1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "ac_llvm_cull.h"
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28 #include "util/u_memory.h"
29 #include "util/u_prim.h"
30 
get_wave_id_in_tg(struct si_shader_context * ctx)31 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
32 {
33    return si_unpack_param(ctx, ctx->args.merged_wave_info, 24, 4);
34 }
35 
get_tgsize(struct si_shader_context * ctx)36 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
37 {
38    return si_unpack_param(ctx, ctx->args.merged_wave_info, 28, 4);
39 }
40 
gfx10_get_thread_id_in_tg(struct si_shader_context * ctx)41 LLVMValueRef gfx10_get_thread_id_in_tg(struct si_shader_context *ctx)
42 {
43    LLVMBuilderRef builder = ctx->ac.builder;
44    LLVMValueRef tmp;
45    tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
46                       LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
47    return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
48 }
49 
ngg_get_vtx_cnt(struct si_shader_context * ctx)50 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
51 {
52    return si_unpack_param(ctx, ctx->args.gs_tg_info, 12, 9);
53 }
54 
ngg_get_prim_cnt(struct si_shader_context * ctx)55 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
56 {
57    return si_unpack_param(ctx, ctx->args.gs_tg_info, 22, 9);
58 }
59 
ngg_get_ordered_id(struct si_shader_context * ctx)60 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
61 {
62    return si_unpack_param(ctx, ctx->args.gs_tg_info, 0, 12);
63 }
64 
ngg_get_query_buf(struct si_shader_context * ctx)65 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
66 {
67    LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
68 
69    return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
70                                 LLVMConstInt(ctx->ac.i32, SI_GS_QUERY_BUF, false));
71 }
72 
73 /**
74  * Return the number of vertices as a constant in \p num_vertices,
75  * and return a more precise value as LLVMValueRef from the function.
76  */
ngg_get_vertices_per_prim(struct si_shader_context * ctx,unsigned * num_vertices)77 static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices)
78 {
79    const struct si_shader_info *info = &ctx->shader->selector->info;
80 
81    if (ctx->stage == MESA_SHADER_GEOMETRY) {
82       *num_vertices = u_vertices_per_prim(info->base.gs.output_primitive);
83       return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
84    } else if (ctx->stage == MESA_SHADER_VERTEX) {
85       if (info->base.vs.blit_sgprs_amd) {
86          /* Blits always use axis-aligned rectangles with 3 vertices. */
87          *num_vertices = 3;
88          return LLVMConstInt(ctx->ac.i32, 3, 0);
89       } else if (ctx->shader->key.ge.opt.ngg_culling & SI_NGG_CULL_LINES) {
90          *num_vertices = 2;
91          return LLVMConstInt(ctx->ac.i32, 2, 0);
92       } else {
93          /* We always build up all three indices for the prim export
94           * independent of the primitive type. The additional garbage
95           * data shouldn't hurt. This is used by exports and streamout.
96           */
97          *num_vertices = 3;
98 
99          /* Extract OUTPRIM field. */
100          LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
101          return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
102       }
103    } else {
104       assert(ctx->stage == MESA_SHADER_TESS_EVAL);
105 
106       if (info->base.tess.point_mode)
107          *num_vertices = 1;
108       else if (info->base.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES)
109          *num_vertices = 2;
110       else
111          *num_vertices = 3;
112 
113       return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
114    }
115 }
116 
gfx10_ngg_export_prim_early(struct si_shader * shader)117 bool gfx10_ngg_export_prim_early(struct si_shader *shader)
118 {
119    struct si_shader_selector *sel = shader->selector;
120 
121    assert(shader->key.ge.as_ngg && !shader->key.ge.as_es);
122 
123    return sel->info.stage != MESA_SHADER_GEOMETRY &&
124           !gfx10_ngg_writes_user_edgeflags(shader);
125 }
126 
gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context * ctx)127 void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
128 {
129    /* Newer chips can use PRIMGEN_PASSTHRU_NO_MSG to skip gs_alloc_req for NGG passthrough. */
130    if (gfx10_is_ngg_passthrough(ctx->shader) &&
131        ctx->screen->info.family >= CHIP_DIMGREY_CAVEFISH)
132       return;
133 
134    ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx),
135                                  ngg_get_prim_cnt(ctx));
136 }
137 
gfx10_ngg_build_export_prim(struct si_shader_context * ctx,LLVMValueRef user_edgeflags[3],LLVMValueRef prim_passthrough)138 void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3],
139                                  LLVMValueRef prim_passthrough)
140 {
141    LLVMBuilderRef builder = ctx->ac.builder;
142 
143    if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.ge.opt.ngg_culling) {
144       ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
145       {
146          struct ac_ngg_prim prim = {};
147 
148          if (prim_passthrough)
149             prim.passthrough = prim_passthrough;
150          else
151             prim.passthrough = ac_get_arg(&ctx->ac, ctx->args.gs_vtx_offset[0]);
152 
153          /* This is only used with NGG culling, which returns the NGG
154           * passthrough prim export encoding.
155           */
156          if (gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
157             unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
158             LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
159 
160             unsigned num_vertices;
161             ngg_get_vertices_per_prim(ctx, &num_vertices);
162 
163             for (unsigned i = 0; i < num_vertices; i++) {
164                unsigned shift = 9 + i * 10;
165                LLVMValueRef edge;
166 
167                edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
168                edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
169                edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
170                edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
171             }
172             prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
173          }
174 
175          ac_build_export_prim(&ctx->ac, &prim);
176       }
177       ac_build_endif(&ctx->ac, 6001);
178       return;
179    }
180 
181    ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
182    {
183       struct ac_ngg_prim prim = {};
184 
185       ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
186 
187       prim.isnull = ctx->ac.i1false;
188 
189       if (gfx10_edgeflags_have_effect(ctx->shader))
190          prim.edgeflags = ac_pack_edgeflags_for_export(&ctx->ac, &ctx->args);
191       else
192          prim.edgeflags = ctx->ac.i32_0;
193 
194       for (unsigned i = 0; i < prim.num_vertices; ++i)
195          prim.index[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[i / 2], (i & 1) * 16, 16);
196 
197       if (gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
198          LLVMValueRef edgeflags = ctx->ac.i32_0;
199 
200          for (unsigned i = 0; i < prim.num_vertices; ++i) {
201             LLVMValueRef edge;
202 
203             edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
204             edge = LLVMBuildZExt(ctx->ac.builder, edge, ctx->ac.i32, "");
205             edge = LLVMBuildShl(ctx->ac.builder, edge, LLVMConstInt(ctx->ac.i32, 9 + i*10, 0), "");
206             edgeflags = LLVMBuildOr(ctx->ac.builder, edgeflags, edge, "");
207          }
208          prim.edgeflags = LLVMBuildAnd(ctx->ac.builder, prim.edgeflags, edgeflags, "");
209       }
210 
211       ac_build_export_prim(&ctx->ac, &prim);
212    }
213    ac_build_endif(&ctx->ac, 6001);
214 }
215 
build_streamout_vertex(struct si_shader_context * ctx,LLVMValueRef * so_buffer,LLVMValueRef * wg_offset_dw,unsigned stream,LLVMValueRef offset_vtx,LLVMValueRef vertexptr)216 static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer,
217                                    LLVMValueRef *wg_offset_dw, unsigned stream,
218                                    LLVMValueRef offset_vtx, LLVMValueRef vertexptr)
219 {
220    struct si_shader_info *info = &ctx->shader->selector->info;
221    struct pipe_stream_output_info *so = &ctx->shader->selector->so;
222    LLVMBuilderRef builder = ctx->ac.builder;
223    LLVMValueRef offset[4] = {};
224    LLVMValueRef tmp;
225 
226    for (unsigned buffer = 0; buffer < 4; ++buffer) {
227       if (!wg_offset_dw[buffer])
228          continue;
229 
230       tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false),
231                          "");
232       tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
233       offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
234    }
235 
236    for (unsigned i = 0; i < so->num_outputs; ++i) {
237       if (so->output[i].stream != stream)
238          continue;
239 
240       unsigned reg = so->output[i].register_index;
241       struct si_shader_output_values out;
242       out.semantic = info->output_semantic[reg];
243 
244       for (unsigned comp = 0; comp < 4; comp++) {
245          tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
246          out.values[comp] = LLVMBuildLoad(builder, tmp, "");
247          out.vertex_streams = info->output_streams[reg];
248       }
249 
250       si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
251    }
252 }
253 
254 struct ngg_streamout {
255    LLVMValueRef num_vertices;
256 
257    /* per-thread data */
258    LLVMValueRef prim_enable[4]; /* i1 per stream */
259    LLVMValueRef vertices[3];    /* [N x i32] addrspace(LDS)* */
260 
261    /* Output */
262    LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
263 };
264 
265 /**
266  * Build streamout logic.
267  *
268  * Implies a barrier.
269  *
270  * Writes number of emitted primitives to gs_ngg_scratch[4:8].
271  *
272  * Clobbers gs_ngg_scratch[8:].
273  */
build_streamout(struct si_shader_context * ctx,struct ngg_streamout * nggso)274 static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso)
275 {
276    struct si_shader_info *info = &ctx->shader->selector->info;
277    struct pipe_stream_output_info *so = &ctx->shader->selector->so;
278    LLVMBuilderRef builder = ctx->ac.builder;
279    LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
280    LLVMValueRef tid = gfx10_get_thread_id_in_tg(ctx);
281    LLVMValueRef tmp, tmp2;
282    LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
283    LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
284    LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
285    LLVMValueRef so_buffer[4] = {};
286    unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0);
287    LLVMValueRef prim_stride_dw[4] = {};
288    LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
289    int stream_for_buffer[4] = {-1, -1, -1, -1};
290    unsigned bufmask_for_stream[4] = {};
291    bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
292    unsigned scratch_emit_base = isgs ? 4 : 0;
293    LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
294    unsigned scratch_offset_base = isgs ? 8 : 4;
295    LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
296 
297    ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
298 
299    /* Determine the mapping of streamout buffers to vertex streams. */
300    for (unsigned i = 0; i < so->num_outputs; ++i) {
301       unsigned buf = so->output[i].output_buffer;
302       unsigned stream = so->output[i].stream;
303       assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
304       stream_for_buffer[buf] = stream;
305       bufmask_for_stream[stream] |= 1 << buf;
306    }
307 
308    for (unsigned buffer = 0; buffer < 4; ++buffer) {
309       if (stream_for_buffer[buffer] == -1)
310          continue;
311 
312       assert(so->stride[buffer]);
313 
314       tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
315       prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
316       prim_stride_dw_vgpr =
317          ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
318                             LLVMConstInt(ctx->ac.i32, buffer, false));
319 
320       so_buffer[buffer] = ac_build_load_to_sgpr(
321          &ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
322    }
323 
324    tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
325    ac_build_ifcc(&ctx->ac, tmp, 5200);
326    {
327       LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
328       LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
329 
330       /* Advance the streamout offsets in GDS. */
331       LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
332       LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
333 
334       tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
335       ac_build_ifcc(&ctx->ac, tmp, 5210);
336       {
337          if (isgs) {
338             tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
339             tmp = LLVMBuildLoad(builder, tmp, "");
340          } else {
341             tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
342          }
343          LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
344 
345          unsigned swizzle[4];
346          int unused_stream = -1;
347          for (unsigned stream = 0; stream < 4; ++stream) {
348             if (!info->num_stream_output_components[stream]) {
349                unused_stream = stream;
350                break;
351             }
352          }
353          for (unsigned buffer = 0; buffer < 4; ++buffer) {
354             if (stream_for_buffer[buffer] >= 0) {
355                swizzle[buffer] = stream_for_buffer[buffer];
356             } else {
357                assert(unused_stream >= 0);
358                swizzle[buffer] = unused_stream;
359             }
360          }
361 
362          tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
363          tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
364 
365          LLVMValueRef args[] = {
366             LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
367             tmp,
368             ctx->ac.i32_0,                             // ordering
369             ctx->ac.i32_0,                             // scope
370             ctx->ac.i1false,                           // isVolatile
371             LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
372             ctx->ac.i1true,                            // wave release
373             ctx->ac.i1true,                            // wave done
374          };
375          tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args,
376                                   ARRAY_SIZE(args), 0);
377 
378          /* Keep offsets in a VGPR for quick retrieval via readlane by
379           * the first wave for bounds checking, and also store in LDS
380           * for retrieval by all waves later. */
381          LLVMBuildStore(builder, tmp, offsets_vgpr);
382 
383          tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, "");
384          tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
385          LLVMBuildStore(builder, tmp, tmp2);
386       }
387       ac_build_endif(&ctx->ac, 5210);
388 
389       /* Determine the max emit per buffer. This is done via the SALU, in part
390        * because LLVM can't generate divide-by-multiply if we try to do this
391        * via VALU with one lane per buffer.
