1 /**************************************************************************
2  *
3  * Copyright 2009 VMware, Inc.
4  * Copyright 2007 VMware, Inc.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  **************************************************************************/
28 
29 /**
30  * @file
31  * Code generate the whole fragment pipeline.
32  *
33  * The fragment pipeline consists of the following stages:
34  * - early depth test
35  * - fragment shader
36  * - alpha test
37  * - depth/stencil test
38  * - blending
39  *
40  * This file has only the glue to assemble the fragment pipeline.  The actual
41  * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
42  * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
43  * muster the LLVM JIT execution engine to create a function that follows an
44  * established binary interface and that can be called from C directly.
45  *
46  * A big source of complexity here is that we often want to run different
47  * stages with different precisions and data types and precisions. For example,
48  * the fragment shader needs typically to be done in floats, but the
49  * depth/stencil test and blending is better done in the type that most closely
50  * matches the depth/stencil and color buffer respectively.
51  *
52  * Since the width of a SIMD vector register stays the same regardless of the
53  * element type, different types imply different number of elements, so we must
54  * code generate more instances of the stages with larger types to be able to
55  * feed/consume the stages with smaller types.
56  *
57  * @author Jose Fonseca <jfonseca@vmware.com>
58  */
59 
60 #include <limits.h>
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_pointer.h"
65 #include "util/format/u_format.h"
66 #include "util/u_dump.h"
67 #include "util/u_string.h"
68 #include "util/simple_list.h"
69 #include "util/u_dual_blend.h"
70 #include "util/u_upload_mgr.h"
71 #include "util/os_time.h"
72 #include "pipe/p_shader_tokens.h"
73 #include "draw/draw_context.h"
74 #include "tgsi/tgsi_dump.h"
75 #include "tgsi/tgsi_scan.h"
76 #include "tgsi/tgsi_parse.h"
77 #include "gallivm/lp_bld_type.h"
78 #include "gallivm/lp_bld_const.h"
79 #include "gallivm/lp_bld_conv.h"
80 #include "gallivm/lp_bld_init.h"
81 #include "gallivm/lp_bld_intr.h"
82 #include "gallivm/lp_bld_logic.h"
83 #include "gallivm/lp_bld_tgsi.h"
84 #include "gallivm/lp_bld_nir.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "gallivm/lp_bld_arit.h"
89 #include "gallivm/lp_bld_bitarit.h"
90 #include "gallivm/lp_bld_pack.h"
91 #include "gallivm/lp_bld_format.h"
92 #include "gallivm/lp_bld_quad.h"
93 #include "gallivm/lp_bld_gather.h"
94 
95 #include "lp_bld_alpha.h"
96 #include "lp_bld_blend.h"
97 #include "lp_bld_depth.h"
98 #include "lp_bld_interp.h"
99 #include "lp_context.h"
100 #include "lp_debug.h"
101 #include "lp_perf.h"
102 #include "lp_setup.h"
103 #include "lp_state.h"
104 #include "lp_tex_sample.h"
105 #include "lp_flush.h"
106 #include "lp_state_fs.h"
107 #include "lp_rast.h"
108 #include "nir/nir_to_tgsi_info.h"
109 
110 #include "lp_screen.h"
111 #include "compiler/nir/nir_serialize.h"
112 #include "util/mesa-sha1.h"
113 /** Fragment shader number (for debugging) */
114 static unsigned fs_no = 0;
115 
116 static void
117 load_unswizzled_block(struct gallivm_state *gallivm,
118                       LLVMValueRef base_ptr,
119                       LLVMValueRef stride,
120                       unsigned block_width,
121                       unsigned block_height,
122                       LLVMValueRef* dst,
123                       struct lp_type dst_type,
124                       unsigned dst_count,
125                       unsigned dst_alignment);
126 /**
127  * Checks if a format description is an arithmetic format
128  *
129  * A format which has irregular channel sizes such as R3_G3_B2 or R5_G6_B5.
130  */
131 static inline boolean
is_arithmetic_format(const struct util_format_description * format_desc)132 is_arithmetic_format(const struct util_format_description *format_desc)
133 {
134    boolean arith = false;
135    unsigned i;
136 
137    for (i = 0; i < format_desc->nr_channels; ++i) {
138       arith |= format_desc->channel[i].size != format_desc->channel[0].size;
139       arith |= (format_desc->channel[i].size % 8) != 0;
140    }
141 
142    return arith;
143 }
144 
145 /**
146  * Checks if this format requires special handling due to required expansion
147  * to floats for blending, and furthermore has "natural" packed AoS -> unpacked
148  * SoA conversion.
149  */
150 static inline boolean
format_expands_to_float_soa(const struct util_format_description * format_desc)151 format_expands_to_float_soa(const struct util_format_description *format_desc)
152 {
153    if (format_desc->format == PIPE_FORMAT_R11G11B10_FLOAT ||
154        format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
155       return true;
156    }
157    return false;
158 }
159 
160 
161 /**
162  * Retrieves the type representing the memory layout for a format
163  *
164  * e.g. RGBA16F = 4x half-float and R3G3B2 = 1x byte
165  */
166 static inline void
lp_mem_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)167 lp_mem_type_from_format_desc(const struct util_format_description *format_desc,
168                              struct lp_type* type)
169 {
170    unsigned i;
171    unsigned chan;
172 
173    if (format_expands_to_float_soa(format_desc)) {
174       /* just make this a uint with width of block */
175       type->floating = false;
176       type->fixed = false;
177       type->sign = false;
178       type->norm = false;
179       type->width = format_desc->block.bits;
180       type->length = 1;
181       return;
182    }
183 
184    for (i = 0; i < 4; i++)
185       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
186          break;
187    chan = i;
188 
189    memset(type, 0, sizeof(struct lp_type));
190    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
191    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
192    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
193    type->norm     = format_desc->channel[chan].normalized;
194 
195    if (is_arithmetic_format(format_desc)) {
196       type->width = 0;
197       type->length = 1;
198 
199       for (i = 0; i < format_desc->nr_channels; ++i) {
200          type->width += format_desc->channel[i].size;
201       }
202    } else {
203       type->width = format_desc->channel[chan].size;
204       type->length = format_desc->nr_channels;
205    }
206 }
207 
208 /**
209  * Expand the relevant bits of mask_input to a n*4-dword mask for the
210  * n*four pixels in n 2x2 quads.  This will set the n*four elements of the
211  * quad mask vector to 0 or ~0.
212  * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid
213  * quad arguments with fs length 8.
214  *
215  * \param first_quad  which quad(s) of the quad group to test, in [0,3]
216  * \param mask_input  bitwise mask for the whole 4x4 stamp
217  */
218 static LLVMValueRef
generate_quad_mask(struct gallivm_state * gallivm,struct lp_type fs_type,unsigned first_quad,unsigned sample,LLVMValueRef mask_input)219 generate_quad_mask(struct gallivm_state *gallivm,
220                    struct lp_type fs_type,
221                    unsigned first_quad,
222                    unsigned sample,
223                    LLVMValueRef mask_input) /* int64 */
224 {
225    LLVMBuilderRef builder = gallivm->builder;
226    struct lp_type mask_type;
227    LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context);
228    LLVMValueRef bits[16];
229    LLVMValueRef mask, bits_vec;
230    int shift, i;
231 
232    /*
233     * XXX: We'll need a different path for 16 x u8
234     */
235    assert(fs_type.width == 32);
236    assert(fs_type.length <= ARRAY_SIZE(bits));
237    mask_type = lp_int_type(fs_type);
238 
239    /*
240     * mask_input >>= (quad * 4)
241     */
242    switch (first_quad) {
243    case 0:
244       shift = 0;
245       break;
246    case 1:
247       assert(fs_type.length == 4);
248       shift = 2;
249       break;
250    case 2:
251       shift = 8;
252       break;
253    case 3:
254       assert(fs_type.length == 4);
255       shift = 10;
256       break;
257    default:
258       assert(0);
259       shift = 0;
260    }
261 
262    mask_input = LLVMBuildLShr(builder, mask_input, lp_build_const_int64(gallivm, 16 * sample), "");
263    mask_input = LLVMBuildTrunc(builder, mask_input,
264                                i32t, "");
265    mask_input = LLVMBuildAnd(builder, mask_input, lp_build_const_int32(gallivm, 0xffff), "");
266 
267    mask_input = LLVMBuildLShr(builder,
268                               mask_input,
269                               LLVMConstInt(i32t, shift, 0),
270                               "");
271 
272    /*
273     * mask = { mask_input & (1 << i), for i in [0,3] }
274     */
275    mask = lp_build_broadcast(gallivm,
276                              lp_build_vec_type(gallivm, mask_type),
277                              mask_input);
278 
279    for (i = 0; i < fs_type.length / 4; i++) {
280       unsigned j = 2 * (i % 2) + (i / 2) * 8;
281       bits[4*i + 0] = LLVMConstInt(i32t, 1ULL << (j + 0), 0);
282       bits[4*i + 1] = LLVMConstInt(i32t, 1ULL << (j + 1), 0);
283       bits[4*i + 2] = LLVMConstInt(i32t, 1ULL << (j + 4), 0);
284       bits[4*i + 3] = LLVMConstInt(i32t, 1ULL << (j + 5), 0);
285    }
286    bits_vec = LLVMConstVector(bits, fs_type.length);
287    mask = LLVMBuildAnd(builder, mask, bits_vec, "");
288 
289    /*
290     * mask = mask == bits ? ~0 : 0
291     */
292    mask = lp_build_compare(gallivm,
293                            mask_type, PIPE_FUNC_EQUAL,
294                            mask, bits_vec);
295 
296    return mask;
297 }
298 
299 
300 #define EARLY_DEPTH_TEST  0x1
301 #define LATE_DEPTH_TEST   0x2
302 #define EARLY_DEPTH_WRITE 0x4
303 #define LATE_DEPTH_WRITE  0x8
304 #define EARLY_DEPTH_TEST_INFERRED  0x10 //only with EARLY_DEPTH_TEST
305 
306 static int
find_output_by_semantic(const struct tgsi_shader_info * info,unsigned semantic,unsigned index)307 find_output_by_semantic( const struct tgsi_shader_info *info,
308 			 unsigned semantic,
309 			 unsigned index )
310 {
311    int i;
312 
313    for (i = 0; i < info->num_outputs; i++)
314       if (info->output_semantic_name[i] == semantic &&
315 	  info->output_semantic_index[i] == index)
316 	 return i;
317 
318    return -1;
319 }
320 
321 
322 /**
323  * Fetch the specified lp_jit_viewport structure for a given viewport_index.
324  */
325 static LLVMValueRef
lp_llvm_viewport(LLVMValueRef context_ptr,struct gallivm_state * gallivm,LLVMValueRef viewport_index)326 lp_llvm_viewport(LLVMValueRef context_ptr,
327                  struct gallivm_state *gallivm,
328                  LLVMValueRef viewport_index)
329 {
330    LLVMBuilderRef builder = gallivm->builder;
331    LLVMValueRef ptr;
332    LLVMValueRef res;
333    struct lp_type viewport_type =
334       lp_type_float_vec(32, 32 * LP_JIT_VIEWPORT_NUM_FIELDS);
335 
336    ptr = lp_jit_context_viewports(gallivm, context_ptr);
337    ptr = LLVMBuildPointerCast(builder, ptr,
338             LLVMPointerType(lp_build_vec_type(gallivm, viewport_type), 0), "");
339 
340    res = lp_build_pointer_get(builder, ptr, viewport_index);
341 
342    return res;
343 }
344 
345 
346 static LLVMValueRef
lp_build_depth_clamp(struct gallivm_state * gallivm,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef thread_data_ptr,LLVMValueRef z)347 lp_build_depth_clamp(struct gallivm_state *gallivm,
348                      LLVMBuilderRef builder,
349                      struct lp_type type,
350                      LLVMValueRef context_ptr,
351                      LLVMValueRef thread_data_ptr,
352                      LLVMValueRef z)
353 {
354    LLVMValueRef viewport, min_depth, max_depth;
355    LLVMValueRef viewport_index;
356    struct lp_build_context f32_bld;
357 
358    assert(type.floating);
359    lp_build_context_init(&f32_bld, gallivm, type);
360 
361    /*
362     * Assumes clamping of the viewport index will occur in setup/gs. Value
363     * is passed through the rasterization stage via lp_rast_shader_inputs.
364     *
365     * See: draw_clamp_viewport_idx and lp_clamp_viewport_idx for clamping
366     *      semantics.
367     */
368    viewport_index = lp_jit_thread_data_raster_state_viewport_index(gallivm,
369                        thread_data_ptr);
370 
371    /*
372     * Load the min and max depth from the lp_jit_context.viewports
373     * array of lp_jit_viewport structures.
374     */
375    viewport = lp_llvm_viewport(context_ptr, gallivm, viewport_index);
376 
377    /* viewports[viewport_index].min_depth */
378    min_depth = LLVMBuildExtractElement(builder, viewport,
379                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MIN_DEPTH), "");
380    min_depth = lp_build_broadcast_scalar(&f32_bld, min_depth);
381 
382    /* viewports[viewport_index].max_depth */
383    max_depth = LLVMBuildExtractElement(builder, viewport,
384                   lp_build_const_int32(gallivm, LP_JIT_VIEWPORT_MAX_DEPTH), "");
385    max_depth = lp_build_broadcast_scalar(&f32_bld, max_depth);
386 
387    /*
388     * Clamp to the min and max depth values for the given viewport.
389     */
390    return lp_build_clamp(&f32_bld, z, min_depth, max_depth);
391 }
392 
393 static void
lp_build_sample_alpha_to_coverage(struct gallivm_state * gallivm,struct lp_type type,unsigned coverage_samples,LLVMValueRef num_loop,LLVMValueRef loop_counter,LLVMValueRef coverage_mask_store,LLVMValueRef alpha)394 lp_build_sample_alpha_to_coverage(struct gallivm_state *gallivm,
395                                   struct lp_type type,
396                                   unsigned coverage_samples,
397                                   LLVMValueRef num_loop,
398                                   LLVMValueRef loop_counter,
399                                   LLVMValueRef coverage_mask_store,
400                                   LLVMValueRef alpha)
401 {
402    struct lp_build_context bld;
403    LLVMBuilderRef builder = gallivm->builder;
404    float step = 1.0 / coverage_samples;
405 
406    lp_build_context_init(&bld, gallivm, type);
407    for (unsigned s = 0; s < coverage_samples; s++) {
408       LLVMValueRef alpha_ref_value = lp_build_const_vec(gallivm, type, step * s);
409       LLVMValueRef test = lp_build_cmp(&bld, PIPE_FUNC_GREATER, alpha, alpha_ref_value);
410 
411       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, lp_build_const_int32(gallivm, s), num_loop, "");
412       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_counter, "");
413       LLVMValueRef s_mask_ptr = LLVMBuildGEP(builder, coverage_mask_store, &s_mask_idx, 1, "");
414       LLVMValueRef s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
415       s_mask = LLVMBuildAnd(builder, s_mask, test, "");
416       LLVMBuildStore(builder, s_mask, s_mask_ptr);
417    }
418 };
419 
420 struct lp_build_fs_llvm_iface {
421    struct lp_build_fs_iface base;
422    struct lp_build_interp_soa_context *interp;
423    struct lp_build_for_loop_state *loop_state;
424    LLVMValueRef mask_store;
425    LLVMValueRef sample_id;
426    LLVMValueRef color_ptr_ptr;
427    LLVMValueRef color_stride_ptr;
428    LLVMValueRef color_sample_stride_ptr;
429    const struct lp_fragment_shader_variant_key *key;
430 };
431 
fs_interp(const struct lp_build_fs_iface * iface,struct lp_build_context * bld,unsigned attrib,unsigned chan,bool centroid,bool sample,LLVMValueRef attrib_indir,LLVMValueRef offsets[2])432 static LLVMValueRef fs_interp(const struct lp_build_fs_iface *iface,
433                               struct lp_build_context *bld,
434                               unsigned attrib, unsigned chan,
435                               bool centroid, bool sample,
436                               LLVMValueRef attrib_indir,
437                               LLVMValueRef offsets[2])
438 {
439    struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
440    struct lp_build_interp_soa_context *interp = fs_iface->interp;
441    unsigned loc = TGSI_INTERPOLATE_LOC_CENTER;
442    if (centroid)
443       loc = TGSI_INTERPOLATE_LOC_CENTROID;
444    if (sample)
445       loc = TGSI_INTERPOLATE_LOC_SAMPLE;
446 
447    return lp_build_interp_soa(interp, bld->gallivm, fs_iface->loop_state->counter,
448                               fs_iface->mask_store,
449                               attrib, chan, loc, attrib_indir, offsets);
450 }
451 
fs_fb_fetch(const struct lp_build_fs_iface * iface,struct lp_build_context * bld,int location,LLVMValueRef result[4])452 static void fs_fb_fetch(const struct lp_build_fs_iface *iface,
453                         struct lp_build_context *bld,
454                         int location,
455                         LLVMValueRef result[4])
456 {
457    assert(location >= FRAG_RESULT_DATA0 && location <= FRAG_RESULT_DATA7);
458    const int cbuf = location - FRAG_RESULT_DATA0;
459 
460    struct lp_build_fs_llvm_iface *fs_iface = (struct lp_build_fs_llvm_iface *)iface;
461    struct gallivm_state *gallivm = bld->gallivm;
462    LLVMBuilderRef builder = gallivm->builder;
463    const struct lp_fragment_shader_variant_key *key = fs_iface->key;
464    LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
465    LLVMValueRef color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_ptr_ptr, &index, 1, ""), "");
466    LLVMValueRef stride = LLVMBuildLoad(builder, LLVMBuildGEP(builder, fs_iface->color_stride_ptr, &index, 1, ""), "");
467 
468    enum pipe_format cbuf_format = key->cbuf_format[cbuf];
469    const struct util_format_description* out_format_desc = util_format_description(cbuf_format);
470    if (out_format_desc->format == PIPE_FORMAT_NONE) {
471       result[0] = result[1] = result[2] = result[3] = bld->undef;
472       return;
473    }
474 
475    unsigned block_size = bld->type.length;
476    unsigned block_height = key->resource_1d ? 1 : 2;
477    unsigned block_width = block_size / block_height;
478 
479    if (key->multisample) {
480       LLVMValueRef sample_stride = LLVMBuildLoad(builder,
481                                                  LLVMBuildGEP(builder, fs_iface->color_sample_stride_ptr,
482                                                               &index, 1, ""), "");
483       LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, fs_iface->sample_id, "");
484       color_ptr = LLVMBuildGEP(builder, color_ptr, &sample_offset, 1, "");
485    }
486    /* fragment shader executes on 4x4 blocks. depending on vector width it can execute 2 or 4 iterations.
487     * only move to the next row once the top row has completed 8 wide 1 iteration, 4 wide 2 iterations */
488    LLVMValueRef x_offset = NULL, y_offset = NULL;
489    if (!key->resource_1d) {
490       LLVMValueRef counter = fs_iface->loop_state->counter;
491 
492       if (block_size == 4) {
493          x_offset = LLVMBuildShl(builder,
494                                  LLVMBuildAnd(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), ""),
495                                  lp_build_const_int32(gallivm, 1), "");
496          counter = LLVMBuildLShr(builder, fs_iface->loop_state->counter, lp_build_const_int32(gallivm, 1), "");
497       }
498       y_offset = LLVMBuildMul(builder, counter, lp_build_const_int32(gallivm, 2), "");
499    }
500 
501    LLVMValueRef offsets[4 * 4];
502    for (unsigned i = 0; i < block_size; i++) {
503       unsigned x = i % block_width;
504       unsigned y = i / block_width;
505 
506       if (block_size == 8) {
507          /* remap the raw slots into the fragment shader execution mode. */
508          /* this math took me way too long to work out, I'm sure it's overkill. */
509          x = (i & 1) + ((i >> 2) << 1);
510          if (!key->resource_1d)
511             y = (i & 2) >> 1;
512       }
513 
514       LLVMValueRef x_val;
515       if (x_offset) {
516          x_val = LLVMBuildAdd(builder, lp_build_const_int32(gallivm, x), x_offset, "");
517          x_val = LLVMBuildMul(builder, x_val, lp_build_const_int32(gallivm, out_format_desc->block.bits / 8), "");
518       } else {
519          x_val = lp_build_const_int32(gallivm, x * (out_format_desc->block.bits / 8));
520       }
521 
522       LLVMValueRef y_val = lp_build_const_int32(gallivm, y);
523       if (y_offset)
524          y_val = LLVMBuildAdd(builder, y_val, y_offset, "");
525       y_val = LLVMBuildMul(builder, y_val, stride, "");
526 
527       offsets[i] = LLVMBuildAdd(builder, x_val, y_val, "");
528    }
529    LLVMValueRef offset = lp_build_gather_values(gallivm, offsets, block_size);
530 
531    struct lp_type texel_type = bld->type;
532    if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB &&
533        out_format_desc->channel[0].pure_integer) {
534       if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_SIGNED) {
535          texel_type = lp_type_int_vec(bld->type.width, bld->type.width * bld->type.length);
536       }
537       else if (out_format_desc->channel[0].type == UTIL_FORMAT_TYPE_UNSIGNED) {
538          texel_type = lp_type_uint_vec(bld->type.width, bld->type.width * bld->type.length);
539       }
540    }
541 
542    lp_build_fetch_rgba_soa(gallivm, out_format_desc, texel_type,
543                            true, color_ptr, offset,
544                            NULL, NULL, NULL, result);
545 }
546 
547 /**
548  * Generate the fragment shader, depth/stencil test, and alpha tests.
549  */
550 static void
generate_fs_loop(struct gallivm_state * gallivm,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key,LLVMBuilderRef builder,struct lp_type type,LLVMValueRef context_ptr,LLVMValueRef sample_pos_array,LLVMValueRef num_loop,struct lp_build_interp_soa_context * interp,const struct lp_build_sampler_soa * sampler,const struct lp_build_image_soa * image,LLVMValueRef mask_store,LLVMValueRef (* out_color)[4],LLVMValueRef depth_base_ptr,LLVMValueRef depth_stride,LLVMValueRef depth_sample_stride,LLVMValueRef color_ptr_ptr,LLVMValueRef color_stride_ptr,LLVMValueRef color_sample_stride_ptr,LLVMValueRef facing,LLVMValueRef thread_data_ptr)551 generate_fs_loop(struct gallivm_state *gallivm,
552                  struct lp_fragment_shader *shader,
553                  const struct lp_fragment_shader_variant_key *key,
554                  LLVMBuilderRef builder,
555                  struct lp_type type,
556                  LLVMValueRef context_ptr,
557                  LLVMValueRef sample_pos_array,
558                  LLVMValueRef num_loop,
559                  struct lp_build_interp_soa_context *interp,
560                  const struct lp_build_sampler_soa *sampler,
561                  const struct lp_build_image_soa *image,
562                  LLVMValueRef mask_store,
563                  LLVMValueRef (*out_color)[4],
564                  LLVMValueRef depth_base_ptr,
565                  LLVMValueRef depth_stride,
566                  LLVMValueRef depth_sample_stride,
567                  LLVMValueRef color_ptr_ptr,
568                  LLVMValueRef color_stride_ptr,
569                  LLVMValueRef color_sample_stride_ptr,
570                  LLVMValueRef facing,
571                  LLVMValueRef thread_data_ptr)
572 {
573    const struct util_format_description *zs_format_desc = NULL;
574    const struct tgsi_token *tokens = shader->base.tokens;
575    struct lp_type int_type = lp_int_type(type);
576    LLVMTypeRef vec_type, int_vec_type;
577    LLVMValueRef mask_ptr = NULL, mask_val = NULL;
578    LLVMValueRef consts_ptr, num_consts_ptr;
579    LLVMValueRef ssbo_ptr, num_ssbo_ptr;
580    LLVMValueRef z;
581    LLVMValueRef z_value, s_value;
582    LLVMValueRef z_fb, s_fb;
583    LLVMValueRef depth_ptr;
584    LLVMValueRef stencil_refs[2];
585    LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
586    LLVMValueRef zs_samples = lp_build_const_int32(gallivm, key->zsbuf_nr_samples);
587    LLVMValueRef z_out = NULL, s_out = NULL;
588    struct lp_build_for_loop_state loop_state, sample_loop_state = {0};
589    struct lp_build_mask_context mask;
590    /*
591     * TODO: figure out if simple_shader optimization is really worthwile to
592     * keep. Disabled because it may hide some real bugs in the (depth/stencil)
593     * code since tests tend to take another codepath than real shaders.
