1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_nir.h"
25 #include "brw_nir_rt.h"
26 #include "brw_shader.h"
27 #include "dev/intel_debug.h"
28 #include "compiler/glsl_types.h"
29 #include "compiler/nir/nir_builder.h"
30 #include "util/u_math.h"
31 
32 static bool
remap_tess_levels(nir_builder * b,nir_intrinsic_instr * intr,enum tess_primitive_mode _primitive_mode)33 remap_tess_levels(nir_builder *b, nir_intrinsic_instr *intr,
34                   enum tess_primitive_mode _primitive_mode)
35 {
36    const int location = nir_intrinsic_base(intr);
37    const unsigned component = nir_intrinsic_component(intr);
38    bool out_of_bounds;
39 
40    if (location == VARYING_SLOT_TESS_LEVEL_INNER) {
41       switch (_primitive_mode) {
42       case TESS_PRIMITIVE_QUADS:
43          /* gl_TessLevelInner[0..1] lives at DWords 3-2 (reversed). */
44          nir_intrinsic_set_base(intr, 0);
45          nir_intrinsic_set_component(intr, 3 - component);
46          out_of_bounds = false;
47          break;
48       case TESS_PRIMITIVE_TRIANGLES:
49          /* gl_TessLevelInner[0] lives at DWord 4. */
50          nir_intrinsic_set_base(intr, 1);
51          out_of_bounds = component > 0;
52          break;
53       case TESS_PRIMITIVE_ISOLINES:
54          out_of_bounds = true;
55          break;
56       default:
57          unreachable("Bogus tessellation domain");
58       }
59    } else if (location == VARYING_SLOT_TESS_LEVEL_OUTER) {
60       if (_primitive_mode == TESS_PRIMITIVE_ISOLINES) {
61          /* gl_TessLevelOuter[0..1] lives at DWords 6-7 (in order). */
62          nir_intrinsic_set_base(intr, 1);
63          nir_intrinsic_set_component(intr, 2 + nir_intrinsic_component(intr));
64          out_of_bounds = component > 1;
65       } else {
66          /* Triangles use DWords 7-5 (reversed); Quads use 7-4 (reversed) */
67          nir_intrinsic_set_base(intr, 1);
68          nir_intrinsic_set_component(intr, 3 - nir_intrinsic_component(intr));
69          out_of_bounds = component == 3 && _primitive_mode == TESS_PRIMITIVE_TRIANGLES;
70       }
71    } else {
72       return false;
73    }
74 
75    if (out_of_bounds) {
76       if (nir_intrinsic_infos[intr->intrinsic].has_dest) {
77          b->cursor = nir_before_instr(&intr->instr);
78          nir_ssa_def *undef = nir_ssa_undef(b, 1, 32);
79          nir_ssa_def_rewrite_uses(&intr->dest.ssa, undef);
80       }
81       nir_instr_remove(&intr->instr);
82    }
83 
84    return true;
85 }
86 
87 static bool
is_input(nir_intrinsic_instr * intrin)88 is_input(nir_intrinsic_instr *intrin)
89 {
90    return intrin->intrinsic == nir_intrinsic_load_input ||
91           intrin->intrinsic == nir_intrinsic_load_per_vertex_input ||
92           intrin->intrinsic == nir_intrinsic_load_interpolated_input;
93 }
94 
95 static bool
is_output(nir_intrinsic_instr * intrin)96 is_output(nir_intrinsic_instr *intrin)
97 {
98    return intrin->intrinsic == nir_intrinsic_load_output ||
99           intrin->intrinsic == nir_intrinsic_load_per_vertex_output ||
100           intrin->intrinsic == nir_intrinsic_store_output ||
101           intrin->intrinsic == nir_intrinsic_store_per_vertex_output;
102 }
103 
104 
105 static bool
remap_patch_urb_offsets(nir_block * block,nir_builder * b,const struct brw_vue_map * vue_map,enum tess_primitive_mode tes_primitive_mode)106 remap_patch_urb_offsets(nir_block *block, nir_builder *b,
107                         const struct brw_vue_map *vue_map,
108                         enum tess_primitive_mode tes_primitive_mode)
109 {
110    const bool is_passthrough_tcs = b->shader->info.name &&
111       strcmp(b->shader->info.name, "passthrough TCS") == 0;
112 
113    nir_foreach_instr_safe(instr, block) {
114       if (instr->type != nir_instr_type_intrinsic)
115          continue;
116 
117       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
118 
119       gl_shader_stage stage = b->shader->info.stage;
120 
121       if ((stage == MESA_SHADER_TESS_CTRL && is_output(intrin)) ||
122           (stage == MESA_SHADER_TESS_EVAL && is_input(intrin))) {
123 
124          if (!is_passthrough_tcs &&
125              remap_tess_levels(b, intrin, tes_primitive_mode))
126             continue;
127 
128          int vue_slot = vue_map->varying_to_slot[intrin->const_index[0]];
129          assert(vue_slot != -1);
130          intrin->const_index[0] = vue_slot;
131 
132          nir_src *vertex = nir_get_io_arrayed_index_src(intrin);
133          if (vertex) {
134             if (nir_src_is_const(*vertex)) {
135                intrin->const_index[0] += nir_src_as_uint(*vertex) *
136                                          vue_map->num_per_vertex_slots;
137             } else {
138                b->cursor = nir_before_instr(&intrin->instr);
139 
140                /* Multiply by the number of per-vertex slots. */
141                nir_ssa_def *vertex_offset =
142                   nir_imul(b,
143                            nir_ssa_for_src(b, *vertex, 1),
144                            nir_imm_int(b,
145                                        vue_map->num_per_vertex_slots));
146 
147                /* Add it to the existing offset */
148                nir_src *offset = nir_get_io_offset_src(intrin);
149                nir_ssa_def *total_offset =
150                   nir_iadd(b, vertex_offset,
151                            nir_ssa_for_src(b, *offset, 1));
152 
153                nir_instr_rewrite_src(&intrin->instr, offset,
154                                      nir_src_for_ssa(total_offset));
155             }
156          }
157       }
158    }
159    return true;
160 }
161 
162 void
brw_nir_lower_vs_inputs(nir_shader * nir,bool edgeflag_is_last,const uint8_t * vs_attrib_wa_flags)163 brw_nir_lower_vs_inputs(nir_shader *nir,
164                         bool edgeflag_is_last,
165                         const uint8_t *vs_attrib_wa_flags)
166 {
167    /* Start with the location of the variable's base. */
168    nir_foreach_shader_in_variable(var, nir)
169       var->data.driver_location = var->data.location;
170 
171    /* Now use nir_lower_io to walk dereference chains.  Attribute arrays are
172     * loaded as one vec4 or dvec4 per element (or matrix column), depending on
173     * whether it is a double-precision type or not.
174     */
175    nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
176                 nir_lower_io_lower_64bit_to_32);
177 
178    /* This pass needs actual constants */
179    nir_opt_constant_folding(nir);
180 
181    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
182 
183    brw_nir_apply_attribute_workarounds(nir, vs_attrib_wa_flags);
184 
185    /* The last step is to remap VERT_ATTRIB_* to actual registers */
186 
187    /* Whether or not we have any system generated values.  gl_DrawID is not
188     * included here as it lives in its own vec4.
189     */
190    const bool has_sgvs =
191       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FIRST_VERTEX) ||
192       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_BASE_INSTANCE) ||
193       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) ||
194       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
195 
196    const unsigned num_inputs = util_bitcount64(nir->info.inputs_read);
197 
198    nir_foreach_function(function, nir) {
199       if (!function->impl)
200          continue;
201 
202       nir_builder b;
203       nir_builder_init(&b, function->impl);
204 
205       nir_foreach_block(block, function->impl) {
206          nir_foreach_instr_safe(instr, block) {
207             if (instr->type != nir_instr_type_intrinsic)
208                continue;
209 
210             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
211 
212             switch (intrin->intrinsic) {
213             case nir_intrinsic_load_first_vertex:
214             case nir_intrinsic_load_base_instance:
215             case nir_intrinsic_load_vertex_id_zero_base:
216             case nir_intrinsic_load_instance_id:
217             case nir_intrinsic_load_is_indexed_draw:
218             case nir_intrinsic_load_draw_id: {
219                b.cursor = nir_after_instr(&intrin->instr);
220 
221                /* gl_VertexID and friends are stored by the VF as the last
222                 * vertex element.  We convert them to load_input intrinsics at
223                 * the right location.
