1 /*
2  * Copyright © 2020 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #ifndef BRW_RT_H
25 #define BRW_RT_H
26 
27 #ifdef __cplusplus
28 extern "C" {
29 #endif
30 
31 /** Vulkan defines shaderGroupHandleSize = 32 */
32 #define BRW_RT_SBT_HANDLE_SIZE 32
33 
34 /** RT_DISPATCH_GLOBALS size (see gen_rt.xml) */
35 #define BRW_RT_DISPATCH_GLOBALS_SIZE 80
36 
37 /** Offset after the RT dispatch globals at which "push" constants live */
38 #define BRW_RT_PUSH_CONST_OFFSET 128
39 
40 /** Stride of the resume SBT */
41 #define BRW_BTD_RESUME_SBT_STRIDE 8
42 
43 /* Vulkan always uses exactly two levels of BVH: world and object.  At the API
44  * level, these are referred to as top and bottom.
45  */
46 enum brw_rt_bvh_level {
47    BRW_RT_BVH_LEVEL_WORLD = 0,
48    BRW_RT_BVH_LEVEL_OBJECT = 1,
49 };
50 #define BRW_RT_MAX_BVH_LEVELS 2
51 
52 enum brw_rt_bvh_node_type {
53    BRW_RT_BVH_NODE_TYPE_INTERNAL = 0,
54    BRW_RT_BVH_NODE_TYPE_INSTANCE = 1,
55    BRW_RT_BVH_NODE_TYPE_PROCEDURAL = 3,
56    BRW_RT_BVH_NODE_TYPE_QUAD = 4,
57 };
58 
59 /** HitKind values returned for triangle geometry
60  *
61  * This enum must match the SPIR-V enum.
62  */
63 enum brw_rt_hit_kind {
64    BRW_RT_HIT_KIND_FRONT_FACE = 0xfe,
65    BRW_RT_HIT_KIND_BACK_FACE = 0xff,
66 };
67 
68 /** Ray flags
69  *
70  * This enum must match the SPIR-V RayFlags enum.
71  */
72 enum brw_rt_ray_flags {
73    BRW_RT_RAY_FLAG_FORCE_OPAQUE                    = 0x01,
74    BRW_RT_RAY_FLAG_FORCE_NON_OPAQUE                = 0x02,
75    BRW_RT_RAY_FLAG_TERMINATE_ON_FIRST_HIT          = 0x04,
76    BRW_RT_RAY_FLAG_SKIP_CLOSEST_HIT_SHADER         = 0x08,
77    BRW_RT_RAY_FLAG_CULL_BACK_FACING_TRIANGLES      = 0x10,
78    BRW_RT_RAY_FLAG_CULL_FRONT_FACING_TRIANGLES     = 0x20,
79    BRW_RT_RAY_FLAG_CULL_OPAQUE                     = 0x40,
80    BRW_RT_RAY_FLAG_CULL_NON_OPAQUE                 = 0x80,
81    BRW_RT_RAY_FLAG_SKIP_TRIANGLES                  = 0x100,
82    BRW_RT_RAY_FLAG_SKIP_AABBS                      = 0x200,
83 };
84 
85 struct brw_rt_scratch_layout {
86    /** Number of stack IDs per DSS */
87    uint32_t stack_ids_per_dss;
88 
89    /** Start offset (in bytes) of the hardware MemRay stack */
90    uint32_t ray_stack_start;
91 
92    /** Stride (in bytes) of the hardware MemRay stack */
93    uint32_t ray_stack_stride;
94 
95    /** Start offset (in bytes) of the SW stacks */
96    uint64_t sw_stack_start;
97 
98    /** Size (in bytes) of the SW stack for a single shader invocation */
99    uint32_t sw_stack_size;
100 
101    /** Total size (in bytes) of the RT scratch memory area */
102    uint64_t total_size;
103 };
104 
105 /** Parameters passed to the raygen trampoline shader
106  *
107  * This struct is carefully construected to be 32B and must be passed to the
108  * raygen trampoline shader as as inline constant data.
