1 /*
2  * Copyright © 2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_fs.h"
25 #include "brw_cfg.h"
26 #include "brw_fs_builder.h"
27 
28 using namespace brw;
29 
30 namespace {
31    /* From the SKL PRM Vol 2a, "Move":
32     *
33     * "A mov with the same source and destination type, no source modifier,
34     *  and no saturation is a raw move. A packed byte destination region (B
35     *  or UB type with HorzStride == 1 and ExecSize > 1) can only be written
36     *  using raw move."
37     */
38    bool
is_byte_raw_mov(const fs_inst * inst)39    is_byte_raw_mov(const fs_inst *inst)
40    {
41       return type_sz(inst->dst.type) == 1 &&
42              inst->opcode == BRW_OPCODE_MOV &&
43              inst->src[0].type == inst->dst.type &&
44              !inst->saturate &&
45              !inst->src[0].negate &&
46              !inst->src[0].abs;
47    }
48 
49    /*
50     * Return an acceptable byte stride for the destination of an instruction
51     * that requires it to have some particular alignment.
52     */
53    unsigned
required_dst_byte_stride(const fs_inst * inst)54    required_dst_byte_stride(const fs_inst *inst)
55    {
56       if (inst->dst.is_accumulator()) {
57          /* If the destination is an accumulator, insist that we leave the
58           * stride alone.  We cannot "fix" accumulator destinations by writing
59           * to a temporary and emitting a MOV into the original destination.
60           * For multiply instructions (our one use of the accumulator), the
61           * MUL writes the full 66 bits of the accumulator whereas the MOV we
62           * would emit only writes 33 bits and leaves the top 33 bits
63           * undefined.
64           *
65           * It's safe to just require the original stride here because the
66           * lowering pass will detect the mismatch in has_invalid_src_region
67           * and fix the sources of the multiply instead of the destination.
68           */
69          return inst->dst.stride * type_sz(inst->dst.type);
70       } else if (type_sz(inst->dst.type) < get_exec_type_size(inst) &&
71           !is_byte_raw_mov(inst)) {
72          return get_exec_type_size(inst);
73       } else {
74          /* Calculate the maximum byte stride and the minimum/maximum type
75           * size across all source and destination operands we are required to
76           * lower.
77           */
78          unsigned max_stride = inst->dst.stride * type_sz(inst->dst.type);
79          unsigned min_size = type_sz(inst->dst.type);
80          unsigned max_size = type_sz(inst->dst.type);
81 
82          for (unsigned i = 0; i < inst->sources; i++) {
83             if (!is_uniform(inst->src[i]) && !inst->is_control_source(i)) {
84                const unsigned size = type_sz(inst->src[i].type);
85                max_stride = MAX2(max_stride, inst->src[i].stride * size);
86                min_size = MIN2(min_size, size);
87                max_size = MAX2(max_size, size);
88             }
89          }
90 
91          /* All operands involved in lowering need to fit in the calculated
92           * stride.
93           */
94          assert(max_size <= 4 * min_size);
95 
96          /* Attempt to use the largest byte stride among all present operands,
97           * but never exceed a stride of 4 since that would lead to illegal
98           * destination regions during lowering.
99           */
100          return MIN2(max_stride, 4 * min_size);
101       }
102    }
103 
104    /*
105     * Return an acceptable byte sub-register offset for the destination of an
106     * instruction that requires it to be aligned to the sub-register offset of
107     * the sources.
108     */
109    unsigned
required_dst_byte_offset(const fs_inst * inst)110    required_dst_byte_offset(const fs_inst *inst)
111    {
112       for (unsigned i = 0; i < inst->sources; i++) {
113          if (!is_uniform(inst->src[i]) && !inst->is_control_source(i))
114             if (reg_offset(inst->src[i]) % REG_SIZE !=
115                 reg_offset(inst->dst) % REG_SIZE)
116                return 0;
117       }
118 
119       return reg_offset(inst->dst) % REG_SIZE;
120    }
121 
122    /*
123     * Return whether the instruction has an unsupported channel bit layout
124     * specified for the i-th source region.
125     */
126    bool
has_invalid_src_region(const gen_device_info * devinfo,const fs_inst * inst,unsigned i)127    has_invalid_src_region(const gen_device_info *devinfo, const fs_inst *inst,
128                           unsigned i)
129    {
130       if (is_unordered(inst) || inst->is_control_source(i))
131          return false;
132 
133       /* Empirical testing shows that Broadwell has a bug affecting half-float
134        * MAD instructions when any of its sources has a non-zero offset, such
135        * as:
136        *
137        * mad(8) g18<1>HF -g17<4,4,1>HF g14.8<4,4,1>HF g11<4,4,1>HF { align16 1Q };
138        *
139        * We used to generate code like this for SIMD8 executions where we
140        * used to pack components Y and W of a vector at offset 16B of a SIMD
141        * register. The problem doesn't occur if the stride of the source is 0.