392        */
393       LLVMValueRef max_emit[4] = {};
394       for (unsigned buffer = 0; buffer < 4; ++buffer) {
395          if (stream_for_buffer[buffer] == -1)
396             continue;
397 
398          LLVMValueRef bufsize_dw = LLVMBuildLShr(
399             builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, "");
400 
401          tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
402          LLVMValueRef offset_dw =
403             ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false));
404 
405          tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
406          tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
407 
408          tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
409          max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
410       }
411 
412       /* Determine the number of emitted primitives per stream and fixup the
413        * GDS counter if necessary.
414        *
415        * This is complicated by the fact that a single stream can emit to
416        * multiple buffers (but luckily not vice versa).
417        */
418       LLVMValueRef emit_vgpr = ctx->ac.i32_0;
419 
420       for (unsigned stream = 0; stream < 4; ++stream) {
421          if (!info->num_stream_output_components[stream])
422             continue;
423 
424          tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
425          LLVMValueRef generated =
426             ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false));
427 
428          LLVMValueRef emit = generated;
429          for (unsigned buffer = 0; buffer < 4; ++buffer) {
430             if (stream_for_buffer[buffer] == stream)
431                emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
432          }
433 
434          emit_vgpr =
435             ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false));
436 
437          /* Fixup the offset using a plain GDS atomic if we overflowed. */
438          tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
439          ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
440          tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
441                              ac_get_thread_id(&ctx->ac), "");
442          tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
443          ac_build_ifcc(&ctx->ac, tmp, 5222);
444          {
445             tmp = LLVMBuildSub(builder, generated, emit, "");
446             tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
447             tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
448             LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
449                                LLVMAtomicOrderingMonotonic, false);
450          }
451          ac_build_endif(&ctx->ac, 5222);
452          ac_build_endif(&ctx->ac, 5221);
453       }
454 
455       tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
456       ac_build_ifcc(&ctx->ac, tmp, 5225);
457       {
458          tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, "");
459          tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
460          LLVMBuildStore(builder, emit_vgpr, tmp);
461       }
462       ac_build_endif(&ctx->ac, 5225);
463    }
464    ac_build_endif(&ctx->ac, 5200);
465 
466    /* Determine the workgroup-relative per-thread / primitive offset into
467     * the streamout buffers */
468    struct ac_wg_scan primemit_scan[4] = {};
469 
470    if (isgs) {
471       for (unsigned stream = 0; stream < 4; ++stream) {
472          if (!info->num_stream_output_components[stream])
473             continue;
474 
475          primemit_scan[stream].enable_exclusive = true;
476          primemit_scan[stream].op = nir_op_iadd;
477          primemit_scan[stream].src = nggso->prim_enable[stream];
478          primemit_scan[stream].scratch = ac_build_gep0(
479             &ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
480          primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
481          primemit_scan[stream].numwaves = get_tgsize(ctx);
482          if (ctx->stage == MESA_SHADER_GEOMETRY) {
483             /* ngg_subgroup_size is only the input size. GS can always generate up to 256 vertices. */
484             primemit_scan[stream].maxwaves = DIV_ROUND_UP(256, ctx->ac.wave_size);
485          } else {
486             primemit_scan[stream].maxwaves = DIV_ROUND_UP(ctx->screen->ngg_subgroup_size,
487                                                           ctx->ac.wave_size);
488          }
489          ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
490       }
491    }
492 
493    ac_build_s_barrier(&ctx->ac);
494 
495    /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
496    LLVMValueRef wgoffset_dw[4] = {};
497 
498    {
499       LLVMValueRef scratch_vgpr;
500 
501       tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
502       scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
503 
504       for (unsigned buffer = 0; buffer < 4; ++buffer) {
505          if (stream_for_buffer[buffer] >= 0) {
506             wgoffset_dw[buffer] =
507                ac_build_readlane(&ctx->ac, scratch_vgpr,
508                                  LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
509          }
510       }
511 
512       for (unsigned stream = 0; stream < 4; ++stream) {
513          if (info->num_stream_output_components[stream]) {
514             nggso->emit[stream] =
515                ac_build_readlane(&ctx->ac, scratch_vgpr,
516                                  LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
517          }
518       }
519    }
520 
521    /* Write out primitive data */
522    for (unsigned stream = 0; stream < 4; ++stream) {
523       if (!info->num_stream_output_components[stream])
524          continue;
525 
526       if (isgs) {
527          ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
528       } else {
529          primemit_scan[stream].result_exclusive = tid;
530       }
531 
532       tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive,
533                           nggso->emit[stream], "");
534       tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
535       ac_build_ifcc(&ctx->ac, tmp, 5240);
536       {
537          LLVMValueRef offset_vtx =
538             LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, "");
539 
540          for (unsigned i = 0; i < max_num_vertices; ++i) {
541             tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false),
542                                 nggso->num_vertices, "");
543             ac_build_ifcc(&ctx->ac, tmp, 5241);
544             build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx,
545                                    nggso->vertices[i]);
546             ac_build_endif(&ctx->ac, 5241);
547             offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
548          }
549       }
550       ac_build_endif(&ctx->ac, 5240);
551    }
552 }
553 
554 /* LDS layout of ES vertex data for NGG culling. */
555 enum
556 {
557    /* Byte 0: Boolean ES thread accepted (unculled) flag.
558     * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
559     * Byte 2: TES rel patch ID
560     * Byte 3: 8-bit clip distance mask: 1 means the clip distance is negative.
561     *         The mask from all vertices is AND'ed. If the result is non-zero,
562     *         the primitive is culled.
563     */
564    lds_byte0_accept_flag = 0,
565    lds_byte1_new_thread_id,
566    lds_byte2_tes_rel_patch_id,
567    lds_byte3_clipdist_neg_mask,
568 
569    lds_packed_data = 0, /* lds_byteN_... */
570    lds_pos_cull_x_div_w,
571    lds_pos_cull_y_div_w,
572    lds_pos_cull_w,
573 
574    lds_pos_x = lds_packed_data + 1,
575    lds_pos_y,
576    lds_pos_z,
577    lds_pos_w,
578    /* If VS: */
579    lds_vertex_id,
580    lds_instance_id, /* optional */
581    /* If TES: */
582    lds_tes_u = lds_vertex_id,
583    lds_tes_v = lds_instance_id,
584    lds_tes_patch_id, /* optional */
585 };
586 
si_build_gep_i8_var(struct si_shader_context * ctx,LLVMValueRef ptr,LLVMValueRef index)587 static LLVMValueRef si_build_gep_i8_var(struct si_shader_context *ctx, LLVMValueRef ptr,
588                                         LLVMValueRef index)
589 {
590    LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
591 
592    return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index,
593                        1, "");
594 }
595 
si_build_gep_i8(struct si_shader_context * ctx,LLVMValueRef ptr,unsigned byte_index)596 static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr,
597                                     unsigned byte_index)
598 {
599    assert(byte_index < 4);
600    return si_build_gep_i8_var(ctx, ptr, LLVMConstInt(ctx->ac.i32, byte_index, 0));
601 }
602 
ngg_nogs_vertex_size(struct si_shader * shader)603 static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
604 {
605    unsigned lds_vertex_size = 0;
606 
607    /* The edgeflag is always stored in the last element that's also
608     * used for padding to reduce LDS bank conflicts. */
609    if (shader->selector->so.num_outputs)
610       lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
611    if (gfx10_ngg_writes_user_edgeflags(shader))
612       lds_vertex_size = MAX2(lds_vertex_size, 1);
613 
614    /* LDS size for passing data from GS to ES.
615     * GS stores Primitive IDs into LDS at the address corresponding
616     * to the ES thread of the provoking vertex. All ES threads
617     * load and export PrimitiveID for their thread.
618     */
619    if (shader->selector->info.stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id)
620       lds_vertex_size = MAX2(lds_vertex_size, 1);
621 
622    if (shader->key.ge.opt.ngg_culling) {
623       if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
624          STATIC_ASSERT(lds_instance_id + 1 == 7);
625          lds_vertex_size = MAX2(lds_vertex_size, 7);
626       } else {
627          assert(shader->selector->info.stage == MESA_SHADER_TESS_EVAL);
628 
629          if (shader->selector->info.uses_primid || shader->key.ge.mono.u.vs_export_prim_id) {
630             STATIC_ASSERT(lds_tes_patch_id + 2 == 9); /* +1 for LDS padding */
631             lds_vertex_size = MAX2(lds_vertex_size, 9);
632          } else {
633             STATIC_ASSERT(lds_tes_v + 1 == 7);
634             lds_vertex_size = MAX2(lds_vertex_size, 7);
635          }
636       }
637    }
638 
639    return lds_vertex_size;
640 }
641 
642 /**
643  * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
644  * for the vertex outputs.
645  */
ngg_nogs_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef vtxid)646 static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid)
647 {
648    /* The extra dword is used to avoid LDS bank conflicts. */
649    unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
650    LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
651    LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
652    LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
653    return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
654 }
655 
si_insert_input_v4i32(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)656 static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret,
657                                           struct ac_arg param, unsigned return_index)
658 {
659    LLVMValueRef v = ac_get_arg(&ctx->ac, param);
660 
661    for (unsigned i = 0; i < 4; i++) {
662       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i),
663                                  return_index + i, "");
664    }
665    return ret;
666 }
667 
load_vertex_counts(struct si_shader_context * ctx,LLVMValueRef lds,unsigned max_waves,LLVMValueRef tid,LLVMValueRef * total_count,LLVMValueRef * prefix_sum)668 static void load_vertex_counts(struct si_shader_context *ctx, LLVMValueRef lds,
669                                unsigned max_waves, LLVMValueRef tid,
670                                LLVMValueRef *total_count,
671                                LLVMValueRef *prefix_sum)
672 {
673    LLVMBuilderRef builder = ctx->ac.builder;
674    LLVMValueRef i8vec4_lane = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
675    unsigned num_i8vec4 = DIV_ROUND_UP(max_waves, 4);
676 
677    /* If all threads loaded the vertex counts, it would cause many LDS bank conflicts
678     * and the performance could decrease up to WaveSize times (32x or 64x).
679     *
680     * Therefore, only load the i-th tuple of vertex counts in the i-th thread. Other threads will
681     * get them through readlane. 4 8-bit vertex counts are loaded per thread.