109  */
110 struct brw_rt_raygen_trampoline_params {
111    /** The GPU address of the RT_DISPATCH_GLOBALS */
112    uint64_t rt_disp_globals_addr;
113 
114    /** The GPU address of the BINDLESS_SHADER_RECORD for the raygen shader */
115    uint64_t raygen_bsr_addr;
116 
117    /** 1 if this is an indirect dispatch, 0 otherwise */
118    uint8_t is_indirect;
119 
120    /** The integer log2 of the local group size
121     *
122     * Ray-tracing shaders don't have a concept of local vs. global workgroup
123     * size.  They only have a single 3D launch size.  The raygen trampoline
124     * shader is always dispatched with a local workgroup size equal to the
125     * SIMD width but the shape of the local workgroup is determined at
126     * dispatch time based on the shape of the launch and passed to the
127     * trampoline via this field.  (There's no sense having a Z dimension on
128     * the local workgroup if the launch is 2D.)
129     *
130     * We use the integer log2 of the size because there's no point in
131     * non-power-of-two sizes and  shifts are cheaper than division.
132     */
133    uint8_t local_group_size_log2[3];
134 
135    uint32_t pad[3];
136 };
137 
138 /** Size of the "hot zone" in bytes
139  *
140  * The hot zone is a SW-defined data structure which is a single uvec4
141  * containing two bits of information:
142  *
143  *  - hotzone.x: Stack offset (in bytes)
144  *
145  *    This is the offset (in bytes) into the per-thread scratch space at which
146  *    the current shader's stack starts.  This is incremented by the calling
147  *    shader prior to any shader call type instructions and gets decremented
148  *    by the resume shader as part of completing the return operation.
149  *
150  *
151  *  - hotzone.yzw: The launch ID associated with the current thread
152  *
153  *    Inside a bindless shader, the only information we have is the DSS ID
154  *    from the hardware EU and a per-DSS stack ID.  In particular, the three-
155  *    dimensional launch ID is lost the moment we leave the raygen trampoline.
156  */
157 #define BRW_RT_SIZEOF_HOTZONE 16
158 
159 /* From the BSpec "Address Computation for Memory Based Data Structures:
160  * Ray and TraversalStack (Async Ray Tracing)":
161  *
162  *    sizeof(Ray) = 64B, sizeof(HitInfo) = 32B, sizeof(TravStack) = 32B.
163  */
164 #define BRW_RT_SIZEOF_RAY 64
165 #define BRW_RT_SIZEOF_HIT_INFO 32
166 #define BRW_RT_SIZEOF_TRAV_STACK 32
167 
168 /* From the BSpec:
169  *
170  *    syncStackSize = (maxBVHLevels % 2 == 1) ?
171  *       (sizeof(HitInfo) * 2 +
172  *          (sizeof(Ray) + sizeof(TravStack)) * maxBVHLevels + 32B) :
173  *       (sizeof(HitInfo) * 2 +
174  *          (sizeof(Ray) + sizeof(TravStack)) * maxBVHLevels);
175  *
176  * The select is just to align to 64B.
177  */
178 #define BRW_RT_SIZEOF_RAY_QUERY \
179    (BRW_RT_SIZEOF_HIT_INFO * 2 + \
180     (BRW_RT_SIZEOF_RAY + BRW_RT_SIZEOF_TRAV_STACK) * BRW_RT_MAX_BVH_LEVELS + \
181     (BRW_RT_MAX_BVH_LEVELS % 2 ? 32 : 0))
182 
183 #define BRW_RT_SIZEOF_SHADOW_RAY_QUERY  \
184    (BRW_RT_SIZEOF_HIT_INFO * 2 + \
185     (BRW_RT_SIZEOF_RAY + BRW_RT_SIZEOF_TRAV_STACK) * BRW_RT_MAX_BVH_LEVELS)
186 
187 #define BRW_RT_SIZEOF_HW_STACK \
188    (BRW_RT_SIZEOF_HIT_INFO * 2 + \
189     BRW_RT_SIZEOF_RAY * BRW_RT_MAX_BVH_LEVELS + \
190     BRW_RT_SIZEOF_TRAV_STACK * BRW_RT_MAX_BVH_LEVELS)
191 
192 /* This is a mesa-defined region for hit attribute data */
193 #define BRW_RT_SIZEOF_HIT_ATTRIB_DATA 64
194 #define BRW_RT_OFFSETOF_HIT_ATTRIB_DATA BRW_RT_SIZEOF_HW_STACK
195 
196 #define BRW_RT_ASYNC_STACK_STRIDE \
197    ALIGN(BRW_RT_OFFSETOF_HIT_ATTRIB_DATA + \
198          BRW_RT_SIZEOF_HIT_ATTRIB_DATA, 64)
199 
200 static inline void
brw_rt_compute_scratch_layout(struct brw_rt_scratch_layout * layout,const struct intel_device_info * devinfo,uint32_t stack_ids_per_dss,uint32_t sw_stack_size)201 brw_rt_compute_scratch_layout(struct brw_rt_scratch_layout *layout,
202                               const struct intel_device_info *devinfo,
203                               uint32_t stack_ids_per_dss,
204                               uint32_t sw_stack_size)
205 {
206    layout->stack_ids_per_dss = stack_ids_per_dss;
207 
208    const uint32_t dss_count = intel_device_info_num_dual_subslices(devinfo);
209    const uint32_t num_stack_ids = dss_count * stack_ids_per_dss;
210 
211    uint64_t size = 0;
212 
213    /* The first thing in our scratch area is an array of "hot zones" which
214     * store the stack offset as well as the launch IDs for each active
215     * invocation.