594     */
595    boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 &&
596                             shader->info.base.num_inputs < 3 &&
597                             shader->info.base.num_instructions < 8) && 0;
598    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
599                                      util_blend_state_is_dual(&key->blend, 0);
600    const bool post_depth_coverage = shader->info.base.properties[TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE];
601    unsigned attrib;
602    unsigned chan;
603    unsigned cbuf;
604    unsigned depth_mode;
605 
606    struct lp_bld_tgsi_system_values system_values;
607 
608    memset(&system_values, 0, sizeof(system_values));
609 
610    /* truncate then sign extend. */
611    system_values.front_facing = LLVMBuildTrunc(gallivm->builder, facing, LLVMInt1TypeInContext(gallivm->context), "");
612    system_values.front_facing = LLVMBuildSExt(gallivm->builder, system_values.front_facing, LLVMInt32TypeInContext(gallivm->context), "");
613    system_values.view_index = lp_jit_thread_data_raster_state_view_index(gallivm,
614                                                                          thread_data_ptr);
615    if (key->depth.enabled ||
616        key->stencil[0].enabled) {
617 
618       zs_format_desc = util_format_description(key->zsbuf_format);
619       assert(zs_format_desc);
620 
621       if (shader->info.base.properties[TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL])
622          depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE;
623       else if (!shader->info.base.writes_z && !shader->info.base.writes_stencil) {
624          if (shader->info.base.writes_memory)
625             depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
626          else if (key->alpha.enabled ||
627              key->blend.alpha_to_coverage ||
628              shader->info.base.uses_kill ||
629              shader->info.base.writes_samplemask) {
630             /* With alpha test and kill, can do the depth test early
631              * and hopefully eliminate some quads.  But need to do a
632              * special deferred depth write once the final mask value
633              * is known. This only works though if there's either no
634              * stencil test or the stencil value isn't written.
635              */
636             if (key->stencil[0].enabled && (key->stencil[0].writemask ||
637                                             (key->stencil[1].enabled &&
638                                              key->stencil[1].writemask)))
639                depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
640             else
641                depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE | EARLY_DEPTH_TEST_INFERRED;
642          }
643          else
644             depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE | EARLY_DEPTH_TEST_INFERRED;
645       }
646       else {
647          depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE;
648       }
649 
650       if (!(key->depth.enabled && key->depth.writemask) &&
651           !(key->stencil[0].enabled && (key->stencil[0].writemask ||
652                                         (key->stencil[1].enabled &&
653                                          key->stencil[1].writemask))))
654          depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE);
655    }
656    else {
657       depth_mode = 0;
658    }
659 
660    vec_type = lp_build_vec_type(gallivm, type);
661    int_vec_type = lp_build_vec_type(gallivm, int_type);
662 
663    stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr);
664    stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr);
665    /* convert scalar stencil refs into vectors */
666    stencil_refs[0] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[0]);
667    stencil_refs[1] = lp_build_broadcast(gallivm, int_vec_type, stencil_refs[1]);
668 
669    consts_ptr = lp_jit_context_constants(gallivm, context_ptr);
670    num_consts_ptr = lp_jit_context_num_constants(gallivm, context_ptr);
671 
672    ssbo_ptr = lp_jit_context_ssbos(gallivm, context_ptr);
673    num_ssbo_ptr = lp_jit_context_num_ssbos(gallivm, context_ptr);
674 
675    memset(outputs, 0, sizeof outputs);
676 
677    /* Allocate color storage for each fragment sample */
678    LLVMValueRef color_store_size = num_loop;
679    if (key->min_samples > 1)
680       color_store_size = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, key->min_samples), "");
681 
682    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
683       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
684          out_color[cbuf][chan] = lp_build_array_alloca(gallivm,
685                                                        lp_build_vec_type(gallivm,
686                                                                          type),
687                                                        color_store_size, "color");
688       }
689    }
690    if (dual_source_blend) {
691       assert(key->nr_cbufs <= 1);
692       for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
693          out_color[1][chan] = lp_build_array_alloca(gallivm,
694                                                     lp_build_vec_type(gallivm,
695                                                                       type),
696                                                     color_store_size, "color1");
697       }
698    }
699    if (shader->info.base.writes_z) {
700       z_out = lp_build_array_alloca(gallivm,
701                                     lp_build_vec_type(gallivm, type),
702                                     color_store_size, "depth");
703    }
704 
705    if (shader->info.base.writes_stencil) {
706       s_out = lp_build_array_alloca(gallivm,
707                                     lp_build_vec_type(gallivm, type),
708                                     color_store_size, "depth");
709    }
710 
711    lp_build_for_loop_begin(&loop_state, gallivm,
712                            lp_build_const_int32(gallivm, 0),
713                            LLVMIntULT,
714                            num_loop,
715                            lp_build_const_int32(gallivm, 1));
716 
717    LLVMValueRef sample_mask_in;
718    if (key->multisample) {
719       sample_mask_in = lp_build_const_int_vec(gallivm, type, 0);
720       /* create shader execution mask by combining all sample masks. */
721       for (unsigned s = 0; s < key->coverage_samples; s++) {
722          LLVMValueRef s_mask_idx = LLVMBuildMul(builder, num_loop, lp_build_const_int32(gallivm, s), "");
723          s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
724          LLVMValueRef s_mask = lp_build_pointer_get(builder, mask_store, s_mask_idx);
725          if (s == 0)
726             mask_val = s_mask;
727          else
728             mask_val = LLVMBuildOr(builder, s_mask, mask_val, "");
729 
730          LLVMValueRef mask_in = LLVMBuildAnd(builder, s_mask, lp_build_const_int_vec(gallivm, type, (1ll << s)), "");
731          sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
732       }
733    } else {
734       sample_mask_in = lp_build_const_int_vec(gallivm, type, 1);
735       mask_ptr = LLVMBuildGEP(builder, mask_store,
736                               &loop_state.counter, 1, "mask_ptr");
737       mask_val = LLVMBuildLoad(builder, mask_ptr, "");
738 
739       LLVMValueRef mask_in = LLVMBuildAnd(builder, mask_val, lp_build_const_int_vec(gallivm, type, 1), "");
740       sample_mask_in = LLVMBuildOr(builder, sample_mask_in, mask_in, "");
741    }
742 
743    /* 'mask' will control execution based on quad's pixel alive/killed state */
744    lp_build_mask_begin(&mask, gallivm, type, mask_val);
745 
746    if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader)
747       lp_build_mask_check(&mask);
748 
749    /* Create storage for recombining sample masks after early Z pass. */
750    LLVMValueRef s_mask_or = lp_build_alloca(gallivm, lp_build_int_vec_type(gallivm, type), "cov_mask_early_depth");
751    LLVMBuildStore(builder, LLVMConstNull(lp_build_int_vec_type(gallivm, type)), s_mask_or);
752 
753    /* Create storage for post depth sample mask */
754    LLVMValueRef post_depth_sample_mask_in = NULL;
755    if (post_depth_coverage)
756       post_depth_sample_mask_in = lp_build_alloca(gallivm, int_vec_type, "post_depth_sample_mask_in");
757 
758    LLVMValueRef s_mask = NULL, s_mask_ptr = NULL;
759    LLVMValueRef z_sample_value_store = NULL, s_sample_value_store = NULL;
760    LLVMValueRef z_fb_store = NULL, s_fb_store = NULL;
761    LLVMTypeRef z_type = NULL, z_fb_type = NULL;
762 
763    /* Run early depth once per sample */
764    if (key->multisample) {
765 
766       if (zs_format_desc) {
767          struct lp_type zs_type = lp_depth_type(zs_format_desc, type.length);
768          struct lp_type z_type = zs_type;
769          struct lp_type s_type = zs_type;
770          if (zs_format_desc->block.bits < type.width)
771             z_type.width = type.width;
772          if (zs_format_desc->block.bits == 8)
773             s_type.width = type.width;
774 
775          else if (zs_format_desc->block.bits > 32) {
776             z_type.width = z_type.width / 2;
777             s_type.width = s_type.width / 2;
778             s_type.floating = 0;
779          }
780          z_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
781                                                       zs_samples, "z_sample_store");
782          s_sample_value_store = lp_build_array_alloca(gallivm, lp_build_int_vec_type(gallivm, type),
783                                                       zs_samples, "s_sample_store");
784          z_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, z_type),
785                                             zs_samples, "z_fb_store");
786          s_fb_store = lp_build_array_alloca(gallivm, lp_build_vec_type(gallivm, s_type),
787                                             zs_samples, "s_fb_store");
788       }
789       lp_build_for_loop_begin(&sample_loop_state, gallivm,
790                               lp_build_const_int32(gallivm, 0),
791                               LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
792                               lp_build_const_int32(gallivm, 1));
793 
794       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
795       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
796       s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
797 
798       s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
799       s_mask = LLVMBuildAnd(builder, s_mask, mask_val, "");
800    }
801 
802 
803    /* for multisample Z needs to be interpolated at sample points for testing. */
804    lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
805    z = interp->pos[2];
806 
807    depth_ptr = depth_base_ptr;
808    if (key->multisample) {
809       LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
810       depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
811    }
812 
813    if (depth_mode & EARLY_DEPTH_TEST) {
814       /*
815        * Clamp according to ARB_depth_clamp semantics.
816        */
817       if (key->depth_clamp) {
818          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
819                                   thread_data_ptr, z);
820       }
821       lp_build_depth_stencil_load_swizzled(gallivm, type,
822                                            zs_format_desc, key->resource_1d,
823                                            depth_ptr, depth_stride,
824                                            &z_fb, &s_fb, loop_state.counter);
825       lp_build_depth_stencil_test(gallivm,
826                                   &key->depth,
827                                   key->stencil,
828                                   type,
829                                   zs_format_desc,
830                                   key->multisample ? NULL : &mask,
831                                   &s_mask,
832                                   stencil_refs,
833                                   z, z_fb, s_fb,
834                                   facing,
835                                   &z_value, &s_value,
836                                   !simple_shader && !key->multisample);
837 
838       if (depth_mode & EARLY_DEPTH_WRITE) {
839          lp_build_depth_stencil_write_swizzled(gallivm, type,
840                                                zs_format_desc, key->resource_1d,
841                                                NULL, NULL, NULL, loop_state.counter,
842                                                depth_ptr, depth_stride,
843                                                z_value, s_value);
844       }
845       /*
846        * Note mask check if stencil is enabled must be after ds write not after
847        * stencil test otherwise new stencil values may not get written if all
848        * fragments got killed by depth/stencil test.
849        */
850       if (!simple_shader && key->stencil[0].enabled && !key->multisample)
851          lp_build_mask_check(&mask);
852 
853       if (key->multisample) {
854          z_fb_type = LLVMTypeOf(z_fb);
855          z_type = LLVMTypeOf(z_value);
856          lp_build_pointer_set(builder, z_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, z_value, lp_build_int_vec_type(gallivm, type), ""));
857          lp_build_pointer_set(builder, s_sample_value_store, sample_loop_state.counter, LLVMBuildBitCast(builder, s_value, lp_build_int_vec_type(gallivm, type), ""));
858          lp_build_pointer_set(builder, z_fb_store, sample_loop_state.counter, z_fb);
859          lp_build_pointer_set(builder, s_fb_store, sample_loop_state.counter, s_fb);
860       }
861    }
862 
863    if (key->multisample) {
864       /*
865        * Store the post-early Z coverage mask.
866        * Recombine the resulting coverage masks post early Z into the fragment
867        * shader execution mask.
868        */
869       LLVMValueRef tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
870       tmp_s_mask_or = LLVMBuildOr(builder, tmp_s_mask_or, s_mask, "");
871       LLVMBuildStore(builder, tmp_s_mask_or, s_mask_or);
872 
873       if (post_depth_coverage) {
874          LLVMValueRef mask_bit_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
875          LLVMValueRef post_depth_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, "");
876          mask_bit_idx = LLVMBuildAnd(builder, s_mask, lp_build_broadcast(gallivm, int_vec_type, mask_bit_idx), "");
877          post_depth_mask_in = LLVMBuildOr(builder, post_depth_mask_in, mask_bit_idx, "");
878          LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in);
879       }
880 
881       LLVMBuildStore(builder, s_mask, s_mask_ptr);
882 
883       lp_build_for_loop_end(&sample_loop_state);
884 
885       /* recombined all the coverage masks in the shader exec mask. */
886       tmp_s_mask_or = LLVMBuildLoad(builder, s_mask_or, "");
887       lp_build_mask_update(&mask, tmp_s_mask_or);
888 
889       if (key->min_samples == 1) {
890          /* for multisample Z needs to be re interpolated at pixel center */
891          lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, NULL);
892          z = interp->pos[2];
893          lp_build_mask_update(&mask, tmp_s_mask_or);
894       }
895    } else {
896       if (post_depth_coverage) {
897          LLVMValueRef post_depth_mask_in = LLVMBuildAnd(builder, lp_build_mask_value(&mask), lp_build_const_int_vec(gallivm, type, 1), "");
898          LLVMBuildStore(builder, post_depth_mask_in, post_depth_sample_mask_in);
899       }
900    }
901 
902    LLVMValueRef out_sample_mask_storage = NULL;
903    if (shader->info.base.writes_samplemask) {
904       out_sample_mask_storage = lp_build_alloca(gallivm, int_vec_type, "write_mask");
905       if (key->min_samples > 1)
906          LLVMBuildStore(builder, LLVMConstNull(int_vec_type), out_sample_mask_storage);
907    }
908 
909    if (post_depth_coverage) {
910       system_values.sample_mask_in = LLVMBuildLoad(builder, post_depth_sample_mask_in, "");
911    }
912    else
913       system_values.sample_mask_in = sample_mask_in;
914    if (key->multisample && key->min_samples > 1) {
915       lp_build_for_loop_begin(&sample_loop_state, gallivm,
916                               lp_build_const_int32(gallivm, 0),
917                               LLVMIntULT,
918                               lp_build_const_int32(gallivm, key->min_samples),
919                               lp_build_const_int32(gallivm, 1));
920 
921       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
922       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
923       s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
924       s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
925       lp_build_mask_force(&mask, s_mask);
926       lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, sample_loop_state.counter);
927       system_values.sample_id = sample_loop_state.counter;
928       system_values.sample_mask_in = LLVMBuildAnd(builder, system_values.sample_mask_in,
929                                                   lp_build_broadcast(gallivm, int_vec_type,
930                                                                      LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "")), "");
931    } else {
932       system_values.sample_id = lp_build_const_int32(gallivm, 0);
933 
934    }
935    system_values.sample_pos = sample_pos_array;
936 
937    lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter, mask_store, sample_loop_state.counter);
938 
939    struct lp_build_fs_llvm_iface fs_iface = {
940      .base.interp_fn = fs_interp,
941      .base.fb_fetch = fs_fb_fetch,
942      .interp = interp,
943      .loop_state = &loop_state,
944      .sample_id = system_values.sample_id,
945      .mask_store = mask_store,
946      .color_ptr_ptr = color_ptr_ptr,
947      .color_stride_ptr = color_stride_ptr,
948      .color_sample_stride_ptr = color_sample_stride_ptr,
949      .key = key,
950    };
951 
952    struct lp_build_tgsi_params params;
953    memset(&params, 0, sizeof(params));
954 
955    params.type = type;
956    params.mask = &mask;
957    params.fs_iface = &fs_iface.base;
958    params.consts_ptr = consts_ptr;
959    params.const_sizes_ptr = num_consts_ptr;
960    params.system_values = &system_values;
961    params.inputs = interp->inputs;
962    params.context_ptr = context_ptr;
963    params.thread_data_ptr = thread_data_ptr;
964    params.sampler = sampler;
965    params.info = &shader->info.base;
966    params.ssbo_ptr = ssbo_ptr;
967    params.ssbo_sizes_ptr = num_ssbo_ptr;
968    params.image = image;
969    params.aniso_filter_table = lp_jit_context_aniso_filter_table(gallivm, context_ptr);
970 
971    /* Build the actual shader */
972    if (shader->base.type == PIPE_SHADER_IR_TGSI)
973       lp_build_tgsi_soa(gallivm, tokens, &params,
974                         outputs);
975    else
976       lp_build_nir_soa(gallivm, shader->base.ir.nir, &params,
977                        outputs);
978 
979    /* Alpha test */
980    if (key->alpha.enabled) {
981       int color0 = find_output_by_semantic(&shader->info.base,
982                                            TGSI_SEMANTIC_COLOR,
983                                            0);
984 
985       if (color0 != -1 && outputs[color0][3]) {
986          const struct util_format_description *cbuf_format_desc;
987          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
988          LLVMValueRef alpha_ref_value;
989 
990          alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr);
991          alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value);
992 
993          cbuf_format_desc = util_format_description(key->cbuf_format[0]);
994 
995          lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc,
996                              &mask, alpha, alpha_ref_value,
997                              (depth_mode & LATE_DEPTH_TEST) != 0);
998       }
999    }
1000 
1001    /* Emulate Alpha to Coverage with Alpha test */
1002    if (key->blend.alpha_to_coverage) {
1003       int color0 = find_output_by_semantic(&shader->info.base,
1004                                            TGSI_SEMANTIC_COLOR,
1005                                            0);
1006 
1007       if (color0 != -1 && outputs[color0][3]) {
1008          LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha");
1009 
1010          if (!key->multisample) {
1011             lp_build_alpha_to_coverage(gallivm, type,
1012                                        &mask, alpha,
1013                                        (depth_mode & LATE_DEPTH_TEST) != 0);
1014          } else {
1015             lp_build_sample_alpha_to_coverage(gallivm, type, key->coverage_samples, num_loop,
1016                                               loop_state.counter,
1017                                               mask_store, alpha);
1018          }
1019       }
1020    }
1021    if (key->blend.alpha_to_one && key->multisample) {
1022       for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) {
1023          unsigned cbuf = shader->info.base.output_semantic_index[attrib];
1024          if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
1025              ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
1026             if (outputs[cbuf][3]) {
1027                LLVMBuildStore(builder, lp_build_const_vec(gallivm, type, 1.0), outputs[cbuf][3]);
1028             }
1029       }
1030    }
1031    if (shader->info.base.writes_samplemask) {
1032       LLVMValueRef output_smask = NULL;
1033       int smaski = find_output_by_semantic(&shader->info.base,
1034                                            TGSI_SEMANTIC_SAMPLEMASK,
1035                                            0);
1036       struct lp_build_context smask_bld;
1037       lp_build_context_init(&smask_bld, gallivm, int_type);
1038 
1039       assert(smaski >= 0);
1040       output_smask = LLVMBuildLoad(builder, outputs[smaski][0], "smask");
1041       output_smask = LLVMBuildBitCast(builder, output_smask, smask_bld.vec_type, "");
1042       if (!key->multisample && key->no_ms_sample_mask_out) {
1043          output_smask = lp_build_and(&smask_bld, output_smask, smask_bld.one);
1044          output_smask = lp_build_cmp(&smask_bld, PIPE_FUNC_NOTEQUAL, output_smask, smask_bld.zero);
1045          lp_build_mask_update(&mask, output_smask);
1046       }
1047 
1048       if (key->min_samples > 1) {
1049          /* only the bit corresponding to this sample is to be used. */
1050          LLVMValueRef tmp_mask = LLVMBuildLoad(builder, out_sample_mask_storage, "tmp_mask");
1051          LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1052          LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, lp_build_broadcast(gallivm, int_vec_type, out_smask_idx), "");
1053          output_smask = LLVMBuildOr(builder, tmp_mask, smask_bit, "");
1054       }
1055 
1056       LLVMBuildStore(builder, output_smask, out_sample_mask_storage);
1057    }
1058 
1059    if (shader->info.base.writes_z) {
1060       int pos0 = find_output_by_semantic(&shader->info.base,
1061                                          TGSI_SEMANTIC_POSITION,
1062                                          0);
1063       LLVMValueRef out = LLVMBuildLoad(builder, outputs[pos0][2], "");
1064       LLVMValueRef idx = loop_state.counter;
1065       if (key->min_samples > 1)
1066          idx = LLVMBuildAdd(builder, idx,
1067                             LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1068       LLVMValueRef ptr = LLVMBuildGEP(builder, z_out, &idx, 1, "");
1069       LLVMBuildStore(builder, out, ptr);
1070    }
1071 
1072    if (shader->info.base.writes_stencil) {
1073       int sten_out = find_output_by_semantic(&shader->info.base,
1074                                              TGSI_SEMANTIC_STENCIL,
1075                                              0);
1076       LLVMValueRef out = LLVMBuildLoad(builder, outputs[sten_out][1], "output.s");
1077       LLVMValueRef idx = loop_state.counter;
1078       if (key->min_samples > 1)
1079          idx = LLVMBuildAdd(builder, idx,
1080                             LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1081       LLVMValueRef ptr = LLVMBuildGEP(builder, s_out, &idx, 1, "");
1082       LLVMBuildStore(builder, out, ptr);
1083    }
1084 
1085    bool has_cbuf0_write = false;
1086    /* Color write - per fragment sample */
1087    for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib)
1088    {
1089       unsigned cbuf = shader->info.base.output_semantic_index[attrib];
1090       if ((shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) &&
1091            ((cbuf < key->nr_cbufs) || (cbuf == 1 && dual_source_blend)))
1092       {
1093          if (cbuf == 0 && shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS]) {
1094             /* XXX: there is an edge case with FB fetch where gl_FragColor and gl_LastFragData[0]
1095              * are used together. This creates both FRAG_RESULT_COLOR and FRAG_RESULT_DATA* output
1096              * variables. This loop then writes to cbuf 0 twice, owerwriting the correct value
1097              * from gl_FragColor with some garbage. This case is excercised in one of deqp tests.
1098              * A similar bug can happen if gl_SecondaryFragColorEXT and gl_LastFragData[1]
1099              * are mixed in the same fashion...
1100              * This workaround will break if gl_LastFragData[0] goes in outputs list before
1101              * gl_FragColor. This doesn't seem to happen though.
1102              */
1103             if (has_cbuf0_write)
1104                continue;
1105             has_cbuf0_write = true;
1106          }
1107 
1108          for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
1109             if(outputs[attrib][chan]) {
1110                /* XXX: just initialize outputs to point at colors[] and
1111                 * skip this.
