unsigned i;
1917 for (i = 0; i != SubVecNumElts; ++i)
1918 WidenMask.push_back(i);
1919 for (; i != VecNumElts; ++i)
1920 WidenMask.push_back(UndefMaskElem);
1921
1922 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
1923
1924 SmallVector<int, 8> Mask;
1925 for (unsigned i = 0; i != IdxN; ++i)
1926 Mask.push_back(i);
1927 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
1928 Mask.push_back(i);
1929 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
1930 Mask.push_back(i);
1931
1932 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
1933 return replaceInstUsesWith(CI, Shuffle);
1934 }
1935 break;
1936 }
1937 case Intrinsic::experimental_vector_extract: {
1938 Value *Vec = II->getArgOperand(0);
1939 Value *Idx = II->getArgOperand(1);
1940
1941 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
1942 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
1943
1944 // Only canonicalize if the the destination vector and Vec are fixed
1945 // vectors.
1946 if (DstTy && VecTy) {
1947 unsigned DstNumElts = DstTy->getNumElements();
1948 unsigned VecNumElts = VecTy->getNumElements();
1949 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
1950
1951 // Extracting the entirety of Vec is a nop.
1952 if (VecNumElts == DstNumElts) {
1953 replaceInstUsesWith(CI, Vec);
1954 return eraseInstFromFunction(CI);
1955 }
1956
1957 SmallVector<int, 8> Mask;
1958 for (unsigned i = 0; i != DstNumElts; ++i)
1959 Mask.push_back(IdxN + i);
1960
1961 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
1962 return replaceInstUsesWith(CI, Shuffle);
1963 }
1964 break;
1965 }
1966 case Intrinsic::vector_reduce_or:
1967 case Intrinsic::vector_reduce_and: {
1968 // Canonicalize logical or/and reductions:
1969 // Or reduction for i1 is represented as:
1970 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
1971 // %res = cmp ne iReduxWidth %val, 0
1972 // And reduction for i1 is represented as:
1973 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
1974 // %res = cmp eq iReduxWidth %val, 11111
1975 Value *Arg = II->getArgOperand(0);
1976 Type *RetTy = II->getType();
1977 if (RetTy == Builder.getInt1Ty())
1978 if (auto *FVTy = dyn_cast<FixedVectorType>(Arg->getType())) {
1979 Value *Res = Builder.CreateBitCast(
1980 Arg, Builder.getIntNTy(FVTy->getNumElements()));
1981 if (IID == Intrinsic::vector_reduce_and) {
1982 Res = Builder.CreateICmpEQ(
1983 Res, ConstantInt::getAllOnesValue(Res->getType()));
1984 } else {
1985 assert(IID == Intrinsic::vector_reduce_or &&
1986 "Expected or reduction.");
1987 Res = Builder.CreateIsNotNull(Res);
1988 }
1989 return replaceInstUsesWith(CI, Res);
1990 }
1991 LLVM_FALLTHROUGH;
1992 }
1993 case Intrinsic::vector_reduce_add: {
1994 if (IID == Intrinsic::vector_reduce_add) {
1995 // Convert vector_reduce_add(ZExt(<n x i1>)) to
1996 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
1997 // Convert vector_reduce_add(SExt(<n x i1>)) to
1998 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
1999 // Convert vector_reduce_add(<n x i1>) to
2000 // Trunc(ctpop(bitcast <n x i1> to in)).
2001 Value *Arg = II->getArgOperand(0);
2002 Value *Vect;
2003 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
2004 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
2005 if (FTy->getElementType() == Builder.getInt1Ty()) {
2006 Value *V = Builder.CreateBitCast(
2007 Vect, Builder.getIntNTy(FTy->getNumElements()));
2008 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
2009 if (Res->getType() != II->getType())
2010 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
2011 if (Arg != Vect &&
2012 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
2013 Res = Builder.CreateNeg(Res);
2014 return replaceInstUsesWith(CI, Res);
2015 }
2016 }
2017 }
2018 LLVM_FALLTHROUGH;
2019 }
2020 case Intrinsic::vector_reduce_mul:
2021 case Intrinsic::vector_reduce_xor:
2022 case Intrinsic::vector_reduce_umax:
2023 case Intrinsic::vector_reduce_umin:
2024 case Intrinsic::vector_reduce_smax:
2025 case Intrinsic::vector_reduce_smin:
2026 case Intrinsic::vector_reduce_fmax:
2027 case Intrinsic::vector_reduce_fmin:
2028 case Intrinsic::vector_reduce_fadd:
2029 case Intrinsic::vector_reduce_fmul: {
2030 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
2031 IID != Intrinsic::vector_reduce_fmul) ||
2032 II->hasAllowReassoc();
2033 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
2034 IID == Intrinsic::vector_reduce_fmul)
2035 ? 1
2036 : 0;
2037 Value *Arg = II->getArgOperand(ArgIdx);
2038 Value *V;
2039 ArrayRef<int> Mask;
2040 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
2041 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
2042 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
2043 break;
2044 int Sz = Mask.size();
2045 SmallBitVector UsedIndices(Sz);
2046 for (int Idx : Mask) {
2047 if (Idx == UndefMaskElem || UsedIndices.test(Idx))
2048 break;
2049 UsedIndices.set(Idx);
2050 }
2051 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
2052 // other changes.