224                 */
225                nir_intrinsic_instr *load =
226                   nir_intrinsic_instr_create(nir, nir_intrinsic_load_input);
227                load->src[0] = nir_src_for_ssa(nir_imm_int(&b, 0));
228 
229                nir_intrinsic_set_base(load, num_inputs);
230                switch (intrin->intrinsic) {
231                case nir_intrinsic_load_first_vertex:
232                   nir_intrinsic_set_component(load, 0);
233                   break;
234                case nir_intrinsic_load_base_instance:
235                   nir_intrinsic_set_component(load, 1);
236                   break;
237                case nir_intrinsic_load_vertex_id_zero_base:
238                   nir_intrinsic_set_component(load, 2);
239                   break;
240                case nir_intrinsic_load_instance_id:
241                   nir_intrinsic_set_component(load, 3);
242                   break;
243                case nir_intrinsic_load_draw_id:
244                case nir_intrinsic_load_is_indexed_draw:
245                   /* gl_DrawID and IsIndexedDraw are stored right after
246                    * gl_VertexID and friends if any of them exist.
247                    */
248                   nir_intrinsic_set_base(load, num_inputs + has_sgvs);
249                   if (intrin->intrinsic == nir_intrinsic_load_draw_id)
250                      nir_intrinsic_set_component(load, 0);
251                   else
252                      nir_intrinsic_set_component(load, 1);
253                   break;
254                default:
255                   unreachable("Invalid system value intrinsic");
256                }
257 
258                load->num_components = 1;
259                nir_ssa_dest_init(&load->instr, &load->dest, 1, 32, NULL);
260                nir_builder_instr_insert(&b, &load->instr);
261 
262                nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
263                                         &load->dest.ssa);
264                nir_instr_remove(&intrin->instr);
265                break;
266             }
267 
268             case nir_intrinsic_load_input: {
269                /* Attributes come in a contiguous block, ordered by their
270                 * gl_vert_attrib value.  That means we can compute the slot
271                 * number for an attribute by masking out the enabled attributes
272                 * before it and counting the bits.
273                 */
274                int attr = nir_intrinsic_base(intrin);
275                uint64_t inputs_read = nir->info.inputs_read;
276                int slot = -1;
277                if (edgeflag_is_last) {
278                   inputs_read &= ~BITFIELD64_BIT(VERT_ATTRIB_EDGEFLAG);
279                   if (attr == VERT_ATTRIB_EDGEFLAG)
280                      slot = num_inputs - 1;
281                }
282                if (slot == -1)
283                   slot = util_bitcount64(inputs_read &
284                                          BITFIELD64_MASK(attr));
285                nir_intrinsic_set_base(intrin, slot);
286                break;
287             }
288 
289             default:
290                break; /* Nothing to do */
291             }
292          }
293       }
294    }
295 }
296 
297 void
brw_nir_lower_vue_inputs(nir_shader * nir,const struct brw_vue_map * vue_map)298 brw_nir_lower_vue_inputs(nir_shader *nir,
299                          const struct brw_vue_map *vue_map)
300 {
301    nir_foreach_shader_in_variable(var, nir)
302       var->data.driver_location = var->data.location;
303 
304    /* Inputs are stored in vec4 slots, so use type_size_vec4(). */
305    nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
306                 nir_lower_io_lower_64bit_to_32);
307 
308    /* This pass needs actual constants */
309    nir_opt_constant_folding(nir);
310 
311    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
312 
313    nir_foreach_function(function, nir) {
314       if (!function->impl)
315          continue;
316 
317       nir_foreach_block(block, function->impl) {
318          nir_foreach_instr(instr, block) {
319             if (instr->type != nir_instr_type_intrinsic)
320                continue;
321 
322             nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
323 
324             if (intrin->intrinsic == nir_intrinsic_load_input ||
325                 intrin->intrinsic == nir_intrinsic_load_per_vertex_input) {
326                /* Offset 0 is the VUE header, which contains
327                 * VARYING_SLOT_LAYER [.y], VARYING_SLOT_VIEWPORT [.z], and
328                 * VARYING_SLOT_PSIZ [.w].
329                 */
330                int varying = nir_intrinsic_base(intrin);
331                int vue_slot;
332                switch (varying) {
333                case VARYING_SLOT_PSIZ:
334                   nir_intrinsic_set_base(intrin, 0);
335                   nir_intrinsic_set_component(intrin, 3);
336                   break;
337 
338                default:
339                   vue_slot = vue_map->varying_to_slot[varying];
340                   assert(vue_slot != -1);
341                   nir_intrinsic_set_base(intrin, vue_slot);
342                   break;
343                }
344             }
345          }
346       }
347    }
348 }
349 
350 void
brw_nir_lower_tes_inputs(nir_shader * nir,const struct brw_vue_map * vue_map)351 brw_nir_lower_tes_inputs(nir_shader *nir, const struct brw_vue_map *vue_map)
352 {
353    nir_foreach_shader_in_variable(var, nir)
354       var->data.driver_location = var->data.location;
355 
356    nir_lower_io(nir, nir_var_shader_in, type_size_vec4,
357                 nir_lower_io_lower_64bit_to_32);
358 
359    /* This pass needs actual constants */
360    nir_opt_constant_folding(nir);
361 
362    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
363 
364    nir_foreach_function(function, nir) {
365       if (function->impl) {
366          nir_builder b;
367          nir_builder_init(&b, function->impl);
368          nir_foreach_block(block, function->impl) {
369             remap_patch_urb_offsets(block, &b, vue_map,
370                                     nir->info.tess._primitive_mode);
371          }
372       }
373    }
374 }
375 
376 /**
377  * Convert interpolateAtOffset() offsets from [-0.5, +0.5] floating point
378  * offsets to integer [-8, +7] offsets (in units of 1/16th of a pixel).
379  *
380  * We clamp to +7/16 on the upper end of the range, since +0.5 isn't
381  * representable in a S0.4 value; a naive conversion would give us -8/16,
382  * which is the opposite of what was intended.
383  *
384  * This is allowed by GL_ARB_gpu_shader5's quantization rules:
385  *
386  *    "Not all values of <offset> may be supported; x and y offsets may
387  *     be rounded to fixed-point values with the number of fraction bits
388  *     given by the implementation-dependent constant
389  *     FRAGMENT_INTERPOLATION_OFFSET_BITS."
390  */
391 static bool
lower_barycentric_at_offset(nir_builder * b,nir_instr * instr,void * data)392 lower_barycentric_at_offset(nir_builder *b, nir_instr *instr, void *data)
393 {
394    if (instr->type != nir_instr_type_intrinsic)
395       return false;
396 
397    nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
398 
399    if (intrin->intrinsic != nir_intrinsic_load_barycentric_at_offset)
400       return false;
401 
402    b->cursor = nir_before_instr(instr);
403 
404    assert(intrin->src[0].ssa);
405    nir_ssa_def *offset =
406       nir_imin(b, nir_imm_int(b, 7),
407                nir_f2i32(b, nir_fmul(b, nir_imm_float(b, 16),
408                                      intrin->src[0].ssa)));
409 
410    nir_instr_rewrite_src(instr, &intrin->src[0], nir_src_for_ssa(offset));
411 
412    return true;
413 }
414 
415 void
brw_nir_lower_fs_inputs(nir_shader * nir,const struct intel_device_info * devinfo,const struct brw_wm_prog_key * key)416 brw_nir_lower_fs_inputs(nir_shader *nir,
417                         const struct intel_device_info *devinfo,
418                         const struct brw_wm_prog_key *key)
419 {
420    nir_foreach_shader_in_variable(var, nir) {
421       var->data.driver_location = var->data.location;
422 
423       /* Apply default interpolation mode.
424        *
425        * Everything defaults to smooth except for the legacy GL color
426        * built-in variables, which might be flat depending on API state.
427        */
428       if (var->data.interpolation == INTERP_MODE_NONE) {
429          const bool flat = key->flat_shade &&
430             (var->data.location == VARYING_SLOT_COL0 ||
431              var->data.location == VARYING_SLOT_COL1);
432 
433          var->data.interpolation = flat ? INTERP_MODE_FLAT
434                                         : INTERP_MODE_SMOOTH;
435       }
436 
437       /* On Ironlake and below, there is only one interpolation mode.
438        * Centroid interpolation doesn't mean anything on this hardware --
439        * there is no multisampling.