142        */
143       if (devinfo->gen == 8 &&
144           inst->opcode == BRW_OPCODE_MAD &&
145           inst->src[i].type == BRW_REGISTER_TYPE_HF &&
146           reg_offset(inst->src[i]) % REG_SIZE > 0 &&
147           inst->src[i].stride != 0) {
148          return true;
149       }
150 
151       const unsigned dst_byte_stride = inst->dst.stride * type_sz(inst->dst.type);
152       const unsigned src_byte_stride = inst->src[i].stride *
153          type_sz(inst->src[i].type);
154       const unsigned dst_byte_offset = reg_offset(inst->dst) % REG_SIZE;
155       const unsigned src_byte_offset = reg_offset(inst->src[i]) % REG_SIZE;
156 
157       return has_dst_aligned_region_restriction(devinfo, inst) &&
158              !is_uniform(inst->src[i]) &&
159              (src_byte_stride != dst_byte_stride ||
160               src_byte_offset != dst_byte_offset);
161    }
162 
163    /*
164     * Return whether the instruction has an unsupported channel bit layout
165     * specified for the destination region.
166     */
167    bool
has_invalid_dst_region(const gen_device_info * devinfo,const fs_inst * inst)168    has_invalid_dst_region(const gen_device_info *devinfo,
169                           const fs_inst *inst)
170    {
171       if (is_unordered(inst)) {
172          return false;
173       } else {
174          const brw_reg_type exec_type = get_exec_type(inst);
175          const unsigned dst_byte_offset = reg_offset(inst->dst) % REG_SIZE;
176          const unsigned dst_byte_stride = inst->dst.stride * type_sz(inst->dst.type);
177          const bool is_narrowing_conversion = !is_byte_raw_mov(inst) &&
178             type_sz(inst->dst.type) < type_sz(exec_type);
179 
180          return (has_dst_aligned_region_restriction(devinfo, inst) &&
181                  (required_dst_byte_stride(inst) != dst_byte_stride ||
182                   required_dst_byte_offset(inst) != dst_byte_offset)) ||
183                 (is_narrowing_conversion &&
184                  required_dst_byte_stride(inst) != dst_byte_stride);
185       }
186    }
187 
188    /*
189     * Return whether the instruction has unsupported source modifiers
190     * specified for the i-th source region.
191     */
192    bool
has_invalid_src_modifiers(const gen_device_info * devinfo,const fs_inst * inst,unsigned i)193    has_invalid_src_modifiers(const gen_device_info *devinfo, const fs_inst *inst,
194                              unsigned i)
195    {
196       return !inst->can_do_source_mods(devinfo) &&
197              (inst->src[i].negate || inst->src[i].abs);
198    }
199 
200    /*
201     * Return whether the instruction has an unsupported type conversion
202     * specified for the destination.
203     */
204    bool
has_invalid_conversion(const gen_device_info * devinfo,const fs_inst * inst)205    has_invalid_conversion(const gen_device_info *devinfo, const fs_inst *inst)
206    {
207       switch (inst->opcode) {
208       case BRW_OPCODE_MOV:
209          return false;
210       case BRW_OPCODE_SEL:
211          return inst->dst.type != get_exec_type(inst);
212       case SHADER_OPCODE_BROADCAST:
213       case SHADER_OPCODE_MOV_INDIRECT:
214          /* The source and destination types of these may be hard-coded to
215           * integer at codegen time due to hardware limitations of 64-bit
216           * types.
217           */
218          return ((devinfo->gen == 7 && !devinfo->is_haswell) ||
219                  devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) &&
220                 type_sz(inst->src[0].type) > 4 &&
221                 inst->dst.type != inst->src[0].type;
222       default:
223          /* FIXME: We assume the opcodes don't explicitly mentioned before
224           * just work fine with arbitrary conversions.
225           */
226          return false;
227       }
228    }
229 
230    /**
231     * Return whether the instruction has non-standard semantics for the
232     * conditional mod which don't cause the flag register to be updated with
233     * the comparison result.