2053 if (UsedIndices.all()) {
2054 replaceUse(II->getOperandUse(ArgIdx), V);
2055 return nullptr;
2056 }
2057 break;
2058 }
2059 default: {
2060 // Handle target specific intrinsics
2061 Optional<Instruction *> V = targetInstCombineIntrinsic(*II);
2062 if (V.hasValue())
2063 return V.getValue();
2064 break;
2065 }
2066 }
2067 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
2068 // context, so it is handled in visitCallBase and we should trigger it.
2069 return visitCallBase(*II);
2070 }
2071
2072 // Fence instruction simplification
visitFenceInst(FenceInst & FI)2073 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
2074 // Remove identical consecutive fences.
2075 Instruction *Next = FI.getNextNonDebugInstruction();
2076 if (auto *NFI = dyn_cast<FenceInst>(Next))
2077 if (FI.isIdenticalTo(NFI))
2078 return eraseInstFromFunction(FI);
2079 return nullptr;
2080 }
2081
2082 // InvokeInst simplification
visitInvokeInst(InvokeInst & II)2083 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
2084 return visitCallBase(II);
2085 }
2086
2087 // CallBrInst simplification
visitCallBrInst(CallBrInst & CBI)2088 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
2089 return visitCallBase(CBI);
2090 }
2091
2092 /// If this cast does not affect the value passed through the varargs area, we
2093 /// can eliminate the use of the cast.
isSafeToEliminateVarargsCast(const CallBase & Call,const DataLayout & DL,const CastInst * const CI,const int ix)2094 static bool isSafeToEliminateVarargsCast(const CallBase &Call,
2095 const DataLayout &DL,
2096 const CastInst *const CI,
2097 const int ix) {
2098 if (!CI->isLosslessCast())
2099 return false;
2100
2101 // If this is a GC intrinsic, avoid munging types. We need types for
2102 // statepoint reconstruction in SelectionDAG.
2103 // TODO: This is probably something which should be expanded to all
2104 // intrinsics since the entire point of intrinsics is that
2105 // they are understandable by the optimizer.
2106 if (isa<GCStatepointInst>(Call) || isa<GCRelocateInst>(Call) ||
2107 isa<GCResultInst>(Call))
2108 return false;
2109
2110 // Opaque pointers are compatible with any byval types.
2111 PointerType *SrcTy = cast<PointerType>(CI->getOperand(0)->getType());
2112 if (SrcTy->isOpaque())
2113 return true;
2114
2115 // The size of ByVal or InAlloca arguments is derived from the type, so we
2116 // can't change to a type with a different size. If the size were
2117 // passed explicitly we could avoid this check.
2118 if (!Call.isPassPointeeByValueArgument(ix))
2119 return true;
2120
2121 // The transform currently only handles type replacement for byval, not other
2122 // type-carrying attributes.
2123 if (!Call.isByValArgument(ix))
2124 return false;
2125
2126 Type *SrcElemTy = SrcTy->getElementType();
2127 Type *DstElemTy = Call.getParamByValType(ix);
2128 if (!SrcElemTy->isSized() || !DstElemTy->isSized())
2129 return false;
2130 if (DL.getTypeAllocSize(SrcElemTy) != DL.getTypeAllocSize(DstElemTy))
2131 return false;
2132 return true;
2133 }
2134
tryOptimizeCall(CallInst * CI)2135 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
2136 if (!CI->getCalledFunction()) return nullptr;
2137
2138 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
2139 replaceInstUsesWith(*From, With);
2140 };
2141 auto InstCombineErase = [this](Instruction *I) {
2142 eraseInstFromFunction(*I);
2143 };
2144 LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
2145 InstCombineErase);
2146 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
2147 ++NumSimplified;
2148 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
2149 }
2150
2151 return nullptr;
2152 }
2153
findInitTrampolineFromAlloca(Value * TrampMem)2154 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
2155 // Strip off at most one level of pointer casts, looking for an alloca. This
2156 // is good enough in practice and simpler than handling any number of casts.
2157 Value *Underlying = TrampMem->stripPointerCasts();
2158 if (Underlying != TrampMem &&
2159 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
2160 return nullptr;
2161 if (!isa<AllocaInst>(Underlying))
2162 return nullptr;
2163
2164 IntrinsicInst *InitTrampoline = nullptr;
2165 for (User *U : TrampMem->users()) {
2166 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2167 if (!II)
2168 return nullptr;
2169 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
2170 if (InitTrampoline)
2171 // More than one init_trampoline writes to this value. Give up.
2172 return nullptr;
2173 InitTrampoline = II;
2174 continue;
2175 }
2176 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
2177 // Allow any number of calls to adjust.trampoline.
2178 continue;
2179 return nullptr;
2180 }
2181
2182 // No call to init.trampoline found.
2183 if (!InitTrampoline)
2184 return nullptr;
2185
2186 // Check that the alloca is being used in the expected way.