440        */
441       if (devinfo->ver < 6) {
442          var->data.centroid = false;
443          var->data.sample = false;
444       }
445    }
446 
447    nir_lower_io_options lower_io_options = nir_lower_io_lower_64bit_to_32;
448    if (key->persample_interp)
449       lower_io_options |= nir_lower_io_force_sample_interpolation;
450 
451    nir_lower_io(nir, nir_var_shader_in, type_size_vec4, lower_io_options);
452    if (devinfo->ver >= 11)
453       nir_lower_interpolation(nir, ~0);
454 
455    nir_shader_instructions_pass(nir, lower_barycentric_at_offset,
456                                 nir_metadata_block_index |
457                                 nir_metadata_dominance,
458                                 NULL);
459 
460    /* This pass needs actual constants */
461    nir_opt_constant_folding(nir);
462 
463    nir_io_add_const_offset_to_base(nir, nir_var_shader_in);
464 }
465 
466 void
brw_nir_lower_vue_outputs(nir_shader * nir)467 brw_nir_lower_vue_outputs(nir_shader *nir)
468 {
469    nir_foreach_shader_out_variable(var, nir) {
470       var->data.driver_location = var->data.location;
471    }
472 
473    nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
474                 nir_lower_io_lower_64bit_to_32);
475 }
476 
477 void
brw_nir_lower_tcs_outputs(nir_shader * nir,const struct brw_vue_map * vue_map,enum tess_primitive_mode tes_primitive_mode)478 brw_nir_lower_tcs_outputs(nir_shader *nir, const struct brw_vue_map *vue_map,
479                           enum tess_primitive_mode tes_primitive_mode)
480 {
481    nir_foreach_shader_out_variable(var, nir) {
482       var->data.driver_location = var->data.location;
483    }
484 
485    nir_lower_io(nir, nir_var_shader_out, type_size_vec4,
486                 nir_lower_io_lower_64bit_to_32);
487 
488    /* This pass needs actual constants */
489    nir_opt_constant_folding(nir);
490 
491    nir_io_add_const_offset_to_base(nir, nir_var_shader_out);
492 
493    nir_foreach_function(function, nir) {
494       if (function->impl) {
495          nir_builder b;
496          nir_builder_init(&b, function->impl);
497          nir_foreach_block(block, function->impl) {
498             remap_patch_urb_offsets(block, &b, vue_map, tes_primitive_mode);
499          }
500       }
501    }
502 }
503 
504 void
brw_nir_lower_fs_outputs(nir_shader * nir)505 brw_nir_lower_fs_outputs(nir_shader *nir)
506 {
507    nir_foreach_shader_out_variable(var, nir) {
508       var->data.driver_location =
509          SET_FIELD(var->data.index, BRW_NIR_FRAG_OUTPUT_INDEX) |
510          SET_FIELD(var->data.location, BRW_NIR_FRAG_OUTPUT_LOCATION);
511    }
512 
513    nir_lower_io(nir, nir_var_shader_out, type_size_dvec4, 0);
514 }
515 
516 #define OPT(pass, ...) ({                                  \
517    bool this_progress = false;                             \
518    NIR_PASS(this_progress, nir, pass, ##__VA_ARGS__);      \
519    if (this_progress)                                      \
520       progress = true;                                     \
521    this_progress;                                          \
522 })
523 
524 void
brw_nir_optimize(nir_shader * nir,const struct brw_compiler * compiler,bool is_scalar,bool allow_copies)525 brw_nir_optimize(nir_shader *nir, const struct brw_compiler *compiler,
526                  bool is_scalar, bool allow_copies)
527 {
528    bool progress;
529    unsigned lower_flrp =
530       (nir->options->lower_flrp16 ? 16 : 0) |
531       (nir->options->lower_flrp32 ? 32 : 0) |
532       (nir->options->lower_flrp64 ? 64 : 0);
533 
534    do {
535       progress = false;
536       OPT(nir_split_array_vars, nir_var_function_temp);
537       OPT(nir_shrink_vec_array_vars, nir_var_function_temp);
538       OPT(nir_opt_deref);
539       if (OPT(nir_opt_memcpy))
540          OPT(nir_split_var_copies);
541       OPT(nir_lower_vars_to_ssa);
542       if (allow_copies) {
543          /* Only run this pass in the first call to brw_nir_optimize.  Later
544           * calls assume that we've lowered away any copy_deref instructions
545           * and we don't want to introduce any more.
546           */
547          OPT(nir_opt_find_array_copies);
548       }
549       OPT(nir_opt_copy_prop_vars);
550       OPT(nir_opt_dead_write_vars);
551       OPT(nir_opt_combine_stores, nir_var_all);
552 
553       OPT(nir_opt_ray_queries);
554 
555       if (is_scalar) {
556          OPT(nir_lower_alu_to_scalar, NULL, NULL);
557       } else {
558          OPT(nir_opt_shrink_stores, true);
559          OPT(nir_opt_shrink_vectors);
560       }
561 
562       OPT(nir_copy_prop);
563 
564       if (is_scalar) {
565          OPT(nir_lower_phis_to_scalar, false);
566       }
567 
568       OPT(nir_copy_prop);
569       OPT(nir_opt_dce);
570       OPT(nir_opt_cse);
571       OPT(nir_opt_combine_stores, nir_var_all);
572 
573       /* Passing 0 to the peephole select pass causes it to convert
574        * if-statements that contain only move instructions in the branches
575        * regardless of the count.
576        *
577        * Passing 1 to the peephole select pass causes it to convert
578        * if-statements that contain at most a single ALU instruction (total)
579        * in both branches.  Before Gfx6, some math instructions were
580        * prohibitively expensive and the results of compare operations need an
581        * extra resolve step.  For these reasons, this pass is more harmful
582        * than good on those platforms.
583        *
584        * For indirect loads of uniforms (push constants), we assume that array
585        * indices will nearly always be in bounds and the cost of the load is
586        * low.  Therefore there shouldn't be a performance benefit to avoid it.
587        * However, in vec4 tessellation shaders, these loads operate by
588        * actually pulling from memory.
589        */
590       const bool is_vec4_tessellation = !is_scalar &&
591          (nir->info.stage == MESA_SHADER_TESS_CTRL ||
592           nir->info.stage == MESA_SHADER_TESS_EVAL);
593       OPT(nir_opt_peephole_select, 0, !is_vec4_tessellation, false);
594       OPT(nir_opt_peephole_select, 8, !is_vec4_tessellation,
595           compiler->devinfo->ver >= 6);
596 
597       OPT(nir_opt_intrinsics);
598       OPT(nir_opt_idiv_const, 32);
599       OPT(nir_opt_algebraic);
600       OPT(nir_lower_constant_convert_alu_types);
601       OPT(nir_opt_constant_folding);
602 
603       if (lower_flrp != 0) {
604          if (OPT(nir_lower_flrp,
605                  lower_flrp,
606                  false /* always_precise */)) {
607             OPT(nir_opt_constant_folding);
608          }
609 
610          /* Nothing should rematerialize any flrps, so we only need to do this
611           * lowering once.
612           */
613          lower_flrp = 0;
614       }
615 
616       OPT(nir_opt_dead_cf);
617       if (OPT(nir_opt_trivial_continues)) {
618          /* If nir_opt_trivial_continues makes progress, then we need to clean
619           * things up if we want any hope of nir_opt_if or nir_opt_loop_unroll
620           * to make progress.
621           */
622          OPT(nir_copy_prop);
623          OPT(nir_opt_dce);
624       }
625       OPT(nir_opt_if, false);
626       OPT(nir_opt_conditional_discard);
627       if (nir->options->max_unroll_iterations != 0) {
628          OPT(nir_opt_loop_unroll);
629       }
630       OPT(nir_opt_remove_phis);
631       OPT(nir_opt_gcm, false);
632       OPT(nir_opt_undef);
633       OPT(nir_lower_pack);
634    } while (progress);
635 
636    /* Workaround Gfxbench unused local sampler variable which will trigger an
637     * assert in the opt_large_constants pass.
638     */
639    OPT(nir_remove_dead_variables, nir_var_function_temp, NULL);
640 }
641 
642 static unsigned
lower_bit_size_callback(const nir_instr * instr,UNUSED void * data)643 lower_bit_size_callback(const nir_instr *instr, UNUSED void *data)
644 {
645    const struct brw_compiler *compiler = (const struct brw_compiler *) data;
646    const struct intel_device_info *devinfo = compiler->devinfo;
647 
648    switch (instr->type) {
649    case nir_instr_type_alu: {
650       nir_alu_instr *alu = nir_instr_as_alu(instr);
651       assert(alu->dest.dest.is_ssa);
652       if (alu->dest.dest.ssa.bit_size >= 32)
653          return 0;
654 
655       /* Note: nir_op_iabs and nir_op_ineg are not lowered here because the
656        * 8-bit ABS or NEG instruction should eventually get copy propagated
657        * into the MOV that does the type conversion.  This results in far
658        * fewer MOV instructions.