234     */
235    bool
has_inconsistent_cmod(const fs_inst * inst)236    has_inconsistent_cmod(const fs_inst *inst)
237    {
238       return inst->opcode == BRW_OPCODE_SEL ||
239              inst->opcode == BRW_OPCODE_CSEL ||
240              inst->opcode == BRW_OPCODE_IF ||
241              inst->opcode == BRW_OPCODE_WHILE;
242    }
243 
244    bool
245    lower_instruction(fs_visitor *v, bblock_t *block, fs_inst *inst);
246 }
247 
248 namespace brw {
249    /**
250     * Remove any modifiers from the \p i-th source region of the instruction,
251     * including negate, abs and any implicit type conversion to the execution
252     * type.  Instead any source modifiers will be implemented as a separate
253     * MOV instruction prior to the original instruction.
254     */
255    bool
lower_src_modifiers(fs_visitor * v,bblock_t * block,fs_inst * inst,unsigned i)256    lower_src_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i)
257    {
258       assert(inst->components_read(i) == 1);
259       const fs_builder ibld(v, block, inst);
260       const fs_reg tmp = ibld.vgrf(get_exec_type(inst));
261 
262       lower_instruction(v, block, ibld.MOV(tmp, inst->src[i]));
263       inst->src[i] = tmp;
264 
265       return true;
266    }
267 }
268 
269 namespace {
270    /**
271     * Remove any modifiers from the destination region of the instruction,
272     * including saturate, conditional mod and any implicit type conversion
273     * from the execution type.  Instead any destination modifiers will be
274     * implemented as a separate MOV instruction after the original
275     * instruction.
276     */
277    bool
lower_dst_modifiers(fs_visitor * v,bblock_t * block,fs_inst * inst)278    lower_dst_modifiers(fs_visitor *v, bblock_t *block, fs_inst *inst)
279    {
280       const fs_builder ibld(v, block, inst);
281       const brw_reg_type type = get_exec_type(inst);
282       /* Not strictly necessary, but if possible use a temporary with the same
283        * channel alignment as the current destination in order to avoid
284        * violating the restrictions enforced later on by lower_src_region()
285        * and lower_dst_region(), which would introduce additional copy
286        * instructions into the program unnecessarily.
287        */
288       const unsigned stride =
289          type_sz(inst->dst.type) * inst->dst.stride <= type_sz(type) ? 1 :
290          type_sz(inst->dst.type) * inst->dst.stride / type_sz(type);
291       fs_reg tmp = ibld.vgrf(type, stride);
292       ibld.UNDEF(tmp);
293       tmp = horiz_stride(tmp, stride);
294 
295       /* Emit a MOV taking care of all the destination modifiers. */
296       fs_inst *mov = ibld.at(block, inst->next).MOV(inst->dst, tmp);
297       mov->saturate = inst->saturate;
298       if (!has_inconsistent_cmod(inst))
299          mov->conditional_mod = inst->conditional_mod;
300       if (inst->opcode != BRW_OPCODE_SEL) {
301          mov->predicate = inst->predicate;
302          mov->predicate_inverse = inst->predicate_inverse;
303       }
304       mov->flag_subreg = inst->flag_subreg;
305       lower_instruction(v, block, mov);
306 
307       /* Point the original instruction at the temporary, and clean up any
308        * destination modifiers.
309        */
310       assert(inst->size_written == inst->dst.component_size(inst->exec_size));
311       inst->dst = tmp;
312       inst->size_written = inst->dst.component_size(inst->exec_size);
313       inst->saturate = false;
314       if (!has_inconsistent_cmod(inst))
315          inst->conditional_mod = BRW_CONDITIONAL_NONE;
316 
317       assert(!inst->flags_written() || !mov->predicate);
318       return true;
319    }
320 
321    /**
322     * Remove any non-trivial shuffling of data from the \p i-th source region
323     * of the instruction.  Instead implement the region as a series of integer
324     * copies into a temporary with the same channel layout as the destination.
325     */
326    bool
lower_src_region(fs_visitor * v,bblock_t * block,fs_inst * inst,unsigned i)327    lower_src_region(fs_visitor *v, bblock_t *block, fs_inst *inst, unsigned i)
328    {
329       assert(inst->components_read(i) == 1);
330       const fs_builder ibld(v, block, inst);
331       const unsigned stride = type_sz(inst->dst.type) * inst->dst.stride /
332                               type_sz(inst->src[i].type);
333       assert(stride > 0);
334       fs_reg tmp = ibld.vgrf(inst->src[i].type, stride);
335       ibld.UNDEF(tmp);
336       tmp = horiz_stride(tmp, stride);
337 
338       /* Emit a series of 32-bit integer copies with any source modifiers
339        * cleaned up (because their semantics are dependent on the type).