2187 if (InitTrampoline->getOperand(0) != TrampMem)
2188 return nullptr;
2189
2190 return InitTrampoline;
2191 }
2192
findInitTrampolineFromBB(IntrinsicInst * AdjustTramp,Value * TrampMem)2193 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
2194 Value *TrampMem) {
2195 // Visit all the previous instructions in the basic block, and try to find a
2196 // init.trampoline which has a direct path to the adjust.trampoline.
2197 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
2198 E = AdjustTramp->getParent()->begin();
2199 I != E;) {
2200 Instruction *Inst = &*--I;
2201 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2202 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
2203 II->getOperand(0) == TrampMem)
2204 return II;
2205 if (Inst->mayWriteToMemory())
2206 return nullptr;
2207 }
2208 return nullptr;
2209 }
2210
2211 // Given a call to llvm.adjust.trampoline, find and return the corresponding
2212 // call to llvm.init.trampoline if the call to the trampoline can be optimized
2213 // to a direct call to a function. Otherwise return NULL.
findInitTrampoline(Value * Callee)2214 static IntrinsicInst *findInitTrampoline(Value *Callee) {
2215 Callee = Callee->stripPointerCasts();
2216 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
2217 if (!AdjustTramp ||
2218 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
2219 return nullptr;
2220
2221 Value *TrampMem = AdjustTramp->getOperand(0);
2222
2223 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
2224 return IT;
2225 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
2226 return IT;
2227 return nullptr;
2228 }
2229
annotateAnyAllocSite(CallBase & Call,const TargetLibraryInfo * TLI)2230 void InstCombinerImpl::annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
2231 unsigned NumArgs = Call.getNumArgOperands();
2232 ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
2233 ConstantInt *Op1C =
2234 (NumArgs == 1) ? nullptr : dyn_cast<ConstantInt>(Call.getOperand(1));
2235 // Bail out if the allocation size is zero (or an invalid alignment of zero
2236 // with aligned_alloc).
2237 if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
2238 return;
2239
2240 if (isMallocLikeFn(&Call, TLI) && Op0C) {
2241 if (isOpNewLikeFn(&Call, TLI))
2242 Call.addAttribute(AttributeList::ReturnIndex,
2243 Attribute::getWithDereferenceableBytes(
2244 Call.getContext(), Op0C->getZExtValue()));
2245 else
2246 Call.addAttribute(AttributeList::ReturnIndex,
2247 Attribute::getWithDereferenceableOrNullBytes(
2248 Call.getContext(), Op0C->getZExtValue()));
2249 } else if (isAlignedAllocLikeFn(&Call, TLI)) {
2250 if (Op1C)
2251 Call.addAttribute(AttributeList::ReturnIndex,
2252 Attribute::getWithDereferenceableOrNullBytes(
2253 Call.getContext(), Op1C->getZExtValue()));
2254 // Add alignment attribute if alignment is a power of two constant.
2255 if (Op0C && Op0C->getValue().ult(llvm::Value::MaximumAlignment) &&
2256 isKnownNonZero(Call.getOperand(1), DL, 0, &AC, &Call, &DT)) {
2257 uint64_t AlignmentVal = Op0C->getZExtValue();
2258 if (llvm::isPowerOf2_64(AlignmentVal)) {
2259 Call.removeAttribute(AttributeList::ReturnIndex, Attribute::Alignment);
2260 Call.addAttribute(AttributeList::ReturnIndex,
2261 Attribute::getWithAlignment(Call.getContext(),
2262 Align(AlignmentVal)));
2263 }
2264 }
2265 } else if (isReallocLikeFn(&Call, TLI) && Op1C) {
2266 Call.addAttribute(AttributeList::ReturnIndex,
2267 Attribute::getWithDereferenceableOrNullBytes(
2268 Call.getContext(), Op1C->getZExtValue()));
2269 } else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
2270 bool Overflow;
2271 const APInt &N = Op0C->getValue();
2272 APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
2273 if (!Overflow)
2274 Call.addAttribute(AttributeList::ReturnIndex,
2275 Attribute::getWithDereferenceableOrNullBytes(
2276 Call.getContext(), Size.getZExtValue()));
2277 } else if (isStrdupLikeFn(&Call, TLI)) {
2278 uint64_t Len = GetStringLength(Call.getOperand(0));
2279 if (Len) {
2280 // strdup
2281 if (NumArgs == 1)
2282 Call.addAttribute(AttributeList::ReturnIndex,
2283 Attribute::getWithDereferenceableOrNullBytes(
2284 Call.getContext(), Len));
2285 // strndup
2286 else if (NumArgs == 2 && Op1C)
2287 Call.addAttribute(
2288 AttributeList::ReturnIndex,
2289 Attribute::getWithDereferenceableOrNullBytes(
2290 Call.getContext(), std::min(Len, Op1C->getZExtValue() + 1)));
2291 }
2292 }
2293 }
2294
2295 /// Improvements for call, callbr and invoke instructions.
visitCallBase(CallBase & Call)2296 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
2297 if (isAllocationFn(&Call, &TLI))
2298 annotateAnyAllocSite(Call, &TLI);
2299
2300 bool Changed = false;
2301
2302 // Mark any parameters that are known to be non-null with the nonnull
2303 // attribute. This is helpful for inlining calls to functions with null
2304 // checks on their arguments.