1112                 */
1113                LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
1114                LLVMValueRef color_ptr;
1115                LLVMValueRef color_idx = loop_state.counter;
1116                if (key->min_samples > 1)
1117                   color_idx = LLVMBuildAdd(builder, color_idx,
1118                                            LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1119                color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan],
1120                                         &color_idx, 1, "");
1121                lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]);
1122                LLVMBuildStore(builder, out, color_ptr);
1123             }
1124          }
1125       }
1126    }
1127 
1128    if (key->multisample && key->min_samples > 1) {
1129       LLVMBuildStore(builder, lp_build_mask_value(&mask), s_mask_ptr);
1130       lp_build_for_loop_end(&sample_loop_state);
1131    }
1132 
1133    if (key->multisample) {
1134       /* execute depth test for each sample */
1135       lp_build_for_loop_begin(&sample_loop_state, gallivm,
1136                               lp_build_const_int32(gallivm, 0),
1137                               LLVMIntULT, lp_build_const_int32(gallivm, key->coverage_samples),
1138                               lp_build_const_int32(gallivm, 1));
1139 
1140       /* load the per-sample coverage mask */
1141       LLVMValueRef s_mask_idx = LLVMBuildMul(builder, sample_loop_state.counter, num_loop, "");
1142       s_mask_idx = LLVMBuildAdd(builder, s_mask_idx, loop_state.counter, "");
1143       s_mask_ptr = LLVMBuildGEP(builder, mask_store, &s_mask_idx, 1, "");
1144 
1145       /* combine the execution mask post fragment shader with the coverage mask. */
1146       s_mask = LLVMBuildLoad(builder, s_mask_ptr, "");
1147       if (key->min_samples == 1)
1148          s_mask = LLVMBuildAnd(builder, s_mask, lp_build_mask_value(&mask), "");
1149 
1150       /* if the shader writes sample mask use that,
1151        * but only if this isn't genuine early-depth to avoid breaking occlusion query */
1152       if (shader->info.base.writes_samplemask &&
1153           (!(depth_mode & EARLY_DEPTH_TEST) || (depth_mode & (EARLY_DEPTH_TEST_INFERRED)))) {
1154          LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1155          out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
1156          LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
1157          LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
1158          LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
1159          smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
1160 
1161          s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
1162       }
1163    }
1164 
1165    depth_ptr = depth_base_ptr;
1166    if (key->multisample) {
1167       LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_loop_state.counter, depth_sample_stride, "");
1168       depth_ptr = LLVMBuildGEP(builder, depth_ptr, &sample_offset, 1, "");
1169    }
1170 
1171    /* Late Z test */
1172    if (depth_mode & LATE_DEPTH_TEST) {
1173       if (shader->info.base.writes_z) {
1174          LLVMValueRef idx = loop_state.counter;
1175          if (key->min_samples > 1)
1176             idx = LLVMBuildAdd(builder, idx,
1177                                LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1178          LLVMValueRef ptr = LLVMBuildGEP(builder, z_out, &idx, 1, "");
1179          z = LLVMBuildLoad(builder, ptr, "output.z");
1180       } else {
1181          if (key->multisample) {
1182             lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter, key->multisample ? sample_loop_state.counter : NULL);
1183             z = interp->pos[2];
1184          }
1185       }
1186 
1187       /*
1188        * Clamp according to ARB_depth_clamp semantics.
1189        */
1190       if (key->depth_clamp) {
1191          z = lp_build_depth_clamp(gallivm, builder, type, context_ptr,
1192                                   thread_data_ptr, z);
1193       } else {
1194          struct lp_build_context f32_bld;
1195          lp_build_context_init(&f32_bld, gallivm, type);
1196          z = lp_build_clamp(&f32_bld, z,
1197                             lp_build_const_vec(gallivm, type, 0.0),
1198                             lp_build_const_vec(gallivm, type, 1.0));
1199       }
1200 
1201       if (shader->info.base.writes_stencil) {
1202          LLVMValueRef idx = loop_state.counter;
1203          if (key->min_samples > 1)
1204             idx = LLVMBuildAdd(builder, idx,
1205                                LLVMBuildMul(builder, sample_loop_state.counter, num_loop, ""), "");
1206          LLVMValueRef ptr = LLVMBuildGEP(builder, s_out, &idx, 1, "");
1207          stencil_refs[0] = LLVMBuildLoad(builder, ptr, "output.s");
1208          /* there's only one value, and spec says to discard additional bits */
1209          LLVMValueRef s_max_mask = lp_build_const_int_vec(gallivm, int_type, 255);
1210          stencil_refs[0] = LLVMBuildBitCast(builder, stencil_refs[0], int_vec_type, "");
1211          stencil_refs[0] = LLVMBuildAnd(builder, stencil_refs[0], s_max_mask, "");
1212          stencil_refs[1] = stencil_refs[0];
1213       }
1214 
1215       lp_build_depth_stencil_load_swizzled(gallivm, type,
1216                                            zs_format_desc, key->resource_1d,
1217                                            depth_ptr, depth_stride,
1218                                            &z_fb, &s_fb, loop_state.counter);
1219 
1220       lp_build_depth_stencil_test(gallivm,
1221                                   &key->depth,
1222                                   key->stencil,
1223                                   type,
1224                                   zs_format_desc,
1225                                   key->multisample ? NULL : &mask,
1226                                   &s_mask,
1227                                   stencil_refs,
1228                                   z, z_fb, s_fb,
1229                                   facing,
1230                                   &z_value, &s_value,
1231                                   !simple_shader);
1232       /* Late Z write */
1233       if (depth_mode & LATE_DEPTH_WRITE) {
1234          lp_build_depth_stencil_write_swizzled(gallivm, type,
1235                                                zs_format_desc, key->resource_1d,
1236                                                NULL, NULL, NULL, loop_state.counter,
1237                                                depth_ptr, depth_stride,
1238                                                z_value, s_value);
1239       }
1240    }
1241    else if ((depth_mode & EARLY_DEPTH_TEST) &&
1242             (depth_mode & LATE_DEPTH_WRITE))
1243    {
1244       /* Need to apply a reduced mask to the depth write.  Reload the
1245        * depth value, update from zs_value with the new mask value and
1246        * write that out.
1247        */
1248       if (key->multisample) {
1249          z_value = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_sample_value_store, sample_loop_state.counter), z_type, "");;
1250          s_value = lp_build_pointer_get(builder, s_sample_value_store, sample_loop_state.counter);
1251          z_fb = LLVMBuildBitCast(builder, lp_build_pointer_get(builder, z_fb_store, sample_loop_state.counter), z_fb_type, "");
1252          s_fb = lp_build_pointer_get(builder, s_fb_store, sample_loop_state.counter);
1253       }
1254       lp_build_depth_stencil_write_swizzled(gallivm, type,
1255                                             zs_format_desc, key->resource_1d,
1256                                             key->multisample ? s_mask : lp_build_mask_value(&mask), z_fb, s_fb, loop_state.counter,
1257                                             depth_ptr, depth_stride,
1258                                             z_value, s_value);
1259    }
1260 
1261    if (key->occlusion_count) {
1262       LLVMValueRef counter = lp_jit_thread_data_counter(gallivm, thread_data_ptr);
1263       lp_build_name(counter, "counter");
1264 
1265       lp_build_occlusion_count(gallivm, type,
1266                                key->multisample ? s_mask : lp_build_mask_value(&mask), counter);
1267    }
1268 
1269    /* if this is genuine early-depth in the shader, write samplemask now
1270     * after occlusion count has been updated
1271     */
1272    if (key->multisample && shader->info.base.writes_samplemask &&
1273        (depth_mode & (EARLY_DEPTH_TEST_INFERRED | EARLY_DEPTH_TEST)) == EARLY_DEPTH_TEST) {
1274       /* if the shader writes sample mask use that */
1275          LLVMValueRef out_smask_idx = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1), sample_loop_state.counter, "");
1276          out_smask_idx = lp_build_broadcast(gallivm, int_vec_type, out_smask_idx);
1277          LLVMValueRef output_smask = LLVMBuildLoad(builder, out_sample_mask_storage, "");
1278          LLVMValueRef smask_bit = LLVMBuildAnd(builder, output_smask, out_smask_idx, "");
1279          LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int_vec(gallivm, int_type, 0), "");
1280          smask_bit = LLVMBuildSExt(builder, cmp, int_vec_type, "");
1281 
1282          s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
1283    }
1284 
1285 
1286    if (key->multisample) {
1287       /* store the sample mask for this loop */
1288       LLVMBuildStore(builder, s_mask, s_mask_ptr);
1289       lp_build_for_loop_end(&sample_loop_state);
1290    }
1291 
1292    mask_val = lp_build_mask_end(&mask);
1293    if (!key->multisample)
1294       LLVMBuildStore(builder, mask_val, mask_ptr);
1295    lp_build_for_loop_end(&loop_state);
1296 }
1297 
1298 
1299 /**
1300  * This function will reorder pixels from the fragment shader SoA to memory layout AoS
1301  *
1302  * Fragment Shader outputs pixels in small 2x2 blocks
1303  *  e.g. (0, 0), (1, 0), (0, 1), (1, 1) ; (2, 0) ...
1304  *
1305  * However in memory pixels are stored in rows
1306  *  e.g. (0, 0), (1, 0), (2, 0), (3, 0) ; (0, 1) ...
1307  *
1308  * @param type            fragment shader type (4x or 8x float)
1309  * @param num_fs          number of fs_src
1310  * @param is_1d           whether we're outputting to a 1d resource
1311  * @param dst_channels    number of output channels
1312  * @param fs_src          output from fragment shader
1313  * @param dst             pointer to store result
1314  * @param pad_inline      is channel padding inline or at end of row
1315  * @return                the number of dsts
1316  */
1317 static int
generate_fs_twiddle(struct gallivm_state * gallivm,struct lp_type type,unsigned num_fs,unsigned dst_channels,LLVMValueRef fs_src[][4],LLVMValueRef * dst,bool pad_inline)1318 generate_fs_twiddle(struct gallivm_state *gallivm,
1319                     struct lp_type type,
1320                     unsigned num_fs,
1321                     unsigned dst_channels,
1322                     LLVMValueRef fs_src[][4],
1323                     LLVMValueRef* dst,
1324                     bool pad_inline)
1325 {
1326    LLVMValueRef src[16];
1327 
1328    bool swizzle_pad;
1329    bool twiddle;
1330    bool split;
1331 
1332    unsigned pixels = type.length / 4;
1333    unsigned reorder_group;
1334    unsigned src_channels;
1335    unsigned src_count;
1336    unsigned i;
1337 
1338    src_channels = dst_channels < 3 ? dst_channels : 4;
1339    src_count = num_fs * src_channels;
1340 
1341    assert(pixels == 2 || pixels == 1);
1342    assert(num_fs * src_channels <= ARRAY_SIZE(src));
1343 
1344    /*
1345     * Transpose from SoA -> AoS
1346     */
1347    for (i = 0; i < num_fs; ++i) {
1348       lp_build_transpose_aos_n(gallivm, type, &fs_src[i][0], src_channels, &src[i * src_channels]);
1349    }
1350 
1351    /*
1352     * Pick transformation options
1353     */
1354    swizzle_pad = false;
1355    twiddle = false;
1356    split = false;
1357    reorder_group = 0;
1358 
1359    if (dst_channels == 1) {
1360       twiddle = true;
1361 
1362       if (pixels == 2) {
1363          split = true;
1364       }
1365    } else if (dst_channels == 2) {
1366       if (pixels == 1) {
1367          reorder_group = 1;
1368       }
1369    } else if (dst_channels > 2) {
1370       if (pixels == 1) {
1371          reorder_group = 2;
1372       } else {
1373          twiddle = true;
1374       }
1375 
1376       if (!pad_inline && dst_channels == 3 && pixels > 1) {
1377          swizzle_pad = true;
1378       }
1379    }
1380 
1381    /*
1382     * Split the src in half
1383     */
1384    if (split) {
1385       for (i = num_fs; i > 0; --i) {
1386          src[(i - 1)*2 + 1] = lp_build_extract_range(gallivm, src[i - 1], 4, 4);
1387          src[(i - 1)*2 + 0] = lp_build_extract_range(gallivm, src[i - 1], 0, 4);
1388       }
1389 
1390       src_count *= 2;
1391       type.length = 4;
1392    }
1393 
1394    /*
1395     * Ensure pixels are in memory order
1396     */
1397    if (reorder_group) {
1398       /* Twiddle pixels by reordering the array, e.g.:
1399        *
1400        * src_count =  8 -> 0 2 1 3 4 6 5 7
1401        * src_count = 16 -> 0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
1402        */
1403       const unsigned reorder_sw[] = { 0, 2, 1, 3 };
1404 
1405       for (i = 0; i < src_count; ++i) {
1406          unsigned group = i / reorder_group;
1407          unsigned block = (group / 4) * 4 * reorder_group;
1408          unsigned j = block + (reorder_sw[group % 4] * reorder_group) + (i % reorder_group);
1409          dst[i] = src[j];
1410       }
1411    } else if (twiddle) {
1412       /* Twiddle pixels across elements of array */
1413       /*
1414        * XXX: we should avoid this in some cases, but would need to tell
1415        * lp_build_conv to reorder (or deal with it ourselves).
1416        */
1417       lp_bld_quad_twiddle(gallivm, type, src, src_count, dst);
1418    } else {
1419       /* Do nothing */
1420       memcpy(dst, src, sizeof(LLVMValueRef) * src_count);
1421    }
1422 
1423    /*
1424     * Moves any padding between pixels to the end
1425     * e.g. RGBXRGBX -> RGBRGBXX
1426     */
1427    if (swizzle_pad) {
1428       unsigned char swizzles[16];
1429       unsigned elems = pixels * dst_channels;
1430 
1431       for (i = 0; i < type.length; ++i) {
1432          if (i < elems)
1433             swizzles[i] = i % dst_channels + (i / dst_channels) * 4;
1434          else
1435             swizzles[i] = LP_BLD_SWIZZLE_DONTCARE;
1436       }
1437 
1438       for (i = 0; i < src_count; ++i) {
1439          dst[i] = lp_build_swizzle_aos_n(gallivm, dst[i], swizzles, type.length, type.length);
1440       }
1441    }
1442 
1443    return src_count;
1444 }
1445 
1446 
1447 /*
1448  * Untwiddle and transpose, much like the above.
1449  * However, this is after conversion, so we get packed vectors.
1450  * At this time only handle 4x16i8 rgba / 2x16i8 rg / 1x16i8 r data,
1451  * the vectors will look like:
1452  * r0r1r4r5r2r3r6r7r8r9r12... (albeit color channels may
1453  * be swizzled here). Extending to 16bit should be trivial.
1454  * Should also be extended to handle twice wide vectors with AVX2...
1455  */
1456 static void
fs_twiddle_transpose(struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef * src,unsigned src_count,LLVMValueRef * dst)1457 fs_twiddle_transpose(struct gallivm_state *gallivm,
1458                      struct lp_type type,
1459                      LLVMValueRef *src,
1460                      unsigned src_count,
1461                      LLVMValueRef *dst)
1462 {
1463    unsigned i, j;
1464    struct lp_type type64, type16, type32;
1465    LLVMTypeRef type64_t, type8_t, type16_t, type32_t;
1466    LLVMBuilderRef builder = gallivm->builder;
1467    LLVMValueRef tmp[4], shuf[8];
1468    for (j = 0; j < 2; j++) {
1469       shuf[j*4 + 0] = lp_build_const_int32(gallivm, j*4 + 0);
1470       shuf[j*4 + 1] = lp_build_const_int32(gallivm, j*4 + 2);
1471       shuf[j*4 + 2] = lp_build_const_int32(gallivm, j*4 + 1);
1472       shuf[j*4 + 3] = lp_build_const_int32(gallivm, j*4 + 3);
1473    }
1474 
1475    assert(src_count == 4 || src_count == 2 || src_count == 1);
1476    assert(type.width == 8);
1477    assert(type.length == 16);
1478 
1479    type8_t = lp_build_vec_type(gallivm, type);
1480 
1481    type64 = type;
1482    type64.length /= 8;
1483    type64.width *= 8;
1484    type64_t = lp_build_vec_type(gallivm, type64);
1485 
1486    type16 = type;
1487    type16.length /= 2;
1488    type16.width *= 2;
1489    type16_t = lp_build_vec_type(gallivm, type16);
1490 
1491    type32 = type;
1492    type32.length /= 4;
1493    type32.width *= 4;
1494    type32_t = lp_build_vec_type(gallivm, type32);
1495 
1496    lp_build_transpose_aos_n(gallivm, type, src, src_count, tmp);
1497 
1498    if (src_count == 1) {
1499       /* transpose was no-op, just untwiddle */
1500       LLVMValueRef shuf_vec;
1501       shuf_vec = LLVMConstVector(shuf, 8);
1502       tmp[0] = LLVMBuildBitCast(builder, src[0], type16_t, "");
1503       tmp[0] = LLVMBuildShuffleVector(builder, tmp[0], tmp[0], shuf_vec, "");
1504       dst[0] = LLVMBuildBitCast(builder, tmp[0], type8_t, "");
1505    } else if (src_count == 2) {
1506       LLVMValueRef shuf_vec;
1507       shuf_vec = LLVMConstVector(shuf, 4);
1508 
1509       for (i = 0; i < 2; i++) {
1510          tmp[i] = LLVMBuildBitCast(builder, tmp[i], type32_t, "");
1511          tmp[i] = LLVMBuildShuffleVector(builder, tmp[i], tmp[i], shuf_vec, "");
1512          dst[i] = LLVMBuildBitCast(builder, tmp[i], type8_t, "");
1513       }
1514    } else {
1515       for (j = 0; j < 2; j++) {
1516          LLVMValueRef lo, hi, lo2, hi2;
1517           /*
1518           * Note that if we only really have 3 valid channels (rgb)
1519           * and we don't need alpha we could substitute a undef here
1520           * for the respective channel (causing llvm to drop conversion
1521           * for alpha).
1522           */
1523          /* we now have rgba0rgba1rgba4rgba5 etc, untwiddle */
1524          lo2 = LLVMBuildBitCast(builder, tmp[j*2], type64_t, "");
1525          hi2 = LLVMBuildBitCast(builder, tmp[j*2 + 1], type64_t, "");
1526          lo = lp_build_interleave2(gallivm, type64, lo2, hi2, 0);
1527          hi = lp_build_interleave2(gallivm, type64, lo2, hi2, 1);
1528          dst[j*2] = LLVMBuildBitCast(builder, lo, type8_t, "");
1529          dst[j*2 + 1] = LLVMBuildBitCast(builder, hi, type8_t, "");
1530       }
1531    }
1532 }
1533 
1534 
1535 /**
1536  * Load an unswizzled block of pixels from memory
1537  */
1538 static void
load_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * dst,struct lp_type dst_type,unsigned dst_count,unsigned dst_alignment)1539 load_unswizzled_block(struct gallivm_state *gallivm,
1540                       LLVMValueRef base_ptr,
1541                       LLVMValueRef stride,
1542                       unsigned block_width,
1543                       unsigned block_height,
1544                       LLVMValueRef* dst,
1545                       struct lp_type dst_type,
1546                       unsigned dst_count,
1547                       unsigned dst_alignment)
1548 {
1549    LLVMBuilderRef builder = gallivm->builder;
1550    unsigned row_size = dst_count / block_height;
1551    unsigned i;
1552 
1553    /* Ensure block exactly fits into dst */
1554    assert((block_width * block_height) % dst_count == 0);
1555 
1556    for (i = 0; i < dst_count; ++i) {
1557       unsigned x = i % row_size;
1558       unsigned y = i / row_size;
1559 
1560       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (dst_type.width / 8) * dst_type.length);
1561       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1562 
1563       LLVMValueRef gep[2];
1564       LLVMValueRef dst_ptr;
1565 
1566       gep[0] = lp_build_const_int32(gallivm, 0);
1567       gep[1] = LLVMBuildAdd(builder, bx, by, "");
1568 
1569       dst_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1570       dst_ptr = LLVMBuildBitCast(builder, dst_ptr,
1571                                  LLVMPointerType(lp_build_vec_type(gallivm, dst_type), 0), "");
1572 
1573       dst[i] = LLVMBuildLoad(builder, dst_ptr, "");
1574 
1575       LLVMSetAlignment(dst[i], dst_alignment);
1576    }
1577 }
1578 
1579 
1580 /**
1581  * Store an unswizzled block of pixels to memory
1582  */
1583 static void
store_unswizzled_block(struct gallivm_state * gallivm,LLVMValueRef base_ptr,LLVMValueRef stride,unsigned block_width,unsigned block_height,LLVMValueRef * src,struct lp_type src_type,unsigned src_count,unsigned src_alignment)1584 store_unswizzled_block(struct gallivm_state *gallivm,
1585                        LLVMValueRef base_ptr,
1586                        LLVMValueRef stride,
1587                        unsigned block_width,
1588                        unsigned block_height,
1589                        LLVMValueRef* src,
1590                        struct lp_type src_type,
1591                        unsigned src_count,
1592                        unsigned src_alignment)
1593 {
1594    LLVMBuilderRef builder = gallivm->builder;
1595    unsigned row_size = src_count / block_height;
1596    unsigned i;
1597 
1598    /* Ensure src exactly fits into block */
1599    assert((block_width * block_height) % src_count == 0);
1600 
1601    for (i = 0; i < src_count; ++i) {
1602       unsigned x = i % row_size;
1603       unsigned y = i / row_size;
1604 
1605       LLVMValueRef bx = lp_build_const_int32(gallivm, x * (src_type.width / 8) * src_type.length);
1606       LLVMValueRef by = LLVMBuildMul(builder, lp_build_const_int32(gallivm, y), stride, "");
1607 
1608       LLVMValueRef gep[2];
1609       LLVMValueRef src_ptr;
1610 
1611       gep[0] = lp_build_const_int32(gallivm, 0);
1612       gep[1] = LLVMBuildAdd(builder, bx, by, "");
1613 
1614       src_ptr = LLVMBuildGEP(builder, base_ptr, gep, 2, "");
1615       src_ptr = LLVMBuildBitCast(builder, src_ptr,
1616                                  LLVMPointerType(lp_build_vec_type(gallivm, src_type), 0), "");
1617 
1618       src_ptr = LLVMBuildStore(builder, src[i], src_ptr);
1619 
1620       LLVMSetAlignment(src_ptr, src_alignment);
1621    }
1622 }
1623 
1624 
1625 
1626 /**
1627  * Retrieves the type for a format which is usable in the blending code.
1628  *
1629  * e.g. RGBA16F = 4x float, R3G3B2 = 3x byte
1630  */
1631 static inline void
lp_blend_type_from_format_desc(const struct util_format_description * format_desc,struct lp_type * type)1632 lp_blend_type_from_format_desc(const struct util_format_description *format_desc,
1633                                struct lp_type* type)
1634 {
1635    unsigned i;
1636    unsigned chan;
1637 
1638    if (format_expands_to_float_soa(format_desc)) {
1639       /* always use ordinary floats for blending */
1640       type->floating = true;
1641       type->fixed = false;
1642       type->sign = true;
1643       type->norm = false;
1644       type->width = 32;
1645       type->length = 4;
1646       return;
1647    }
1648 
1649    for (i = 0; i < 4; i++)
1650       if (format_desc->channel[i].type != UTIL_FORMAT_TYPE_VOID)
1651          break;
1652    chan = i;
1653 
1654    memset(type, 0, sizeof(struct lp_type));
1655    type->floating = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FLOAT;
1656    type->fixed    = format_desc->channel[chan].type == UTIL_FORMAT_TYPE_FIXED;
1657    type->sign     = format_desc->channel[chan].type != UTIL_FORMAT_TYPE_UNSIGNED;
1658    type->norm     = format_desc->channel[chan].normalized;
1659    type->width    = format_desc->channel[chan].size;
1660    type->length   = format_desc->nr_channels;
1661 
1662    for (i = 1; i < format_desc->nr_channels; ++i) {
1663       if (format_desc->channel[i].size > type->width)
1664          type->width = format_desc->channel[i].size;
1665    }
1666 
1667    if (type->floating) {
1668       type->width = 32;
1669    } else {
1670       if (type->width <= 8) {
1671          type->width = 8;
1672       } else if (type->width <= 16) {
1673          type->width = 16;
1674       } else {
1675          type->width = 32;
1676       }
1677    }
1678 
1679    if (is_arithmetic_format(format_desc) && type->length == 3) {
1680       type->length = 4;
1681    }
1682 }
1683 
1684 
1685 /**
1686  * Scale a normalized value from src_bits to dst_bits.
1687  *
1688  * The exact calculation is
1689  *
1690  *    dst = iround(src * dst_mask / src_mask)
1691  *
1692  *  or with integer rounding
1693  *
1694  *    dst = src * (2*dst_mask + sign(src)*src_mask) / (2*src_mask)
1695  *
1696  *  where
1697  *
1698  *    src_mask = (1 << src_bits) - 1
1699  *    dst_mask = (1 << dst_bits) - 1
1700  *
1701  * but we try to avoid division and multiplication through shifts.