682     */
683    ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntULT, tid,
684                                          LLVMConstInt(ctx->ac.i32, num_i8vec4, 0), ""), 17771);
685    LLVMBuildStore(builder, LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, lds, tid), ""), i8vec4_lane);
686    ac_build_endif(&ctx->ac, 17771);
687 
688    /* Compute the number of ES waves. */
689    LLVMValueRef num_waves = get_tgsize(ctx);
690 
691    /* Compute a byte mask where each byte is either 0 or 0xff depending on whether the wave
692     * exists. We need the mask to clear uninitialized bytes in LDS and to compute the prefix sum.
693     *
694     * 8 waves: valid_mask = ~0ull >> (64 - num_waves * 8)
695     * 4 waves: valid_mask = ~0 >> (32 - num_waves * 8)
696     */
697    LLVMValueRef num_waves8 = LLVMBuildShl(builder, num_waves, LLVMConstInt(ctx->ac.i32, 3, 0), "");
698    LLVMValueRef valid_mask;
699 
700    if (max_waves > 4) {
701       LLVMValueRef num_waves8_rev = LLVMBuildSub(builder, LLVMConstInt(ctx->ac.i32, 64, 0),
702                                                  num_waves8, "");
703       valid_mask = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i64, ~0ull, 0),
704                                  LLVMBuildZExt(builder, num_waves8_rev, ctx->ac.i64, ""), "");
705    } else {
706       LLVMValueRef num_waves8_rev = LLVMBuildSub(builder, LLVMConstInt(ctx->ac.i32, 32, 0),
707                                                  num_waves8, "");
708       valid_mask = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, ~0, 0), num_waves8_rev, "");
709    }
710 
711    /* Compute a byte mask where bytes below wave_id are 0xff, else they are 0.
712     *
713     * prefix_mask = ~(~0 << (wave_id * 8))
714     */
715    LLVMTypeRef type = max_waves > 4 ? ctx->ac.i64 : ctx->ac.i32;
716    LLVMValueRef wave_id8 = LLVMBuildShl(builder, get_wave_id_in_tg(ctx),
717                                         LLVMConstInt(ctx->ac.i32, 3, 0), "");
718    LLVMValueRef prefix_mask =
719       LLVMBuildNot(builder, LLVMBuildShl(builder, LLVMConstInt(type, ~0ull, 0),
720                                          LLVMBuildZExt(builder, wave_id8, type, ""), ""), "");
721 
722    /* Compute the total vertex count and the vertex count of previous waves (prefix). */
723    *total_count = ctx->ac.i32_0;
724    *prefix_sum = ctx->ac.i32_0;
725 
726    for (unsigned i = 0; i < num_i8vec4; i++) {
727       LLVMValueRef i8vec4;
728 
729       i8vec4 = ac_build_readlane_no_opt_barrier(&ctx->ac, LLVMBuildLoad(builder, i8vec4_lane, ""),
730                                                 LLVMConstInt(ctx->ac.i32, i, 0));
731       /* Inactive waves have uninitialized vertex counts. Set them to 0 using this. */
732       i8vec4 = LLVMBuildAnd(builder, i8vec4,
733                             ac_unpack_param(&ctx->ac, valid_mask, 32 * i, 32), "");
734       /* Compute the sum of all i8vec4 components and add it to the result. */
735       *total_count = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.sad.u8", ctx->ac.i32,
736                                         (LLVMValueRef[]){i8vec4, ctx->ac.i32_0, *total_count},
737                                         3, AC_FUNC_ATTR_READNONE);
738       ac_set_range_metadata(&ctx->ac, *total_count, 0, 64*4 + 1); /* the result is at most 64*4 */
739 
740       /* Compute the sum of the vertex counts of all previous waves. */
741       i8vec4 = LLVMBuildAnd(builder, i8vec4,
742                                 ac_unpack_param(&ctx->ac, prefix_mask, 32 * i, 32), "");
743       *prefix_sum = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.sad.u8", ctx->ac.i32,
744                                        (LLVMValueRef[]){i8vec4, ctx->ac.i32_0, *prefix_sum},
745                                        3, AC_FUNC_ATTR_READNONE);
746       ac_set_range_metadata(&ctx->ac, *prefix_sum, 0, 64*4 + 1); /* the result is at most 64*4 */
747    }
748    *total_count = ac_build_readlane_no_opt_barrier(&ctx->ac, *total_count, NULL);
749 }
750 
751 /**
752  * Given a total thread count, update total and per-wave thread counts in input SGPRs
753  * and return the per-wave thread count.
754  *
755  * \param new_num_threads    Total thread count on the input, per-wave thread count on the output.
756  * \param tg_info            tg_info SGPR value
757  * \param tg_info_num_bits   the bit size of thread count field in tg_info
758  * \param tg_info_shift      the bit offset of the thread count field in tg_info
759  * \param wave_info          merged_wave_info SGPR value
760  * \param wave_info_num_bits the bit size of thread count field in merged_wave_info
761  * \param wave_info_shift    the bit offset of the thread count field in merged_wave_info
762  */
update_thread_counts(struct si_shader_context * ctx,LLVMValueRef * new_num_threads,LLVMValueRef * tg_info,unsigned tg_info_num_bits,unsigned tg_info_shift,LLVMValueRef * wave_info,unsigned wave_info_num_bits,unsigned wave_info_shift)763 static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads,
764                                  LLVMValueRef *tg_info, unsigned tg_info_num_bits,
765                                  unsigned tg_info_shift, LLVMValueRef *wave_info,
766                                  unsigned wave_info_num_bits, unsigned wave_info_shift)
767 {
768    LLVMBuilderRef builder = ctx->ac.builder;
769 
770    /* Update the total thread count. */
771    unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
772    *tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
773    *tg_info = LLVMBuildOr(
774       builder, *tg_info,
775       LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
776 
777    /* Update the per-wave thread count. */
778    LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
779                                             LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
780    *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
781    *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
782    *new_num_threads =
783       ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
784    unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
785    *wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
786    *wave_info = LLVMBuildOr(
787       builder, *wave_info,
788       LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""),
789       "");
790 }
791 
gfx10_build_primitive_accepted(struct ac_llvm_context * ac,LLVMValueRef accepted,void * userdata)792 static void gfx10_build_primitive_accepted(struct ac_llvm_context *ac, LLVMValueRef accepted,
793                                            void *userdata)
794 {
795    struct si_shader_context *ctx = container_of(ac, struct si_shader_context, ac);
796    LLVMValueRef *params = (LLVMValueRef *)userdata;
797    LLVMValueRef gs_accepted = params[0];
798    LLVMValueRef *gs_vtxptr = (LLVMValueRef *)params[1];
799 
800    unsigned num_vertices;
801    ngg_get_vertices_per_prim(ctx, &num_vertices);
802 
803    ac_build_ifcc(&ctx->ac, accepted, 0);
804    LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_1, gs_accepted);
805 
806    if (gs_vtxptr) {
807       for (unsigned vtx = 0; vtx < num_vertices; vtx++) {
808          LLVMBuildStore(ctx->ac.builder, ctx->ac.i8_1,
809                         si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
810       }
811    }
812    ac_build_endif(&ctx->ac, 0);
813 }
814 
add_clipdist_bit(struct si_shader_context * ctx,LLVMValueRef distance,unsigned i,LLVMValueRef * packed_data)815 static void add_clipdist_bit(struct si_shader_context *ctx, LLVMValueRef distance, unsigned i,
816                              LLVMValueRef *packed_data)
817 {
818    LLVMValueRef neg = LLVMBuildFCmp(ctx->ac.builder, LLVMRealOLT, distance, ctx->ac.f32_0, "");
819    neg = LLVMBuildZExt(ctx->ac.builder, neg, ctx->ac.i32, "");
820    /* Put the negative distance flag into lds_byte3_clipdist_neg_mask. */
821    neg = LLVMBuildShl(ctx->ac.builder, neg, LLVMConstInt(ctx->ac.i32, 24 + i, 0), "");
822    *packed_data = LLVMBuildOr(ctx->ac.builder, *packed_data, neg, "");
823 }
824 
add_clipdist_bits_for_clipvertex(struct si_shader_context * ctx,unsigned clipdist_enable,LLVMValueRef clipvertex[4],LLVMValueRef * packed_data)825 static bool add_clipdist_bits_for_clipvertex(struct si_shader_context *ctx,
826                                              unsigned clipdist_enable,
827                                              LLVMValueRef clipvertex[4],
828                                              LLVMValueRef *packed_data)
829 {
830    struct ac_export_args clipdist[2];
831    bool added = false;
832 
833    si_llvm_clipvertex_to_clipdist(ctx, clipdist, clipvertex);
834 
835    for (unsigned j = 0; j < 8; j++) {
836       if (!(clipdist_enable & BITFIELD_BIT(j)))
837          continue;
838 
839       LLVMValueRef distance = clipdist[j / 4].out[j % 4];
840       add_clipdist_bit(ctx, distance, j, packed_data);
841       added = true;
842    }
843    return added;
844 }
845 
cull_primitive(struct si_shader_context * ctx,LLVMValueRef pos[3][4],LLVMValueRef clipdist_accepted,LLVMValueRef out_prim_accepted,LLVMValueRef gs_vtxptr_accept[3])846 static void cull_primitive(struct si_shader_context *ctx,
847                            LLVMValueRef pos[3][4], LLVMValueRef clipdist_accepted,
848                            LLVMValueRef out_prim_accepted, LLVMValueRef gs_vtxptr_accept[3])
849 {
850    struct si_shader *shader = ctx->shader;
851    LLVMBuilderRef builder = ctx->ac.builder;
852 
853    LLVMValueRef vp_scale[2] = {}, vp_translate[2] = {}, small_prim_precision = NULL;
854    LLVMValueRef clip_half_line_width[2] = {};
855 
856    /* Load the viewport state for small prim culling. */
857    bool prim_is_lines = shader->key.ge.opt.ngg_culling & SI_NGG_CULL_LINES;
858    LLVMValueRef ptr = ac_get_arg(&ctx->ac, ctx->small_prim_cull_info);
859    /* Lines will always use the non-AA viewport transformation. */
860    LLVMValueRef vp = ac_build_load_to_sgpr(&ctx->ac, ptr,
861                                            prim_is_lines ? ctx->ac.i32_1 : ctx->ac.i32_0);
862    vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
863    vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
864    vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
865    vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
866    vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
867 
868    /* Execute culling code. */
869    struct ac_cull_options options = {};
870    options.cull_view_xy = true;
871    options.cull_w = true;
872 
873    if (prim_is_lines) {
874       LLVMValueRef terms = ac_build_load_to_sgpr(&ctx->ac, ptr, LLVMConstInt(ctx->ac.i32, 2, 0));
875       terms = LLVMBuildBitCast(builder, terms, ctx->ac.v4f32, "");
876       clip_half_line_width[0] = ac_llvm_extract_elem(&ctx->ac, terms, 0);
877       clip_half_line_width[1] = ac_llvm_extract_elem(&ctx->ac, terms, 1);
878       small_prim_precision = ac_llvm_extract_elem(&ctx->ac, terms, 2);
879 
880       options.num_vertices = 2;
881       options.cull_small_prims = shader->key.ge.opt.ngg_culling & SI_NGG_CULL_SMALL_LINES_DIAMOND_EXIT;
882 
883       assert(!(shader->key.ge.opt.ngg_culling & SI_NGG_CULL_BACK_FACE));
884       assert(!(shader->key.ge.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE));
885    } else {
886       /* Get the small prim filter precision. */
887       small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
888       small_prim_precision =
889          LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
890       small_prim_precision =
891          LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), "");
892       small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
893 
894       options.num_vertices = 3;
895       options.cull_front = shader->key.ge.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
896       options.cull_back = shader->key.ge.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
897       options.cull_small_prims = true; /* this would only be false with conservative rasterization */
898       options.cull_zero_area = options.cull_front || options.cull_back;
899    }
900 
901    /* Tell ES threads whether their vertex survived. */
902    LLVMValueRef params[] = {
903       out_prim_accepted,
904       (void*)gs_vtxptr_accept,
905    };
906    ac_cull_primitive(&ctx->ac, pos, clipdist_accepted, vp_scale, vp_translate,
907                      small_prim_precision, clip_half_line_width,
908                      &options, gfx10_build_primitive_accepted, params);
909 }
910 
911 /**
912  * Cull primitives for NGG VS or TES, then compact vertices, which happens
913  * before the VS or TES main function. Return values for the main function.