340        */
341       const brw_reg_type raw_type = brw_int_type(MIN2(type_sz(tmp.type), 4),
342                                                  false);
343       const unsigned n = type_sz(tmp.type) / type_sz(raw_type);
344       fs_reg raw_src = inst->src[i];
345       raw_src.negate = false;
346       raw_src.abs = false;
347 
348       for (unsigned j = 0; j < n; j++)
349          ibld.MOV(subscript(tmp, raw_type, j), subscript(raw_src, raw_type, j));
350 
351       /* Point the original instruction at the temporary, making sure to keep
352        * any source modifiers in the instruction.
353        */
354       fs_reg lower_src = tmp;
355       lower_src.negate = inst->src[i].negate;
356       lower_src.abs = inst->src[i].abs;
357       inst->src[i] = lower_src;
358 
359       return true;
360    }
361 
362    /**
363     * Remove any non-trivial shuffling of data from the destination region of
364     * the instruction.  Instead implement the region as a series of integer
365     * copies from a temporary with a channel layout compatible with the
366     * sources.
367     */
368    bool
lower_dst_region(fs_visitor * v,bblock_t * block,fs_inst * inst)369    lower_dst_region(fs_visitor *v, bblock_t *block, fs_inst *inst)
370    {
371       /* We cannot replace the result of an integer multiply which writes the
372        * accumulator because MUL+MACH pairs act on the accumulator as a 66-bit
373        * value whereas the MOV will act on only 32 or 33 bits of the
374        * accumulator.
375        */
376       assert(inst->opcode != BRW_OPCODE_MUL || !inst->dst.is_accumulator() ||
377              brw_reg_type_is_floating_point(inst->dst.type));
378 
379       const fs_builder ibld(v, block, inst);
380       const unsigned stride = required_dst_byte_stride(inst) /
381                               type_sz(inst->dst.type);
382       assert(stride > 0);
383       fs_reg tmp = ibld.vgrf(inst->dst.type, stride);
384       ibld.UNDEF(tmp);
385       tmp = horiz_stride(tmp, stride);
386 
387       /* Emit a series of 32-bit integer copies from the temporary into the
388        * original destination.
389        */
390       const brw_reg_type raw_type = brw_int_type(MIN2(type_sz(tmp.type), 4),
391                                                  false);
392       const unsigned n = type_sz(tmp.type) / type_sz(raw_type);
393 
394       if (inst->predicate && inst->opcode != BRW_OPCODE_SEL) {
395          /* Note that in general we cannot simply predicate the copies on the
396           * same flag register as the original instruction, since it may have
397           * been overwritten by the instruction itself.  Instead initialize
398           * the temporary with the previous contents of the destination
399           * register.
400           */
401          for (unsigned j = 0; j < n; j++)
402             ibld.MOV(subscript(tmp, raw_type, j),
403                      subscript(inst->dst, raw_type, j));
404       }
405 
406       for (unsigned j = 0; j < n; j++)
407          ibld.at(block, inst->next).MOV(subscript(inst->dst, raw_type, j),
408                                         subscript(tmp, raw_type, j));
409 
410       /* Point the original instruction at the temporary, making sure to keep
411        * any destination modifiers in the instruction.
412        */
413       assert(inst->size_written == inst->dst.component_size(inst->exec_size));
414       inst->dst = tmp;
415       inst->size_written = inst->dst.component_size(inst->exec_size);
416 
417       return true;
418    }
419 
420    /**
421     * Legalize the source and destination regioning controls of the specified
422     * instruction.
423     */
424    bool
lower_instruction(fs_visitor * v,bblock_t * block,fs_inst * inst)425    lower_instruction(fs_visitor *v, bblock_t *block, fs_inst *inst)
426    {
427       const gen_device_info *devinfo = v->devinfo;
428       bool progress = false;
429 
430       if (has_invalid_conversion(devinfo, inst))
431          progress |= lower_dst_modifiers(v, block, inst);
432 
433       if (has_invalid_dst_region(devinfo, inst))
434          progress |= lower_dst_region(v, block, inst);
435 
436       for (unsigned i = 0; i < inst->sources; i++) {
437          if (has_invalid_src_modifiers(devinfo, inst, i))
438             progress |= lower_src_modifiers(v, block, inst, i);
439 
440          if (has_invalid_src_region(devinfo, inst, i))
441             progress |= lower_src_region(v, block, inst, i);
442       }
443 
444       return progress;
445    }
446 }
447 
448 bool
lower_regioning()449 fs_visitor::lower_regioning()
450 {
451    bool progress = false;
452 
453    foreach_block_and_inst_safe(block, fs_inst, inst, cfg)
454       progress |= lower_instruction(this, block, inst);
455 
456    if (progress)
457       invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES);
458 
459    return progress;
460 }
461