1702  */
1703 static inline LLVMValueRef
scale_bits(struct gallivm_state * gallivm,int src_bits,int dst_bits,LLVMValueRef src,struct lp_type src_type)1704 scale_bits(struct gallivm_state *gallivm,
1705            int src_bits,
1706            int dst_bits,
1707            LLVMValueRef src,
1708            struct lp_type src_type)
1709 {
1710    LLVMBuilderRef builder = gallivm->builder;
1711    LLVMValueRef result = src;
1712 
1713    if (dst_bits < src_bits) {
1714       int delta_bits = src_bits - dst_bits;
1715 
1716       if (delta_bits <= dst_bits) {
1717 
1718          if (dst_bits == 4) {
1719             struct lp_type flt_type = lp_type_float_vec(32, src_type.length * 32);
1720 
1721             result = lp_build_unsigned_norm_to_float(gallivm, src_bits, flt_type, src);
1722             result = lp_build_clamped_float_to_unsigned_norm(gallivm, flt_type, dst_bits, result);
1723             result = LLVMBuildTrunc(gallivm->builder, result, lp_build_int_vec_type(gallivm, src_type), "");
1724             return result;
1725          }
1726 
1727          /*
1728           * Approximate the rescaling with a single shift.
1729           *
1730           * This gives the wrong rounding.
1731           */
1732 
1733          result = LLVMBuildLShr(builder,
1734                                 src,
1735                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1736                                 "");
1737 
1738       } else {
1739          /*
1740           * Try more accurate rescaling.
1741           */
1742 
1743          /*
1744           * Drop the least significant bits to make space for the multiplication.
1745           *
1746           * XXX: A better approach would be to use a wider integer type as intermediate.  But
1747           * this is enough to convert alpha from 16bits -> 2 when rendering to
1748           * PIPE_FORMAT_R10G10B10A2_UNORM.
1749           */
1750          result = LLVMBuildLShr(builder,
1751                                 src,
1752                                 lp_build_const_int_vec(gallivm, src_type, dst_bits),
1753                                 "");
1754 
1755 
1756          result = LLVMBuildMul(builder,
1757                                result,
1758                                lp_build_const_int_vec(gallivm, src_type, (1LL << dst_bits) - 1),
1759                                "");
1760 
1761          /*
1762           * Add a rounding term before the division.
1763           *
1764           * TODO: Handle signed integers too.
1765           */
1766          if (!src_type.sign) {
1767             result = LLVMBuildAdd(builder,
1768                                   result,
1769                                   lp_build_const_int_vec(gallivm, src_type, (1LL << (delta_bits - 1))),
1770                                   "");
1771          }
1772 
1773          /*
1774           * Approximate the division by src_mask with a src_bits shift.
1775           *
1776           * Given the src has already been shifted by dst_bits, all we need
1777           * to do is to shift by the difference.
1778           */
1779 
1780          result = LLVMBuildLShr(builder,
1781                                 result,
1782                                 lp_build_const_int_vec(gallivm, src_type, delta_bits),
1783                                 "");
1784       }
1785 
1786    } else if (dst_bits > src_bits) {
1787       /* Scale up bits */
1788       int db = dst_bits - src_bits;
1789 
1790       /* Shift left by difference in bits */
1791       result = LLVMBuildShl(builder,
1792                             src,
1793                             lp_build_const_int_vec(gallivm, src_type, db),
1794                             "");
1795 
1796       if (db <= src_bits) {
1797          /* Enough bits in src to fill the remainder */
1798          LLVMValueRef lower = LLVMBuildLShr(builder,
1799                                             src,
1800                                             lp_build_const_int_vec(gallivm, src_type, src_bits - db),
1801                                             "");
1802 
1803          result = LLVMBuildOr(builder, result, lower, "");
1804       } else if (db > src_bits) {
1805          /* Need to repeatedly copy src bits to fill remainder in dst */
1806          unsigned n;
1807 
1808          for (n = src_bits; n < dst_bits; n *= 2) {
1809             LLVMValueRef shuv = lp_build_const_int_vec(gallivm, src_type, n);
1810 
1811             result = LLVMBuildOr(builder,
1812                                  result,
1813                                  LLVMBuildLShr(builder, result, shuv, ""),
1814                                  "");
1815          }
1816       }
1817    }
1818 
1819    return result;
1820 }
1821 
1822 /**
1823  * If RT is a smallfloat (needing denorms) format
1824  */
1825 static inline int
have_smallfloat_format(struct lp_type dst_type,enum pipe_format format)1826 have_smallfloat_format(struct lp_type dst_type,
1827                        enum pipe_format format)
1828 {
1829    return ((dst_type.floating && dst_type.width != 32) ||
1830     /* due to format handling hacks this format doesn't have floating set
1831      * here (and actually has width set to 32 too) so special case this. */
1832     (format == PIPE_FORMAT_R11G11B10_FLOAT));
1833 }
1834 
1835 
1836 /**
1837  * Convert from memory format to blending format
1838  *
1839  * e.g. GL_R3G3B2 is 1 byte in memory but 3 bytes for blending
1840  */
1841 static void
convert_to_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)1842 convert_to_blend_type(struct gallivm_state *gallivm,
1843                       unsigned block_size,
1844                       const struct util_format_description *src_fmt,
1845                       struct lp_type src_type,
1846                       struct lp_type dst_type,
1847                       LLVMValueRef* src, // and dst
1848                       unsigned num_srcs)
1849 {
1850    LLVMValueRef *dst = src;
1851    LLVMBuilderRef builder = gallivm->builder;
1852    struct lp_type blend_type;
1853    struct lp_type mem_type;
1854    unsigned i, j;
1855    unsigned pixels = block_size / num_srcs;
1856    bool is_arith;
1857 
1858    /*
1859     * full custom path for packed floats and srgb formats - none of the later
1860     * functions would do anything useful, and given the lp_type representation they
1861     * can't be fixed. Should really have some SoA blend path for these kind of
1862     * formats rather than hacking them in here.
1863     */
1864    if (format_expands_to_float_soa(src_fmt)) {
1865       LLVMValueRef tmpsrc[4];
1866       /*
1867        * This is pretty suboptimal for this case blending in SoA would be much
1868        * better, since conversion gets us SoA values so need to convert back.
1869        */
1870       assert(src_type.width == 32 || src_type.width == 16);
1871       assert(dst_type.floating);
1872       assert(dst_type.width == 32);
1873       assert(dst_type.length % 4 == 0);
1874       assert(num_srcs % 4 == 0);
1875 
1876       if (src_type.width == 16) {
1877          /* expand 4x16bit values to 4x32bit */
1878          struct lp_type type32x4 = src_type;
1879          LLVMTypeRef ltype32x4;
1880          unsigned num_fetch = dst_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
1881          type32x4.width = 32;
1882          ltype32x4 = lp_build_vec_type(gallivm, type32x4);
1883          for (i = 0; i < num_fetch; i++) {
1884             src[i] = LLVMBuildZExt(builder, src[i], ltype32x4, "");
1885          }
1886          src_type.width = 32;
1887       }
1888       for (i = 0; i < 4; i++) {
1889          tmpsrc[i] = src[i];
1890       }
1891       for (i = 0; i < num_srcs / 4; i++) {
1892          LLVMValueRef tmpsoa[4];
1893          LLVMValueRef tmps = tmpsrc[i];
1894          if (dst_type.length == 8) {
1895             LLVMValueRef shuffles[8];
1896             unsigned j;
1897             /* fetch was 4 values but need 8-wide output values */
1898             tmps = lp_build_concat(gallivm, &tmpsrc[i * 2], src_type, 2);
1899             /*
1900              * for 8-wide aos transpose would give us wrong order not matching
1901              * incoming converted fs values and mask. ARGH.
1902              */
1903             for (j = 0; j < 4; j++) {
1904                shuffles[j] = lp_build_const_int32(gallivm, j * 2);
1905                shuffles[j + 4] = lp_build_const_int32(gallivm, j * 2 + 1);
1906             }
1907             tmps = LLVMBuildShuffleVector(builder, tmps, tmps,
1908                                           LLVMConstVector(shuffles, 8), "");
1909          }
1910          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
1911             lp_build_r11g11b10_to_float(gallivm, tmps, tmpsoa);
1912          }
1913          else {
1914             lp_build_unpack_rgba_soa(gallivm, src_fmt, dst_type, tmps, tmpsoa);
1915          }
1916          lp_build_transpose_aos(gallivm, dst_type, tmpsoa, &src[i * 4]);
1917       }
1918       return;
1919    }
1920 
1921    lp_mem_type_from_format_desc(src_fmt, &mem_type);
1922    lp_blend_type_from_format_desc(src_fmt, &blend_type);
1923 
1924    /* Is the format arithmetic */
1925    is_arith = blend_type.length * blend_type.width != mem_type.width * mem_type.length;
1926    is_arith &= !(mem_type.width == 16 && mem_type.floating);
1927 
1928    /* Pad if necessary */
1929    if (!is_arith && src_type.length < dst_type.length) {
1930       for (i = 0; i < num_srcs; ++i) {
1931          dst[i] = lp_build_pad_vector(gallivm, src[i], dst_type.length);
1932       }
1933 
1934       src_type.length = dst_type.length;
1935    }
1936 
1937    /* Special case for half-floats */
1938    if (mem_type.width == 16 && mem_type.floating) {
1939       assert(blend_type.width == 32 && blend_type.floating);
1940       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
1941       is_arith = false;
1942    }
1943 
1944    if (!is_arith) {
1945       return;
1946    }
1947 
1948    src_type.width = blend_type.width * blend_type.length;
1949    blend_type.length *= pixels;
1950    src_type.length *= pixels / (src_type.length / mem_type.length);
1951 
1952    for (i = 0; i < num_srcs; ++i) {
1953       LLVMValueRef chans[4];
1954       LLVMValueRef res = NULL;
1955 
1956       dst[i] = LLVMBuildZExt(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
1957 
1958       for (j = 0; j < src_fmt->nr_channels; ++j) {
1959          unsigned mask = 0;
1960          unsigned sa = src_fmt->channel[j].shift;
1961 #if UTIL_ARCH_LITTLE_ENDIAN
1962          unsigned from_lsb = j;
1963 #else
1964          unsigned from_lsb = src_fmt->nr_channels - j - 1;
1965 #endif
1966 
1967          mask = (1 << src_fmt->channel[j].size) - 1;
1968 
1969          /* Extract bits from source */
1970          chans[j] = LLVMBuildLShr(builder,
1971                                   dst[i],
1972                                   lp_build_const_int_vec(gallivm, src_type, sa),
1973                                   "");
1974 
1975          chans[j] = LLVMBuildAnd(builder,
1976                                  chans[j],
1977                                  lp_build_const_int_vec(gallivm, src_type, mask),
1978                                  "");
1979 
1980          /* Scale bits */
1981          if (src_type.norm) {
1982             chans[j] = scale_bits(gallivm, src_fmt->channel[j].size,
1983                                   blend_type.width, chans[j], src_type);
1984          }
1985 
1986          /* Insert bits into correct position */
1987          chans[j] = LLVMBuildShl(builder,
1988                                  chans[j],
1989                                  lp_build_const_int_vec(gallivm, src_type, from_lsb * blend_type.width),
1990                                  "");
1991 
1992          if (j == 0) {
1993             res = chans[j];
1994          } else {
1995             res = LLVMBuildOr(builder, res, chans[j], "");
1996          }
1997       }
1998 
1999       dst[i] = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, blend_type), "");
2000    }
2001 }
2002 
2003 
2004 /**
2005  * Convert from blending format to memory format
2006  *
2007  * e.g. GL_R3G3B2 is 3 bytes for blending but 1 byte in memory
2008  */
2009 static void
convert_from_blend_type(struct gallivm_state * gallivm,unsigned block_size,const struct util_format_description * src_fmt,struct lp_type src_type,struct lp_type dst_type,LLVMValueRef * src,unsigned num_srcs)2010 convert_from_blend_type(struct gallivm_state *gallivm,
2011                         unsigned block_size,
2012                         const struct util_format_description *src_fmt,
2013                         struct lp_type src_type,
2014                         struct lp_type dst_type,
2015                         LLVMValueRef* src, // and dst
2016                         unsigned num_srcs)
2017 {
2018    LLVMValueRef* dst = src;
2019    unsigned i, j, k;
2020    struct lp_type mem_type;
2021    struct lp_type blend_type;
2022    LLVMBuilderRef builder = gallivm->builder;
2023    unsigned pixels = block_size / num_srcs;
2024    bool is_arith;
2025 
2026    /*
2027     * full custom path for packed floats and srgb formats - none of the later
2028     * functions would do anything useful, and given the lp_type representation they
2029     * can't be fixed. Should really have some SoA blend path for these kind of
2030     * formats rather than hacking them in here.
2031     */
2032    if (format_expands_to_float_soa(src_fmt)) {
2033       /*
2034        * This is pretty suboptimal for this case blending in SoA would be much
2035        * better - we need to transpose the AoS values back to SoA values for
2036        * conversion/packing.
2037        */
2038       assert(src_type.floating);
2039       assert(src_type.width == 32);
2040       assert(src_type.length % 4 == 0);
2041       assert(dst_type.width == 32 || dst_type.width == 16);
2042 
2043       for (i = 0; i < num_srcs / 4; i++) {
2044          LLVMValueRef tmpsoa[4], tmpdst;
2045          lp_build_transpose_aos(gallivm, src_type, &src[i * 4], tmpsoa);
2046          /* really really need SoA here */
2047 
2048          if (src_fmt->format == PIPE_FORMAT_R11G11B10_FLOAT) {
2049             tmpdst = lp_build_float_to_r11g11b10(gallivm, tmpsoa);
2050          }
2051          else {
2052             tmpdst = lp_build_float_to_srgb_packed(gallivm, src_fmt,
2053                                                    src_type, tmpsoa);
2054          }
2055 
2056          if (src_type.length == 8) {
2057             LLVMValueRef tmpaos, shuffles[8];
2058             unsigned j;
2059             /*
2060              * for 8-wide aos transpose has given us wrong order not matching
2061              * output order. HMPF. Also need to split the output values manually.
2062              */
2063             for (j = 0; j < 4; j++) {
2064                shuffles[j * 2] = lp_build_const_int32(gallivm, j);
2065                shuffles[j * 2 + 1] = lp_build_const_int32(gallivm, j + 4);
2066             }
2067             tmpaos = LLVMBuildShuffleVector(builder, tmpdst, tmpdst,
2068                                             LLVMConstVector(shuffles, 8), "");
2069             src[i * 2] = lp_build_extract_range(gallivm, tmpaos, 0, 4);
2070             src[i * 2 + 1] = lp_build_extract_range(gallivm, tmpaos, 4, 4);
2071          }
2072          else {
2073             src[i] = tmpdst;
2074          }
2075       }
2076       if (dst_type.width == 16) {
2077          struct lp_type type16x8 = dst_type;
2078          struct lp_type type32x4 = dst_type;
2079          LLVMTypeRef ltype16x4, ltypei64, ltypei128;
2080          unsigned num_fetch = src_type.length == 8 ? num_srcs / 2 : num_srcs / 4;
2081          type16x8.length = 8;
2082          type32x4.width = 32;
2083          ltypei128 = LLVMIntTypeInContext(gallivm->context, 128);
2084          ltypei64 = LLVMIntTypeInContext(gallivm->context, 64);
2085          ltype16x4 = lp_build_vec_type(gallivm, dst_type);
2086          /* We could do vector truncation but it doesn't generate very good code */
2087          for (i = 0; i < num_fetch; i++) {
2088             src[i] = lp_build_pack2(gallivm, type32x4, type16x8,
2089                                     src[i], lp_build_zero(gallivm, type32x4));
2090             src[i] = LLVMBuildBitCast(builder, src[i], ltypei128, "");
2091             src[i] = LLVMBuildTrunc(builder, src[i], ltypei64, "");
2092             src[i] = LLVMBuildBitCast(builder, src[i], ltype16x4, "");
2093          }
2094       }
2095       return;
2096    }
2097 
2098    lp_mem_type_from_format_desc(src_fmt, &mem_type);
2099    lp_blend_type_from_format_desc(src_fmt, &blend_type);
2100 
2101    is_arith = (blend_type.length * blend_type.width != mem_type.width * mem_type.length);
2102 
2103    /* Special case for half-floats */
2104    if (mem_type.width == 16 && mem_type.floating) {
2105       int length = dst_type.length;
2106       assert(blend_type.width == 32 && blend_type.floating);
2107 
2108       dst_type.length = src_type.length;
2109 
2110       lp_build_conv_auto(gallivm, src_type, &dst_type, dst, num_srcs, dst);
2111 
2112       dst_type.length = length;
2113       is_arith = false;
2114    }
2115 
2116    /* Remove any padding */
2117    if (!is_arith && (src_type.length % mem_type.length)) {
2118       src_type.length -= (src_type.length % mem_type.length);
2119 
2120       for (i = 0; i < num_srcs; ++i) {
2121          dst[i] = lp_build_extract_range(gallivm, dst[i], 0, src_type.length);
2122       }
2123    }
2124 
2125    /* No bit arithmetic to do */
2126    if (!is_arith) {
2127       return;
2128    }
2129 
2130    src_type.length = pixels;
2131    src_type.width = blend_type.length * blend_type.width;
2132    dst_type.length = pixels;
2133 
2134    for (i = 0; i < num_srcs; ++i) {
2135       LLVMValueRef chans[4];
2136       LLVMValueRef res = NULL;
2137 
2138       dst[i] = LLVMBuildBitCast(builder, src[i], lp_build_vec_type(gallivm, src_type), "");
2139 
2140       for (j = 0; j < src_fmt->nr_channels; ++j) {
2141          unsigned mask = 0;
2142          unsigned sa = src_fmt->channel[j].shift;
2143          unsigned sz_a = src_fmt->channel[j].size;
2144 #if UTIL_ARCH_LITTLE_ENDIAN
2145          unsigned from_lsb = j;
2146 #else
2147          unsigned from_lsb = src_fmt->nr_channels - j - 1;
2148 #endif
2149 
2150          assert(blend_type.width > src_fmt->channel[j].size);
2151 
2152          for (k = 0; k < blend_type.width; ++k) {
2153             mask |= 1 << k;
2154          }
2155 
2156          /* Extract bits */
2157          chans[j] = LLVMBuildLShr(builder,
2158                                   dst[i],
2159                                   lp_build_const_int_vec(gallivm, src_type,
2160                                                          from_lsb * blend_type.width),
2161                                   "");
2162 
2163          chans[j] = LLVMBuildAnd(builder,
2164                                  chans[j],
2165                                  lp_build_const_int_vec(gallivm, src_type, mask),
2166                                  "");
2167 
2168          /* Scale down bits */
2169          if (src_type.norm) {
2170             chans[j] = scale_bits(gallivm, blend_type.width,
2171                                   src_fmt->channel[j].size, chans[j], src_type);
2172          } else if (!src_type.floating && sz_a < blend_type.width) {
2173             LLVMValueRef mask_val = lp_build_const_int_vec(gallivm, src_type, (1UL << sz_a) - 1);
2174             LLVMValueRef mask = LLVMBuildICmp(builder, LLVMIntUGT, chans[j], mask_val, "");
2175             chans[j] = LLVMBuildSelect(builder, mask, mask_val, chans[j], "");
2176          }
2177 
2178          /* Insert bits */
2179          chans[j] = LLVMBuildShl(builder,
2180                                  chans[j],
2181                                  lp_build_const_int_vec(gallivm, src_type, sa),
2182                                  "");
2183 
2184          sa += src_fmt->channel[j].size;
2185 
2186          if (j == 0) {
2187             res = chans[j];
2188          } else {
2189             res = LLVMBuildOr(builder, res, chans[j], "");
2190          }
2191       }
2192 
2193       assert (dst_type.width != 24);
2194 
2195       dst[i] = LLVMBuildTrunc(builder, res, lp_build_vec_type(gallivm, dst_type), "");
2196    }
2197 }
2198 
2199 
2200 /**
2201  * Convert alpha to same blend type as src
2202  */
2203 static void
convert_alpha(struct gallivm_state * gallivm,struct lp_type row_type,struct lp_type alpha_type,const unsigned block_size,const unsigned block_height,const unsigned src_count,const unsigned dst_channels,const bool pad_inline,LLVMValueRef * src_alpha)2204 convert_alpha(struct gallivm_state *gallivm,
2205               struct lp_type row_type,
2206               struct lp_type alpha_type,
2207               const unsigned block_size,
2208               const unsigned block_height,
2209               const unsigned src_count,
2210               const unsigned dst_channels,
2211               const bool pad_inline,
2212               LLVMValueRef* src_alpha)
2213 {
2214    LLVMBuilderRef builder = gallivm->builder;
2215    unsigned i, j;
2216    unsigned length = row_type.length;
2217    row_type.length = alpha_type.length;
2218 
2219    /* Twiddle the alpha to match pixels */
2220    lp_bld_quad_twiddle(gallivm, alpha_type, src_alpha, block_height, src_alpha);
2221 
2222    /*
2223     * TODO this should use single lp_build_conv call for
2224     * src_count == 1 && dst_channels == 1 case (dropping the concat below)
2225     */
2226    for (i = 0; i < block_height; ++i) {
2227       lp_build_conv(gallivm, alpha_type, row_type, &src_alpha[i], 1, &src_alpha[i], 1);
2228    }
2229 
2230    alpha_type = row_type;
2231    row_type.length = length;
2232 
2233    /* If only one channel we can only need the single alpha value per pixel */
2234    if (src_count == 1 && dst_channels == 1) {
2235 
2236       lp_build_concat_n(gallivm, alpha_type, src_alpha, block_height, src_alpha, src_count);
2237    } else {
2238       /* If there are more srcs than rows then we need to split alpha up */
2239       if (src_count > block_height) {
2240          for (i = src_count; i > 0; --i) {
2241             unsigned pixels = block_size / src_count;
2242             unsigned idx = i - 1;
2243 
2244             src_alpha[idx] = lp_build_extract_range(gallivm, src_alpha[(idx * pixels) / 4],
2245                                                     (idx * pixels) % 4, pixels);
2246          }
2247       }
2248 
2249       /* If there is a src for each pixel broadcast the alpha across whole row */
2250       if (src_count == block_size) {
2251          for (i = 0; i < src_count; ++i) {
2252             src_alpha[i] = lp_build_broadcast(gallivm,
2253                               lp_build_vec_type(gallivm, row_type), src_alpha[i]);
2254          }
2255       } else {
2256          unsigned pixels = block_size / src_count;
2257          unsigned channels = pad_inline ? TGSI_NUM_CHANNELS : dst_channels;
2258          unsigned alpha_span = 1;
2259          LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH];
2260 
2261          /* Check if we need 2 src_alphas for our shuffles */
2262          if (pixels > alpha_type.length) {
2263             alpha_span = 2;
2264          }
2265 
2266          /* Broadcast alpha across all channels, e.g. a1a2 to a1a1a1a1a2a2a2a2 */
2267          for (j = 0; j < row_type.length; ++j) {
2268             if (j < pixels * channels) {
2269                shuffles[j] = lp_build_const_int32(gallivm, j / channels);
2270             } else {
2271                shuffles[j] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
2272             }
2273          }
2274 
2275          for (i = 0; i < src_count; ++i) {
2276             unsigned idx1 = i, idx2 = i;
2277 
2278             if (alpha_span > 1){
2279                idx1 *= alpha_span;
2280                idx2 = idx1 + 1;
2281             }
2282 
2283             src_alpha[i] = LLVMBuildShuffleVector(builder,
2284                                                   src_alpha[idx1],
2285                                                   src_alpha[idx2],
2286                                                   LLVMConstVector(shuffles, row_type.length),
2287                                                   "");
2288          }
2289       }
2290    }
2291 }
2292 
2293 
2294 /**
2295  * Generates the blend function for unswizzled colour buffers
2296  * Also generates the read & write from colour buffer
2297  */
2298 static void
generate_unswizzled_blend(struct gallivm_state * gallivm,unsigned rt,struct lp_fragment_shader_variant * variant,enum pipe_format out_format,unsigned int num_fs,struct lp_type fs_type,LLVMValueRef * fs_mask,LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],LLVMValueRef context_ptr,LLVMValueRef color_ptr,LLVMValueRef stride,unsigned partial_mask,boolean do_branch)2299 generate_unswizzled_blend(struct gallivm_state *gallivm,
2300                           unsigned rt,
2301                           struct lp_fragment_shader_variant *variant,
2302                           enum pipe_format out_format,
2303                           unsigned int num_fs,
2304                           struct lp_type fs_type,
2305                           LLVMValueRef* fs_mask,
2306                           LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][4],
2307                           LLVMValueRef context_ptr,
2308                           LLVMValueRef color_ptr,
2309                           LLVMValueRef stride,
2310                           unsigned partial_mask,
2311                           boolean do_branch)
2312 {
2313    const unsigned alpha_channel = 3;
2314    const unsigned block_width = LP_RASTER_BLOCK_SIZE;
2315    const unsigned block_height = LP_RASTER_BLOCK_SIZE;
2316    const unsigned block_size = block_width * block_height;
2317    const unsigned lp_integer_vector_width = 128;
2318 
2319    LLVMBuilderRef builder = gallivm->builder;
2320    LLVMValueRef fs_src[4][TGSI_NUM_CHANNELS];
2321    LLVMValueRef fs_src1[4][TGSI_NUM_CHANNELS];
2322    LLVMValueRef src_alpha[4 * 4];
2323    LLVMValueRef src1_alpha[4 * 4] = { NULL };
2324    LLVMValueRef src_mask[4 * 4];
2325    LLVMValueRef src[4 * 4];
2326    LLVMValueRef src1[4 * 4];
2327    LLVMValueRef dst[4 * 4];
2328    LLVMValueRef blend_color;
2329    LLVMValueRef blend_alpha;
2330    LLVMValueRef i32_zero;
2331    LLVMValueRef check_mask;
2332    LLVMValueRef undef_src_val;
2333 
2334    struct lp_build_mask_context mask_ctx;
2335    struct lp_type mask_type;
2336    struct lp_type blend_type;
2337    struct lp_type row_type;
2338    struct lp_type dst_type;
2339    struct lp_type ls_type;
2340 
2341    unsigned char swizzle[TGSI_NUM_CHANNELS];
2342    unsigned vector_width;
2343    unsigned src_channels = TGSI_NUM_CHANNELS;
2344    unsigned dst_channels;
2345    unsigned dst_count;
2346    unsigned src_count;
2347    unsigned i, j;
2348 
2349    const struct util_format_description* out_format_desc = util_format_description(out_format);
2350 
2351    unsigned dst_alignment;
2352 
2353    bool pad_inline = is_arithmetic_format(out_format_desc);
2354    bool has_alpha = false;
2355    const boolean dual_source_blend = variant->key.blend.rt[0].blend_enable &&
2356                                      util_blend_state_is_dual(&variant->key.blend, 0);
2357 
2358    const boolean is_1d = variant->key.resource_1d;
2359    boolean twiddle_after_convert = FALSE;
2360    unsigned num_fullblock_fs = is_1d ? 2 * num_fs : num_fs;
2361    LLVMValueRef fpstate = 0;
2362 
2363    /* Get type from output format */
2364    lp_blend_type_from_format_desc(out_format_desc, &row_type);
2365    lp_mem_type_from_format_desc(out_format_desc, &dst_type);
2366 
2367    /*
2368     * Technically this code should go into lp_build_smallfloat_to_float
2369     * and lp_build_float_to_smallfloat but due to the
2370     * http://llvm.org/bugs/show_bug.cgi?id=6393
2371     * llvm reorders the mxcsr intrinsics in a way that breaks the code.