914  * Also return the position, which is passed to the shader as an input,
915  * so that we don't compute it twice.
916  */
gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi * abi)917 void gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi *abi)
918 {
919    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
920    struct si_shader *shader = ctx->shader;
921    struct si_shader_selector *sel = shader->selector;
922    struct si_shader_info *info = &sel->info;
923    LLVMBuilderRef builder = ctx->ac.builder;
924    LLVMValueRef *addrs = abi->outputs;
925    unsigned max_waves = DIV_ROUND_UP(ctx->screen->ngg_subgroup_size, ctx->ac.wave_size);
926 
927    assert(shader->key.ge.opt.ngg_culling);
928    assert(shader->key.ge.as_ngg);
929    assert(sel->info.stage == MESA_SHADER_VERTEX ||
930           (sel->info.stage == MESA_SHADER_TESS_EVAL && !shader->key.ge.as_es));
931 
932    LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, gfx10_get_thread_id_in_tg(ctx));
933    LLVMValueRef packed_data = ctx->ac.i32_0;
934    LLVMValueRef position[4] = {};
935    unsigned pos_index = 0;
936    unsigned clip_plane_enable = SI_NGG_CULL_GET_CLIP_PLANE_ENABLE(shader->key.ge.opt.ngg_culling);
937    unsigned clipdist_enable = (sel->clipdist_mask & clip_plane_enable) | sel->culldist_mask;
938    bool has_clipdist_mask = false;
939 
940    for (unsigned i = 0; i < info->num_outputs; i++) {
941       LLVMValueRef clipvertex[4];
942       unsigned base;
943 
944       switch (info->output_semantic[i]) {
945       case VARYING_SLOT_POS:
946          /* If we are going to cull everything (rasterizer_discard), discard
947           * the position. This is useful for analyzing maximum theoretical
948           * performance without VS input loads.
949           */
950          if (shader->key.ge.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE &&
951              shader->key.ge.opt.ngg_culling & SI_NGG_CULL_BACK_FACE) {
952             for (unsigned j = 0; j < 4; j++)
953                LLVMBuildStore(builder, LLVMGetUndef(ctx->ac.f32), addrs[4 * i + j]);
954             break;
955          }
956 
957          pos_index = i;
958          for (unsigned j = 0; j < 4; j++) {
959             position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
960          }
961 
962          /* Store Position.W into LDS. */
963          LLVMBuildStore(
964             builder, ac_to_integer(&ctx->ac, position[3]),
965             ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_cull_w, 0)));
966 
967          /* Store Position.XY / W into LDS. */
968          for (unsigned chan = 0; chan < 2; chan++) {
969             LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
970             LLVMBuildStore(
971                builder, ac_to_integer(&ctx->ac, val),
972                ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_cull_x_div_w + chan, 0)));
973          }
974          break;
975 
976       case VARYING_SLOT_CLIP_DIST0:
977       case VARYING_SLOT_CLIP_DIST1:
978          base = info->output_semantic[i] == VARYING_SLOT_CLIP_DIST1 ? 4 : 0;
979 
980          for (unsigned j = 0; j < 4; j++) {
981             unsigned index = base + j;
982 
983             if (!(clipdist_enable & BITFIELD_BIT(index)))
984                continue;
985 
986             LLVMValueRef distance = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
987             add_clipdist_bit(ctx, distance, index, &packed_data);
988             has_clipdist_mask = true;
989          }
990          break;
991 
992       case VARYING_SLOT_CLIP_VERTEX:
993          for (unsigned j = 0; j < 4; j++)
994             clipvertex[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
995 
996          if (add_clipdist_bits_for_clipvertex(ctx, clipdist_enable, clipvertex, &packed_data))
997             has_clipdist_mask = true;
998          break;
999       }
1000    }
1001 
1002    if (clip_plane_enable && !sel->clipdist_mask) {
1003       /* When clip planes are enabled and there are no clip distance outputs,
1004        * we should use user clip planes and cull against the position.
1005        */
1006       assert(!has_clipdist_mask);
1007       if (add_clipdist_bits_for_clipvertex(ctx, clipdist_enable, position, &packed_data))
1008          has_clipdist_mask = true;
1009    }
1010 
1011    /* Initialize the packed data. */
1012    LLVMBuildStore(
1013       builder, packed_data,
1014       ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
1015    ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1016    ac_build_s_barrier(&ctx->ac);
1017 
1018    LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
1019 
1020    unsigned num_vertices;
1021    ngg_get_vertices_per_prim(ctx, &num_vertices);
1022 
1023    /* The hardware requires that there are no holes between unculled vertices,
1024     * which means we have to pack ES threads, i.e. reduce the ES thread count
1025     * and move ES input VGPRs to lower threads. The upside is that varyings
1026     * are only fetched and computed for unculled vertices.
1027     *
1028     * Vertex compaction:
1029     *
1030     * Part 1: Store the surviving vertex count for each wave in LDS.
1031     *   - The GS culling code notifies ES threads which vertices were accepted.
1032     *   - Barrier
1033     *   - ES threads will compute the vertex count and store it in LDS.
1034     * - Barrier
1035     * - Each wave loads the vertex counts from LDS.
1036     *
1037     * Part 2: Compact ES threads:
1038     * - Compute the prefix sum for each surviving vertex. This is the new thread ID
1039     *   of the vertex.
1040     * - Write input VGPRs and vertex positions for each surviving vertex into the LDS
1041     *   address of the new thread ID.
1042     * - Now kill all waves that have inactive threads.
1043     * - Barrier
1044     * - Update vertex indices and null flag in the GS input VGPRs.
1045     *
1046     * Part 3: Update inputs GPRs
1047     * - For all waves, update per-wave thread counts in input SGPRs.
1048     * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
1049     */
1050 
1051    LLVMValueRef vtxindex[3];
1052    for (unsigned i = 0; i < num_vertices; ++i)
1053       vtxindex[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[i / 2], (i & 1) * 16, 16);
1054 
1055    LLVMValueRef gs_vtxptr[3];
1056    for (unsigned i = 0; i < num_vertices; i++)
1057       gs_vtxptr[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1058 
1059    es_vtxptr = ngg_nogs_vertex_ptr(ctx, gfx10_get_thread_id_in_tg(ctx));
1060 
1061    /* Adding these optimization barriers improves the generated code as follows. Crazy right?
1062     *
1063     * - s_mov_b32 s4, 0xffff
1064     * - v_lshrrev_b32_e32 v10, 16, v0
1065     * - v_and_b32_e32 v12, s4, v0
1066     * - v_and_b32_e32 v11, s4, v1
1067     *   s_bfe_u32 s4, s3, 0x80008
1068     * - s_mov_b64 s[8:9], 0
1069     * - v_mul_u32_u24_e32 v0, 28, v10
1070     * - v_mul_u32_u24_e32 v9, 28, v12
1071     * - v_mul_u32_u24_e32 v1, 28, v11
1072     * + v_mov_b32_e32 v11, 28
1073     *   v_cmp_gt_u32_e32 vcc, s4, v2
1074     * + s_mov_b64 s[8:9], 0
1075     *   s_waitcnt lgkmcnt(0)
1076     *   s_barrier
1077     * + v_mul_u32_u24_sdwa v10, v0, v11 dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_0 src1_sel:DWORD
1078     * + v_mul_u32_u24_sdwa v23, v0, v11 dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
1079     * + v_mul_u32_u24_sdwa v0, v1, v11 dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_0 src1_sel:DWORD
1080     *   s_and_saveexec_b64 s[44:45], vcc
1081     *   s_cbranch_execz BB2_8
1082     * - v_mul_u32_u24_e32 v16, 28, v12
1083     * - v_mul_u32_u24_e32 v17, 28, v11
1084     * - v_mul_u32_u24_e32 v18, 28, v10
1085     */
1086    for (unsigned i = 0; i < num_vertices; i++)
1087       ac_build_optimization_barrier(&ctx->ac, &gs_vtxptr[i], false);
1088 
1089    LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
1090 
1091    /* Do culling in GS threads. */
1092    ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
1093    {
1094       /* Load positions. */
1095       LLVMValueRef pos[3][4] = {};
1096       LLVMValueRef clipdist_neg_mask = NULL;
1097 
1098       for (unsigned vtx = 0; vtx < num_vertices; vtx++) {
1099          for (unsigned chan = 0; chan < 4; chan++) {
1100             unsigned index;
1101             if (chan == 0 || chan == 1)
1102                index = lds_pos_cull_x_div_w + chan;
1103             else if (chan == 3)
1104                index = lds_pos_cull_w;
1105             else
1106                continue;
1107 
1108             LLVMValueRef addr =
1109                ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0));
1110             pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
1111             pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
1112          }
1113 
1114          if (has_clipdist_mask) {
1115             /* Load and AND clip distance masks. Each bit means whether that clip distance is
1116              * negative. If all masks are AND'ed and the result is 0, the primitive isn't culled
1117              * by clip distances.