2305 SmallVector<unsigned, 4> ArgNos;
2306 unsigned ArgNo = 0;
2307
2308 for (Value *V : Call.args()) {
2309 if (V->getType()->isPointerTy() &&
2310 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
2311 isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
2312 ArgNos.push_back(ArgNo);
2313 ArgNo++;
2314 }
2315
2316 assert(ArgNo == Call.arg_size() && "sanity check");
2317
2318 if (!ArgNos.empty()) {
2319 AttributeList AS = Call.getAttributes();
2320 LLVMContext &Ctx = Call.getContext();
2321 AS = AS.addParamAttribute(Ctx, ArgNos,
2322 Attribute::get(Ctx, Attribute::NonNull));
2323 Call.setAttributes(AS);
2324 Changed = true;
2325 }
2326
2327 // If the callee is a pointer to a function, attempt to move any casts to the
2328 // arguments of the call/callbr/invoke.
2329 Value *Callee = Call.getCalledOperand();
2330 if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
2331 return nullptr;
2332
2333 if (Function *CalleeF = dyn_cast<Function>(Callee)) {
2334 // Remove the convergent attr on calls when the callee is not convergent.
2335 if (Call.isConvergent() && !CalleeF->isConvergent() &&
2336 !CalleeF->isIntrinsic()) {
2337 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
2338 << "\n");
2339 Call.setNotConvergent();
2340 return &Call;
2341 }
2342
2343 // If the call and callee calling conventions don't match, and neither one
2344 // of the calling conventions is compatible with C calling convention
2345 // this call must be unreachable, as the call is undefined.
2346 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
2347 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
2348 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
2349 !(Call.getCallingConv() == llvm::CallingConv::C &&
2350 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
2351 // Only do this for calls to a function with a body. A prototype may
2352 // not actually end up matching the implementation's calling conv for a
2353 // variety of reasons (e.g. it may be written in assembly).
2354 !CalleeF->isDeclaration()) {
2355 Instruction *OldCall = &Call;
2356 CreateNonTerminatorUnreachable(OldCall);
2357 // If OldCall does not return void then replaceInstUsesWith poison.
2358 // This allows ValueHandlers and custom metadata to adjust itself.
2359 if (!OldCall->getType()->isVoidTy())
2360 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
2361 if (isa<CallInst>(OldCall))
2362 return eraseInstFromFunction(*OldCall);
2363
2364 // We cannot remove an invoke or a callbr, because it would change thexi
2365 // CFG, just change the callee to a null pointer.
2366 cast<CallBase>(OldCall)->setCalledFunction(
2367 CalleeF->getFunctionType(),
2368 Constant::getNullValue(CalleeF->getType()));
2369 return nullptr;
2370 }
2371 }
2372
2373 // Calling a null function pointer is undefined if a null address isn't
2374 // dereferenceable.
2375 if ((isa<ConstantPointerNull>(Callee) &&
2376 !NullPointerIsDefined(Call.getFunction())) ||
2377 isa<UndefValue>(Callee)) {
2378 // If Call does not return void then replaceInstUsesWith poison.
2379 // This allows ValueHandlers and custom metadata to adjust itself.
2380 if (!Call.getType()->isVoidTy())
2381 replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
2382
2383 if (Call.isTerminator()) {
2384 // Can't remove an invoke or callbr because we cannot change the CFG.
2385 return nullptr;
2386 }
2387
2388 // This instruction is not reachable, just remove it.
2389 CreateNonTerminatorUnreachable(&Call);
2390 return eraseInstFromFunction(Call);
2391 }
2392
2393 if (IntrinsicInst *II = findInitTrampoline(Callee))
2394 return transformCallThroughTrampoline(Call, *II);
2395
2396 // TODO: Drop this transform once opaque pointer transition is done.
2397 FunctionType *FTy = Call.getFunctionType();
2398 if (FTy->isVarArg()) {
2399 int ix = FTy->getNumParams();
2400 // See if we can optimize any arguments passed through the varargs area of
2401 // the call.
2402 for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
2403 I != E; ++I, ++ix) {
2404 CastInst *CI = dyn_cast<CastInst>(*I);
2405 if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
2406 replaceUse(*I, CI->getOperand(0));
2407
2408 // Update the byval type to match the pointer type.
2409 // Not necessary for opaque pointers.
2410 PointerType *NewTy = cast<PointerType>(CI->getOperand(0)->getType());
2411 if (!NewTy->isOpaque() && Call.isByValArgument(ix)) {
2412 Call.removeParamAttr(ix, Attribute::ByVal);
2413 Call.addParamAttr(
2414 ix, Attribute::getWithByValType(
2415 Call.getContext(), NewTy->getElementType()));
2416 }
2417 Changed = true;
2418 }
2419 }
2420 }
2421
2422 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
2423 InlineAsm *IA = cast<InlineAsm>(Callee);
2424 if (!IA->canThrow()) {
2425 // Normal inline asm calls cannot throw - mark them
2426 // 'nounwind'.