2372     * So the ordering is important here and there shouldn't be any
2373     * llvm ir instrunctions in this function before
2374     * this, otherwise half-float format conversions won't work
2375     * (again due to llvm bug #6393).
2376     */
2377    if (have_smallfloat_format(dst_type, out_format)) {
2378       /* We need to make sure that denorms are ok for half float
2379          conversions */
2380       fpstate = lp_build_fpstate_get(gallivm);
2381       lp_build_fpstate_set_denorms_zero(gallivm, FALSE);
2382    }
2383 
2384    mask_type = lp_int32_vec4_type();
2385    mask_type.length = fs_type.length;
2386 
2387    for (i = num_fs; i < num_fullblock_fs; i++) {
2388       fs_mask[i] = lp_build_zero(gallivm, mask_type);
2389    }
2390 
2391    /* Do not bother executing code when mask is empty.. */
2392    if (do_branch) {
2393       check_mask = LLVMConstNull(lp_build_int_vec_type(gallivm, mask_type));
2394 
2395       for (i = 0; i < num_fullblock_fs; ++i) {
2396          check_mask = LLVMBuildOr(builder, check_mask, fs_mask[i], "");
2397       }
2398 
2399       lp_build_mask_begin(&mask_ctx, gallivm, mask_type, check_mask);
2400       lp_build_mask_check(&mask_ctx);
2401    }
2402 
2403    partial_mask |= !variant->opaque;
2404    i32_zero = lp_build_const_int32(gallivm, 0);
2405 
2406    undef_src_val = lp_build_undef(gallivm, fs_type);
2407 
2408    row_type.length = fs_type.length;
2409    vector_width    = dst_type.floating ? lp_native_vector_width : lp_integer_vector_width;
2410 
2411    /* Compute correct swizzle and count channels */
2412    memset(swizzle, LP_BLD_SWIZZLE_DONTCARE, TGSI_NUM_CHANNELS);
2413    dst_channels = 0;
2414 
2415    for (i = 0; i < TGSI_NUM_CHANNELS; ++i) {
2416       /* Ensure channel is used */
2417       if (out_format_desc->swizzle[i] >= TGSI_NUM_CHANNELS) {
2418          continue;
2419       }
2420 
2421       /* Ensure not already written to (happens in case with GL_ALPHA) */
2422       if (swizzle[out_format_desc->swizzle[i]] < TGSI_NUM_CHANNELS) {
2423          continue;
2424       }
2425 
2426       /* Ensure we haven't already found all channels */
2427       if (dst_channels >= out_format_desc->nr_channels) {
2428          continue;
2429       }
2430 
2431       swizzle[out_format_desc->swizzle[i]] = i;
2432       ++dst_channels;
2433 
2434       if (i == alpha_channel) {
2435          has_alpha = true;
2436       }
2437    }
2438 
2439    if (format_expands_to_float_soa(out_format_desc)) {
2440       /*
2441        * the code above can't work for layout_other
2442        * for srgb it would sort of work but we short-circuit swizzles, etc.
2443        * as that is done as part of unpack / pack.
2444        */
2445       dst_channels = 4; /* HACK: this is fake 4 really but need it due to transpose stuff later */
2446       has_alpha = true;
2447       swizzle[0] = 0;
2448       swizzle[1] = 1;
2449       swizzle[2] = 2;
2450       swizzle[3] = 3;
2451       pad_inline = true; /* HACK: prevent rgbxrgbx->rgbrgbxx conversion later */
2452    }
2453 
2454    /* If 3 channels then pad to include alpha for 4 element transpose */
2455    if (dst_channels == 3) {
2456       assert (!has_alpha);
2457       for (i = 0; i < TGSI_NUM_CHANNELS; i++) {
2458          if (swizzle[i] > TGSI_NUM_CHANNELS)
2459             swizzle[i] = 3;
2460       }
2461       if (out_format_desc->nr_channels == 4) {
2462          dst_channels = 4;
2463          /*
2464           * We use alpha from the color conversion, not separate one.
2465           * We had to include it for transpose, hence it will get converted
2466           * too (albeit when doing transpose after conversion, that would
2467           * no longer be the case necessarily).
2468           * (It works only with 4 channel dsts, e.g. rgbx formats, because
2469           * otherwise we really have padding, not alpha, included.)
2470           */
2471          has_alpha = true;
2472       }
2473    }
2474 
2475    /*
2476     * Load shader output
2477     */
2478    for (i = 0; i < num_fullblock_fs; ++i) {
2479       /* Always load alpha for use in blending */
2480       LLVMValueRef alpha;
2481       if (i < num_fs) {
2482          alpha = LLVMBuildLoad(builder, fs_out_color[rt][alpha_channel][i], "");
2483       }
2484       else {
2485          alpha = undef_src_val;
2486       }
2487 
2488       /* Load each channel */
2489       for (j = 0; j < dst_channels; ++j) {
2490          assert(swizzle[j] < 4);
2491          if (i < num_fs) {
2492             fs_src[i][j] = LLVMBuildLoad(builder, fs_out_color[rt][swizzle[j]][i], "");
2493          }
2494          else {
2495             fs_src[i][j] = undef_src_val;
2496          }
2497       }
2498 
2499       /* If 3 channels then pad to include alpha for 4 element transpose */
2500       /*
2501        * XXX If we include that here maybe could actually use it instead of
2502        * separate alpha for blending?
2503        * (Difficult though we actually convert pad channels, not alpha.)
2504        */
2505       if (dst_channels == 3 && !has_alpha) {
2506          fs_src[i][3] = alpha;
2507       }
2508 
2509       /* We split the row_mask and row_alpha as we want 128bit interleave */
2510       if (fs_type.length == 8) {
2511          src_mask[i*2 + 0]  = lp_build_extract_range(gallivm, fs_mask[i],
2512                                                      0, src_channels);
2513          src_mask[i*2 + 1]  = lp_build_extract_range(gallivm, fs_mask[i],
2514                                                      src_channels, src_channels);
2515 
2516          src_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2517          src_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2518                                                      src_channels, src_channels);
2519       } else {
2520          src_mask[i] = fs_mask[i];
2521          src_alpha[i] = alpha;
2522       }
2523    }
2524    if (dual_source_blend) {
2525       /* same as above except different src/dst, skip masks and comments... */
2526       for (i = 0; i < num_fullblock_fs; ++i) {
2527          LLVMValueRef alpha;
2528          if (i < num_fs) {
2529             alpha = LLVMBuildLoad(builder, fs_out_color[1][alpha_channel][i], "");
2530          }
2531          else {
2532             alpha = undef_src_val;
2533          }
2534 
2535          for (j = 0; j < dst_channels; ++j) {
2536             assert(swizzle[j] < 4);
2537             if (i < num_fs) {
2538                fs_src1[i][j] = LLVMBuildLoad(builder, fs_out_color[1][swizzle[j]][i], "");
2539             }
2540             else {
2541                fs_src1[i][j] = undef_src_val;
2542             }
2543          }
2544          if (dst_channels == 3 && !has_alpha) {
2545             fs_src1[i][3] = alpha;
2546          }
2547          if (fs_type.length == 8) {
2548             src1_alpha[i*2 + 0] = lp_build_extract_range(gallivm, alpha, 0, src_channels);
2549             src1_alpha[i*2 + 1] = lp_build_extract_range(gallivm, alpha,
2550                                                          src_channels, src_channels);
2551          } else {
2552             src1_alpha[i] = alpha;
2553          }
2554       }
2555    }
2556 
2557    if (util_format_is_pure_integer(out_format)) {
2558       /*
2559        * In this case fs_type was really ints or uints disguised as floats,
2560        * fix that up now.
2561        */
2562       fs_type.floating = 0;
2563       fs_type.sign = dst_type.sign;
2564       for (i = 0; i < num_fullblock_fs; ++i) {
2565          for (j = 0; j < dst_channels; ++j) {
2566             fs_src[i][j] = LLVMBuildBitCast(builder, fs_src[i][j],
2567                                             lp_build_vec_type(gallivm, fs_type), "");
2568          }
2569          if (dst_channels == 3 && !has_alpha) {
2570             fs_src[i][3] = LLVMBuildBitCast(builder, fs_src[i][3],
2571                                             lp_build_vec_type(gallivm, fs_type), "");
2572          }
2573       }
2574    }
2575 
2576    /*
2577     * We actually should generally do conversion first (for non-1d cases)
2578     * when the blend format is 8 or 16 bits. The reason is obvious,
2579     * there's 2 or 4 times less vectors to deal with for the interleave...
2580     * Albeit for the AVX (not AVX2) case there's no benefit with 16 bit
2581     * vectors (as it can do 32bit unpack with 256bit vectors, but 8/16bit
2582     * unpack only with 128bit vectors).
2583     * Note: for 16bit sizes really need matching pack conversion code
2584     */
2585    if (!is_1d && dst_channels != 3 && dst_type.width == 8) {
2586       twiddle_after_convert = TRUE;
2587    }
2588 
2589    /*
2590     * Pixel twiddle from fragment shader order to memory order
2591     */
2592    if (!twiddle_after_convert) {
2593       src_count = generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs,
2594                                       dst_channels, fs_src, src, pad_inline);
2595       if (dual_source_blend) {
2596          generate_fs_twiddle(gallivm, fs_type, num_fullblock_fs, dst_channels,
2597                              fs_src1, src1, pad_inline);
2598       }
2599    } else {
2600       src_count = num_fullblock_fs * dst_channels;
2601       /*
2602        * We reorder things a bit here, so the cases for 4-wide and 8-wide
2603        * (AVX) turn out the same later when untwiddling/transpose (albeit
2604        * for true AVX2 path untwiddle needs to be different).
2605        * For now just order by colors first (so we can use unpack later).
2606        */
2607       for (j = 0; j < num_fullblock_fs; j++) {
2608          for (i = 0; i < dst_channels; i++) {
2609             src[i*num_fullblock_fs + j] = fs_src[j][i];
2610             if (dual_source_blend) {
2611                src1[i*num_fullblock_fs + j] = fs_src1[j][i];
2612             }
2613          }
2614       }
2615    }
2616 
2617    src_channels = dst_channels < 3 ? dst_channels : 4;
2618    if (src_count != num_fullblock_fs * src_channels) {
2619       unsigned ds = src_count / (num_fullblock_fs * src_channels);
2620       row_type.length /= ds;
2621       fs_type.length = row_type.length;
2622    }
2623 
2624    blend_type = row_type;
2625    mask_type.length = 4;
2626 
2627    /* Convert src to row_type */
2628    if (dual_source_blend) {
2629       struct lp_type old_row_type = row_type;
2630       lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2631       src_count = lp_build_conv_auto(gallivm, fs_type, &old_row_type, src1, src_count, src1);
2632    }
2633    else {
2634       src_count = lp_build_conv_auto(gallivm, fs_type, &row_type, src, src_count, src);
2635    }
2636 
2637    /* If the rows are not an SSE vector, combine them to become SSE size! */
2638    if ((row_type.width * row_type.length) % 128) {
2639       unsigned bits = row_type.width * row_type.length;
2640       unsigned combined;
2641 
2642       assert(src_count >= (vector_width / bits));
2643 
2644       dst_count = src_count / (vector_width / bits);
2645 
2646       combined = lp_build_concat_n(gallivm, row_type, src, src_count, src, dst_count);
2647       if (dual_source_blend) {
2648          lp_build_concat_n(gallivm, row_type, src1, src_count, src1, dst_count);
2649       }
2650 
2651       row_type.length *= combined;
2652       src_count /= combined;
2653 
2654       bits = row_type.width * row_type.length;
2655       assert(bits == 128 || bits == 256);
2656    }
2657 
2658    if (twiddle_after_convert) {
2659       fs_twiddle_transpose(gallivm, row_type, src, src_count, src);
2660       if (dual_source_blend) {
2661          fs_twiddle_transpose(gallivm, row_type, src1, src_count, src1);
2662       }
2663    }
2664 
2665    /*
2666     * Blend Colour conversion
2667     */
2668    blend_color = lp_jit_context_f_blend_color(gallivm, context_ptr);
2669    blend_color = LLVMBuildPointerCast(builder, blend_color,
2670                     LLVMPointerType(lp_build_vec_type(gallivm, fs_type), 0), "");
2671    blend_color = LLVMBuildLoad(builder, LLVMBuildGEP(builder, blend_color,
2672                                &i32_zero, 1, ""), "");
2673 
2674    /* Convert */
2675    lp_build_conv(gallivm, fs_type, blend_type, &blend_color, 1, &blend_color, 1);
2676 
2677    if (out_format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB) {
2678       /*
2679        * since blending is done with floats, there was no conversion.
2680        * However, the rules according to fixed point renderbuffers still
2681        * apply, that is we must clamp inputs to 0.0/1.0.
2682        * (This would apply to separate alpha conversion too but we currently
2683        * force has_alpha to be true.)
2684        * TODO: should skip this with "fake" blend, since post-blend conversion
2685        * will clamp anyway.
2686        * TODO: could also skip this if fragment color clamping is enabled. We
2687        * don't support it natively so it gets baked into the shader however, so
2688        * can't really tell here.
2689        */
2690       struct lp_build_context f32_bld;
2691       assert(row_type.floating);
2692       lp_build_context_init(&f32_bld, gallivm, row_type);
2693       for (i = 0; i < src_count; i++) {
2694          src[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src[i]);
2695       }
2696       if (dual_source_blend) {
2697          for (i = 0; i < src_count; i++) {
2698             src1[i] = lp_build_clamp_zero_one_nanzero(&f32_bld, src1[i]);
2699          }
2700       }
2701       /* probably can't be different than row_type but better safe than sorry... */
2702       lp_build_context_init(&f32_bld, gallivm, blend_type);
2703       blend_color = lp_build_clamp(&f32_bld, blend_color, f32_bld.zero, f32_bld.one);
2704    }
2705 
2706    /* Extract alpha */
2707    blend_alpha = lp_build_extract_broadcast(gallivm, blend_type, row_type, blend_color, lp_build_const_int32(gallivm, 3));
2708 
2709    /* Swizzle to appropriate channels, e.g. from RGBA to BGRA BGRA */
2710    pad_inline &= (dst_channels * (block_size / src_count) * row_type.width) != vector_width;
2711    if (pad_inline) {
2712       /* Use all 4 channels e.g. from RGBA RGBA to RGxx RGxx */
2713       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, TGSI_NUM_CHANNELS, row_type.length);
2714    } else {
2715       /* Only use dst_channels e.g. RGBA RGBA to RG RG xxxx */
2716       blend_color = lp_build_swizzle_aos_n(gallivm, blend_color, swizzle, dst_channels, row_type.length);
2717    }
2718 
2719    /*
2720     * Mask conversion
2721     */
2722    lp_bld_quad_twiddle(gallivm, mask_type, &src_mask[0], block_height, &src_mask[0]);
2723 
2724    if (src_count < block_height) {
2725       lp_build_concat_n(gallivm, mask_type, src_mask, 4, src_mask, src_count);
2726    } else if (src_count > block_height) {
2727       for (i = src_count; i > 0; --i) {
2728          unsigned pixels = block_size / src_count;
2729          unsigned idx = i - 1;
2730 
2731          src_mask[idx] = lp_build_extract_range(gallivm, src_mask[(idx * pixels) / 4],
2732                                                 (idx * pixels) % 4, pixels);
2733       }
2734    }
2735 
2736    assert(mask_type.width == 32);
2737 
2738    for (i = 0; i < src_count; ++i) {
2739       unsigned pixels = block_size / src_count;
2740       unsigned pixel_width = row_type.width * dst_channels;
2741 
2742       if (pixel_width == 24) {
2743          mask_type.width = 8;
2744          mask_type.length = vector_width / mask_type.width;
2745       } else {
2746          mask_type.length = pixels;
2747          mask_type.width = row_type.width * dst_channels;
2748 
2749          /*
2750           * If mask_type width is smaller than 32bit, this doesn't quite
2751           * generate the most efficient code (could use some pack).
2752           */
2753          src_mask[i] = LLVMBuildIntCast(builder, src_mask[i],
2754                                         lp_build_int_vec_type(gallivm, mask_type), "");
2755 
2756          mask_type.length *= dst_channels;
2757          mask_type.width /= dst_channels;
2758       }
2759 
2760       src_mask[i] = LLVMBuildBitCast(builder, src_mask[i],
2761                                      lp_build_int_vec_type(gallivm, mask_type), "");
2762       src_mask[i] = lp_build_pad_vector(gallivm, src_mask[i], row_type.length);
2763    }
2764 
2765    /*
2766     * Alpha conversion
2767     */
2768    if (!has_alpha) {
2769       struct lp_type alpha_type = fs_type;
2770       alpha_type.length = 4;
2771       convert_alpha(gallivm, row_type, alpha_type,
2772                     block_size, block_height,
2773                     src_count, dst_channels,
2774                     pad_inline, src_alpha);
2775       if (dual_source_blend) {
2776          convert_alpha(gallivm, row_type, alpha_type,
2777                        block_size, block_height,
2778                        src_count, dst_channels,
2779                        pad_inline, src1_alpha);
2780       }
2781    }
2782 
2783 
2784    /*
2785     * Load dst from memory
2786     */
2787    if (src_count < block_height) {
2788       dst_count = block_height;
2789    } else {
2790       dst_count = src_count;
2791    }
2792 
2793    dst_type.length *= block_size / dst_count;
2794 
2795    if (format_expands_to_float_soa(out_format_desc)) {
2796       /*
2797        * we need multiple values at once for the conversion, so can as well
2798        * load them vectorized here too instead of concatenating later.
2799        * (Still need concatenation later for 8-wide vectors).
2800        */
2801       dst_count = block_height;
2802       dst_type.length = block_width;
2803    }
2804 
2805    /*
2806     * Compute the alignment of the destination pointer in bytes
2807     * We fetch 1-4 pixels, if the format has pot alignment then those fetches
2808     * are always aligned by MIN2(16, fetch_width) except for buffers (not
2809     * 1d tex but can't distinguish here) so need to stick with per-pixel
2810     * alignment in this case.
2811     */
2812    if (is_1d) {
2813       dst_alignment = (out_format_desc->block.bits + 7)/(out_format_desc->block.width * 8);
2814    }
2815    else {
2816       dst_alignment = dst_type.length * dst_type.width / 8;
2817    }
2818    /* Force power-of-two alignment by extracting only the least-significant-bit */
2819    dst_alignment = 1 << (ffs(dst_alignment) - 1);
2820    /*
2821     * Resource base and stride pointers are aligned to 16 bytes, so that's
2822     * the maximum alignment we can guarantee
2823     */
2824    dst_alignment = MIN2(16, dst_alignment);
2825 
2826    ls_type = dst_type;
2827 
2828    if (dst_count > src_count) {
2829       if ((dst_type.width == 8 || dst_type.width == 16) &&
2830           util_is_power_of_two_or_zero(dst_type.length) &&
2831           dst_type.length * dst_type.width < 128) {
2832          /*
2833           * Never try to load values as 4xi8 which we will then
2834           * concatenate to larger vectors. This gives llvm a real
2835           * headache (the problem is the type legalizer (?) will
2836           * try to load that as 4xi8 zext to 4xi32 to fill the vector,
2837           * then the shuffles to concatenate are more or less impossible
2838           * - llvm is easily capable of generating a sequence of 32
2839           * pextrb/pinsrb instructions for that. Albeit it appears to
2840           * be fixed in llvm 4.0. So, load and concatenate with 32bit
2841           * width to avoid the trouble (16bit seems not as bad, llvm
2842           * probably recognizes the load+shuffle as only one shuffle
2843           * is necessary, but we can do just the same anyway).
2844           */
2845          ls_type.length = dst_type.length * dst_type.width / 32;
2846          ls_type.width = 32;
2847       }
2848    }
2849 
2850    if (is_1d) {
2851       load_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2852                             dst, ls_type, dst_count / 4, dst_alignment);
2853       for (i = dst_count / 4; i < dst_count; i++) {
2854          dst[i] = lp_build_undef(gallivm, ls_type);
2855       }
2856 
2857    }
2858    else {
2859       load_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2860                             dst, ls_type, dst_count, dst_alignment);
2861    }
2862 
2863 
2864    /*
2865     * Convert from dst/output format to src/blending format.