1118              */
1119             LLVMValueRef addr = si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte3_clipdist_neg_mask);
1120             LLVMValueRef mask = LLVMBuildLoad(builder, addr, "");
1121             if (!clipdist_neg_mask)
1122                clipdist_neg_mask = mask;
1123             else
1124                clipdist_neg_mask = LLVMBuildAnd(builder, clipdist_neg_mask, mask, "");
1125          }
1126       }
1127 
1128       LLVMValueRef clipdist_accepted =
1129          has_clipdist_mask ? LLVMBuildICmp(builder, LLVMIntEQ, clipdist_neg_mask, ctx->ac.i8_0, "")
1130                            : ctx->ac.i1true;
1131 
1132       cull_primitive(ctx, pos, clipdist_accepted, gs_accepted, gs_vtxptr);
1133    }
1134    ac_build_endif(&ctx->ac, 16002);
1135    ac_build_s_barrier(&ctx->ac);
1136 
1137    gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
1138 
1139    LLVMValueRef vertex_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
1140    LLVMValueRef vertex_mask = ac_build_alloca(&ctx->ac, ctx->ac.iN_wavemask, "");
1141 
1142    /* Convert the per-vertex accept flag to a vertex thread mask, store it in registers. */
1143    ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
1144    {
1145       LLVMValueRef accepted =
1146          LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
1147       accepted = LLVMBuildICmp(builder, LLVMIntNE, accepted, ctx->ac.i8_0, "");
1148       LLVMValueRef mask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);
1149 
1150       LLVMBuildStore(builder, accepted, vertex_accepted);
1151       LLVMBuildStore(builder, mask, vertex_mask);
1152    }
1153    ac_build_endif(&ctx->ac, 16007);
1154 
1155    /* Store the per-wave vertex count to LDS. Non-ES waves store 0. */
1156    vertex_mask = LLVMBuildLoad(builder, vertex_mask, "");
1157    ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008);
1158    {
1159       LLVMValueRef vertex_count = ac_build_bit_count(&ctx->ac, vertex_mask);
1160       LLVMBuildStore(builder, LLVMBuildTrunc(builder, vertex_count, ctx->ac.i8, ""),
1161                      si_build_gep_i8_var(ctx, ctx->gs_ngg_scratch, get_wave_id_in_tg(ctx)));
1162    }
1163    ac_build_endif(&ctx->ac, 16008);
1164 
1165    ac_build_s_barrier(&ctx->ac);
1166 
1167    /* Load the vertex masks and compute the new ES thread count. */
1168    LLVMValueRef new_num_es_threads, prefix_sum, kill_wave;
1169    load_vertex_counts(ctx, ctx->gs_ngg_scratch, max_waves, tid, &new_num_es_threads,
1170                       &prefix_sum);
1171 
1172    bool uses_instance_id = ctx->stage == MESA_SHADER_VERTEX &&
1173                            (sel->info.uses_instanceid ||
1174                             shader->key.ge.part.vs.prolog.instance_divisor_is_one ||
1175                             shader->key.ge.part.vs.prolog.instance_divisor_is_fetched);
1176    bool uses_tes_prim_id = ctx->stage == MESA_SHADER_TESS_EVAL &&
1177                            (sel->info.uses_primid || shader->key.ge.mono.u.vs_export_prim_id);
1178 
1179    /* ES threads compute their prefix sum, which is the new ES thread ID.
1180     * Then they write the vertex position and input VGPRs into the LDS address
1181     * of the new thread ID. It will be used to load input VGPRs by compacted
1182     * threads.
1183     */
1184    vertex_accepted = LLVMBuildLoad(builder, vertex_accepted, "");
1185    ac_build_ifcc(&ctx->ac, vertex_accepted, 16009);
1186    {
1187       /* Add the number of bits set in vertex_mask up to the current thread ID - 1
1188        * to get the prefix sum.
1189        */
1190       prefix_sum = LLVMBuildAdd(builder, prefix_sum, ac_build_mbcnt(&ctx->ac, vertex_mask), "");
1191 
1192       LLVMValueRef new_id = prefix_sum;
1193       LLVMValueRef new_vtx = ngg_nogs_vertex_ptr(ctx, new_id);
1194 
1195       LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
1196                      si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
1197 
1198       /* Store Position.XYZW into LDS. */
1199       for (unsigned chan = 0; chan < 4; chan++) {
1200          LLVMBuildStore(
1201             builder, ac_to_integer(&ctx->ac, LLVMBuildLoad(builder, addrs[4 * pos_index + chan], "")),
1202             ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
1203       }
1204 
1205       /* Store VertexID and InstanceID into LDS. ES threads will have to load them
1206        * from LDS after vertex compaction and use them instead of their own
1207        * system values.
1208        */
1209       if (ctx->stage == MESA_SHADER_VERTEX) {
1210          LLVMBuildStore(
1211             builder, ctx->abi.vertex_id,
1212             ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
1213          if (uses_instance_id) {
1214             LLVMBuildStore(
1215                builder, ctx->abi.instance_id,
1216                ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
1217          }
1218       } else {
1219          assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1220          LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.tes_u)),
1221                         ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
1222          LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.tes_v)),
1223                         ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
1224          LLVMBuildStore(builder, LLVMBuildTrunc(builder, ac_get_arg(&ctx->ac, ctx->args.tes_rel_patch_id), ctx->ac.i8, ""),
1225                         si_build_gep_i8(ctx, new_vtx, lds_byte2_tes_rel_patch_id));
1226          if (uses_tes_prim_id) {
1227             LLVMBuildStore(
1228                builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
1229                ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
1230          }
1231       }
1232    }
1233    ac_build_endif(&ctx->ac, 16009);
1234 
1235    /* If all vertices are culled, set the primitive count to 0, so that all waves are culled here. */
1236    LLVMValueRef num_primitives = ngg_get_prim_cnt(ctx);
1237    num_primitives = LLVMBuildSelect(builder,
1238                                     LLVMBuildICmp(builder, LLVMIntEQ, new_num_es_threads,
1239                                                   ctx->ac.i32_0, ""),
1240                                     ctx->ac.i32_0, num_primitives, "");
1241    /* Kill waves that have inactive threads. */
1242    kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
1243                              ac_build_imax(&ctx->ac, new_num_es_threads, num_primitives),
1244                              LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
1245                                           LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""),
1246                              "");
1247    ac_build_ifcc(&ctx->ac, kill_wave, 19202);
1248    {
1249       /* If we are killing wave 0, send that there are no primitives
1250        * in this threadgroup.
1251        */
1252       ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0);
1253       ac_build_s_endpgm(&ctx->ac);
1254    }
1255    ac_build_endif(&ctx->ac, 19202);
1256    ac_build_s_barrier(&ctx->ac);
1257 
1258    /* Send the final vertex and primitive counts. */
1259    ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads,
1260                                  ngg_get_prim_cnt(ctx));
1261 
1262    /* Update thread counts in SGPRs. */
1263    LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->args.gs_tg_info);
1264    LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->args.merged_wave_info);
1265 
1266    /* This also converts the thread count from the total count to the per-wave count. */
1267    update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8,
1268                         0);
1269 
1270    /* Update vertex indices in VGPR0 (same format as NGG passthrough).
1271     *
1272     * Set the null flag at the beginning (culled), and then
1273     * overwrite it for accepted primitives.
1274     */
1275    LLVMValueRef new_vgpr0 =
1276       ac_build_alloca_init(&ctx->ac, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), "");
1277 
1278    /* Get vertex indices after vertex compaction. */
1279    ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
1280    {
1281       struct ac_ngg_prim prim = {};
1282       prim.num_vertices = num_vertices;
1283       prim.isnull = ctx->ac.i1false;
1284 
1285       if (gfx10_edgeflags_have_effect(shader))
1286          prim.edgeflags = ac_pack_edgeflags_for_export(&ctx->ac, &ctx->args);
1287       else
1288          prim.edgeflags = ctx->ac.i32_0;
1289 
1290       for (unsigned vtx = 0; vtx < num_vertices; vtx++) {
1291          prim.index[vtx] = LLVMBuildLoad(
1292             builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), "");
1293          prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
1294       }
1295 
1296       /* Set the new GS input VGPR. */
1297       LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
1298    }
1299    ac_build_endif(&ctx->ac, 16011);
1300 
1301    if (gfx10_ngg_export_prim_early(shader))
1302       gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
1303 
1304    /* Prepare LDS addresses of the new ES input VGPRs. */
1305    LLVMValueRef input_vgpr_addresses[4] = {
1306       ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)),
1307       ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)),
1308    };
1309    if (ctx->stage == MESA_SHADER_TESS_EVAL) {
1310       input_vgpr_addresses[2] = si_build_gep_i8(ctx, es_vtxptr, lds_byte2_tes_rel_patch_id);
1311       if (uses_tes_prim_id) {
1312          input_vgpr_addresses[3] = ac_build_gep0(&ctx->ac, es_vtxptr,
1313                                                  LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0));
1314       }
1315    }
1316 
1317    /* Return values for the main function. */
1318    LLVMValueRef ret = ctx->return_value;
1319    LLVMValueRef val;
1320 
1321    ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
1322    ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
1323    if (ctx->stage == MESA_SHADER_TESS_EVAL)
1324       ret = si_insert_input_ret(ctx, ret, ctx->args.tess_offchip_offset, 4);
1325 
1326    ret = si_insert_input_ptr(ctx, ret, ctx->internal_bindings, 8 + SI_SGPR_INTERNAL_BINDINGS);
1327    ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
1328                              8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
1329    ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers,
1330                              8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
1331    ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
1332    ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
1333 
1334    if (ctx->stage == MESA_SHADER_VERTEX) {
1335       ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX);
1336       ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID);
1337       ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE);
1338       ret = si_insert_input_ptr(ctx, ret, ctx->args.vertex_buffers, 8 + GFX9_GS_NUM_USER_SGPR);
1339 
1340       for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
1341          ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
1342                                      8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
1343       }
1344    } else {
1345       assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1346       ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
1347       ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR);
1348    }
1349 
1350    unsigned vgpr;
1351    if (ctx->stage == MESA_SHADER_VERTEX) {
1352       if (shader->selector->num_vbos_in_user_sgprs) {
1353          vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
1354       } else {
1355          vgpr = 8 + GFX9_GS_NUM_USER_SGPR + 1;
1356       }
1357    } else {
1358       vgpr = 8 + GFX9_GS_NUM_USER_SGPR;
1359    }
1360 
1361    val = LLVMBuildLoad(builder, new_vgpr0, "");
1362    ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1363    vgpr++; /* gs_vtx_offset[1] = offsets of vertices 2-3  */
1364 
1365    ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
1366    ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
1367    vgpr++; /* gs_vtx_offset[2] = offsets of vertices 4-5 */
1368 
1369    /* Set the input VPGRs to the corresponding LDS addresses where the VGPR values are
1370     * stored. The VS prolog will load them.
1371     */
1372    if (ctx->stage == MESA_SHADER_VERTEX) {
1373       val = LLVMBuildPtrToInt(builder, input_vgpr_addresses[0], ctx->ac.i32, "");
1374       ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1375                                  ""); /* VGPR5 - VertexID */
1376       vgpr += 2;
1377       if (uses_instance_id) {
1378          val = LLVMBuildPtrToInt(builder, input_vgpr_addresses[1], ctx->ac.i32, "");
1379          ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1380                                     ""); /* VGPR8 - InstanceID */
1381       } else {
1382          vgpr++;
1383       }
1384    } else {
1385       assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1386       unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
1387       for (unsigned i = 0; i < num_vgprs; i++) {
1388          val = LLVMBuildPtrToInt(builder, input_vgpr_addresses[i], ctx->ac.i32, "");
1389          ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1390       }
1391       if (num_vgprs == 3)
1392          vgpr++;
1393    }
1394 
1395    /* These two also use LDS. */
1396    if (gfx10_ngg_writes_user_edgeflags(shader) ||
1397        (ctx->stage == MESA_SHADER_VERTEX && shader->key.ge.mono.u.vs_export_prim_id))
1398       ac_build_s_barrier(&ctx->ac);
1399 
1400    ctx->return_value = ret;
1401 }
1402 
1403 /**
1404  * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
1405  */
gfx10_emit_ngg_epilogue(struct ac_shader_abi * abi)1406 void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi)
1407 {
1408    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1409    struct si_shader_selector *sel = ctx->shader->selector;
1410    struct si_shader_info *info = &sel->info;
1411    struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1412    LLVMBuilderRef builder = ctx->ac.builder;
1413    LLVMValueRef *addrs = abi->outputs;
1414    LLVMValueRef tmp, tmp2;
1415 
1416    assert(!ctx->shader->is_gs_copy_shader);
1417    assert(info->num_outputs <= AC_LLVM_MAX_OUTPUTS);
1418 
1419    LLVMValueRef vertex_ptr = NULL;
1420 
1421    if (sel->so.num_outputs || gfx10_ngg_writes_user_edgeflags(ctx->shader))
1422       vertex_ptr = ngg_nogs_vertex_ptr(ctx, gfx10_get_thread_id_in_tg(ctx));
1423 
1424    for (unsigned i = 0; i < info->num_outputs; i++) {
1425       outputs[i].semantic = info->output_semantic[i];
1426 
1427       for (unsigned j = 0; j < 4; j++) {
1428          outputs[i].vertex_streams = info->output_streams[i];
1429 
1430          /* TODO: we may store more outputs than streamout needs,
1431           * but streamout performance isn't that important.