2427 Call.setDoesNotThrow();
2428 Changed = true;
2429 }
2430 }
2431
2432 // Try to optimize the call if possible, we require DataLayout for most of
2433 // this. None of these calls are seen as possibly dead so go ahead and
2434 // delete the instruction now.
2435 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
2436 Instruction *I = tryOptimizeCall(CI);
2437 // If we changed something return the result, etc. Otherwise let
2438 // the fallthrough check.
2439 if (I) return eraseInstFromFunction(*I);
2440 }
2441
2442 if (!Call.use_empty() && !Call.isMustTailCall())
2443 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
2444 Type *CallTy = Call.getType();
2445 Type *RetArgTy = ReturnedArg->getType();
2446 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
2447 return replaceInstUsesWith(
2448 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
2449 }
2450
2451 if (isAllocLikeFn(&Call, &TLI))
2452 return visitAllocSite(Call);
2453
2454 // Handle intrinsics which can be used in both call and invoke context.
2455 switch (Call.getIntrinsicID()) {
2456 case Intrinsic::experimental_gc_statepoint: {
2457 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
2458 SmallPtrSet<Value *, 32> LiveGcValues;
2459 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2460 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2461
2462 // Remove the relocation if unused.
2463 if (GCR.use_empty()) {
2464 eraseInstFromFunction(GCR);
2465 continue;
2466 }
2467
2468 Value *DerivedPtr = GCR.getDerivedPtr();
2469 Value *BasePtr = GCR.getBasePtr();
2470
2471 // Undef is undef, even after relocation.
2472 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
2473 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
2474 eraseInstFromFunction(GCR);
2475 continue;
2476 }
2477
2478 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
2479 // The relocation of null will be null for most any collector.
2480 // TODO: provide a hook for this in GCStrategy. There might be some
2481 // weird collector this property does not hold for.
2482 if (isa<ConstantPointerNull>(DerivedPtr)) {
2483 // Use null-pointer of gc_relocate's type to replace it.
2484 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
2485 eraseInstFromFunction(GCR);
2486 continue;
2487 }
2488
2489 // isKnownNonNull -> nonnull attribute
2490 if (!GCR.hasRetAttr(Attribute::NonNull) &&
2491 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
2492 GCR.addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
2493 // We discovered new fact, re-check users.
2494 Worklist.pushUsersToWorkList(GCR);
2495 }
2496 }
2497
2498 // If we have two copies of the same pointer in the statepoint argument
2499 // list, canonicalize to one. This may let us common gc.relocates.
2500 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
2501 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
2502 auto *OpIntTy = GCR.getOperand(2)->getType();
2503 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
2504 }
2505
2506 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
2507 // Canonicalize on the type from the uses to the defs
2508
2509 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
2510 LiveGcValues.insert(BasePtr);
2511 LiveGcValues.insert(DerivedPtr);
2512 }
2513 Optional<OperandBundleUse> Bundle =
2514 GCSP.getOperandBundle(LLVMContext::OB_gc_live);
2515 unsigned NumOfGCLives = LiveGcValues.size();
2516 if (!Bundle.hasValue() || NumOfGCLives == Bundle->Inputs.size())
2517 break;
2518 // We can reduce the size of gc live bundle.
2519 DenseMap<Value *, unsigned> Val2Idx;
2520 std::vector<Value *> NewLiveGc;
2521 for (unsigned I = 0, E = Bundle->Inputs.size(); I < E; ++I) {
2522 Value *V = Bundle->Inputs[I];
2523 if (Val2Idx.count(V))
2524 continue;
2525 if (LiveGcValues.count(V)) {
2526 Val2Idx[V] = NewLiveGc.size();
2527 NewLiveGc.push_back(V);
2528 } else
2529 Val2Idx[V] = NumOfGCLives;
2530 }
2531 // Update all gc.relocates
2532 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
2533 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
2534 Value *BasePtr = GCR.getBasePtr();
2535 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
2536 "Missed live gc for base pointer");
2537 auto *OpIntTy1 = GCR.getOperand(1)->getType();
2538 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
2539 Value *DerivedPtr = GCR.getDerivedPtr();
2540 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
2541 "Missed live gc for derived pointer");
2542 auto *OpIntTy2 = GCR.getOperand(2)->getType();
2543 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
2544 }
2545 // Create new statepoint instruction.
2546 OperandBundleDef NewBundle("gc-live", NewLiveGc);
2547 return CallBase::Create(&Call, NewBundle);
2548 }
2549 default: { break; }
2550 }
2551
2552 return Changed ? &Call : nullptr;
2553 }
2554
2555 /// If the callee is a constexpr cast of a function, attempt to move the cast to
2556 /// the arguments of the call/callbr/invoke.
transformConstExprCastCall(CallBase & Call)2557 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
2558 auto *Callee =
2559 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
2560 if (!Callee)
2561 return false;
2562
2563 // If this is a call to a thunk function, don't remove the cast. Thunks are
2564 // used to transparently forward all incoming parameters and outgoing return
2565 // values, so it's important to leave the cast in place.