659        */
660       switch (alu->op) {
661       case nir_op_idiv:
662       case nir_op_imod:
663       case nir_op_irem:
664       case nir_op_udiv:
665       case nir_op_umod:
666       case nir_op_fceil:
667       case nir_op_ffloor:
668       case nir_op_ffract:
669       case nir_op_fround_even:
670       case nir_op_ftrunc:
671          return 32;
672       case nir_op_frcp:
673       case nir_op_frsq:
674       case nir_op_fsqrt:
675       case nir_op_fpow:
676       case nir_op_fexp2:
677       case nir_op_flog2:
678       case nir_op_fsin:
679       case nir_op_fcos:
680          return devinfo->ver < 9 ? 32 : 0;
681       case nir_op_isign:
682          assert(!"Should have been lowered by nir_opt_algebraic.");
683          return 0;
684       default:
685          if (nir_op_infos[alu->op].num_inputs >= 2 &&
686              alu->dest.dest.ssa.bit_size == 8)
687             return 16;
688 
689          if (nir_alu_instr_is_comparison(alu) &&
690              alu->src[0].src.ssa->bit_size == 8)
691             return 16;
692 
693          return 0;
694       }
695       break;
696    }
697 
698    case nir_instr_type_intrinsic: {
699       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
700       switch (intrin->intrinsic) {
701       case nir_intrinsic_read_invocation:
702       case nir_intrinsic_read_first_invocation:
703       case nir_intrinsic_vote_feq:
704       case nir_intrinsic_vote_ieq:
705       case nir_intrinsic_shuffle:
706       case nir_intrinsic_shuffle_xor:
707       case nir_intrinsic_shuffle_up:
708       case nir_intrinsic_shuffle_down:
709       case nir_intrinsic_quad_broadcast:
710       case nir_intrinsic_quad_swap_horizontal:
711       case nir_intrinsic_quad_swap_vertical:
712       case nir_intrinsic_quad_swap_diagonal:
713          if (intrin->src[0].ssa->bit_size == 8)
714             return 16;
715          return 0;
716 
717       case nir_intrinsic_reduce:
718       case nir_intrinsic_inclusive_scan:
719       case nir_intrinsic_exclusive_scan:
720          /* There are a couple of register region issues that make things
721           * complicated for 8-bit types:
722           *
723           *    1. Only raw moves are allowed to write to a packed 8-bit
724           *       destination.
725           *    2. If we use a strided destination, the efficient way to do
726           *       scan operations ends up using strides that are too big to
727           *       encode in an instruction.
728           *
729           * To get around these issues, we just do all 8-bit scan operations
730           * in 16 bits.  It's actually fewer instructions than what we'd have
731           * to do if we were trying to do it in native 8-bit types and the
732           * results are the same once we truncate to 8 bits at the end.
733           */
734          if (intrin->dest.ssa.bit_size == 8)
735             return 16;
736          return 0;
737 
738       default:
739          return 0;
740       }
741       break;
742    }
743 
744    case nir_instr_type_phi: {
745       nir_phi_instr *phi = nir_instr_as_phi(instr);
746       if (phi->dest.ssa.bit_size == 8)
747          return 16;
748       return 0;
749    }
750 
751    default:
752       return 0;
753    }
754 }
755 
756 /* On gfx12.5+, if the offsets are not both constant and in the {-8,7} range,
757  * we will have nir_lower_tex() lower the source offset by returning true from
758  * this filter function.
759  */
760 static bool
lower_xehp_tg4_offset_filter(const nir_instr * instr,UNUSED const void * data)761 lower_xehp_tg4_offset_filter(const nir_instr *instr, UNUSED const void *data)
762 {
763    if (instr->type != nir_instr_type_tex)
764       return false;
765 
766    nir_tex_instr *tex = nir_instr_as_tex(instr);
767 
768    if (tex->op != nir_texop_tg4)
769       return false;
770 
771    int offset_index = nir_tex_instr_src_index(tex, nir_tex_src_offset);
772    if (offset_index < 0)
773       return false;
774 
775    if (!nir_src_is_const(tex->src[offset_index].src))
776       return true;
777 
778    int64_t offset_x = nir_src_comp_as_int(tex->src[offset_index].src, 0);
779    int64_t offset_y = nir_src_comp_as_int(tex->src[offset_index].src, 1);
780 
781    return offset_x < -8 || offset_x > 7 || offset_y < -8 || offset_y > 7;
782 }
783 
784 /* Does some simple lowering and runs the standard suite of optimizations
785  *
786  * This is intended to be called more-or-less directly after you get the
787  * shader out of GLSL or some other source.  While it is geared towards i965,
788  * it is not at all generator-specific except for the is_scalar flag.  Even
789  * there, it is safe to call with is_scalar = false for a shader that is
790  * intended for the FS backend as long as nir_optimize is called again with
791  * is_scalar = true to scalarize everything prior to code gen.
792  */
793 void
brw_preprocess_nir(const struct brw_compiler * compiler,nir_shader * nir,const nir_shader * softfp64)794 brw_preprocess_nir(const struct brw_compiler *compiler, nir_shader *nir,
795                    const nir_shader *softfp64)
796 {
797    const struct intel_device_info *devinfo = compiler->devinfo;
798    UNUSED bool progress; /* Written by OPT */
799 
800    const bool is_scalar = compiler->scalar_stage[nir->info.stage];
801 
802    nir_validate_ssa_dominance(nir, "before brw_preprocess_nir");
803 
804    if (is_scalar) {
805       OPT(nir_lower_alu_to_scalar, NULL, NULL);
806    }
807 
808    if (nir->info.stage == MESA_SHADER_GEOMETRY)
809       OPT(nir_lower_gs_intrinsics, 0);
810 
811    /* See also brw_nir_trig_workarounds.py */
812    if (compiler->precise_trig &&
813        !(devinfo->ver >= 10 || devinfo->platform == INTEL_PLATFORM_KBL))
814       OPT(brw_nir_apply_trig_workarounds);
815 
816    if (devinfo->ver >= 12)
817       OPT(brw_nir_clamp_image_1d_2d_array_sizes);
818 
819    const nir_lower_tex_options tex_options = {
820       .lower_txp = ~0,
821       .lower_txf_offset = true,
822       .lower_rect_offset = true,
823       .lower_txd_cube_map = true,
824       .lower_txd_3d = devinfo->verx10 >= 125,
825       .lower_txb_shadow_clamp = true,
826       .lower_txd_shadow_clamp = true,
827       .lower_txd_offset_clamp = true,
828       .lower_tg4_offsets = true,
829       .lower_txs_lod = true, /* Wa_14012320009 */
830       .lower_offset_filter =
831          devinfo->verx10 >= 125 ? lower_xehp_tg4_offset_filter : NULL,
832    };
833 
834    OPT(nir_lower_tex, &tex_options);
835    OPT(nir_normalize_cubemap_coords);
836 
837    OPT(nir_lower_global_vars_to_local);
838 
839    OPT(nir_split_var_copies);
840    OPT(nir_split_struct_vars, nir_var_function_temp);
841 
842    brw_nir_optimize(nir, compiler, is_scalar, true);
843 
844    OPT(nir_lower_doubles, softfp64, nir->options->lower_doubles_options);
845    OPT(nir_lower_int64);
846 
847    OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
848 
849    if (is_scalar) {
850       OPT(nir_lower_load_const_to_scalar);
851    }
852 
853    /* Lower a bunch of stuff */
854    OPT(nir_lower_var_copies);
855 
856    /* This needs to be run after the first optimization pass but before we
857     * lower indirect derefs away
858     */
859    if (compiler->supports_shader_constants) {
860       OPT(nir_opt_large_constants, NULL, 32);
861    }
862 
863    OPT(nir_lower_system_values);
864    OPT(nir_lower_compute_system_values, NULL);
865 
866    const nir_lower_subgroups_options subgroups_options = {
867       .ballot_bit_size = 32,
868       .ballot_components = 1,
869       .lower_to_scalar = true,
870       .lower_vote_trivial = !is_scalar,
871       .lower_relative_shuffle = true,
872       .lower_quad_broadcast_dynamic = true,
873       .lower_elect = true,
874    };
875    OPT(nir_lower_subgroups, &subgroups_options);
876 
877    OPT(nir_lower_clip_cull_distance_arrays);
878 
879    nir_variable_mode indirect_mask =
880       brw_nir_no_indirect_mask(compiler, nir->info.stage);
881    OPT(nir_lower_indirect_derefs, indirect_mask, UINT32_MAX);
882 
883    /* Even in cases where we can handle indirect temporaries via scratch, we
884     * it can still be expensive.  Lower indirects on small arrays to
885     * conditional load/stores.