2866     *
2867     * This is necessary as we can only read 1 row from memory at a time,
2868     * so the minimum dst_count will ever be at this point is 4.
2869     *
2870     * With, for example, R8 format you can have all 16 pixels in a 128 bit vector,
2871     * this will take the 4 dsts and combine them into 1 src so we can perform blending
2872     * on all 16 pixels in that single vector at once.
2873     */
2874    if (dst_count > src_count) {
2875       if (ls_type.length != dst_type.length && ls_type.length == 1) {
2876          LLVMTypeRef elem_type = lp_build_elem_type(gallivm, ls_type);
2877          LLVMTypeRef ls_vec_type = LLVMVectorType(elem_type, 1);
2878          for (i = 0; i < dst_count; i++) {
2879             dst[i] = LLVMBuildBitCast(builder, dst[i], ls_vec_type, "");
2880          }
2881       }
2882 
2883       lp_build_concat_n(gallivm, ls_type, dst, 4, dst, src_count);
2884 
2885       if (ls_type.length != dst_type.length) {
2886          struct lp_type tmp_type = dst_type;
2887          tmp_type.length = dst_type.length * 4 / src_count;
2888          for (i = 0; i < src_count; i++) {
2889             dst[i] = LLVMBuildBitCast(builder, dst[i],
2890                                       lp_build_vec_type(gallivm, tmp_type), "");
2891          }
2892       }
2893    }
2894 
2895    /*
2896     * Blending
2897     */
2898    /* XXX this is broken for RGB8 formats -
2899     * they get expanded from 12 to 16 elements (to include alpha)
2900     * by convert_to_blend_type then reduced to 15 instead of 12
2901     * by convert_from_blend_type (a simple fix though breaks A8...).
2902     * R16G16B16 also crashes differently however something going wrong
2903     * inside llvm handling npot vector sizes seemingly.
2904     * It seems some cleanup could be done here (like skipping conversion/blend
2905     * when not needed).
2906     */
2907    convert_to_blend_type(gallivm, block_size, out_format_desc, dst_type,
2908                          row_type, dst, src_count);
2909 
2910    /*
2911     * FIXME: Really should get logic ops / masks out of generic blend / row
2912     * format. Logic ops will definitely not work on the blend float format
2913     * used for SRGB here and I think OpenGL expects this to work as expected
2914     * (that is incoming values converted to srgb then logic op applied).
2915     */
2916    for (i = 0; i < src_count; ++i) {
2917       dst[i] = lp_build_blend_aos(gallivm,
2918                                   &variant->key.blend,
2919                                   out_format,
2920                                   row_type,
2921                                   rt,
2922                                   src[i],
2923                                   has_alpha ? NULL : src_alpha[i],
2924                                   src1[i],
2925                                   has_alpha ? NULL : src1_alpha[i],
2926                                   dst[i],
2927                                   partial_mask ? src_mask[i] : NULL,
2928                                   blend_color,
2929                                   has_alpha ? NULL : blend_alpha,
2930                                   swizzle,
2931                                   pad_inline ? 4 : dst_channels);
2932    }
2933 
2934    convert_from_blend_type(gallivm, block_size, out_format_desc,
2935                            row_type, dst_type, dst, src_count);
2936 
2937    /* Split the blend rows back to memory rows */
2938    if (dst_count > src_count) {
2939       row_type.length = dst_type.length * (dst_count / src_count);
2940 
2941       if (src_count == 1) {
2942          dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2943          dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2944 
2945          row_type.length /= 2;
2946          src_count *= 2;
2947       }
2948 
2949       dst[3] = lp_build_extract_range(gallivm, dst[1], row_type.length / 2, row_type.length / 2);
2950       dst[2] = lp_build_extract_range(gallivm, dst[1], 0, row_type.length / 2);
2951       dst[1] = lp_build_extract_range(gallivm, dst[0], row_type.length / 2, row_type.length / 2);
2952       dst[0] = lp_build_extract_range(gallivm, dst[0], 0, row_type.length / 2);
2953 
2954       row_type.length /= 2;
2955       src_count *= 2;
2956    }
2957 
2958    /*
2959     * Store blend result to memory
2960     */
2961    if (is_1d) {
2962       store_unswizzled_block(gallivm, color_ptr, stride, block_width, 1,
2963                              dst, dst_type, dst_count / 4, dst_alignment);
2964    }
2965    else {
2966       store_unswizzled_block(gallivm, color_ptr, stride, block_width, block_height,
2967                              dst, dst_type, dst_count, dst_alignment);
2968    }
2969 
2970    if (have_smallfloat_format(dst_type, out_format)) {
2971       lp_build_fpstate_set(gallivm, fpstate);
2972    }
2973 
2974    if (do_branch) {
2975       lp_build_mask_end(&mask_ctx);
2976    }
2977 }
2978 
2979 
2980 /**
2981  * Generate the runtime callable function for the whole fragment pipeline.
2982  * Note that the function which we generate operates on a block of 16
2983  * pixels at at time.  The block contains 2x2 quads.  Each quad contains
2984  * 2x2 pixels.
2985  */
2986 static void
generate_fragment(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,struct lp_fragment_shader_variant * variant,unsigned partial_mask)2987 generate_fragment(struct llvmpipe_context *lp,
2988                   struct lp_fragment_shader *shader,
2989                   struct lp_fragment_shader_variant *variant,
2990                   unsigned partial_mask)
2991 {
2992    struct gallivm_state *gallivm = variant->gallivm;
2993    struct lp_fragment_shader_variant_key *key = &variant->key;
2994    struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS];
2995    char func_name[64];
2996    struct lp_type fs_type;
2997    struct lp_type blend_type;
2998    LLVMTypeRef fs_elem_type;
2999    LLVMTypeRef blend_vec_type;
3000    LLVMTypeRef arg_types[15];
3001    LLVMTypeRef func_type;
3002    LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context);
3003    LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context);
3004    LLVMValueRef context_ptr;
3005    LLVMValueRef x;
3006    LLVMValueRef y;
3007    LLVMValueRef a0_ptr;
3008    LLVMValueRef dadx_ptr;
3009    LLVMValueRef dady_ptr;
3010    LLVMValueRef color_ptr_ptr;
3011    LLVMValueRef stride_ptr;
3012    LLVMValueRef color_sample_stride_ptr;
3013    LLVMValueRef depth_ptr;
3014    LLVMValueRef depth_stride;
3015    LLVMValueRef depth_sample_stride;
3016    LLVMValueRef mask_input;
3017    LLVMValueRef thread_data_ptr;
3018    LLVMBasicBlockRef block;
3019    LLVMBuilderRef builder;
3020    struct lp_build_sampler_soa *sampler;
3021    struct lp_build_image_soa *image;
3022    struct lp_build_interp_soa_context interp;
3023    LLVMValueRef fs_mask[(16 / 4) * LP_MAX_SAMPLES];
3024    LLVMValueRef fs_out_color[LP_MAX_SAMPLES][PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4];
3025    LLVMValueRef function;
3026    LLVMValueRef facing;
3027    unsigned num_fs;
3028    unsigned i;
3029    unsigned chan;
3030    unsigned cbuf;
3031    boolean cbuf0_write_all;
3032    const boolean dual_source_blend = key->blend.rt[0].blend_enable &&
3033                                      util_blend_state_is_dual(&key->blend, 0);
3034 
3035    assert(lp_native_vector_width / 32 >= 4);
3036 
3037    /* Adjust color input interpolation according to flatshade state:
3038     */
3039    memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]);
3040    for (i = 0; i < shader->info.base.num_inputs; i++) {
3041       if (inputs[i].interp == LP_INTERP_COLOR) {
3042 	 if (key->flatshade)
3043 	    inputs[i].interp = LP_INTERP_CONSTANT;
3044 	 else
3045 	    inputs[i].interp = LP_INTERP_PERSPECTIVE;
3046       }
3047    }
3048 
3049    /* check if writes to cbuf[0] are to be copied to all cbufs */
3050    cbuf0_write_all =
3051      shader->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
3052 
3053    /* TODO: actually pick these based on the fs and color buffer
3054     * characteristics. */
3055 
3056    memset(&fs_type, 0, sizeof fs_type);
3057    fs_type.floating = TRUE;      /* floating point values */
3058    fs_type.sign = TRUE;          /* values are signed */
3059    fs_type.norm = FALSE;         /* values are not limited to [0,1] or [-1,1] */
3060    fs_type.width = 32;           /* 32-bit float */
3061    fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */
3062 
3063    memset(&blend_type, 0, sizeof blend_type);
3064    blend_type.floating = FALSE; /* values are integers */
3065    blend_type.sign = FALSE;     /* values are unsigned */
3066    blend_type.norm = TRUE;      /* values are in [0,1] or [-1,1] */
3067    blend_type.width = 8;        /* 8-bit ubyte values */
3068    blend_type.length = 16;      /* 16 elements per vector */
3069 
3070    /*
3071     * Generate the function prototype. Any change here must be reflected in
3072     * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
3073     */
3074 
3075    fs_elem_type = lp_build_elem_type(gallivm, fs_type);
3076 
3077    blend_vec_type = lp_build_vec_type(gallivm, blend_type);
3078 
3079    snprintf(func_name, sizeof(func_name), "fs_variant_%s",
3080             partial_mask ? "partial" : "whole");
3081 
3082    arg_types[0] = variant->jit_context_ptr_type;       /* context */
3083    arg_types[1] = int32_type;                          /* x */
3084    arg_types[2] = int32_type;                          /* y */
3085    arg_types[3] = int32_type;                          /* facing */
3086    arg_types[4] = LLVMPointerType(fs_elem_type, 0);    /* a0 */
3087    arg_types[5] = LLVMPointerType(fs_elem_type, 0);    /* dadx */
3088    arg_types[6] = LLVMPointerType(fs_elem_type, 0);    /* dady */
3089    arg_types[7] = LLVMPointerType(LLVMPointerType(int8_type, 0), 0);  /* color */
3090    arg_types[8] = LLVMPointerType(int8_type, 0);       /* depth */
3091    arg_types[9] = LLVMInt64TypeInContext(gallivm->context);  /* mask_input */
3092    arg_types[10] = variant->jit_thread_data_ptr_type;  /* per thread data */
3093    arg_types[11] = LLVMPointerType(int32_type, 0);     /* stride */
3094    arg_types[12] = int32_type;                         /* depth_stride */
3095    arg_types[13] = LLVMPointerType(int32_type, 0);     /* color sample strides */
3096    arg_types[14] = int32_type;                         /* depth sample stride */
3097 
3098    func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context),
3099                                 arg_types, ARRAY_SIZE(arg_types), 0);
3100 
3101    function = LLVMAddFunction(gallivm->module, func_name, func_type);
3102    LLVMSetFunctionCallConv(function, LLVMCCallConv);
3103 
3104    variant->function[partial_mask] = function;
3105 
3106    /* XXX: need to propagate noalias down into color param now we are
3107     * passing a pointer-to-pointer?
3108     */
3109    for(i = 0; i < ARRAY_SIZE(arg_types); ++i)
3110       if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
3111          lp_add_function_attr(function, i + 1, LP_FUNC_ATTR_NOALIAS);
3112 
3113    if (variant->gallivm->cache->data_size)
3114       return;
3115 
3116    context_ptr  = LLVMGetParam(function, 0);
3117    x            = LLVMGetParam(function, 1);
3118    y            = LLVMGetParam(function, 2);
3119    facing       = LLVMGetParam(function, 3);
3120    a0_ptr       = LLVMGetParam(function, 4);
3121    dadx_ptr     = LLVMGetParam(function, 5);
3122    dady_ptr     = LLVMGetParam(function, 6);
3123    color_ptr_ptr = LLVMGetParam(function, 7);
3124    depth_ptr    = LLVMGetParam(function, 8);
3125    mask_input   = LLVMGetParam(function, 9);
3126    thread_data_ptr  = LLVMGetParam(function, 10);
3127    stride_ptr   = LLVMGetParam(function, 11);
3128    depth_stride = LLVMGetParam(function, 12);
3129    color_sample_stride_ptr = LLVMGetParam(function, 13);
3130    depth_sample_stride = LLVMGetParam(function, 14);
3131 
3132    lp_build_name(context_ptr, "context");
3133    lp_build_name(x, "x");
3134    lp_build_name(y, "y");
3135    lp_build_name(a0_ptr, "a0");
3136    lp_build_name(dadx_ptr, "dadx");
3137    lp_build_name(dady_ptr, "dady");
3138    lp_build_name(color_ptr_ptr, "color_ptr_ptr");
3139    lp_build_name(depth_ptr, "depth");
3140    lp_build_name(mask_input, "mask_input");
3141    lp_build_name(thread_data_ptr, "thread_data");
3142    lp_build_name(stride_ptr, "stride_ptr");
3143    lp_build_name(depth_stride, "depth_stride");
3144    lp_build_name(color_sample_stride_ptr, "color_sample_stride_ptr");
3145    lp_build_name(depth_sample_stride, "depth_sample_stride");
3146 
3147    /*
3148     * Function body
3149     */
3150 
3151    block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry");
3152    builder = gallivm->builder;
3153    assert(builder);
3154    LLVMPositionBuilderAtEnd(builder, block);
3155 
3156    /*
3157     * Must not count ps invocations if there's a null shader.
3158     * (It would be ok to count with null shader if there's d/s tests,
3159     * but only if there's d/s buffers too, which is different
3160     * to implicit rasterization disable which must not depend
3161     * on the d/s buffers.)
3162     * Could use popcount on mask, but pixel accuracy is not required.
3163     * Could disable if there's no stats query, but maybe not worth it.
3164     */
3165    if (shader->info.base.num_instructions > 1) {
3166       LLVMValueRef invocs, val;
3167       invocs = lp_jit_thread_data_invocations(gallivm, thread_data_ptr);
3168       val = LLVMBuildLoad(builder, invocs, "");
3169       val = LLVMBuildAdd(builder, val,
3170                          LLVMConstInt(LLVMInt64TypeInContext(gallivm->context), 1, 0),
3171                          "invoc_count");
3172       LLVMBuildStore(builder, val, invocs);
3173    }
3174 
3175    /* code generated texture sampling */
3176    sampler = lp_llvm_sampler_soa_create(lp_fs_variant_key_samplers(key), key->nr_samplers);
3177    image = lp_llvm_image_soa_create(lp_fs_variant_key_images(key), key->nr_images);
3178 
3179    num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */
3180    /* for 1d resources only run "upper half" of stamp */
3181    if (key->resource_1d)
3182       num_fs /= 2;
3183 
3184    {
3185       LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs);
3186       LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type);
3187       LLVMValueRef num_loop_samp = lp_build_const_int32(gallivm, num_fs * key->coverage_samples);
3188       LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type,
3189                                                       num_loop_samp, "mask_store");
3190 
3191       LLVMTypeRef flt_type = LLVMFloatTypeInContext(gallivm->context);
3192       LLVMValueRef glob_sample_pos = LLVMAddGlobal(gallivm->module, LLVMArrayType(flt_type, key->coverage_samples * 2), "");
3193       LLVMValueRef sample_pos_array;
3194 
3195       if (key->multisample && key->coverage_samples == 4) {
3196          LLVMValueRef sample_pos_arr[8];
3197          for (unsigned i = 0; i < 4; i++) {
3198             sample_pos_arr[i * 2] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][0]);
3199             sample_pos_arr[i * 2 + 1] = LLVMConstReal(flt_type, lp_sample_pos_4x[i][1]);
3200          }
3201          sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 8);
3202       } else {
3203          LLVMValueRef sample_pos_arr[2];
3204          sample_pos_arr[0] = LLVMConstReal(flt_type, 0.5);
3205          sample_pos_arr[1] = LLVMConstReal(flt_type, 0.5);
3206          sample_pos_array = LLVMConstArray(LLVMFloatTypeInContext(gallivm->context), sample_pos_arr, 2);
3207       }
3208       LLVMSetInitializer(glob_sample_pos, sample_pos_array);
3209 
3210       LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS];
3211       boolean pixel_center_integer =
3212          shader->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
3213 
3214       /*
3215        * The shader input interpolation info is not explicitely baked in the
3216        * shader key, but everything it derives from (TGSI, and flatshade) is
3217        * already included in the shader key.
3218        */
3219       lp_build_interp_soa_init(&interp,
3220                                gallivm,
3221                                shader->info.base.num_inputs,
3222                                inputs,
3223                                pixel_center_integer,
3224                                key->coverage_samples, glob_sample_pos,
3225                                num_loop,
3226                                key->depth_clamp,
3227                                builder, fs_type,
3228                                a0_ptr, dadx_ptr, dady_ptr,
3229                                x, y);
3230 
3231       for (i = 0; i < num_fs; i++) {
3232          if (key->multisample) {
3233             LLVMValueRef smask_val = LLVMBuildLoad(builder, lp_jit_context_sample_mask(gallivm, context_ptr), "");
3234 
3235             /*
3236              * For multisampling, extract the per-sample mask from the incoming 64-bit mask,
3237              * store to the per sample mask storage. Or all of them together to generate
3238              * the fragment shader mask. (sample shading TODO).
3239              * Take the incoming state coverage mask into account.
3240              */
3241             for (unsigned s = 0; s < key->coverage_samples; s++) {
3242                LLVMValueRef sindexi = lp_build_const_int32(gallivm, i + (s * num_fs));
3243                LLVMValueRef sample_mask_ptr = LLVMBuildGEP(builder, mask_store,
3244                                                            &sindexi, 1, "sample_mask_ptr");
3245                LLVMValueRef s_mask = generate_quad_mask(gallivm, fs_type,
3246                                                         i*fs_type.length/4, s, mask_input);
3247 
3248                LLVMValueRef smask_bit = LLVMBuildAnd(builder, smask_val, lp_build_const_int32(gallivm, (1 << s)), "");
3249                LLVMValueRef cmp = LLVMBuildICmp(builder, LLVMIntNE, smask_bit, lp_build_const_int32(gallivm, 0), "");
3250                smask_bit = LLVMBuildSExt(builder, cmp, int32_type, "");
3251                smask_bit = lp_build_broadcast(gallivm, mask_type, smask_bit);
3252 
3253                s_mask = LLVMBuildAnd(builder, s_mask, smask_bit, "");
3254                LLVMBuildStore(builder, s_mask, sample_mask_ptr);
3255             }
3256          } else {
3257             LLVMValueRef mask;
3258             LLVMValueRef indexi = lp_build_const_int32(gallivm, i);
3259             LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store,
3260                                                  &indexi, 1, "mask_ptr");
3261 
3262             if (partial_mask) {
3263                mask = generate_quad_mask(gallivm, fs_type,
3264                                          i*fs_type.length/4, 0, mask_input);
3265             }
3266             else {
3267                mask = lp_build_const_int_vec(gallivm, fs_type, ~0);
3268             }
3269             LLVMBuildStore(builder, mask, mask_ptr);
3270          }
3271       }
3272 
3273       generate_fs_loop(gallivm,
3274                        shader, key,
3275                        builder,
3276                        fs_type,
3277                        context_ptr,
3278                        glob_sample_pos,
3279                        num_loop,
3280                        &interp,
3281                        sampler,
3282                        image,
3283                        mask_store, /* output */
3284                        color_store,
3285                        depth_ptr,
3286                        depth_stride,
3287                        depth_sample_stride,
3288                        color_ptr_ptr,
3289                        stride_ptr,
3290                        color_sample_stride_ptr,
3291                        facing,
3292                        thread_data_ptr);
3293 
3294       for (i = 0; i < num_fs; i++) {
3295          LLVMValueRef ptr;
3296          for (unsigned s = 0; s < key->coverage_samples; s++) {
3297             int idx = (i + (s * num_fs));
3298             LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3299             ptr = LLVMBuildGEP(builder, mask_store, &sindexi, 1, "");
3300 
3301             fs_mask[idx] = LLVMBuildLoad(builder, ptr, "smask");
3302          }
3303 
3304          for (unsigned s = 0; s < key->min_samples; s++) {
3305             /* This is fucked up need to reorganize things */
3306             int idx = s * num_fs + i;
3307             LLVMValueRef sindexi = lp_build_const_int32(gallivm, idx);
3308             for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3309                for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3310                   ptr = LLVMBuildGEP(builder,
3311                                      color_store[cbuf * !cbuf0_write_all][chan],
3312                                      &sindexi, 1, "");
3313                   fs_out_color[s][cbuf][chan][i] = ptr;
3314                }
3315             }
3316             if (dual_source_blend) {
3317                /* only support one dual source blend target hence always use output 1 */
3318                for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) {
3319                   ptr = LLVMBuildGEP(builder,
3320                                      color_store[1][chan],
3321                                      &sindexi, 1, "");
3322                   fs_out_color[s][1][chan][i] = ptr;
3323                }
3324             }
3325          }
3326       }
3327    }
3328 
3329    sampler->destroy(sampler);
3330    image->destroy(image);
3331    /* Loop over color outputs / color buffers to do blending.