2566 if (Callee->hasFnAttribute("thunk"))
2567 return false;
2568
2569 // If this is a musttail call, the callee's prototype must match the caller's
2570 // prototype with the exception of pointee types. The code below doesn't
2571 // implement that, so we can't do this transform.
2572 // TODO: Do the transform if it only requires adding pointer casts.
2573 if (Call.isMustTailCall())
2574 return false;
2575
2576 Instruction *Caller = &Call;
2577 const AttributeList &CallerPAL = Call.getAttributes();
2578
2579 // Okay, this is a cast from a function to a different type. Unless doing so
2580 // would cause a type conversion of one of our arguments, change this call to
2581 // be a direct call with arguments casted to the appropriate types.
2582 FunctionType *FT = Callee->getFunctionType();
2583 Type *OldRetTy = Caller->getType();
2584 Type *NewRetTy = FT->getReturnType();
2585
2586 // Check to see if we are changing the return type...
2587 if (OldRetTy != NewRetTy) {
2588
2589 if (NewRetTy->isStructTy())
2590 return false; // TODO: Handle multiple return values.
2591
2592 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
2593 if (Callee->isDeclaration())
2594 return false; // Cannot transform this return value.
2595
2596 if (!Caller->use_empty() &&
2597 // void -> non-void is handled specially
2598 !NewRetTy->isVoidTy())
2599 return false; // Cannot transform this return value.
2600 }
2601
2602 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
2603 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
2604 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
2605 return false; // Attribute not compatible with transformed value.
2606 }
2607
2608 // If the callbase is an invoke/callbr instruction, and the return value is
2609 // used by a PHI node in a successor, we cannot change the return type of
2610 // the call because there is no place to put the cast instruction (without
2611 // breaking the critical edge). Bail out in this case.
2612 if (!Caller->use_empty()) {
2613 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
2614 for (User *U : II->users())
2615 if (PHINode *PN = dyn_cast<PHINode>(U))
2616 if (PN->getParent() == II->getNormalDest() ||
2617 PN->getParent() == II->getUnwindDest())
2618 return false;
2619 // FIXME: Be conservative for callbr to avoid a quadratic search.
2620 if (isa<CallBrInst>(Caller))
2621 return false;
2622 }
2623 }
2624
2625 unsigned NumActualArgs = Call.arg_size();
2626 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
2627
2628 // Prevent us turning:
2629 // declare void @takes_i32_inalloca(i32* inalloca)
2630 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
2631 //
2632 // into:
2633 // call void @takes_i32_inalloca(i32* null)
2634 //
2635 // Similarly, avoid folding away bitcasts of byval calls.
2636 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
2637 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated) ||
2638 Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
2639 return false;
2640
2641 auto AI = Call.arg_begin();
2642 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
2643 Type *ParamTy = FT->getParamType(i);
2644 Type *ActTy = (*AI)->getType();
2645
2646 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
2647 return false; // Cannot transform this parameter value.
2648
2649 if (AttrBuilder(CallerPAL.getParamAttributes(i))
2650 .overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
2651 return false; // Attribute not compatible with transformed value.
2652
2653 if (Call.isInAllocaArgument(i))
2654 return false; // Cannot transform to and from inalloca.
2655
2656 if (CallerPAL.hasParamAttribute(i, Attribute::SwiftError))
2657 return false;
2658
2659 // If the parameter is passed as a byval argument, then we have to have a
2660 // sized type and the sized type has to have the same size as the old type.
2661 if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
2662 PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
2663 if (!ParamPTy || !ParamPTy->getElementType()->isSized())
2664 return false;
2665
2666 Type *CurElTy = Call.getParamByValType(i);
2667 if (DL.getTypeAllocSize(CurElTy) !=
2668 DL.getTypeAllocSize(ParamPTy->getElementType()))
2669 return false;
2670 }
2671 }
2672
2673 if (Callee->isDeclaration()) {
2674 // Do not delete arguments unless we have a function body.
2675 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
2676 return false;
2677
2678 // If the callee is just a declaration, don't change the varargsness of the
2679 // call. We don't want to introduce a varargs call where one doesn't
2680 // already exist.
2681 PointerType *APTy = cast<PointerType>(Call.getCalledOperand()->getType());
2682 if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
2683 return false;
2684
2685 // If both the callee and the cast type are varargs, we still have to make
2686 // sure the number of fixed parameters are the same or we have the same
2687 // ABI issues as if we introduce a varargs call.
2688 if (FT->isVarArg() &&
2689 cast<FunctionType>(APTy->getElementType())->isVarArg() &&
2690 FT->getNumParams() !=
2691 cast<FunctionType>(APTy->getElementType())->getNumParams())
2692 return false;
2693 }
2694
2695 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
2696 !CallerPAL.isEmpty()) {
2697 // In this case we have more arguments than the new function type, but we
2698 // won't be dropping them. Check that these extra arguments have attributes
2699 // that are compatible with being a vararg call argument.