1432           */
1433          if (sel->so.num_outputs) {
1434             tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
1435             tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1436             tmp2 = ac_to_integer(&ctx->ac, tmp2);
1437             LLVMBuildStore(builder, tmp2, tmp);
1438          }
1439       }
1440 
1441       /* Store the edgeflag at the end (if streamout is enabled) */
1442       if (info->output_semantic[i] == VARYING_SLOT_EDGE && gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
1443          LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
1444          /* The output is a float, but the hw expects a 1-bit integer. */
1445          edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
1446          edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
1447 
1448          tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1449          tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1450          LLVMBuildStore(builder, edgeflag, tmp);
1451       }
1452    }
1453 
1454    bool unterminated_es_if_block =
1455       !sel->so.num_outputs && !gfx10_ngg_writes_user_edgeflags(ctx->shader) &&
1456       !ctx->screen->use_ngg_streamout && /* no query buffer */
1457       (ctx->stage != MESA_SHADER_VERTEX || !ctx->shader->key.ge.mono.u.vs_export_prim_id);
1458 
1459    if (!unterminated_es_if_block)
1460       ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1461 
1462    LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
1463    LLVMValueRef is_es_thread = si_is_es_thread(ctx);
1464    LLVMValueRef vtxindex[3];
1465 
1466    if (ctx->shader->key.ge.opt.ngg_culling || gfx10_is_ngg_passthrough(ctx->shader)) {
1467       for (unsigned i = 0; i < 3; ++i)
1468          vtxindex[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[0], 10 * i, 9);
1469    } else {
1470       for (unsigned i = 0; i < 3; ++i)
1471          vtxindex[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[i / 2], (i & 1) * 16, 16);
1472    }
1473 
1474    /* Determine the number of vertices per primitive. */
1475    unsigned num_vertices;
1476    LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
1477 
1478    /* Streamout */
1479    LLVMValueRef emitted_prims = NULL;
1480 
1481    if (sel->so.num_outputs) {
1482       assert(!unterminated_es_if_block);
1483 
1484       struct ngg_streamout nggso = {};
1485       nggso.num_vertices = num_vertices_val;
1486       nggso.prim_enable[0] = is_gs_thread;
1487 
1488       for (unsigned i = 0; i < num_vertices; ++i)
1489          nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1490 
1491       build_streamout(ctx, &nggso);
1492       emitted_prims = nggso.emit[0];
1493    }
1494 
1495    LLVMValueRef user_edgeflags[3] = {};
1496 
1497    if (gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
1498       assert(!unterminated_es_if_block);
1499 
1500       /* Streamout already inserted the barrier, so don't insert it again. */
1501       if (!sel->so.num_outputs)
1502          ac_build_s_barrier(&ctx->ac);
1503 
1504       ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1505       /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
1506       for (unsigned i = 0; i < num_vertices; i++) {
1507          tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1508          tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1509          tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
1510          tmp = LLVMBuildLoad(builder, tmp, "");
1511          tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1512 
1513          user_edgeflags[i] = ac_build_alloca_init(&ctx->ac, tmp, "");
1514       }
1515       ac_build_endif(&ctx->ac, 5400);
1516    }
1517 
1518    /* Copy Primitive IDs from GS threads to the LDS address corresponding
1519     * to the ES thread of the provoking vertex.
1520     */
1521    if (ctx->stage == MESA_SHADER_VERTEX && ctx->shader->key.ge.mono.u.vs_export_prim_id) {
1522       assert(!unterminated_es_if_block);
1523 
1524       /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
1525       if (sel->so.num_outputs || gfx10_ngg_writes_user_edgeflags(ctx->shader))
1526          ac_build_s_barrier(&ctx->ac);
1527 
1528       ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1529       /* Extract the PROVOKING_VTX_INDEX field. */
1530       LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
1531 
1532       /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
1533       LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
1534       LLVMValueRef provoking_vtx_index =
1535          LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
1536       LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
1537 
1538       LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
1539                      ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
1540       ac_build_endif(&ctx->ac, 5400);
1541    }
1542 
1543    /* Update query buffer */
1544    if (ctx->screen->use_ngg_streamout && !info->base.vs.blit_sgprs_amd) {
1545       assert(!unterminated_es_if_block);
1546 
1547       tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1548       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1549       ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
1550       tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
1551       ac_build_ifcc(&ctx->ac, tmp, 5030);
1552       tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
1553                           sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
1554       ac_build_ifcc(&ctx->ac, tmp, 5031);
1555       {
1556          LLVMValueRef args[] = {
1557             ngg_get_prim_cnt(ctx),
1558             ngg_get_query_buf(ctx),
1559             LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
1560             ctx->ac.i32_0,                        /* soffset */
1561             ctx->ac.i32_0,                        /* cachepolicy */
1562          };
1563 
1564          if (sel->so.num_outputs) {
1565             args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
1566             args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false),
1567                                          ctx->ac.i32_1);
1568          }
1569 
1570          /* TODO: should this be 64-bit atomics? */
1571          ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1572                             0);
1573       }
1574       ac_build_endif(&ctx->ac, 5031);
1575       ac_build_endif(&ctx->ac, 5030);
1576       ac_build_endif(&ctx->ac, 5029);
1577    }
1578 
1579    /* Build the primitive export. */
1580    if (!gfx10_ngg_export_prim_early(ctx->shader)) {
1581       assert(!unterminated_es_if_block);
1582       gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
1583    }
1584 
1585    /* Export per-vertex data (positions and parameters). */
1586    if (!unterminated_es_if_block)
1587       ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
1588    {
1589       unsigned i;
1590 
1591       /* Unconditionally (re-)load the values for proper SSA form. */
1592       for (i = 0; i < info->num_outputs; i++) {
1593          /* If the NGG cull shader part computed the position, don't
1594           * use the position from the current shader part. Instead,
1595           * load it from LDS.
1596           */
1597          if (info->output_semantic[i] == VARYING_SLOT_POS &&
1598              ctx->shader->key.ge.opt.ngg_culling) {
1599             vertex_ptr = ngg_nogs_vertex_ptr(ctx, gfx10_get_thread_id_in_tg(ctx));
1600 
1601             for (unsigned j = 0; j < 4; j++) {
1602                tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
1603                tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1604                tmp = LLVMBuildLoad(builder, tmp, "");
1605                outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1606             }
1607          } else {
1608             for (unsigned j = 0; j < 4; j++) {
1609                outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1610             }
1611          }
1612       }
1613 
1614       if (ctx->shader->key.ge.mono.u.vs_export_prim_id) {
1615          outputs[i].semantic = VARYING_SLOT_PRIMITIVE_ID;
1616          outputs[i].vertex_streams = 0;
1617 
1618          if (ctx->stage == MESA_SHADER_VERTEX) {
1619             /* Wait for GS stores to finish. */
1620             ac_build_s_barrier(&ctx->ac);
1621 
1622             tmp = ngg_nogs_vertex_ptr(ctx, gfx10_get_thread_id_in_tg(ctx));
1623             tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1624             outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
1625          } else {
1626             assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1627             outputs[i].values[0] = si_get_primitive_id(ctx, 0);
1628          }
1629 
1630          outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
1631          for (unsigned j = 1; j < 4; j++)
1632             outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
1633          i++;
1634       }
1635 
1636       si_llvm_build_vs_exports(ctx, outputs, i);
1637    }
1638    ac_build_endif(&ctx->ac, 6002);
1639 }
1640 
ngg_gs_get_vertex_storage(struct si_shader_context * ctx)1641 static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
1642 {
1643    const struct si_shader_selector *sel = ctx->shader->selector;
1644    const struct si_shader_info *info = &sel->info;
1645 
1646    LLVMTypeRef elements[2] = {
1647       LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
1648       LLVMArrayType(ctx->ac.i8, 4),
1649    };
1650    LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
1651    type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
1652    return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
1653 }
1654 
1655 /**
1656  * Return a pointer to the LDS storage reserved for the N'th vertex, where N
1657  * is in emit order; that is:
1658  * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
1659  * - during vertex emit, i.e. while the API GS shader invocation is running,
1660  *   N = threadidx * gs.vertices_out + emitidx
1661  *
1662  * Goals of the LDS memory layout:
1663  * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
1664  *    in uniform control flow
1665  * 2. Eliminate bank conflicts on read for export if, additionally, there is no
1666  *    culling
1667  * 3. Agnostic to the number of waves (since we don't know it before compiling)
1668  * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
1669  * 5. Avoid wasting memory.
1670  *
1671  * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
1672  * layout, elimination of bank conflicts requires that each vertex occupy an
1673  * odd number of dwords. We use the additional dword to store the output stream
1674  * index as well as a flag to indicate whether this vertex ends a primitive
1675  * for rasterization.
1676  *
1677  * Swizzling is required to satisfy points 1 and 2 simultaneously.
1678  *
1679  * Vertices are stored in export order (gsthread * gs.vertices_out + emitidx).
1680  * Indices are swizzled in groups of 32, which ensures point 1 without
1681  * disturbing point 2.
1682  *
1683  * \return an LDS pointer to type {[N x i32], [4 x i8]}
1684  */
ngg_gs_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef vertexidx)1685 static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
1686 {
1687    struct si_shader_selector *sel = ctx->shader->selector;
1688    LLVMBuilderRef builder = ctx->ac.builder;
1689    LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
1690 
1691    /* gs.vertices_out = 2^(write_stride_2exp) * some odd number */
1692    unsigned write_stride_2exp = ffs(sel->info.base.gs.vertices_out) - 1;
1693    if (write_stride_2exp) {
1694       LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), "");
1695       LLVMValueRef swizzle = LLVMBuildAnd(
1696          builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), "");
1697       vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
1698    }
1699 
1700    return ac_build_gep0(&ctx->ac, storage, vertexidx);
1701 }
1702 
ngg_gs_emit_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef gsthread,LLVMValueRef emitidx)1703 static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
1704                                            LLVMValueRef emitidx)
1705 {
1706    struct si_shader_selector *sel = ctx->shader->selector;
1707    LLVMBuilderRef builder = ctx->ac.builder;
1708    LLVMValueRef tmp;
1709 
1710    tmp = LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false);
1711    tmp = LLVMBuildMul(builder, tmp, gsthread, "");
1712    const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
1713    return ngg_gs_vertex_ptr(ctx, vertexidx);
1714 }
1715 
ngg_gs_get_emit_output_ptr(struct si_shader_context * ctx,LLVMValueRef vertexptr,unsigned out_idx)1716 static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx,
1717                                                LLVMValueRef vertexptr, unsigned out_idx)
1718 {
1719    LLVMValueRef gep_idx[3] = {
1720       ctx->ac.i32_0, /* implied C-style array */
1721       ctx->ac.i32_0, /* first struct entry */
1722       LLVMConstInt(ctx->ac.i32, out_idx, false),
1723    };
1724    return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1725 }
1726 
ngg_gs_get_emit_primflag_ptr(struct si_shader_context * ctx,LLVMValueRef vertexptr,unsigned stream)1727 static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx,
1728                                                  LLVMValueRef vertexptr, unsigned stream)
1729 {
1730    LLVMValueRef gep_idx[3] = {
1731       ctx->ac.i32_0, /* implied C-style array */
1732       ctx->ac.i32_1, /* second struct entry */
1733       LLVMConstInt(ctx->ac.i32, stream, false),
1734    };
1735    return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1736 }
1737 
gfx10_ngg_gs_emit_vertex(struct si_shader_context * ctx,unsigned stream,LLVMValueRef * addrs)1738 void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs)
1739 {
1740    const struct si_shader_selector *sel = ctx->shader->selector;
1741    const struct si_shader_info *info = &sel->info;
1742    LLVMBuilderRef builder = ctx->ac.builder;
1743    LLVMValueRef tmp;
1744    const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1745 
1746    /* If this thread has already emitted the declared maximum number of
1747     * vertices, skip the write: excessive vertex emissions are not
1748     * supposed to have any effect.