886     *
887     * The threshold of 16 was chosen semi-arbitrarily.  The idea is that an
888     * indirect on an array of 16 elements is about 30 instructions at which
889     * point, you may be better off doing a send.  With a SIMD8 program, 16
890     * floats is 1/8 of the entire register file.  Any array larger than that
891     * is likely to cause pressure issues.  Also, this value is sufficiently
892     * high that the benchmarks known to suffer from large temporary array
893     * issues are helped but nothing else in shader-db is hurt except for maybe
894     * that one kerbal space program shader.
895     */
896    if (is_scalar && !(indirect_mask & nir_var_function_temp))
897       OPT(nir_lower_indirect_derefs, nir_var_function_temp, 16);
898 
899    /* Lower array derefs of vectors for SSBO and UBO loads.  For both UBOs and
900     * SSBOs, our back-end is capable of loading an entire vec4 at a time and
901     * we would like to take advantage of that whenever possible regardless of
902     * whether or not the app gives us full loads.  This should allow the
903     * optimizer to combine UBO and SSBO load operations and save us some send
904     * messages.
905     */
906    OPT(nir_lower_array_deref_of_vec,
907        nir_var_mem_ubo | nir_var_mem_ssbo,
908        nir_lower_direct_array_deref_of_vec_load);
909 
910    /* Get rid of split copies */
911    brw_nir_optimize(nir, compiler, is_scalar, false);
912 }
913 
914 void
brw_nir_link_shaders(const struct brw_compiler * compiler,nir_shader * producer,nir_shader * consumer)915 brw_nir_link_shaders(const struct brw_compiler *compiler,
916                      nir_shader *producer, nir_shader *consumer)
917 {
918    if (producer->info.stage == MESA_SHADER_MESH &&
919        consumer->info.stage == MESA_SHADER_FRAGMENT) {
920       /* gl_MeshPerPrimitiveNV[].gl_ViewportIndex, gl_PrimitiveID and gl_Layer
921        * are per primitive, but fragment shader does not have them marked as
922        * such. Add the annotation here.
923        */
924       nir_foreach_shader_in_variable(var, consumer) {
925          switch (var->data.location) {
926             case VARYING_SLOT_LAYER:
927             case VARYING_SLOT_PRIMITIVE_ID:
928             case VARYING_SLOT_VIEWPORT:
929                var->data.per_primitive = 1;
930                break;
931             default:
932                continue;
933          }
934       }
935    }
936 
937    nir_lower_io_arrays_to_elements(producer, consumer);
938    nir_validate_shader(producer, "after nir_lower_io_arrays_to_elements");
939    nir_validate_shader(consumer, "after nir_lower_io_arrays_to_elements");
940 
941    const bool p_is_scalar = compiler->scalar_stage[producer->info.stage];
942    const bool c_is_scalar = compiler->scalar_stage[consumer->info.stage];
943 
944    if (p_is_scalar && c_is_scalar) {
945       NIR_PASS_V(producer, nir_lower_io_to_scalar_early, nir_var_shader_out);
946       NIR_PASS_V(consumer, nir_lower_io_to_scalar_early, nir_var_shader_in);
947       brw_nir_optimize(producer, compiler, p_is_scalar, false);
948       brw_nir_optimize(consumer, compiler, c_is_scalar, false);
949    }
950 
951    if (nir_link_opt_varyings(producer, consumer))
952       brw_nir_optimize(consumer, compiler, c_is_scalar, false);
953 
954    NIR_PASS_V(producer, nir_remove_dead_variables, nir_var_shader_out, NULL);
955    NIR_PASS_V(consumer, nir_remove_dead_variables, nir_var_shader_in, NULL);
956 
957    if (nir_remove_unused_varyings(producer, consumer)) {
958       NIR_PASS_V(producer, nir_lower_global_vars_to_local);
959       NIR_PASS_V(consumer, nir_lower_global_vars_to_local);
960 
961       /* The backend might not be able to handle indirects on
962        * temporaries so we need to lower indirects on any of the
963        * varyings we have demoted here.
964        */
965       NIR_PASS_V(producer, nir_lower_indirect_derefs,
966                  brw_nir_no_indirect_mask(compiler, producer->info.stage),
967                  UINT32_MAX);
968       NIR_PASS_V(consumer, nir_lower_indirect_derefs,
969                  brw_nir_no_indirect_mask(compiler, consumer->info.stage),
970                  UINT32_MAX);
971 
972       brw_nir_optimize(producer, compiler, p_is_scalar, false);
973       brw_nir_optimize(consumer, compiler, c_is_scalar, false);
974    }
975 
976    NIR_PASS_V(producer, nir_lower_io_to_vector, nir_var_shader_out);
977    NIR_PASS_V(producer, nir_opt_combine_stores, nir_var_shader_out);
978    NIR_PASS_V(consumer, nir_lower_io_to_vector, nir_var_shader_in);
979 
980    if (producer->info.stage != MESA_SHADER_TESS_CTRL &&
981        producer->info.stage != MESA_SHADER_MESH &&
982        producer->info.stage != MESA_SHADER_TASK) {
983       /* Calling lower_io_to_vector creates output variable writes with
984        * write-masks.  On non-TCS outputs, the back-end can't handle it and we
985        * need to call nir_lower_io_to_temporaries to get rid of them.  This,
986        * in turn, creates temporary variables and extra copy_deref intrinsics
987        * that we need to clean up.
988        *
989        * Note Mesh/Task don't support I/O as temporaries (I/O is shared
990        * between whole workgroup, possibly using multiple HW threads). For
991        * those write-mask in output is handled by I/O lowering.
992        */
993       NIR_PASS_V(producer, nir_lower_io_to_temporaries,
994                  nir_shader_get_entrypoint(producer), true, false);
995       NIR_PASS_V(producer, nir_lower_global_vars_to_local);
996       NIR_PASS_V(producer, nir_split_var_copies);
997       NIR_PASS_V(producer, nir_lower_var_copies);
998    }
999 }
1000 
1001 static bool
brw_nir_should_vectorize_mem(unsigned align_mul,unsigned align_offset,unsigned bit_size,unsigned num_components,nir_intrinsic_instr * low,nir_intrinsic_instr * high,void * data)1002 brw_nir_should_vectorize_mem(unsigned align_mul, unsigned align_offset,
1003                              unsigned bit_size,
1004                              unsigned num_components,
1005                              nir_intrinsic_instr *low,
1006                              nir_intrinsic_instr *high,
1007                              void *data)
1008 {
1009    /* Don't combine things to generate 64-bit loads/stores.  We have to split
1010     * those back into 32-bit ones anyway and UBO loads aren't split in NIR so
1011     * we don't want to make a mess for the back-end.
1012     */
1013    if (bit_size > 32)
1014       return false;
1015 
1016    /* We can handle at most a vec4 right now.  Anything bigger would get
1017     * immediately split by brw_nir_lower_mem_access_bit_sizes anyway.
1018     */
1019    if (num_components > 4)
1020       return false;
1021 
1022 
1023    uint32_t align;
1024    if (align_offset)
1025       align = 1 << (ffs(align_offset) - 1);
1026    else
1027       align = align_mul;
1028 
1029    if (align < bit_size / 8)
1030       return false;
1031 
1032    return true;
1033 }
1034 
1035 static
combine_all_barriers(nir_intrinsic_instr * a,nir_intrinsic_instr * b,void * data)1036 bool combine_all_barriers(nir_intrinsic_instr *a,
1037                           nir_intrinsic_instr *b,
1038                           void *data)
1039 {
1040    /* Translation to backend IR will get rid of modes we don't care about, so
1041     * no harm in always combining them.
1042     *
1043     * TODO: While HW has only ACQUIRE|RELEASE fences, we could improve the
1044     * scheduling so that it can take advantage of the different semantics.