2700 unsigned SRetIdx;
2701 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
2702 SRetIdx > FT->getNumParams())
2703 return false;
2704 }
2705
2706 // Okay, we decided that this is a safe thing to do: go ahead and start
2707 // inserting cast instructions as necessary.
2708 SmallVector<Value *, 8> Args;
2709 SmallVector<AttributeSet, 8> ArgAttrs;
2710 Args.reserve(NumActualArgs);
2711 ArgAttrs.reserve(NumActualArgs);
2712
2713 // Get any return attributes.
2714 AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
2715
2716 // If the return value is not being used, the type may not be compatible
2717 // with the existing attributes. Wipe out any problematic attributes.
2718 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
2719
2720 LLVMContext &Ctx = Call.getContext();
2721 AI = Call.arg_begin();
2722 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
2723 Type *ParamTy = FT->getParamType(i);
2724
2725 Value *NewArg = *AI;
2726 if ((*AI)->getType() != ParamTy)
2727 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
2728 Args.push_back(NewArg);
2729
2730 // Add any parameter attributes.
2731 if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
2732 AttrBuilder AB(CallerPAL.getParamAttributes(i));
2733 AB.addByValAttr(NewArg->getType()->getPointerElementType());
2734 ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
2735 } else
2736 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
2737 }
2738
2739 // If the function takes more arguments than the call was taking, add them
2740 // now.
2741 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
2742 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
2743 ArgAttrs.push_back(AttributeSet());
2744 }
2745
2746 // If we are removing arguments to the function, emit an obnoxious warning.
2747 if (FT->getNumParams() < NumActualArgs) {
2748 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
2749 if (FT->isVarArg()) {
2750 // Add all of the arguments in their promoted form to the arg list.
2751 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
2752 Type *PTy = getPromotedType((*AI)->getType());
2753 Value *NewArg = *AI;
2754 if (PTy != (*AI)->getType()) {
2755 // Must promote to pass through va_arg area!
2756 Instruction::CastOps opcode =
2757 CastInst::getCastOpcode(*AI, false, PTy, false);
2758 NewArg = Builder.CreateCast(opcode, *AI, PTy);
2759 }
2760 Args.push_back(NewArg);
2761
2762 // Add any parameter attributes.
2763 ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
2764 }
2765 }
2766 }
2767
2768 AttributeSet FnAttrs = CallerPAL.getFnAttributes();
2769
2770 if (NewRetTy->isVoidTy())
2771 Caller->setName(""); // Void type should not have a name.
2772
2773 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
2774 "missing argument attributes");
2775 AttributeList NewCallerPAL = AttributeList::get(
2776 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
2777
2778 SmallVector<OperandBundleDef, 1> OpBundles;
2779 Call.getOperandBundlesAsDefs(OpBundles);
2780
2781 CallBase *NewCall;
2782 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2783 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
2784 II->getUnwindDest(), Args, OpBundles);
2785 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
2786 NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
2787 CBI->getIndirectDests(), Args, OpBundles);
2788 } else {
2789 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
2790 cast<CallInst>(NewCall)->setTailCallKind(
2791 cast<CallInst>(Caller)->getTailCallKind());
2792 }
2793 NewCall->takeName(Caller);
2794 NewCall->setCallingConv(Call.getCallingConv());
2795 NewCall->setAttributes(NewCallerPAL);
2796
2797 // Preserve prof metadata if any.
2798 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
2799
2800 // Insert a cast of the return type as necessary.
2801 Instruction *NC = NewCall;
2802 Value *NV = NC;
2803 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
2804 if (!NV->getType()->isVoidTy()) {
2805 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
2806 NC->setDebugLoc(Caller->getDebugLoc());
2807
2808 // If this is an invoke/callbr instruction, we should insert it after the
2809 // first non-phi instruction in the normal successor block.
2810 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
2811 BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
2812 InsertNewInstBefore(NC, *I);
2813 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
2814 BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
2815 InsertNewInstBefore(NC, *I);
2816 } else {
2817 // Otherwise, it's a call, just insert cast right after the call.
2818 InsertNewInstBefore(NC, *Caller);
2819 }
2820 Worklist.pushUsersToWorkList(*Caller);
2821 } else {
2822 NV = UndefValue::get(Caller->getType());
2823 }
2824 }
2825
2826 if (!Caller->use_empty())
2827 replaceInstUsesWith(*Caller, NV);
2828 else if (Caller->hasValueHandle()) {
2829 if (OldRetTy == NV->getType())
2830 ValueHandleBase::ValueIsRAUWd(Caller, NV);
2831 else
2832 // We cannot call ValueIsRAUWd with a different type, and the
2833 // actual tracked value will disappear.
2834 ValueHandleBase::ValueIsDeleted(Caller);
2835 }
2836
2837 eraseInstFromFunction(*Caller);
2838 return true;
2839 }
2840
2841 /// Turn a call to a function created by init_trampoline / adjust_trampoline
2842 /// intrinsic pair into a direct call to the underlying function.