1749     */
1750    const LLVMValueRef can_emit =
1751       LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
1752                     LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false), "");
1753 
1754    tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1755    tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
1756    LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1757 
1758    ac_build_ifcc(&ctx->ac, can_emit, 9001);
1759 
1760    const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, gfx10_get_thread_id_in_tg(ctx), vertexidx);
1761    unsigned out_idx = 0;
1762    for (unsigned i = 0; i < info->num_outputs; i++) {
1763       for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
1764          if (!(info->output_usagemask[i] & (1 << chan)) ||
1765              ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
1766             continue;
1767 
1768          LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
1769          out_val = ac_to_integer(&ctx->ac, out_val);
1770          LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
1771       }
1772    }
1773    assert(out_idx * 4 == sel->gsvs_vertex_size);
1774 
1775    /* Determine and store whether this vertex completed a primitive. */
1776    const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
1777 
1778    tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->info.base.gs.output_primitive) - 1, false);
1779    const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
1780 
1781    /* Since the geometry shader emits triangle strips, we need to
1782     * track which primitive is odd and swap vertex indices to get
1783     * the correct vertex order.
1784     */
1785    LLVMValueRef is_odd = ctx->ac.i1false;
1786    if (stream == 0 && u_vertices_per_prim(sel->info.base.gs.output_primitive) == 3) {
1787       tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
1788       is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
1789    }
1790 
1791    tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
1792    LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
1793 
1794    /* The per-vertex primitive flag encoding:
1795     *   bit 0: whether this vertex finishes a primitive
1796     *   bit 1: whether the primitive is odd (if we are emitting triangle strips)
1797     */
1798    tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
1799    tmp = LLVMBuildOr(
1800       builder, tmp,
1801       LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), "");
1802    LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
1803 
1804    tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1805    tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
1806    LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
1807 
1808    ac_build_endif(&ctx->ac, 9001);
1809 }
1810 
gfx10_ngg_gs_emit_prologue(struct si_shader_context * ctx)1811 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
1812 {
1813    /* Zero out the part of LDS scratch that is used to accumulate the
1814     * per-stream generated primitive count.
1815     */
1816    LLVMBuilderRef builder = ctx->ac.builder;
1817    LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
1818    LLVMValueRef tid = gfx10_get_thread_id_in_tg(ctx);
1819    LLVMValueRef tmp;
1820 
1821    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
1822    ac_build_ifcc(&ctx->ac, tmp, 5090);
1823    {
1824       LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
1825       LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
1826    }
1827    ac_build_endif(&ctx->ac, 5090);
1828 
1829    ac_build_s_barrier(&ctx->ac);
1830 }
1831 
gfx10_ngg_gs_emit_epilogue(struct si_shader_context * ctx)1832 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
1833 {
1834    const struct si_shader_selector *sel = ctx->shader->selector;
1835    const struct si_shader_info *info = &sel->info;
1836    const unsigned verts_per_prim = u_vertices_per_prim(sel->info.base.gs.output_primitive);
1837    LLVMBuilderRef builder = ctx->ac.builder;
1838    LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
1839    LLVMValueRef tmp, tmp2;
1840 
1841    /* Zero out remaining (non-emitted) primitive flags.
1842     *
1843     * Note: Alternatively, we could pass the relevant gs_next_vertex to
1844     *       the emit threads via LDS. This is likely worse in the expected
1845     *       typical case where each GS thread emits the full set of
1846     *       vertices.
1847     */
1848    for (unsigned stream = 0; stream < 4; ++stream) {
1849       if (!info->num_stream_output_components[stream])
1850          continue;
1851 
1852       const LLVMValueRef gsthread = gfx10_get_thread_id_in_tg(ctx);
1853 
1854       ac_build_bgnloop(&ctx->ac, 5100);
1855 
1856       const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1857       tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
1858                           LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false), "");
1859       ac_build_ifcc(&ctx->ac, tmp, 5101);
1860       ac_build_break(&ctx->ac);
1861       ac_build_endif(&ctx->ac, 5101);
1862 
1863       tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1864       LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1865 
1866       tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
1867       LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
1868 
1869       ac_build_endloop(&ctx->ac, 5100);
1870    }
1871 
1872    /* Accumulate generated primitives counts across the entire threadgroup. */
1873    for (unsigned stream = 0; stream < 4; ++stream) {
1874       if (!info->num_stream_output_components[stream])
1875          continue;
1876 
1877       LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1878       numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
1879 
1880       tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
1881       ac_build_ifcc(&ctx->ac, tmp, 5105);
1882       {
1883          LLVMBuildAtomicRMW(
1884             builder, LLVMAtomicRMWBinOpAdd,
1885             ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)),
1886             numprims, LLVMAtomicOrderingMonotonic, false);
1887       }
1888       ac_build_endif(&ctx->ac, 5105);
1889    }
1890 
1891    ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1892 
1893    ac_build_s_barrier(&ctx->ac);
1894 
1895    const LLVMValueRef tid = gfx10_get_thread_id_in_tg(ctx);
1896    LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
1897 
1898    /* Streamout */
1899    if (sel->so.num_outputs) {
1900       struct ngg_streamout nggso = {};
1901 
1902       nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
1903 
1904       LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
1905       for (unsigned stream = 0; stream < 4; ++stream) {
1906          if (!info->num_stream_output_components[stream])
1907             continue;
1908 
1909          tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
1910          tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1911          tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1912          nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
1913       }
1914 
1915       for (unsigned i = 0; i < verts_per_prim; ++i) {
1916          tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false),
1917                             "");
1918          tmp = ngg_gs_vertex_ptr(ctx, tmp);
1919          nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1920       }
1921 
1922       build_streamout(ctx, &nggso);
1923    }
1924 
1925    /* Write shader query data. */
1926    if (ctx->screen->use_ngg_streamout) {
1927       tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1928       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1929       ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
1930       unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
1931       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
1932                           LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
1933       ac_build_ifcc(&ctx->ac, tmp, 5110);
1934       {
1935          LLVMValueRef offset;
1936          tmp = tid;
1937          if (sel->so.num_outputs)
1938             tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
1939          offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
1940          if (sel->so.num_outputs) {
1941             tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
1942             tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
1943             offset = LLVMBuildAdd(builder, offset, tmp, "");
1944          }
1945 
1946          tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
1947          LLVMValueRef args[] = {
1948             tmp,           ngg_get_query_buf(ctx),
1949             offset,        LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
1950             ctx->ac.i32_0,                                       /* cachepolicy */
1951          };
1952          ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1953                             0);
1954       }
1955       ac_build_endif(&ctx->ac, 5110);
1956       ac_build_endif(&ctx->ac, 5109);
1957    }
1958 
1959    /* Cull primitives. */
1960    if (ctx->shader->key.ge.opt.ngg_culling) {
1961       assert(info->num_stream_output_components[0]);
1962 
1963       LLVMValueRef gs_vtxptr = ngg_gs_vertex_ptr(ctx, tid);
1964       LLVMValueRef live = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, gs_vtxptr, 0), "");
1965       live = LLVMBuildTrunc(builder, live, ctx->ac.i1, "");
1966       LLVMValueRef is_emit = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1967       LLVMValueRef prim_enable = LLVMBuildAnd(builder, live, is_emit, "");
1968 
1969       /* Wait for streamout to finish before we kill primitives. */
1970       if (sel->so.num_outputs)
1971          ac_build_s_barrier(&ctx->ac);
1972 
1973       ac_build_ifcc(&ctx->ac, prim_enable, 0);
1974       {
1975          LLVMValueRef vtxptr[3] = {};
1976          LLVMValueRef pos[3][4] = {};
1977 
1978          for (unsigned i = 0; i < verts_per_prim; i++) {
1979             tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
1980             vtxptr[i] = ac_build_gep0(&ctx->ac, ngg_gs_vertex_ptr(ctx, tmp), ctx->ac.i32_0);
1981          }
1982 
1983          for (unsigned i = 0; i < info->num_outputs; i++) {
1984             /* If the stream index is non-zero for all channels, skip the output. */
1985             if (info->output_streams[i] & 0x3 &&
1986                 (info->output_streams[i] >> 2) & 0x3 &&
1987                 (info->output_streams[i] >> 4) & 0x3 &&
1988                 (info->output_streams[i] >> 6) & 0x3)
1989                continue;
1990 
1991             switch (info->output_semantic[i]) {
1992             case VARYING_SLOT_POS:
1993                /* Load the positions from LDS. */
1994                for (unsigned vert = 0; vert < verts_per_prim; vert++) {
1995                   for (unsigned comp = 0; comp < 4; comp++) {
1996                      /* Z is not needed. */
1997                      if (comp == 2)
1998                         continue;
1999 
2000                      tmp = ac_build_gep0(&ctx->ac, vtxptr[vert],
2001                                          LLVMConstInt(ctx->ac.i32, 4 * i + comp, false));
2002                      pos[vert][comp] = LLVMBuildLoad(builder, tmp, "");
2003                      pos[vert][comp] = ac_to_float(&ctx->ac, pos[vert][comp]);
2004                   }
2005                }
2006 
2007                /* Divide XY by W. */
2008                for (unsigned vert = 0; vert < verts_per_prim; vert++) {
2009                   for (unsigned comp = 0; comp < 2; comp++)
2010                      pos[vert][comp] = ac_build_fdiv(&ctx->ac, pos[vert][comp], pos[vert][3]);
2011                }
2012                break;
2013             }
2014          }
2015 
2016          LLVMValueRef clipdist_accepted = ctx->ac.i1true; /* TODO */
2017          LLVMValueRef accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
2018 
2019          cull_primitive(ctx, pos, clipdist_accepted, accepted, NULL);
2020 
2021          accepted = LLVMBuildLoad(builder, accepted, "");
2022          LLVMValueRef rejected = LLVMBuildNot(builder, LLVMBuildTrunc(builder, accepted, ctx->ac.i1, ""), "");
2023 
2024          ac_build_ifcc(&ctx->ac, rejected, 0);
2025          LLVMBuildStore(builder, ctx->ac.i8_0, ngg_gs_get_emit_primflag_ptr(ctx, gs_vtxptr, 0));
2026          ac_build_endif(&ctx->ac, 0);
2027       }
2028       ac_build_endif(&ctx->ac, 0);
2029       ac_build_s_barrier(&ctx->ac);
2030    }
2031 
2032    /* Determine vertex liveness. */
2033    LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
2034 
2035    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
2036    ac_build_ifcc(&ctx->ac, tmp, 5120);
2037    {
2038       for (unsigned i = 0; i < verts_per_prim; ++i) {
2039          const LLVMValueRef primidx =
2040             LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), "");
2041 
2042          if (i > 0) {
2043             tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
2044             ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
2045          }
2046 
2047          /* Load primitive liveness */
2048          tmp = ngg_gs_vertex_ptr(ctx, primidx);
2049          tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
2050          const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
2051 
2052          tmp = LLVMBuildLoad(builder, vertliveptr, "");
2053          tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr);
2054 
2055          if (i > 0)
2056             ac_build_endif(&ctx->ac, 5121 + i);
2057       }
2058    }
2059    ac_build_endif(&ctx->ac, 5120);
2060 
2061    /* Inclusive scan addition across the current wave. */
2062    LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
2063    struct ac_wg_scan vertlive_scan = {};
2064    vertlive_scan.op = nir_op_iadd;
2065    vertlive_scan.enable_reduce = true;
2066    vertlive_scan.enable_exclusive = true;
2067    vertlive_scan.src = vertlive;
2068    vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
2069    vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
2070    vertlive_scan.numwaves = get_tgsize(ctx);
2071    vertlive_scan.maxwaves = DIV_ROUND_UP(256, ctx->ac.wave_size);
2072 
2073    ac_build_wg_scan(&ctx->ac, &vertlive_scan);
2074 
2075    /* Skip all exports (including index exports) when possible. */
2076    LLVMValueRef have_exports =
2077       LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
2078    num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
2079 
2080    /* Allocate export space. Send this message as early as possible, to
2081     * hide the latency of the SQ <-> SPI roundtrip.