1045     */
1046    nir_intrinsic_set_memory_modes(a, nir_intrinsic_memory_modes(a) |
1047                                      nir_intrinsic_memory_modes(b));
1048    nir_intrinsic_set_memory_semantics(a, nir_intrinsic_memory_semantics(a) |
1049                                          nir_intrinsic_memory_semantics(b));
1050    nir_intrinsic_set_memory_scope(a, MAX2(nir_intrinsic_memory_scope(a),
1051                                           nir_intrinsic_memory_scope(b)));
1052    return true;
1053 }
1054 
1055 static void
brw_vectorize_lower_mem_access(nir_shader * nir,const struct brw_compiler * compiler,bool is_scalar,bool robust_buffer_access)1056 brw_vectorize_lower_mem_access(nir_shader *nir,
1057                                const struct brw_compiler *compiler,
1058                                bool is_scalar,
1059                                bool robust_buffer_access)
1060 {
1061    const struct intel_device_info *devinfo = compiler->devinfo;
1062    bool progress = false;
1063 
1064    if (is_scalar) {
1065       nir_load_store_vectorize_options options = {
1066          .modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1067                   nir_var_mem_global | nir_var_mem_shared,
1068          .callback = brw_nir_should_vectorize_mem,
1069          .robust_modes = (nir_variable_mode)0,
1070       };
1071 
1072       if (robust_buffer_access) {
1073          options.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo |
1074                                 nir_var_mem_global;
1075       }
1076 
1077       OPT(nir_opt_load_store_vectorize, &options);
1078    }
1079 
1080    OPT(brw_nir_lower_mem_access_bit_sizes, devinfo);
1081 
1082    while (progress) {
1083       progress = false;
1084 
1085       OPT(nir_lower_pack);
1086       OPT(nir_copy_prop);
1087       OPT(nir_opt_dce);
1088       OPT(nir_opt_cse);
1089       OPT(nir_opt_algebraic);
1090       OPT(nir_opt_constant_folding);
1091    }
1092 }
1093 
1094 static bool
nir_shader_has_local_variables(const nir_shader * nir)1095 nir_shader_has_local_variables(const nir_shader *nir)
1096 {
1097    nir_foreach_function(func, nir) {
1098       if (func->impl && !exec_list_is_empty(&func->impl->locals))
1099          return true;
1100    }
1101 
1102    return false;
1103 }
1104 
1105 /* Prepare the given shader for codegen
1106  *
1107  * This function is intended to be called right before going into the actual
1108  * backend and is highly backend-specific.  Also, once this function has been
1109  * called on a shader, it will no longer be in SSA form so most optimizations
1110  * will not work.
1111  */
1112 void
brw_postprocess_nir(nir_shader * nir,const struct brw_compiler * compiler,bool is_scalar,bool debug_enabled,bool robust_buffer_access)1113 brw_postprocess_nir(nir_shader *nir, const struct brw_compiler *compiler,
1114                     bool is_scalar, bool debug_enabled,
1115                     bool robust_buffer_access)
1116 {
1117    const struct intel_device_info *devinfo = compiler->devinfo;
1118 
1119    UNUSED bool progress; /* Written by OPT */
1120 
1121    OPT(nir_lower_bit_size, lower_bit_size_callback, (void *)compiler);
1122 
1123    OPT(brw_nir_lower_scoped_barriers);
1124    OPT(nir_opt_combine_memory_barriers, combine_all_barriers, NULL);
1125 
1126    do {
1127       progress = false;
1128       OPT(nir_opt_algebraic_before_ffma);
1129    } while (progress);
1130 
1131    if (devinfo->verx10 >= 125) {
1132       const nir_lower_idiv_options options = {
1133          .imprecise_32bit_lowering = false,
1134          .allow_fp16 = false
1135       };
1136       OPT(nir_lower_idiv, &options);
1137    }
1138 
1139    if (gl_shader_stage_can_set_fragment_shading_rate(nir->info.stage))
1140       brw_nir_lower_shading_rate_output(nir);
1141 
1142    brw_nir_optimize(nir, compiler, is_scalar, false);
1143 
1144    if (is_scalar && nir_shader_has_local_variables(nir)) {
1145       OPT(nir_lower_vars_to_explicit_types, nir_var_function_temp,
1146           glsl_get_natural_size_align_bytes);
1147       OPT(nir_lower_explicit_io, nir_var_function_temp,
1148           nir_address_format_32bit_offset);
1149       brw_nir_optimize(nir, compiler, is_scalar, false);
1150    }
1151 
1152    brw_vectorize_lower_mem_access(nir, compiler, is_scalar,
1153                                   robust_buffer_access);
1154 
1155    if (OPT(nir_lower_int64))
1156       brw_nir_optimize(nir, compiler, is_scalar, false);
1157 
1158    if (devinfo->ver >= 6) {
1159       /* Try and fuse multiply-adds */
1160       OPT(brw_nir_opt_peephole_ffma);
1161    }
1162 
1163    if (OPT(nir_opt_comparison_pre)) {
1164       OPT(nir_copy_prop);
1165       OPT(nir_opt_dce);
1166       OPT(nir_opt_cse);
1167 
1168       /* Do the select peepehole again.  nir_opt_comparison_pre (combined with
1169        * the other optimization passes) will have removed at least one
1170        * instruction from one of the branches of the if-statement, so now it
1171        * might be under the threshold of conversion to bcsel.
1172        *
1173        * See brw_nir_optimize for the explanation of is_vec4_tessellation.
1174        */
1175       const bool is_vec4_tessellation = !is_scalar &&
1176          (nir->info.stage == MESA_SHADER_TESS_CTRL ||
1177           nir->info.stage == MESA_SHADER_TESS_EVAL);
1178       OPT(nir_opt_peephole_select, 0, is_vec4_tessellation, false);
1179       OPT(nir_opt_peephole_select, 1, is_vec4_tessellation,
1180           compiler->devinfo->ver >= 6);
1181    }
1182 
1183    do {
1184       progress = false;
1185       if (OPT(nir_opt_algebraic_late)) {
1186          /* At this late stage, anything that makes more constants will wreak
1187           * havok on the vec4 backend.  The handling of constants in the vec4
1188           * backend is not good.
1189           */
1190          if (is_scalar)
1191             OPT(nir_opt_constant_folding);
1192 
1193          OPT(nir_copy_prop);
1194          OPT(nir_opt_dce);
1195          OPT(nir_opt_cse);
1196       }
1197    } while (progress);
1198 
1199 
1200    OPT(brw_nir_lower_conversions);
1201 
1202    if (is_scalar)
1203       OPT(nir_lower_alu_to_scalar, NULL, NULL);
1204 
1205    while (OPT(nir_opt_algebraic_distribute_src_mods)) {
1206       OPT(nir_copy_prop);
1207       OPT(nir_opt_dce);
1208       OPT(nir_opt_cse);
1209    }
1210 
1211    OPT(nir_copy_prop);
1212    OPT(nir_opt_dce);
1213    OPT(nir_opt_move, nir_move_comparisons);
1214    OPT(nir_opt_dead_cf);
1215 
1216    NIR_PASS_V(nir, nir_convert_to_lcssa, true, true);
1217    NIR_PASS_V(nir, nir_divergence_analysis);
1218 
1219    /* TODO: Enable nir_opt_uniform_atomics on Gfx7.x too.
1220     * It currently fails Vulkan tests on Haswell for an unknown reason.
1221     */
1222    if (devinfo->ver >= 8 && OPT(nir_opt_uniform_atomics)) {
1223       const nir_lower_subgroups_options subgroups_options = {
1224          .ballot_bit_size = 32,
1225          .ballot_components = 1,
1226          .lower_elect = true,
1227       };
1228       OPT(nir_lower_subgroups, &subgroups_options);
1229 
1230       if (OPT(nir_lower_int64))
1231          brw_nir_optimize(nir, compiler, is_scalar, false);
1232    }
1233 
1234    /* Clean up LCSSA phis */
1235    OPT(nir_opt_remove_phis);
1236 
1237    OPT(nir_lower_bool_to_int32);
1238    OPT(nir_copy_prop);
1239    OPT(nir_opt_dce);
1240 
1241    OPT(nir_lower_locals_to_regs);
1242 
1243    if (unlikely(debug_enabled)) {
1244       /* Re-index SSA defs so we print more sensible numbers. */
1245       nir_foreach_function(function, nir) {
1246          if (function->impl)
1247             nir_index_ssa_defs(function->impl);
1248       }
1249 
1250       fprintf(stderr, "NIR (SSA form) for %s shader:\n",
1251               _mesa_shader_stage_to_string(nir->info.stage));
1252       nir_print_shader(nir, stderr);
1253    }
1254 
1255    nir_validate_ssa_dominance(nir, "before nir_convert_from_ssa");
1256 
1257    OPT(nir_convert_from_ssa, true);
1258 
1259    if (!is_scalar) {
1260       OPT(nir_move_vec_src_uses_to_dest);
1261       OPT(nir_lower_vec_to_movs, NULL, NULL);
1262    }
1263 
1264    OPT(nir_opt_dce);
1265 
1266    if (OPT(nir_opt_rematerialize_compares))
1267       OPT(nir_opt_dce);
1268 
1269    /* This is the last pass we run before we start emitting stuff.  It
1270     * determines when we need to insert boolean resolves on Gen <= 5.  We
1271     * run it last because it stashes data in instr->pass_flags and we don't
1272     * want that to be squashed by other NIR passes.