3332     */
3333    for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
3334       if (key->cbuf_format[cbuf] != PIPE_FORMAT_NONE) {
3335          LLVMValueRef color_ptr;
3336          LLVMValueRef stride;
3337          LLVMValueRef sample_stride = NULL;
3338          LLVMValueRef index = lp_build_const_int32(gallivm, cbuf);
3339 
3340          boolean do_branch = ((key->depth.enabled
3341                                || key->stencil[0].enabled
3342                                || key->alpha.enabled)
3343                               && !shader->info.base.uses_kill);
3344 
3345          color_ptr = LLVMBuildLoad(builder,
3346                                    LLVMBuildGEP(builder, color_ptr_ptr,
3347                                                 &index, 1, ""),
3348                                    "");
3349 
3350          stride = LLVMBuildLoad(builder,
3351                                 LLVMBuildGEP(builder, stride_ptr, &index, 1, ""),
3352                                 "");
3353 
3354          if (key->cbuf_nr_samples[cbuf] > 1)
3355             sample_stride = LLVMBuildLoad(builder,
3356                                           LLVMBuildGEP(builder, color_sample_stride_ptr,
3357                                                        &index, 1, ""), "");
3358 
3359          for (unsigned s = 0; s < key->cbuf_nr_samples[cbuf]; s++) {
3360             unsigned mask_idx = num_fs * (key->multisample ? s : 0);
3361             unsigned out_idx = key->min_samples == 1 ? 0 : s;
3362             LLVMValueRef out_ptr = color_ptr;;
3363 
3364             if (sample_stride) {
3365                LLVMValueRef sample_offset = LLVMBuildMul(builder, sample_stride, lp_build_const_int32(gallivm, s), "");
3366                out_ptr = LLVMBuildGEP(builder, out_ptr, &sample_offset, 1, "");
3367             }
3368             out_ptr = LLVMBuildBitCast(builder, out_ptr, LLVMPointerType(blend_vec_type, 0), "");
3369 
3370             lp_build_name(out_ptr, "color_ptr%d", cbuf);
3371 
3372             generate_unswizzled_blend(gallivm, cbuf, variant,
3373                                       key->cbuf_format[cbuf],
3374                                       num_fs, fs_type, &fs_mask[mask_idx], fs_out_color[out_idx],
3375                                       context_ptr, out_ptr, stride,
3376                                       partial_mask, do_branch);
3377          }
3378       }
3379    }
3380 
3381    LLVMBuildRetVoid(builder);
3382 
3383    gallivm_verify_function(gallivm, function);
3384 }
3385 
3386 
3387 static void
dump_fs_variant_key(struct lp_fragment_shader_variant_key * key)3388 dump_fs_variant_key(struct lp_fragment_shader_variant_key *key)
3389 {
3390    unsigned i;
3391 
3392    debug_printf("fs variant %p:\n", (void *) key);
3393 
3394    if (key->flatshade) {
3395       debug_printf("flatshade = 1\n");
3396    }
3397    if (key->depth_clamp)
3398       debug_printf("depth_clamp = 1\n");
3399 
3400    if (key->multisample) {
3401       debug_printf("multisample = 1\n");
3402       debug_printf("coverage samples = %d\n", key->coverage_samples);
3403       debug_printf("min samples = %d\n", key->min_samples);
3404    }
3405    for (i = 0; i < key->nr_cbufs; ++i) {
3406       debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i]));
3407       debug_printf("cbuf nr_samples[%u] = %d\n", i, key->cbuf_nr_samples[i]);
3408    }
3409    if (key->depth.enabled || key->stencil[0].enabled) {
3410       debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
3411       debug_printf("depth nr_samples = %d\n", key->zsbuf_nr_samples);
3412    }
3413    if (key->depth.enabled) {
3414       debug_printf("depth.func = %s\n", util_str_func(key->depth.func, TRUE));
3415       debug_printf("depth.writemask = %u\n", key->depth.writemask);
3416    }
3417 
3418    for (i = 0; i < 2; ++i) {
3419       if (key->stencil[i].enabled) {
3420          debug_printf("stencil[%u].func = %s\n", i, util_str_func(key->stencil[i].func, TRUE));
3421          debug_printf("stencil[%u].fail_op = %s\n", i, util_str_stencil_op(key->stencil[i].fail_op, TRUE));
3422          debug_printf("stencil[%u].zpass_op = %s\n", i, util_str_stencil_op(key->stencil[i].zpass_op, TRUE));
3423          debug_printf("stencil[%u].zfail_op = %s\n", i, util_str_stencil_op(key->stencil[i].zfail_op, TRUE));
3424          debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask);
3425          debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask);
3426       }
3427    }
3428 
3429    if (key->alpha.enabled) {
3430       debug_printf("alpha.func = %s\n", util_str_func(key->alpha.func, TRUE));
3431    }
3432 
3433    if (key->occlusion_count) {
3434       debug_printf("occlusion_count = 1\n");
3435    }
3436 
3437    if (key->blend.logicop_enable) {
3438       debug_printf("blend.logicop_func = %s\n", util_str_logicop(key->blend.logicop_func, TRUE));
3439    }
3440    else if (key->blend.rt[0].blend_enable) {
3441       debug_printf("blend.rgb_func = %s\n",   util_str_blend_func  (key->blend.rt[0].rgb_func, TRUE));
3442       debug_printf("blend.rgb_src_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
3443       debug_printf("blend.rgb_dst_factor = %s\n",   util_str_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
3444       debug_printf("blend.alpha_func = %s\n",       util_str_blend_func  (key->blend.rt[0].alpha_func, TRUE));
3445       debug_printf("blend.alpha_src_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
3446       debug_printf("blend.alpha_dst_factor = %s\n", util_str_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
3447    }
3448    debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
3449    if (key->blend.alpha_to_coverage) {
3450       debug_printf("blend.alpha_to_coverage is enabled\n");
3451    }
3452    for (i = 0; i < key->nr_samplers; ++i) {
3453       const struct lp_sampler_static_state *samplers = lp_fs_variant_key_samplers(key);
3454       const struct lp_static_sampler_state *sampler = &samplers[i].sampler_state;
3455       debug_printf("sampler[%u] = \n", i);
3456       debug_printf("  .wrap = %s %s %s\n",
3457                    util_str_tex_wrap(sampler->wrap_s, TRUE),
3458                    util_str_tex_wrap(sampler->wrap_t, TRUE),
3459                    util_str_tex_wrap(sampler->wrap_r, TRUE));
3460       debug_printf("  .min_img_filter = %s\n",
3461                    util_str_tex_filter(sampler->min_img_filter, TRUE));
3462       debug_printf("  .min_mip_filter = %s\n",
3463                    util_str_tex_mipfilter(sampler->min_mip_filter, TRUE));
3464       debug_printf("  .mag_img_filter = %s\n",
3465                    util_str_tex_filter(sampler->mag_img_filter, TRUE));
3466       if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE)
3467          debug_printf("  .compare_func = %s\n", util_str_func(sampler->compare_func, TRUE));
3468       debug_printf("  .normalized_coords = %u\n", sampler->normalized_coords);
3469       debug_printf("  .min_max_lod_equal = %u\n", sampler->min_max_lod_equal);
3470       debug_printf("  .lod_bias_non_zero = %u\n", sampler->lod_bias_non_zero);
3471       debug_printf("  .apply_min_lod = %u\n", sampler->apply_min_lod);
3472       debug_printf("  .apply_max_lod = %u\n", sampler->apply_max_lod);
3473       debug_printf("  .reduction_mode = %u\n", sampler->reduction_mode);
3474       debug_printf("  .aniso = %u\n", sampler->aniso);
3475    }
3476    for (i = 0; i < key->nr_sampler_views; ++i) {
3477       const struct lp_sampler_static_state *samplers = lp_fs_variant_key_samplers(key);
3478       const struct lp_static_texture_state *texture = &samplers[i].texture_state;
3479       debug_printf("texture[%u] = \n", i);
3480       debug_printf("  .format = %s\n",
3481                    util_format_name(texture->format));
3482       debug_printf("  .target = %s\n",
3483                    util_str_tex_target(texture->target, TRUE));
3484       debug_printf("  .level_zero_only = %u\n",
3485                    texture->level_zero_only);
3486       debug_printf("  .pot = %u %u %u\n",
3487                    texture->pot_width,
3488                    texture->pot_height,
3489                    texture->pot_depth);
3490    }
3491    struct lp_image_static_state *images = lp_fs_variant_key_images(key);
3492    for (i = 0; i < key->nr_images; ++i) {
3493       const struct lp_static_texture_state *image = &images[i].image_state;
3494       debug_printf("image[%u] = \n", i);
3495       debug_printf("  .format = %s\n",
3496                    util_format_name(image->format));
3497       debug_printf("  .target = %s\n",
3498                    util_str_tex_target(image->target, TRUE));
3499       debug_printf("  .level_zero_only = %u\n",
3500                    image->level_zero_only);
3501       debug_printf("  .pot = %u %u %u\n",
3502                    image->pot_width,
3503                    image->pot_height,
3504                    image->pot_depth);
3505    }
3506 }
3507 
3508 const char *
lp_debug_fs_kind(enum lp_fs_kind kind)3509 lp_debug_fs_kind(enum lp_fs_kind kind)
3510 {
3511    switch(kind) {
3512    case LP_FS_KIND_GENERAL:
3513       return "GENERAL";
3514    case LP_FS_KIND_BLIT_RGBA:
3515       return "BLIT_RGBA";
3516    case LP_FS_KIND_BLIT_RGB1:
3517       return "BLIT_RGB1";
3518    case LP_FS_KIND_AERO_MINIFICATION:
3519       return "AERO_MINIFICATION";
3520    case LP_FS_KIND_LLVM_LINEAR:
3521       return "LLVM_LINEAR";
3522    default:
3523       return "unknown";
3524    }
3525 }
3526 
3527 void
lp_debug_fs_variant(struct lp_fragment_shader_variant * variant)3528 lp_debug_fs_variant(struct lp_fragment_shader_variant *variant)
3529 {
3530    debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n",
3531                 variant->shader->no, variant->no);
3532    if (variant->shader->base.type == PIPE_SHADER_IR_TGSI)
3533       tgsi_dump(variant->shader->base.tokens, 0);
3534    else
3535       nir_print_shader(variant->shader->base.ir.nir, stderr);
3536    dump_fs_variant_key(&variant->key);
3537    debug_printf("variant->opaque = %u\n", variant->opaque);
3538    debug_printf("variant->potentially_opaque = %u\n", variant->potentially_opaque);
3539    debug_printf("variant->blit = %u\n", variant->blit);
3540    debug_printf("shader->kind = %s\n", lp_debug_fs_kind(variant->shader->kind));
3541    debug_printf("\n");
3542 }
3543 
3544 static void
lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant * variant,unsigned char ir_sha1_cache_key[20])3545 lp_fs_get_ir_cache_key(struct lp_fragment_shader_variant *variant,
3546                             unsigned char ir_sha1_cache_key[20])
3547 {
3548    struct blob blob = { 0 };
3549    unsigned ir_size;
3550    void *ir_binary;
3551 
3552    blob_init(&blob);
3553    nir_serialize(&blob, variant->shader->base.ir.nir, true);
3554    ir_binary = blob.data;
3555    ir_size = blob.size;
3556 
3557    struct mesa_sha1 ctx;
3558    _mesa_sha1_init(&ctx);
3559    _mesa_sha1_update(&ctx, &variant->key, variant->shader->variant_key_size);
3560    _mesa_sha1_update(&ctx, ir_binary, ir_size);
3561    _mesa_sha1_final(&ctx, ir_sha1_cache_key);
3562 
3563    blob_finish(&blob);
3564 }
3565 
3566 /**
3567  * Generate a new fragment shader variant from the shader code and
3568  * other state indicated by the key.
3569  */
3570 static struct lp_fragment_shader_variant *
generate_variant(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,const struct lp_fragment_shader_variant_key * key)3571 generate_variant(struct llvmpipe_context *lp,
3572                  struct lp_fragment_shader *shader,
3573                  const struct lp_fragment_shader_variant_key *key)
3574 {
3575    struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
3576    struct lp_fragment_shader_variant *variant;
3577    const struct util_format_description *cbuf0_format_desc = NULL;
3578    boolean fullcolormask;
3579    boolean no_kill;
3580    boolean linear;
3581    char module_name[64];
3582    unsigned char ir_sha1_cache_key[20];
3583    struct lp_cached_code cached = { 0 };
3584    bool needs_caching = false;
3585    variant = MALLOC(sizeof *variant + shader->variant_key_size - sizeof variant->key);
3586    if (!variant)
3587       return NULL;
3588 
3589    memset(variant, 0, sizeof(*variant));
3590    snprintf(module_name, sizeof(module_name), "fs%u_variant%u",
3591             shader->no, shader->variants_created);
3592 
3593    pipe_reference_init(&variant->reference, 1);
3594    lp_fs_reference(lp, &variant->shader, shader);
3595 
3596    memcpy(&variant->key, key, shader->variant_key_size);
3597 
3598    if (shader->base.ir.nir) {
3599       lp_fs_get_ir_cache_key(variant, ir_sha1_cache_key);
3600 
3601       lp_disk_cache_find_shader(screen, &cached, ir_sha1_cache_key);
3602       if (!cached.data_size)
3603          needs_caching = true;
3604    }
3605    variant->gallivm = gallivm_create(module_name, lp->context, &cached);
3606    if (!variant->gallivm) {
3607       FREE(variant);
3608       return NULL;
3609    }
3610 
3611    variant->list_item_global.base = variant;
3612    variant->list_item_local.base = variant;
3613    variant->no = shader->variants_created++;
3614 
3615 
3616 
3617    /*
3618     * Determine whether we are touching all channels in the color buffer.
3619     */
3620    fullcolormask = FALSE;
3621    if (key->nr_cbufs == 1) {
3622       cbuf0_format_desc = util_format_description(key->cbuf_format[0]);
3623       fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask);
3624    }
3625 
3626    /* The scissor is ignored here as only tiles inside the scissoring
3627     * rectangle will refer to this */
3628    no_kill =
3629          fullcolormask &&
3630          !key->stencil[0].enabled &&
3631          !key->alpha.enabled &&
3632          !key->multisample &&
3633          !key->blend.alpha_to_coverage &&
3634          !key->depth.enabled &&
3635          !shader->info.base.uses_kill &&
3636          !shader->info.base.writes_samplemask &&
3637          !shader->info.base.uses_fbfetch;
3638 
3639    variant->opaque =
3640          no_kill &&
3641          !key->blend.logicop_enable &&
3642          !key->blend.rt[0].blend_enable
3643          ? TRUE : FALSE;
3644 
3645    variant->potentially_opaque =
3646          no_kill &&
3647          !key->blend.logicop_enable &&
3648          key->blend.rt[0].blend_enable &&
3649          key->blend.rt[0].rgb_func == PIPE_BLEND_ADD &&
3650          key->blend.rt[0].rgb_dst_factor == PIPE_BLENDFACTOR_INV_SRC_ALPHA &&
3651          key->blend.rt[0].alpha_func == key->blend.rt[0].rgb_func &&
3652          key->blend.rt[0].alpha_dst_factor == key->blend.rt[0].rgb_dst_factor &&
3653          shader->base.type == PIPE_SHADER_IR_TGSI &&
3654          /*
3655           * FIXME: for NIR, all of the fields of info.xxx (except info.base)
3656           * are zeros, hence shader analysis (here and elsewhere) using these
3657           * bits cannot work and will silently fail (cbuf is the only pointer
3658           * field, hence causing a crash).
3659           */
3660          shader->info.cbuf[0][3].file != TGSI_FILE_NULL
3661          ? TRUE : FALSE;
3662 
3663    /* We only care about opaque blits for now */
3664    if (variant->opaque &&
3665        (shader->kind == LP_FS_KIND_BLIT_RGBA ||
3666         shader->kind == LP_FS_KIND_BLIT_RGB1)) {
3667       unsigned target, min_img_filter, mag_img_filter, min_mip_filter;
3668       enum pipe_format texture_format;
3669       struct lp_sampler_static_state *samp0 = lp_fs_variant_key_sampler_idx(key, 0);
3670       assert(samp0);
3671       texture_format = samp0->texture_state.format;
3672       target = samp0->texture_state.target;
3673       min_img_filter = samp0->sampler_state.min_img_filter;
3674       mag_img_filter = samp0->sampler_state.mag_img_filter;
3675       if (samp0->texture_state.level_zero_only) {
3676          min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
3677       } else {
3678          min_mip_filter = samp0->sampler_state.min_mip_filter;
3679       }
3680 
3681       if (target == PIPE_TEXTURE_2D &&
3682           min_img_filter == PIPE_TEX_FILTER_NEAREST &&
3683           mag_img_filter == PIPE_TEX_FILTER_NEAREST &&
3684           min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
3685           ((texture_format &&
3686             util_is_format_compatible(util_format_description(texture_format),
3687                                       cbuf0_format_desc)) ||
3688            (shader->kind == LP_FS_KIND_BLIT_RGB1 &&
3689             (texture_format == PIPE_FORMAT_B8G8R8A8_UNORM ||
3690              texture_format == PIPE_FORMAT_B8G8R8X8_UNORM) &&
3691             (key->cbuf_format[0] == PIPE_FORMAT_B8G8R8A8_UNORM ||
3692              key->cbuf_format[0] == PIPE_FORMAT_B8G8R8X8_UNORM))))
3693          variant->blit = 1;
3694    }
3695 
3696 
3697    /* Whether this is a candidate for the linear path */
3698    linear =
3699          !key->stencil[0].enabled &&
3700          !key->depth.enabled &&
3701          !shader->info.base.uses_kill &&
3702          !key->blend.logicop_enable &&
3703          (key->cbuf_format[0] == PIPE_FORMAT_B8G8R8A8_UNORM ||
3704           key->cbuf_format[0] == PIPE_FORMAT_B8G8R8X8_UNORM);
3705 
3706    memcpy(&variant->key, key, sizeof *key);
3707 
3708    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3709       lp_debug_fs_variant(variant);
3710    }
3711 
3712    llvmpipe_fs_variant_fastpath(variant);
3713 
3714    lp_jit_init_types(variant);
3715 
3716    if (variant->jit_function[RAST_EDGE_TEST] == NULL)
3717       generate_fragment(lp, shader, variant, RAST_EDGE_TEST);
3718 
3719    if (variant->jit_function[RAST_WHOLE] == NULL) {
3720       if (variant->opaque) {
3721          /* Specialized shader, which doesn't need to read the color buffer. */
3722          generate_fragment(lp, shader, variant, RAST_WHOLE);
3723       }
3724    }
3725 
3726    if (linear) {
3727       /* Currently keeping both the old fastpaths and new linear path
3728        * active.  The older code is still somewhat faster for the cases
3729        * it covers.
3730        *
3731        * XXX: consider restricting this to aero-mode only.
3732        */
3733       if (fullcolormask &&
3734           !key->alpha.enabled &&
3735           !key->blend.alpha_to_coverage) {
3736          llvmpipe_fs_variant_linear_fastpath(variant);
3737       }
3738 
3739       /* If the original fastpath doesn't cover this variant, try the new
3740        * code:
3741        */
3742       if (variant->jit_linear == NULL) {
3743          if (shader->kind == LP_FS_KIND_BLIT_RGBA ||
3744              shader->kind == LP_FS_KIND_BLIT_RGB1 ||
3745              shader->kind == LP_FS_KIND_LLVM_LINEAR) {
3746             llvmpipe_fs_variant_linear_llvm(lp, shader, variant);
3747          }
3748       }
3749    } else {
3750       if (LP_DEBUG & DEBUG_LINEAR) {
3751          lp_debug_fs_variant(variant);
3752          debug_printf("    ----> no linear path for this variant\n");
3753       }
3754    }
3755 
3756    /*
3757     * Compile everything
3758     */
3759 
3760    gallivm_compile_module(variant->gallivm);
3761 
3762    variant->nr_instrs += lp_build_count_ir_module(variant->gallivm->module);
3763 
3764    if (variant->function[RAST_EDGE_TEST]) {
3765       variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func)
3766             gallivm_jit_function(variant->gallivm,
3767                                  variant->function[RAST_EDGE_TEST]);
3768    }
3769 
3770    if (variant->function[RAST_WHOLE]) {
3771          variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func)
3772                gallivm_jit_function(variant->gallivm,
3773                                     variant->function[RAST_WHOLE]);
3774    } else if (!variant->jit_function[RAST_WHOLE]) {
3775       variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST];
3776    }
3777 
3778    if (linear) {
3779       if (variant->linear_function) {
3780          variant->jit_linear_llvm = (lp_jit_linear_llvm_func)
3781                gallivm_jit_function(variant->gallivm, variant->linear_function);
3782       }
3783 
3784       /*
3785        * This must be done after LLVM compilation, as it will call the JIT'ed
3786        * code to determine active inputs.
3787        */
3788       lp_linear_check_variant(variant);
3789    }
3790 
3791    if (needs_caching) {
3792       lp_disk_cache_insert_shader(screen, &cached, ir_sha1_cache_key);
3793    }
3794 
3795    gallivm_free_ir(variant->gallivm);
3796 
3797    return variant;
3798 }
3799 
3800 
3801 static void *
llvmpipe_create_fs_state(struct pipe_context * pipe,const struct pipe_shader_state * templ)3802 llvmpipe_create_fs_state(struct pipe_context *pipe,
3803                          const struct pipe_shader_state *templ)
3804 {
3805    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3806    struct lp_fragment_shader *shader;
3807    int nr_samplers;
3808    int nr_sampler_views;
3809    int nr_images;
3810    int i;
3811 
3812    shader = CALLOC_STRUCT(lp_fragment_shader);
3813    if (!shader)
3814       return NULL;
3815 
3816    pipe_reference_init(&shader->reference, 1);
3817    shader->no = fs_no++;
3818    make_empty_list(&shader->variants);
3819 
3820    shader->base.type = templ->type;
3821    if (templ->type == PIPE_SHADER_IR_TGSI) {
3822       /* get/save the summary info for this shader */
3823       lp_build_tgsi_info(templ->tokens, &shader->info);
3824 
3825       /* we need to keep a local copy of the tokens */
3826       shader->base.tokens = tgsi_dup_tokens(templ->tokens);
3827    } else {
3828       shader->base.ir.nir = templ->ir.nir;
3829       nir_tgsi_scan_shader(templ->ir.nir, &shader->info.base, true);
3830    }
3831 
3832    shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ);
3833    if (shader->draw_data == NULL) {
3834       FREE((void *) shader->base.tokens);
3835       FREE(shader);
3836       return NULL;
3837    }
3838 
3839    nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
3840    nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
3841    nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
3842    shader->variant_key_size = lp_fs_variant_key_size(MAX2(nr_samplers, nr_sampler_views), nr_images);
3843 
3844    for (i = 0; i < shader->info.base.num_inputs; i++) {
3845       shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i];
3846       shader->inputs[i].location = shader->info.base.input_interpolate_loc[i];
3847 
3848       switch (shader->info.base.input_interpolate[i]) {
3849       case TGSI_INTERPOLATE_CONSTANT:
3850          shader->inputs[i].interp = LP_INTERP_CONSTANT;
3851          break;
3852       case TGSI_INTERPOLATE_LINEAR:
3853          shader->inputs[i].interp = LP_INTERP_LINEAR;
3854          break;
3855       case TGSI_INTERPOLATE_PERSPECTIVE:
3856          shader->inputs[i].interp = LP_INTERP_PERSPECTIVE;
3857          break;
3858       case TGSI_INTERPOLATE_COLOR:
3859          shader->inputs[i].interp = LP_INTERP_COLOR;
3860          break;
3861       default:
3862          assert(0);
3863          break;
3864       }
3865 
3866       switch (shader->info.base.input_semantic_name[i]) {
3867       case TGSI_SEMANTIC_FACE:
3868          shader->inputs[i].interp = LP_INTERP_FACING;
3869          break;
3870       case TGSI_SEMANTIC_POSITION:
3871          /* Position was already emitted above
3872           */
3873          shader->inputs[i].interp = LP_INTERP_POSITION;
3874          shader->inputs[i].src_index = 0;
3875          continue;
3876       }
3877 
3878       /* XXX this is a completely pointless index map... */
3879       shader->inputs[i].src_index = i+1;
3880    }
3881 
3882    if (LP_DEBUG & DEBUG_TGSI && templ->type == PIPE_SHADER_IR_TGSI) {
3883       unsigned attrib;
3884       debug_printf("llvmpipe: Create fragment shader #%u %p:\n",
3885                    shader->no, (void *) shader);
3886       tgsi_dump(templ->tokens, 0);
3887       debug_printf("usage masks:\n");
3888       for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) {
3889          unsigned usage_mask = shader->info.base.input_usage_mask[attrib];
3890          debug_printf("  IN[%u].%s%s%s%s\n",
3891                       attrib,
3892                       usage_mask & TGSI_WRITEMASK_X ? "x" : "",
3893                       usage_mask & TGSI_WRITEMASK_Y ? "y" : "",
3894                       usage_mask & TGSI_WRITEMASK_Z ? "z" : "",
3895                       usage_mask & TGSI_WRITEMASK_W ? "w" : "");
3896       }
3897       debug_printf("\n");
3898    }
3899 
3900    /* This will put a derived copy of the tokens into shader->base.tokens */
3901    if (templ->type == PIPE_SHADER_IR_TGSI)
3902      llvmpipe_fs_analyse(shader, templ->tokens);
3903    else
3904      llvmpipe_fs_analyse_nir(shader);
3905 
3906    return shader;
3907 }
3908 
3909 
3910 static void
llvmpipe_bind_fs_state(struct pipe_context * pipe,void * fs)3911 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
3912 {
3913    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3914    struct lp_fragment_shader *lp_fs = (struct lp_fragment_shader *)fs;
3915    if (llvmpipe->fs == lp_fs)
3916       return;
3917 
3918    draw_bind_fragment_shader(llvmpipe->draw,
3919                              (lp_fs ? lp_fs->draw_data : NULL));
3920 
3921    lp_fs_reference(llvmpipe, &llvmpipe->fs, lp_fs);
3922 
3923    /* invalidate the setup link, NEW_FS will make it update */
3924    lp_setup_set_fs_variant(llvmpipe->setup, NULL);
3925    llvmpipe->dirty |= LP_NEW_FS;
3926 }
3927 
3928 
3929 /**
3930  * Remove shader variant from two lists: the shader's variant list
3931  * and the context's variant list.