2843 Instruction *
transformCallThroughTrampoline(CallBase & Call,IntrinsicInst & Tramp)2844 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
2845 IntrinsicInst &Tramp) {
2846 Value *Callee = Call.getCalledOperand();
2847 Type *CalleeTy = Callee->getType();
2848 FunctionType *FTy = Call.getFunctionType();
2849 AttributeList Attrs = Call.getAttributes();
2850
2851 // If the call already has the 'nest' attribute somewhere then give up -
2852 // otherwise 'nest' would occur twice after splicing in the chain.
2853 if (Attrs.hasAttrSomewhere(Attribute::Nest))
2854 return nullptr;
2855
2856 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
2857 FunctionType *NestFTy = NestF->getFunctionType();
2858
2859 AttributeList NestAttrs = NestF->getAttributes();
2860 if (!NestAttrs.isEmpty()) {
2861 unsigned NestArgNo = 0;
2862 Type *NestTy = nullptr;
2863 AttributeSet NestAttr;
2864
2865 // Look for a parameter marked with the 'nest' attribute.
2866 for (FunctionType::param_iterator I = NestFTy->param_begin(),
2867 E = NestFTy->param_end();
2868 I != E; ++NestArgNo, ++I) {
2869 AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
2870 if (AS.hasAttribute(Attribute::Nest)) {
2871 // Record the parameter type and any other attributes.
2872 NestTy = *I;
2873 NestAttr = AS;
2874 break;
2875 }
2876 }
2877
2878 if (NestTy) {
2879 std::vector<Value*> NewArgs;
2880 std::vector<AttributeSet> NewArgAttrs;
2881 NewArgs.reserve(Call.arg_size() + 1);
2882 NewArgAttrs.reserve(Call.arg_size());
2883
2884 // Insert the nest argument into the call argument list, which may
2885 // mean appending it. Likewise for attributes.
2886
2887 {
2888 unsigned ArgNo = 0;
2889 auto I = Call.arg_begin(), E = Call.arg_end();
2890 do {
2891 if (ArgNo == NestArgNo) {
2892 // Add the chain argument and attributes.
2893 Value *NestVal = Tramp.getArgOperand(2);
2894 if (NestVal->getType() != NestTy)
2895 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
2896 NewArgs.push_back(NestVal);
2897 NewArgAttrs.push_back(NestAttr);
2898 }
2899
2900 if (I == E)
2901 break;
2902
2903 // Add the original argument and attributes.
2904 NewArgs.push_back(*I);
2905 NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2906
2907 ++ArgNo;
2908 ++I;
2909 } while (true);
2910 }
2911
2912 // The trampoline may have been bitcast to a bogus type (FTy).
2913 // Handle this by synthesizing a new function type, equal to FTy
2914 // with the chain parameter inserted.
2915
2916 std::vector<Type*> NewTypes;
2917 NewTypes.reserve(FTy->getNumParams()+1);
2918
2919 // Insert the chain's type into the list of parameter types, which may
2920 // mean appending it.
2921 {
2922 unsigned ArgNo = 0;
2923 FunctionType::param_iterator I = FTy->param_begin(),
2924 E = FTy->param_end();
2925
2926 do {
2927 if (ArgNo == NestArgNo)
2928 // Add the chain's type.
2929 NewTypes.push_back(NestTy);
2930
2931 if (I == E)
2932 break;
2933
2934 // Add the original type.
2935 NewTypes.push_back(*I);
2936
2937 ++ArgNo;
2938 ++I;
2939 } while (true);
2940 }
2941
2942 // Replace the trampoline call with a direct call. Let the generic
2943 // code sort out any function type mismatches.
2944 FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
2945 FTy->isVarArg());
2946 Constant *NewCallee =
2947 NestF->getType() == PointerType::getUnqual(NewFTy) ?
2948 NestF : ConstantExpr::getBitCast(NestF,
2949 PointerType::getUnqual(NewFTy));
2950 AttributeList NewPAL =
2951 AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
2952 Attrs.getRetAttributes(), NewArgAttrs);
2953
2954 SmallVector<OperandBundleDef, 1> OpBundles;
2955 Call.getOperandBundlesAsDefs(OpBundles);
2956
2957 Instruction *NewCaller;
2958 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
2959 NewCaller = InvokeInst::Create(NewFTy, NewCallee,
2960 II->getNormalDest(), II->getUnwindDest(),
2961 NewArgs, OpBundles);
2962 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
2963 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
2964 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
2965 NewCaller =
2966 CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
2967 CBI->getIndirectDests(), NewArgs, OpBundles);
2968 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
2969 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
2970 } else {
2971 NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
2972 cast<CallInst>(NewCaller)->setTailCallKind(
2973 cast<CallInst>(Call).getTailCallKind());
2974 cast<CallInst>(NewCaller)->setCallingConv(
2975 cast<CallInst>(Call).getCallingConv());
2976 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
2977 }
2978 NewCaller->setDebugLoc(Call.getDebugLoc());
2979
2980 return NewCaller;
2981 }
2982 }
2983
2984 // Replace the trampoline call with a direct call. Since there is no 'nest'
2985 // parameter, there is no need to adjust the argument list. Let the generic
2986 // code sort out any function type mismatches.
2987 Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
2988 Call.setCalledFunction(FTy, NewCallee);
2989 return &Call;
2990 }
2991