2082     */
2083    ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce,
2084                                  num_emit_threads);
2085 
2086    /* Setup the reverse vertex compaction permutation. We re-use stream 1
2087     * of the primitive liveness flags, relying on the fact that each
2088     * threadgroup can have at most 256 threads. */
2089    ac_build_ifcc(&ctx->ac, vertlive, 5130);
2090    {
2091       tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
2092       tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
2093       LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
2094    }
2095    ac_build_endif(&ctx->ac, 5130);
2096 
2097    ac_build_s_barrier(&ctx->ac);
2098 
2099    /* Export primitive data */
2100    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
2101    ac_build_ifcc(&ctx->ac, tmp, 5140);
2102    {
2103       LLVMValueRef flags;
2104       struct ac_ngg_prim prim = {};
2105       prim.num_vertices = verts_per_prim;
2106 
2107       tmp = ngg_gs_vertex_ptr(ctx, tid);
2108       flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
2109       prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
2110       prim.edgeflags = ctx->ac.i32_0;
2111 
2112       for (unsigned i = 0; i < verts_per_prim; ++i) {
2113          prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
2114                                       LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
2115       }
2116 
2117       /* Geometry shaders output triangle strips, but NGG expects triangles. */
2118       if (verts_per_prim == 3) {
2119          LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
2120          is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
2121          LLVMValueRef flatshade_first = LLVMBuildICmp(
2122             builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
2123 
2124          ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index);
2125       }
2126 
2127       ac_build_export_prim(&ctx->ac, &prim);
2128    }
2129    ac_build_endif(&ctx->ac, 5140);
2130 
2131    /* Export position and parameter data */
2132    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
2133    ac_build_ifcc(&ctx->ac, tmp, 5145);
2134    {
2135       struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
2136 
2137       tmp = ngg_gs_vertex_ptr(ctx, tid);
2138       tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
2139       tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
2140       const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
2141 
2142       unsigned out_idx = 0;
2143       for (unsigned i = 0; i < info->num_outputs; i++) {
2144          outputs[i].semantic = info->output_semantic[i];
2145 
2146          for (unsigned j = 0; j < 4; j++, out_idx++) {
2147             tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
2148             tmp = LLVMBuildLoad(builder, tmp, "");
2149             outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
2150             outputs[i].vertex_streams = info->output_streams[i];
2151          }
2152       }
2153 
2154       si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
2155    }
2156    ac_build_endif(&ctx->ac, 5145);
2157 }
2158 
clamp_gsprims_to_esverts(unsigned * max_gsprims,unsigned max_esverts,unsigned min_verts_per_prim,bool use_adjacency)2159 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
2160                                      unsigned min_verts_per_prim, bool use_adjacency)
2161 {
2162    unsigned max_reuse = max_esverts - min_verts_per_prim;
2163    if (use_adjacency)
2164       max_reuse /= 2;
2165    *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
2166 }
2167 
gfx10_ngg_get_scratch_dw_size(struct si_shader * shader)2168 unsigned gfx10_ngg_get_scratch_dw_size(struct si_shader *shader)
2169 {
2170    const struct si_shader_selector *sel = shader->selector;
2171 
2172    if (sel->info.stage == MESA_SHADER_GEOMETRY && sel->so.num_outputs)
2173       return 44;
2174 
2175    return 8;
2176 }
2177 
2178 /**
2179  * Determine subgroup information like maximum number of vertices and prims.
2180  *
2181  * This happens before the shader is uploaded, since LDS relocations during
2182  * upload depend on the subgroup size.
2183  */
gfx10_ngg_calculate_subgroup_info(struct si_shader * shader)2184 bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
2185 {
2186    const struct si_shader_selector *gs_sel = shader->selector;
2187    const struct si_shader_selector *es_sel =
2188       shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
2189    const gl_shader_stage gs_stage = gs_sel->info.stage;
2190    const unsigned gs_num_invocations = MAX2(gs_sel->info.base.gs.invocations, 1);
2191    const unsigned input_prim = si_get_input_prim(gs_sel, &shader->key);
2192    const bool use_adjacency =
2193       input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
2194    const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
2195    const unsigned min_verts_per_prim = gs_stage == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
2196 
2197    /* All these are in dwords: */
2198    /* GE can only use 8K dwords (32KB) of LDS per workgroup.
2199     */
2200    const unsigned max_lds_size = 8 * 1024 - gfx10_ngg_get_scratch_dw_size(shader);
2201    const unsigned target_lds_size = max_lds_size;
2202    unsigned esvert_lds_size = 0;
2203    unsigned gsprim_lds_size = 0;
2204 
2205    /* All these are per subgroup: */
2206    const unsigned min_esverts =
2207       gs_sel->screen->info.chip_class >= GFX10_3 ? 29 : (24 - 1 + max_verts_per_prim);
2208    bool max_vert_out_per_gs_instance = false;
2209    unsigned max_gsprims_base = gs_sel->screen->ngg_subgroup_size; /* default prim group size clamp */
2210    unsigned max_esverts_base = gs_sel->screen->ngg_subgroup_size;
2211 
2212    if (gs_stage == MESA_SHADER_GEOMETRY) {
2213       bool force_multi_cycling = false;
2214       unsigned max_out_verts_per_gsprim = gs_sel->info.base.gs.vertices_out * gs_num_invocations;
2215 
2216 retry_select_mode:
2217       if (max_out_verts_per_gsprim <= 256 && !force_multi_cycling) {
2218          if (max_out_verts_per_gsprim) {
2219             max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
2220          }
2221       } else {
2222          /* Use special multi-cycling mode in which each GS
2223           * instance gets its own subgroup. Does not work with
2224           * tessellation. */
2225          max_vert_out_per_gs_instance = true;
2226          max_gsprims_base = 1;
2227          max_out_verts_per_gsprim = gs_sel->info.base.gs.vertices_out;
2228       }
2229 
2230       esvert_lds_size = es_sel->esgs_itemsize / 4;
2231       gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
2232 
2233       if (gsprim_lds_size > target_lds_size && !force_multi_cycling) {
2234          if (gs_sel->tess_turns_off_ngg || es_sel->info.stage != MESA_SHADER_TESS_EVAL) {
2235             force_multi_cycling = true;
2236             goto retry_select_mode;
2237          }
2238       }
2239    } else {
2240       /* VS and TES. */
2241       /* LDS size for passing data from ES to GS. */
2242       esvert_lds_size = ngg_nogs_vertex_size(shader);
2243    }
2244 
2245    unsigned max_gsprims = max_gsprims_base;
2246    unsigned max_esverts = max_esverts_base;
2247 
2248    if (esvert_lds_size)
2249       max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
2250    if (gsprim_lds_size)
2251       max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
2252 
2253    max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2254    clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2255    assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2256 
2257    if (esvert_lds_size || gsprim_lds_size) {
2258       /* Now that we have a rough proportionality between esverts
2259        * and gsprims based on the primitive type, scale both of them
2260        * down simultaneously based on required LDS space.
2261        *
2262        * We could be smarter about this if we knew how much vertex
2263        * reuse to expect.
2264        */
2265       unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
2266       if (lds_total > target_lds_size) {
2267          max_esverts = max_esverts * target_lds_size / lds_total;
2268          max_gsprims = max_gsprims * target_lds_size / lds_total;
2269 
2270          max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2271          clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2272          assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2273       }
2274    }
2275 
2276    /* Round up towards full wave sizes for better ALU utilization. */
2277    if (!max_vert_out_per_gs_instance) {
2278       unsigned orig_max_esverts;
2279       unsigned orig_max_gsprims;
2280       do {
2281          orig_max_esverts = max_esverts;
2282          orig_max_gsprims = max_gsprims;
2283 
2284          max_esverts = align(max_esverts, shader->wave_size);
2285          max_esverts = MIN2(max_esverts, max_esverts_base);
2286          if (esvert_lds_size)
2287             max_esverts =
2288                MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
2289          max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2290 
2291          /* Hardware restriction: minimum value of max_esverts */
2292          max_esverts = MAX2(max_esverts, min_esverts);
2293 
2294          max_gsprims = align(max_gsprims, shader->wave_size);
2295          max_gsprims = MIN2(max_gsprims, max_gsprims_base);
2296          if (gsprim_lds_size) {
2297             /* Don't count unusable vertices to the LDS size. Those are vertices above
2298              * the maximum number of vertices that can occur in the workgroup,
2299              * which is e.g. max_gsprims * 3 for triangles.
2300              */
2301             unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2302             max_gsprims =
2303                MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
2304          }
2305          clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2306          assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2307       } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
2308 
2309       /* Verify the restriction. */
2310       assert(max_esverts >= min_esverts);
2311    } else {
2312       max_esverts = MAX2(max_esverts, min_esverts);
2313    }
2314 
2315    unsigned max_out_vertices =
2316       max_vert_out_per_gs_instance
2317          ? gs_sel->info.base.gs.vertices_out
2318          : gs_stage == MESA_SHADER_GEOMETRY
2319               ? max_gsprims * gs_num_invocations * gs_sel->info.base.gs.vertices_out
2320               : max_esverts;
2321    assert(max_out_vertices <= 256);
2322 
2323    unsigned prim_amp_factor = 1;
2324    if (gs_stage == MESA_SHADER_GEOMETRY) {
2325       /* Number of output primitives per GS input primitive after
2326        * GS instancing. */
2327       prim_amp_factor = gs_sel->info.base.gs.vertices_out;
2328    }
2329 
2330    shader->ngg.hw_max_esverts = max_esverts;
2331    shader->ngg.max_gsprims = max_gsprims;
2332    shader->ngg.max_out_verts = max_out_vertices;
2333    shader->ngg.prim_amp_factor = prim_amp_factor;
2334    shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
2335 
2336    /* Don't count unusable vertices. */
2337    shader->gs_info.esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) *
2338                                     esvert_lds_size;
2339    shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
2340 
2341    assert(shader->ngg.hw_max_esverts >= min_esverts); /* HW limitation */
2342 
2343    /* If asserts are disabled, we use the same conditions to return false */
2344    return max_esverts >= max_verts_per_prim && max_gsprims >= 1 &&
2345           max_out_vertices <= 256 &&
2346           shader->ngg.hw_max_esverts >= min_esverts;
2347 }
2348