1273     */
1274    if (devinfo->ver <= 5)
1275       brw_nir_analyze_boolean_resolves(nir);
1276 
1277    nir_sweep(nir);
1278 
1279    if (unlikely(debug_enabled)) {
1280       fprintf(stderr, "NIR (final form) for %s shader:\n",
1281               _mesa_shader_stage_to_string(nir->info.stage));
1282       nir_print_shader(nir, stderr);
1283    }
1284 }
1285 
1286 static bool
brw_nir_apply_sampler_key(nir_shader * nir,const struct brw_compiler * compiler,const struct brw_sampler_prog_key_data * key_tex)1287 brw_nir_apply_sampler_key(nir_shader *nir,
1288                           const struct brw_compiler *compiler,
1289                           const struct brw_sampler_prog_key_data *key_tex)
1290 {
1291    const struct intel_device_info *devinfo = compiler->devinfo;
1292    nir_lower_tex_options tex_options = {
1293       .lower_txd_clamp_bindless_sampler = true,
1294       .lower_txd_clamp_if_sampler_index_not_lt_16 = true,
1295    };
1296 
1297    /* Iron Lake and prior require lowering of all rectangle textures */
1298    if (devinfo->ver < 6)
1299       tex_options.lower_rect = true;
1300 
1301    /* Prior to Broadwell, our hardware can't actually do GL_CLAMP */
1302    if (devinfo->ver < 8) {
1303       tex_options.saturate_s = key_tex->gl_clamp_mask[0];
1304       tex_options.saturate_t = key_tex->gl_clamp_mask[1];
1305       tex_options.saturate_r = key_tex->gl_clamp_mask[2];
1306    }
1307 
1308    /* Prior to Haswell, we have to lower gradients on shadow samplers */
1309    tex_options.lower_txd_shadow = devinfo->verx10 <= 70;
1310 
1311    tex_options.lower_y_uv_external = key_tex->y_uv_image_mask;
1312    tex_options.lower_y_u_v_external = key_tex->y_u_v_image_mask;
1313    tex_options.lower_yx_xuxv_external = key_tex->yx_xuxv_image_mask;
1314    tex_options.lower_xy_uxvx_external = key_tex->xy_uxvx_image_mask;
1315    tex_options.lower_ayuv_external = key_tex->ayuv_image_mask;
1316    tex_options.lower_xyuv_external = key_tex->xyuv_image_mask;
1317    tex_options.bt709_external = key_tex->bt709_mask;
1318    tex_options.bt2020_external = key_tex->bt2020_mask;
1319 
1320    /* Setup array of scaling factors for each texture. */
1321    memcpy(&tex_options.scale_factors, &key_tex->scale_factors,
1322           sizeof(tex_options.scale_factors));
1323 
1324    return nir_lower_tex(nir, &tex_options);
1325 }
1326 
1327 static unsigned
get_subgroup_size(gl_shader_stage stage,const struct brw_base_prog_key * key,unsigned max_subgroup_size)1328 get_subgroup_size(gl_shader_stage stage,
1329                   const struct brw_base_prog_key *key,
1330                   unsigned max_subgroup_size)
1331 {
1332    switch (key->subgroup_size_type) {
1333    case BRW_SUBGROUP_SIZE_API_CONSTANT:
1334       /* We have to use the global constant size. */
1335       return BRW_SUBGROUP_SIZE;
1336 
1337    case BRW_SUBGROUP_SIZE_UNIFORM:
1338       /* It has to be uniform across all invocations but can vary per stage
1339        * if we want.  This gives us a bit more freedom.
1340        *
1341        * For compute, brw_nir_apply_key is called per-dispatch-width so this
1342        * is the actual subgroup size and not a maximum.  However, we only
1343        * invoke one size of any given compute shader so it's still guaranteed
1344        * to be uniform across invocations.
1345        */
1346       return max_subgroup_size;
1347 
1348    case BRW_SUBGROUP_SIZE_VARYING:
1349       /* The subgroup size is allowed to be fully varying.  For geometry
1350        * stages, we know it's always 8 which is max_subgroup_size so we can
1351        * return that.  For compute, brw_nir_apply_key is called once per
1352        * dispatch-width so max_subgroup_size is the real subgroup size.
1353        *
1354        * For fragment, we return 0 and let it fall through to the back-end
1355        * compiler.  This means we can't optimize based on subgroup size but
1356        * that's a risk the client took when it asked for a varying subgroup
1357        * size.
1358        */
1359       return stage == MESA_SHADER_FRAGMENT ? 0 : max_subgroup_size;
1360 
1361    case BRW_SUBGROUP_SIZE_REQUIRE_8:
1362    case BRW_SUBGROUP_SIZE_REQUIRE_16:
1363    case BRW_SUBGROUP_SIZE_REQUIRE_32:
1364       assert(gl_shader_stage_uses_workgroup(stage));
1365       /* These enum values are expressly chosen to be equal to the subgroup
1366        * size that they require.
1367        */
1368       return key->subgroup_size_type;
1369    }
1370 
1371    unreachable("Invalid subgroup size type");
1372 }
1373 
1374 void
brw_nir_apply_key(nir_shader * nir,const struct brw_compiler * compiler,const struct brw_base_prog_key * key,unsigned max_subgroup_size,bool is_scalar)1375 brw_nir_apply_key(nir_shader *nir,
1376                   const struct brw_compiler *compiler,
1377                   const struct brw_base_prog_key *key,
1378                   unsigned max_subgroup_size,
1379                   bool is_scalar)
1380 {
1381    bool progress = false;
1382 
1383    OPT(brw_nir_apply_sampler_key, compiler, &key->tex);
1384 
1385    const nir_lower_subgroups_options subgroups_options = {
1386       .subgroup_size = get_subgroup_size(nir->info.stage, key,
1387                                          max_subgroup_size),
1388       .ballot_bit_size = 32,
1389       .ballot_components = 1,
1390       .lower_subgroup_masks = true,
1391    };
1392    OPT(nir_lower_subgroups, &subgroups_options);
1393 
1394    if (progress)
1395       brw_nir_optimize(nir, compiler, is_scalar, false);
1396 }
1397 
1398 enum brw_conditional_mod
brw_cmod_for_nir_comparison(nir_op op)1399 brw_cmod_for_nir_comparison(nir_op op)
1400 {
1401    switch (op) {
1402    case nir_op_flt:
1403    case nir_op_flt32:
1404    case nir_op_ilt:
1405    case nir_op_ilt32:
1406    case nir_op_ult:
1407    case nir_op_ult32:
1408       return BRW_CONDITIONAL_L;
1409 
1410    case nir_op_fge:
1411    case nir_op_fge32:
1412    case nir_op_ige:
1413    case nir_op_ige32:
1414    case nir_op_uge:
1415    case nir_op_uge32:
1416       return BRW_CONDITIONAL_GE;
1417 
1418    case nir_op_feq:
1419    case nir_op_feq32:
1420    case nir_op_ieq:
1421    case nir_op_ieq32:
1422    case nir_op_b32all_fequal2:
1423    case nir_op_b32all_iequal2:
1424    case nir_op_b32all_fequal3:
1425    case nir_op_b32all_iequal3:
1426    case nir_op_b32all_fequal4:
1427    case nir_op_b32all_iequal4:
1428       return BRW_CONDITIONAL_Z;
1429 
1430    case nir_op_fneu:
1431    case nir_op_fneu32:
1432    case nir_op_ine:
1433    case nir_op_ine32:
1434    case nir_op_b32any_fnequal2:
1435    case nir_op_b32any_inequal2:
1436    case nir_op_b32any_fnequal3:
1437    case nir_op_b32any_inequal3:
1438    case nir_op_b32any_fnequal4:
1439    case nir_op_b32any_inequal4:
1440       return BRW_CONDITIONAL_NZ;
1441 
1442    default:
1443       unreachable("Unsupported NIR comparison op");
1444    }
1445 }
1446 
1447 uint32_t
brw_aop_for_nir_intrinsic(const nir_intrinsic_instr * atomic)1448 brw_aop_for_nir_intrinsic(const nir_intrinsic_instr *atomic)
1449 {
1450    switch (atomic->intrinsic) {
1451 #define AOP_CASE(atom) \
1452    case nir_intrinsic_image_atomic_##atom:            \
1453    case nir_intrinsic_bindless_image_atomic_##atom:   \
1454    case nir_intrinsic_ssbo_atomic_##atom:             \
1455    case nir_intrinsic_shared_atomic_##atom:           \
1456    case nir_intrinsic_global_atomic_##atom
1457 
1458    AOP_CASE(add): {
1459       unsigned src_idx;
1460       switch (atomic->intrinsic) {
1461       case nir_intrinsic_image_atomic_add:
1462       case nir_intrinsic_bindless_image_atomic_add:
1463          src_idx = 3;
1464          break;
1465       case nir_intrinsic_ssbo_atomic_add:
1466          src_idx = 2;
1467          break;
1468       case nir_intrinsic_shared_atomic_add:
1469       case nir_intrinsic_global_atomic_add:
1470          src_idx = 1;
1471          break;
1472       default:
1473          unreachable("Invalid add atomic opcode");
1474       }
1475 
1476       if (nir_src_is_const(atomic->src[src_idx])) {
1477          int64_t add_val = nir_src_as_int(atomic->src[src_idx]);
1478          if (add_val == 1)
1479             return BRW_AOP_INC;
1480          else if (add_val == -1)
1481             return BRW_AOP_DEC;
1482       }
1483       return BRW_AOP_ADD;
1484    }
1485 
1486    AOP_CASE(imin):         return BRW_AOP_IMIN;
1487    AOP_CASE(umin):         return BRW_AOP_UMIN;
1488    AOP_CASE(imax):         return BRW_AOP_IMAX;
1489    AOP_CASE(umax):         return BRW_AOP_UMAX;
1490    AOP_CASE(and):          return BRW_AOP_AND;
1491    AOP_CASE(or):           return BRW_AOP_OR;
1492    AOP_CASE(xor):          return BRW_AOP_XOR;
1493    AOP_CASE(exchange):     return BRW_AOP_MOV;
1494    AOP_CASE(comp_swap):    return BRW_AOP_CMPWR;
1495 
1496 #undef AOP_CASE
1497 #define AOP_CASE(atom) \
1498    case nir_intrinsic_ssbo_atomic_##atom:          \
1499    case nir_intrinsic_shared_atomic_##atom:        \
1500    case nir_intrinsic_global_atomic_##atom
1501 
1502    AOP_CASE(fmin):         return BRW_AOP_FMIN;
1503    AOP_CASE(fmax):         return BRW_AOP_FMAX;
1504    AOP_CASE(fcomp_swap):   return BRW_AOP_FCMPWR;
1505    AOP_CASE(fadd):         return BRW_AOP_FADD;
1506 
1507 #undef AOP_CASE
1508 
1509    default:
1510       unreachable("Unsupported NIR atomic intrinsic");
1511    }
1512 }
1513 
1514 enum brw_reg_type
brw_type_for_nir_type(const struct intel_device_info * devinfo,nir_alu_type type)1515 brw_type_for_nir_type(const struct intel_device_info *devinfo,
1516                       nir_alu_type type)
1517 {
1518    switch (type) {
1519    case nir_type_uint:
1520    case nir_type_uint32:
1521       return BRW_REGISTER_TYPE_UD;
1522    case nir_type_bool:
1523    case nir_type_int:
1524    case nir_type_bool32:
1525    case nir_type_int32:
1526       return BRW_REGISTER_TYPE_D;
1527    case nir_type_float:
1528    case nir_type_float32:
1529       return BRW_REGISTER_TYPE_F;
1530    case nir_type_float16:
1531       return BRW_REGISTER_TYPE_HF;
1532    case nir_type_float64:
1533       return BRW_REGISTER_TYPE_DF;
1534    case nir_type_int64:
1535       return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_Q;
1536    case nir_type_uint64:
1537       return devinfo->ver < 8 ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_UQ;
1538    case nir_type_int16:
1539       return BRW_REGISTER_TYPE_W;
1540    case nir_type_uint16:
1541       return BRW_REGISTER_TYPE_UW;
1542    case nir_type_int8:
1543       return BRW_REGISTER_TYPE_B;
1544    case nir_type_uint8:
1545       return BRW_REGISTER_TYPE_UB;
1546    default:
1547       unreachable("unknown type");
1548    }
1549 
1550    return BRW_REGISTER_TYPE_F;
1551 }
1552 
1553 nir_shader *
brw_nir_create_passthrough_tcs(void * mem_ctx,const struct brw_compiler * compiler,const nir_shader_compiler_options * options,const struct brw_tcs_prog_key * key)1554 brw_nir_create_passthrough_tcs(void *mem_ctx, const struct brw_compiler *compiler,
1555                                const nir_shader_compiler_options *options,
1556                                const struct brw_tcs_prog_key *key)
1557 {
1558    nir_builder b = nir_builder_init_simple_shader(MESA_SHADER_TESS_CTRL,
1559                                                   options, "passthrough TCS");
1560    ralloc_steal(mem_ctx, b.shader);
1561    nir_shader *nir = b.shader;
1562    nir_variable *var;
1563    nir_ssa_def *load;
1564    nir_ssa_def *zero = nir_imm_int(&b, 0);
1565    nir_ssa_def *invoc_id = nir_load_invocation_id(&b);
1566 
1567    nir->info.inputs_read = key->outputs_written &
1568       ~(VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER);
1569    nir->info.outputs_written = key->outputs_written;
1570    nir->info.tess.tcs_vertices_out = key->input_vertices;
1571    nir->num_uniforms = 8 * sizeof(uint32_t);
1572 
1573    var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_0");
1574    var->data.location = 0;
1575    var = nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "hdr_1");
1576    var->data.location = 1;
1577 
1578    /* Write the patch URB header. */
1579    for (int i = 0; i <= 1; i++) {
1580       load = nir_load_uniform(&b, 4, 32, zero, .base = i * 4 * sizeof(uint32_t));
1581 
1582       nir_store_output(&b, load, zero,
1583                        .base = VARYING_SLOT_TESS_LEVEL_INNER - i,
1584                        .write_mask = WRITEMASK_XYZW);
1585    }
1586 
1587    /* Copy inputs to outputs. */
1588    uint64_t varyings = nir->info.inputs_read;
1589 
1590    while (varyings != 0) {
1591       const int varying = ffsll(varyings) - 1;
1592 
1593       load = nir_load_per_vertex_input(&b, 4, 32, invoc_id, zero, .base = varying);
1594 
1595       nir_store_per_vertex_output(&b, load, invoc_id, zero,
1596                                   .base = varying,
1597                                   .write_mask = WRITEMASK_XYZW);
1598 
1599       varyings &= ~BITFIELD64_BIT(varying);
1600    }
1601 
1602    nir_validate_shader(nir, "in brw_nir_create_passthrough_tcs");
1603 
1604    brw_preprocess_nir(compiler, nir, NULL);
1605 
1606    return nir;
1607 }
1608 
1609 nir_ssa_def *
brw_nir_load_global_const(nir_builder * b,nir_intrinsic_instr * load_uniform,nir_ssa_def * base_addr,unsigned off)1610 brw_nir_load_global_const(nir_builder *b, nir_intrinsic_instr *load_uniform,
1611       nir_ssa_def *base_addr, unsigned off)
1612 {
1613    assert(load_uniform->intrinsic == nir_intrinsic_load_uniform);
1614    assert(load_uniform->dest.is_ssa);
1615    assert(load_uniform->src[0].is_ssa);
1616 
1617    unsigned bit_size = load_uniform->dest.ssa.bit_size;
1618    assert(bit_size >= 8 && bit_size % 8 == 0);
1619    unsigned byte_size = bit_size / 8;
1620    nir_ssa_def *sysval;
1621 
1622    if (nir_src_is_const(load_uniform->src[0])) {
1623       uint64_t offset = off +
1624                         nir_intrinsic_base(load_uniform) +
1625                         nir_src_as_uint(load_uniform->src[0]);
1626 
1627       /* Things should be component-aligned. */
1628       assert(offset % byte_size == 0);
1629 
1630       unsigned suboffset = offset % 64;
1631       uint64_t aligned_offset = offset - suboffset;
1632 
1633       /* Load two just in case we go over a 64B boundary */
1634       nir_ssa_def *data[2];
1635       for (unsigned i = 0; i < 2; i++) {
1636          nir_ssa_def *addr = nir_iadd_imm(b, base_addr, aligned_offset + i * 64);
1637          data[i] = nir_load_global_const_block_intel(b, 16, addr,
1638                                                      nir_imm_true(b));
1639       }
1640 
1641       sysval = nir_extract_bits(b, data, 2, suboffset * 8,
1642                                 load_uniform->num_components, bit_size);
1643    } else {
1644       nir_ssa_def *offset32 =
1645          nir_iadd_imm(b, load_uniform->src[0].ssa,
1646                          off + nir_intrinsic_base(load_uniform));
1647       nir_ssa_def *addr = nir_iadd(b, base_addr, nir_u2u64(b, offset32));
1648       sysval = nir_load_global_constant(b, addr, byte_size,
1649                                         load_uniform->num_components, bit_size);
1650    }
1651 
1652    return sysval;
1653 }
1654