3932  */
3933 
3934 static
llvmpipe_remove_shader_variant(struct llvmpipe_context * lp,struct lp_fragment_shader_variant * variant)3935 void llvmpipe_remove_shader_variant(struct llvmpipe_context *lp,
3936                                     struct lp_fragment_shader_variant *variant)
3937 {
3938    if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) {
3939       debug_printf("llvmpipe: del fs #%u var %u v created %u v cached %u "
3940                    "v total cached %u inst %u total inst %u\n",
3941                    variant->shader->no, variant->no,
3942                    variant->shader->variants_created,
3943                    variant->shader->variants_cached,
3944                    lp->nr_fs_variants, variant->nr_instrs, lp->nr_fs_instrs);
3945    }
3946 
3947    /* remove from shader's list */
3948    remove_from_list(&variant->list_item_local);
3949    variant->shader->variants_cached--;
3950 
3951    /* remove from context's list */
3952    remove_from_list(&variant->list_item_global);
3953    lp->nr_fs_variants--;
3954    lp->nr_fs_instrs -= variant->nr_instrs;
3955 }
3956 
3957 void
llvmpipe_destroy_shader_variant(struct llvmpipe_context * lp,struct lp_fragment_shader_variant * variant)3958 llvmpipe_destroy_shader_variant(struct llvmpipe_context *lp,
3959                                struct lp_fragment_shader_variant *variant)
3960 {
3961    gallivm_destroy(variant->gallivm);
3962 
3963    lp_fs_reference(lp, &variant->shader, NULL);
3964 
3965    FREE(variant);
3966 }
3967 
3968 void
llvmpipe_destroy_fs(struct llvmpipe_context * llvmpipe,struct lp_fragment_shader * shader)3969 llvmpipe_destroy_fs(struct llvmpipe_context *llvmpipe,
3970                     struct lp_fragment_shader *shader)
3971 {
3972    /* Delete draw module's data */
3973    draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data);
3974 
3975    if (shader->base.ir.nir)
3976       ralloc_free(shader->base.ir.nir);
3977    assert(shader->variants_cached == 0);
3978    FREE((void *) shader->base.tokens);
3979    FREE(shader);
3980 }
3981 
3982 static void
llvmpipe_delete_fs_state(struct pipe_context * pipe,void * fs)3983 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
3984 {
3985    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
3986    struct lp_fragment_shader *shader = fs;
3987    struct lp_fs_variant_list_item *li;
3988 
3989    /* Delete all the variants */
3990    li = first_elem(&shader->variants);
3991    while(!at_end(&shader->variants, li)) {
3992       struct lp_fs_variant_list_item *next = next_elem(li);
3993       struct lp_fragment_shader_variant *variant;
3994       variant = li->base;
3995       llvmpipe_remove_shader_variant(llvmpipe, li->base);
3996       lp_fs_variant_reference(llvmpipe, &variant, NULL);
3997       li = next;
3998    }
3999 
4000    lp_fs_reference(llvmpipe, &shader, NULL);
4001 }
4002 
4003 static void
llvmpipe_set_constant_buffer(struct pipe_context * pipe,enum pipe_shader_type shader,uint index,bool take_ownership,const struct pipe_constant_buffer * cb)4004 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
4005                              enum pipe_shader_type shader, uint index,
4006                              bool take_ownership,
4007                              const struct pipe_constant_buffer *cb)
4008 {
4009    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4010    struct pipe_constant_buffer *constants = &llvmpipe->constants[shader][index];
4011 
4012    assert(shader < PIPE_SHADER_TYPES);
4013    assert(index < ARRAY_SIZE(llvmpipe->constants[shader]));
4014 
4015    /* note: reference counting */
4016    util_copy_constant_buffer(&llvmpipe->constants[shader][index], cb,
4017                              take_ownership);
4018 
4019    /* user_buffer is only valid until the next set_constant_buffer (at most,
4020     * possibly until shader deletion), so we need to upload it now to make sure
4021     * it doesn't get updated/freed out from under us.
4022     */
4023    if (constants->user_buffer) {
4024       u_upload_data(llvmpipe->pipe.const_uploader, 0, constants->buffer_size, 16,
4025                     constants->user_buffer, &constants->buffer_offset,
4026                     &constants->buffer);
4027    }
4028    if (constants->buffer) {
4029        if (!(constants->buffer->bind & PIPE_BIND_CONSTANT_BUFFER)) {
4030          debug_printf("Illegal set constant without bind flag\n");
4031          constants->buffer->bind |= PIPE_BIND_CONSTANT_BUFFER;
4032       }
4033    }
4034 
4035    if (shader == PIPE_SHADER_VERTEX ||
4036        shader == PIPE_SHADER_GEOMETRY ||
4037        shader == PIPE_SHADER_TESS_CTRL ||
4038        shader == PIPE_SHADER_TESS_EVAL) {
4039       /* Pass the constants to the 'draw' module */
4040       const unsigned size = cb ? cb->buffer_size : 0;
4041 
4042       const ubyte *data = NULL;
4043       if (constants->buffer)
4044          data = (ubyte *) llvmpipe_resource_data(constants->buffer) + constants->buffer_offset;
4045 
4046       draw_set_mapped_constant_buffer(llvmpipe->draw, shader,
4047                                       index, data, size);
4048    }
4049    else if (shader == PIPE_SHADER_COMPUTE)
4050       llvmpipe->cs_dirty |= LP_CSNEW_CONSTANTS;
4051    else
4052       llvmpipe->dirty |= LP_NEW_FS_CONSTANTS;
4053 }
4054 
4055 static void
llvmpipe_set_shader_buffers(struct pipe_context * pipe,enum pipe_shader_type shader,unsigned start_slot,unsigned count,const struct pipe_shader_buffer * buffers,unsigned writable_bitmask)4056 llvmpipe_set_shader_buffers(struct pipe_context *pipe,
4057                             enum pipe_shader_type shader, unsigned start_slot,
4058                             unsigned count, const struct pipe_shader_buffer *buffers,
4059                             unsigned writable_bitmask)
4060 {
4061    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4062    unsigned i, idx;
4063    for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
4064       const struct pipe_shader_buffer *buffer = buffers ? &buffers[idx] : NULL;
4065 
4066       util_copy_shader_buffer(&llvmpipe->ssbos[shader][i], buffer);
4067 
4068       if (buffer && buffer->buffer) {
4069          boolean read_only = !(writable_bitmask & (1 << idx));
4070          llvmpipe_flush_resource(pipe, buffer->buffer, 0, read_only, false,
4071                                  false, "buffer");
4072       }
4073 
4074       if (shader == PIPE_SHADER_VERTEX ||
4075           shader == PIPE_SHADER_GEOMETRY ||
4076           shader == PIPE_SHADER_TESS_CTRL ||
4077           shader == PIPE_SHADER_TESS_EVAL) {
4078          const unsigned size = buffer ? buffer->buffer_size : 0;
4079          const ubyte *data = NULL;
4080          if (buffer && buffer->buffer)
4081             data = (ubyte *) llvmpipe_resource_data(buffer->buffer);
4082          if (data)
4083             data += buffer->buffer_offset;
4084          draw_set_mapped_shader_buffer(llvmpipe->draw, shader,
4085                                        i, data, size);
4086       } else if (shader == PIPE_SHADER_COMPUTE) {
4087 	 llvmpipe->cs_dirty |= LP_CSNEW_SSBOS;
4088       } else if (shader == PIPE_SHADER_FRAGMENT) {
4089          llvmpipe->fs_ssbo_write_mask &= ~(((1 << count) - 1) << start_slot);
4090          llvmpipe->fs_ssbo_write_mask |= writable_bitmask << start_slot;
4091          llvmpipe->dirty |= LP_NEW_FS_SSBOS;
4092       }
4093    }
4094 }
4095 
4096 static void
llvmpipe_set_shader_images(struct pipe_context * pipe,enum pipe_shader_type shader,unsigned start_slot,unsigned count,unsigned unbind_num_trailing_slots,const struct pipe_image_view * images)4097 llvmpipe_set_shader_images(struct pipe_context *pipe,
4098                             enum pipe_shader_type shader, unsigned start_slot,
4099                            unsigned count, unsigned unbind_num_trailing_slots,
4100                            const struct pipe_image_view *images)
4101 {
4102    struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
4103    unsigned i, idx;
4104 
4105    draw_flush(llvmpipe->draw);
4106    for (i = start_slot, idx = 0; i < start_slot + count; i++, idx++) {
4107       const struct pipe_image_view *image = images ? &images[idx] : NULL;
4108 
4109       util_copy_image_view(&llvmpipe->images[shader][i], image);
4110 
4111       if (image && image->resource) {
4112          bool read_only = !(image->access & PIPE_IMAGE_ACCESS_WRITE);
4113          llvmpipe_flush_resource(pipe, image->resource, 0, read_only, false,
4114                                  false, "image");
4115       }
4116    }
4117 
4118    llvmpipe->num_images[shader] = start_slot + count;
4119    if (shader == PIPE_SHADER_VERTEX ||
4120        shader == PIPE_SHADER_GEOMETRY ||
4121        shader == PIPE_SHADER_TESS_CTRL ||
4122        shader == PIPE_SHADER_TESS_EVAL) {
4123       draw_set_images(llvmpipe->draw,
4124                       shader,
4125                       llvmpipe->images[shader],
4126                       start_slot + count);
4127    } else if (shader == PIPE_SHADER_COMPUTE)
4128       llvmpipe->cs_dirty |= LP_CSNEW_IMAGES;
4129    else
4130       llvmpipe->dirty |= LP_NEW_FS_IMAGES;
4131 
4132    if (unbind_num_trailing_slots) {
4133       llvmpipe_set_shader_images(pipe, shader, start_slot + count,
4134                                  unbind_num_trailing_slots, 0, NULL);
4135    }
4136 }
4137 
4138 /**
4139  * Return the blend factor equivalent to a destination alpha of one.
4140  */
4141 static inline unsigned
force_dst_alpha_one(unsigned factor,boolean clamped_zero)4142 force_dst_alpha_one(unsigned factor, boolean clamped_zero)
4143 {
4144    switch(factor) {
4145    case PIPE_BLENDFACTOR_DST_ALPHA:
4146       return PIPE_BLENDFACTOR_ONE;
4147    case PIPE_BLENDFACTOR_INV_DST_ALPHA:
4148       return PIPE_BLENDFACTOR_ZERO;
4149    case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
4150       if (clamped_zero)
4151          return PIPE_BLENDFACTOR_ZERO;
4152       else
4153          return PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE;
4154    }
4155 
4156    return factor;
4157 }
4158 
4159 
4160 /**
4161  * We need to generate several variants of the fragment pipeline to match
4162  * all the combinations of the contributing state atoms.
4163  *
4164  * TODO: there is actually no reason to tie this to context state -- the
4165  * generated code could be cached globally in the screen.
4166  */
4167 static struct lp_fragment_shader_variant_key *
make_variant_key(struct llvmpipe_context * lp,struct lp_fragment_shader * shader,char * store)4168 make_variant_key(struct llvmpipe_context *lp,
4169                  struct lp_fragment_shader *shader,
4170                  char *store)
4171 {
4172    unsigned i;
4173    struct lp_fragment_shader_variant_key *key;
4174 
4175    key = (struct lp_fragment_shader_variant_key *)store;
4176 
4177    memset(key, 0, sizeof(*key));
4178 
4179    if (lp->framebuffer.zsbuf) {
4180       enum pipe_format zsbuf_format = lp->framebuffer.zsbuf->format;
4181       const struct util_format_description *zsbuf_desc =
4182          util_format_description(zsbuf_format);
4183 
4184       if (lp->depth_stencil->depth_enabled &&
4185           util_format_has_depth(zsbuf_desc)) {
4186          key->zsbuf_format = zsbuf_format;
4187          key->depth.enabled = lp->depth_stencil->depth_enabled;
4188          key->depth.writemask = lp->depth_stencil->depth_writemask;
4189          key->depth.func = lp->depth_stencil->depth_func;
4190       }
4191       if (lp->depth_stencil->stencil[0].enabled &&
4192           util_format_has_stencil(zsbuf_desc)) {
4193          key->zsbuf_format = zsbuf_format;
4194          memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
4195       }
4196       if (llvmpipe_resource_is_1d(lp->framebuffer.zsbuf->texture)) {
4197          key->resource_1d = TRUE;
4198       }
4199       key->zsbuf_nr_samples = util_res_sample_count(lp->framebuffer.zsbuf->texture);
4200    }
4201 
4202    /*
4203     * Propagate the depth clamp setting from the rasterizer state.
4204     */
4205    key->depth_clamp = lp->rasterizer->depth_clamp;
4206 
4207    /* alpha test only applies if render buffer 0 is non-integer (or does not exist) */
4208    if (!lp->framebuffer.nr_cbufs ||
4209        !lp->framebuffer.cbufs[0] ||
4210        !util_format_is_pure_integer(lp->framebuffer.cbufs[0]->format)) {
4211       key->alpha.enabled = lp->depth_stencil->alpha_enabled;
4212    }
4213    if(key->alpha.enabled)
4214       key->alpha.func = lp->depth_stencil->alpha_func;
4215    /* alpha.ref_value is passed in jit_context */
4216 
4217    key->flatshade = lp->rasterizer->flatshade;
4218    key->multisample = lp->rasterizer->multisample;
4219    key->no_ms_sample_mask_out = lp->rasterizer->no_ms_sample_mask_out;
4220    if (lp->active_occlusion_queries && !lp->queries_disabled) {
4221       key->occlusion_count = TRUE;
4222    }
4223 
4224    memcpy(&key->blend, lp->blend, sizeof key->blend);
4225 
4226    key->coverage_samples = 1;
4227    key->min_samples = 1;
4228    if (key->multisample) {
4229       key->coverage_samples = util_framebuffer_get_num_samples(&lp->framebuffer);
4230       key->min_samples = lp->min_samples == 1 ? 1 : key->coverage_samples;
4231    }
4232    key->nr_cbufs = lp->framebuffer.nr_cbufs;
4233 
4234    if (!key->blend.independent_blend_enable) {
4235       /* we always need independent blend otherwise the fixups below won't work */
4236       for (i = 1; i < key->nr_cbufs; i++) {
4237          memcpy(&key->blend.rt[i], &key->blend.rt[0], sizeof(key->blend.rt[0]));
4238       }
4239       key->blend.independent_blend_enable = 1;
4240    }
4241 
4242    for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
4243       struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i];
4244 
4245       if (lp->framebuffer.cbufs[i]) {
4246          enum pipe_format format = lp->framebuffer.cbufs[i]->format;
4247          const struct util_format_description *format_desc;
4248 
4249          key->cbuf_format[i] = format;
4250          key->cbuf_nr_samples[i] = util_res_sample_count(lp->framebuffer.cbufs[i]->texture);
4251 
4252          /*
4253           * Figure out if this is a 1d resource. Note that OpenGL allows crazy
4254           * mixing of 2d textures with height 1 and 1d textures, so make sure
4255           * we pick 1d if any cbuf or zsbuf is 1d.
4256           */
4257          if (llvmpipe_resource_is_1d(lp->framebuffer.cbufs[i]->texture)) {
4258             key->resource_1d = TRUE;
4259          }
4260 
4261          format_desc = util_format_description(format);
4262          assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB ||
4263                 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB);
4264 
4265          /*
4266           * Mask out color channels not present in the color buffer.
4267           */
4268          blend_rt->colormask &= util_format_colormask(format_desc);
4269 
4270          /*
4271           * Disable blend for integer formats.
4272           */
4273          if (util_format_is_pure_integer(format)) {
4274             blend_rt->blend_enable = 0;
4275          }
4276 
4277          /*
4278           * Our swizzled render tiles always have an alpha channel, but the
4279           * linear render target format often does not, so force here the dst
4280           * alpha to be one.
4281           *
4282           * This is not a mere optimization. Wrong results will be produced if
4283           * the dst alpha is used, the dst format does not have alpha, and the
4284           * previous rendering was not flushed from the swizzled to linear
4285           * buffer. For example, NonPowTwo DCT.
4286           *
4287           * TODO: This should be generalized to all channels for better
4288           * performance, but only alpha causes correctness issues.
4289           *
4290           * Also, force rgb/alpha func/factors match, to make AoS blending
4291           * easier.
4292           */
4293          if (format_desc->swizzle[3] > PIPE_SWIZZLE_W ||
4294              format_desc->swizzle[3] == format_desc->swizzle[0]) {
4295             /* Doesn't cover mixed snorm/unorm but can't render to them anyway */
4296             boolean clamped_zero = !util_format_is_float(format) &&
4297                                    !util_format_is_snorm(format);
4298             blend_rt->rgb_src_factor =
4299                force_dst_alpha_one(blend_rt->rgb_src_factor, clamped_zero);
4300             blend_rt->rgb_dst_factor =
4301                force_dst_alpha_one(blend_rt->rgb_dst_factor, clamped_zero);
4302             blend_rt->alpha_func       = blend_rt->rgb_func;
4303             blend_rt->alpha_src_factor = blend_rt->rgb_src_factor;
4304             blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor;
4305          }
4306       }
4307       else {
4308          /* no color buffer for this fragment output */
4309          key->cbuf_format[i] = PIPE_FORMAT_NONE;
4310          key->cbuf_nr_samples[i] = 0;
4311          blend_rt->colormask = 0x0;
4312          blend_rt->blend_enable = 0;
4313       }
4314    }
4315 
4316    /* This value will be the same for all the variants of a given shader:
4317     */
4318    key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1;
4319 
4320    struct lp_sampler_static_state *fs_sampler;
4321 
4322    fs_sampler = lp_fs_variant_key_samplers(key);
4323 
4324    memset(fs_sampler, 0, MAX2(key->nr_samplers, key->nr_sampler_views) * sizeof *fs_sampler);
4325 
4326    for(i = 0; i < key->nr_samplers; ++i) {
4327       if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
4328          lp_sampler_static_sampler_state(&fs_sampler[i].sampler_state,
4329                                          lp->samplers[PIPE_SHADER_FRAGMENT][i]);
4330       }
4331    }
4332 
4333    /*
4334     * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
4335     * are dx10-style? Can't really have mixed opcodes, at least not
4336     * if we want to skip the holes here (without rescanning tgsi).
4337     */
4338    if (shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
4339       key->nr_sampler_views = shader->info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
4340       for(i = 0; i < key->nr_sampler_views; ++i) {
4341          /*
4342           * Note sview may exceed what's representable by file_mask.
4343           * This will still work, the only downside is that not actually
4344           * used views may be included in the shader key.
4345           */
4346          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1u << (i & 31))) {
4347             lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
4348                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
4349          }
4350       }
4351    }
4352    else {
4353       key->nr_sampler_views = key->nr_samplers;
4354       for(i = 0; i < key->nr_sampler_views; ++i) {
4355          if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
4356             lp_sampler_static_texture_state(&fs_sampler[i].texture_state,
4357                                             lp->sampler_views[PIPE_SHADER_FRAGMENT][i]);
4358          }
4359       }
4360    }
4361 
4362    struct lp_image_static_state *lp_image;
4363    lp_image = lp_fs_variant_key_images(key);
4364    key->nr_images = shader->info.base.file_max[TGSI_FILE_IMAGE] + 1;
4365    for (i = 0; i < key->nr_images; ++i) {
4366       if (shader->info.base.file_mask[TGSI_FILE_IMAGE] & (1 << i)) {
4367          lp_sampler_static_texture_state_image(&lp_image[i].image_state,
4368                                                &lp->images[PIPE_SHADER_FRAGMENT][i]);
4369       }
4370    }
4371 
4372    if (shader->kind == LP_FS_KIND_AERO_MINIFICATION) {
4373       struct lp_sampler_static_state *samp0 = lp_fs_variant_key_sampler_idx(key, 0);
4374       assert(samp0);
4375       samp0->sampler_state.min_img_filter = PIPE_TEX_FILTER_NEAREST;
4376       samp0->sampler_state.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
4377    }
4378 
4379    return key;
4380 }
4381 
4382 
4383 /**
4384  * Update fragment shader state.  This is called just prior to drawing
4385  * something when some fragment-related state has changed.
4386  */
4387 void
llvmpipe_update_fs(struct llvmpipe_context * lp)4388 llvmpipe_update_fs(struct llvmpipe_context *lp)
4389 {
4390    struct lp_fragment_shader *shader = lp->fs;
4391    struct lp_fragment_shader_variant_key *key;
4392    struct lp_fragment_shader_variant *variant = NULL;
4393    struct lp_fs_variant_list_item *li;
4394    char store[LP_FS_MAX_VARIANT_KEY_SIZE];
4395 
4396    key = make_variant_key(lp, shader, store);
4397 
4398    /* Search the variants for one which matches the key */
4399    li = first_elem(&shader->variants);
4400    while(!at_end(&shader->variants, li)) {
4401       if(memcmp(&li->base->key, key, shader->variant_key_size) == 0) {
4402          variant = li->base;
4403          break;
4404       }
4405       li = next_elem(li);
4406    }
4407 
4408    if (variant) {
4409       /* Move this variant to the head of the list to implement LRU
4410        * deletion of shader's when we have too many.
4411        */
4412       move_to_head(&lp->fs_variants_list, &variant->list_item_global);
4413    }
4414    else {
4415       /* variant not found, create it now */
4416       int64_t t0, t1, dt;
4417       unsigned i;
4418       unsigned variants_to_cull;
4419 
4420       if (LP_DEBUG & DEBUG_FS) {
4421          debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n",
4422                       lp->nr_fs_variants,
4423                       lp->nr_fs_instrs,
4424                       lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0);
4425       }
4426 
4427       /* First, check if we've exceeded the max number of shader variants.
4428        * If so, free 6.25% of them (the least recently used ones).
4429        */
4430       variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 16 : 0;
4431 
4432       if (variants_to_cull ||
4433           lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) {
4434          if (gallivm_debug & GALLIVM_DEBUG_PERF) {
4435             debug_printf("Evicting FS: %u fs variants,\t%u total variants,"
4436                          "\t%u instrs,\t%u instrs/variant\n",
4437                          shader->variants_cached,
4438                          lp->nr_fs_variants, lp->nr_fs_instrs,
4439                          lp->nr_fs_instrs / lp->nr_fs_variants);
4440          }
4441 
4442          /*
4443           * We need to re-check lp->nr_fs_variants because an arbitrarliy large
4444           * number of shader variants (potentially all of them) could be
4445           * pending for destruction on flush.
4446           */
4447 
4448          for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) {
4449             struct lp_fs_variant_list_item *item;
4450             if (is_empty_list(&lp->fs_variants_list)) {
4451                break;
4452             }
4453             item = last_elem(&lp->fs_variants_list);
4454             assert(item);
4455             assert(item->base);
4456             llvmpipe_remove_shader_variant(lp, item->base);
4457             struct lp_fragment_shader_variant *variant = item->base;
4458             lp_fs_variant_reference(lp, &variant, NULL);
4459          }
4460       }
4461 
4462       /*
4463        * Generate the new variant.
4464        */
4465       t0 = os_time_get();
4466       variant = generate_variant(lp, shader, key);
4467       t1 = os_time_get();
4468       dt = t1 - t0;
4469       LP_COUNT_ADD(llvm_compile_time, dt);
4470       LP_COUNT_ADD(nr_llvm_compiles, 2);  /* emit vs. omit in/out test */
4471 
4472       /* Put the new variant into the list */
4473       if (variant) {
4474          insert_at_head(&shader->variants, &variant->list_item_local);
4475          insert_at_head(&lp->fs_variants_list, &variant->list_item_global);
4476          lp->nr_fs_variants++;
4477          lp->nr_fs_instrs += variant->nr_instrs;
4478          shader->variants_cached++;
4479       }
4480    }
4481 
4482    /* Bind this variant */
4483    lp_setup_set_fs_variant(lp->setup, variant);
4484 }
4485 
4486 
4487 
4488 
4489 
4490 void
llvmpipe_init_fs_funcs(struct llvmpipe_context * llvmpipe)4491 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe)
4492 {
4493    llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state;
4494    llvmpipe->pipe.bind_fs_state   = llvmpipe_bind_fs_state;
4495    llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state;
4496 
4497    llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer;
4498 
4499    llvmpipe->pipe.set_shader_buffers = llvmpipe_set_shader_buffers;
4500    llvmpipe->pipe.set_shader_images = llvmpipe_set_shader_images;
4501 }
4502 
4503 
4504