216     */
217    size += BRW_RT_SIZEOF_HOTZONE * num_stack_ids;
218 
219    /* Next, we place the HW ray stacks */
220    assert(size % 64 == 0); /* Cache-line aligned */
221    assert(size < UINT32_MAX);
222    layout->ray_stack_start = size;
223    layout->ray_stack_stride = BRW_RT_ASYNC_STACK_STRIDE;
224    size += num_stack_ids * layout->ray_stack_stride;
225 
226    /* Finally, we place the SW stacks for the individual ray-tracing shader
227     * invocations.  We align these to 64B to ensure that we don't have any
228     * shared cache lines which could hurt performance.
229     */
230    assert(size % 64 == 0);
231    layout->sw_stack_start = size;
232    layout->sw_stack_size = ALIGN(sw_stack_size, 64);
233    size += num_stack_ids * layout->sw_stack_size;
234 
235    layout->total_size = size;
236 }
237 
238 static inline uint32_t
brw_rt_ray_queries_hw_stacks_size(const struct intel_device_info * devinfo)239 brw_rt_ray_queries_hw_stacks_size(const struct intel_device_info *devinfo)
240 {
241    /* Maximum slice/subslice/EU ID can be computed from the max_scratch_ids
242     * which includes all the threads.
243     */
244    uint32_t max_eu_id = devinfo->max_scratch_ids[MESA_SHADER_COMPUTE];
245    uint32_t max_simd_size = 16; /* Cannot run in SIMD32 with ray queries */
246    return max_eu_id * max_simd_size * BRW_RT_SIZEOF_RAY_QUERY;
247 }
248 
249 static inline uint32_t
brw_rt_ray_queries_shadow_stack_size(const struct intel_device_info * devinfo)250 brw_rt_ray_queries_shadow_stack_size(const struct intel_device_info *devinfo)
251 {
252    /* Maximum slice/subslice/EU ID can be computed from the max_scratch_ids
253     * which includes all the threads.
254     */
255    uint32_t max_eu_id = devinfo->max_scratch_ids[MESA_SHADER_COMPUTE];
256    uint32_t max_simd_size = 16; /* Cannot run in SIMD32 with ray queries */
257    return max_eu_id * max_simd_size * BRW_RT_SIZEOF_SHADOW_RAY_QUERY;
258 }
259 
260 static inline uint32_t
brw_rt_ray_queries_shadow_stacks_size(const struct intel_device_info * devinfo,uint32_t ray_queries)261 brw_rt_ray_queries_shadow_stacks_size(const struct intel_device_info *devinfo,
262                                       uint32_t ray_queries)
263 {
264    /* Don't bother a shadow stack if we only have a single query. We can
265     * directly write in the HW buffer.
266     */
267    return (ray_queries > 1 ? ray_queries : 0) * brw_rt_ray_queries_shadow_stack_size(devinfo) +
268           ray_queries * 4; /* Ctrl + Level data */
269 }
270 
271 #ifdef __cplusplus
272 }
273 #endif
274 
275 #endif /* BRW_RT_H */
276