1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  **************************************************************************/
7 
8 
9 /**
10  * Code to implement GL_OES_query_matrix.  See the spec at:
11  * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12  */
13 
14 
15 #include <stdlib.h>
16 #include "c99_math.h"
17 #include "glheader.h"
18 #include "querymatrix.h"
19 #include "main/get.h"
20 #include "util/macros.h"
21 
22 
23 /**
24  * This is from the GL_OES_query_matrix extension specification:
25  *
26  *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
27  *                                GLint   exponent[16] )
28  *  mantissa[16] contains the contents of the current matrix in GLfixed
29  *  format.  exponent[16] contains the unbiased exponents applied to the
30  *  matrix components, so that the internal representation of component i
31  *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
32  *  word which is zero if all the components are valid. If
33  *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
34  *  The implementations are not required to keep track of overflows.  In
35  *  that case, the invalid bits are never set.
36  */
37 
38 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
39 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
40 
41 
42 GLbitfield GLAPIENTRY
_mesa_QueryMatrixxOES(GLfixed mantissa[16],GLint exponent[16])43 _mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
44 {
45    GLfloat matrix[16];
46    GLint tmp;
47    GLenum currentMode = GL_FALSE;
48    GLenum desiredMatrix = GL_FALSE;
49    /* The bitfield returns 1 for each component that is invalid (i.e.
50     * NaN or Inf).  In case of error, everything is invalid.
51     */
52    GLbitfield rv;
53    unsigned i, bit;
54 
55    /* This data structure defines the mapping between the current matrix
56     * mode and the desired matrix identifier.
57     */
58    static const struct {
59       GLenum currentMode;
60       GLenum desiredMatrix;
61    } modes[] = {
62       {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
63       {GL_PROJECTION, GL_PROJECTION_MATRIX},
64       {GL_TEXTURE, GL_TEXTURE_MATRIX},
65    };
66 
67    /* Call Mesa to get the current matrix in floating-point form.  First,
68     * we have to figure out what the current matrix mode is.
69     */
70    _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
71    currentMode = (GLenum) tmp;
72 
73    /* The mode is either GL_FALSE, if for some reason we failed to query
74     * the mode, or a given mode from the above table.  Search for the
75     * returned mode to get the desired matrix; if we don't find it,
76     * we can return immediately, as _mesa_GetInteger() will have
77     * logged the necessary error already.
78     */
79    for (i = 0; i < ARRAY_SIZE(modes); i++) {
80       if (modes[i].currentMode == currentMode) {
81          desiredMatrix = modes[i].desiredMatrix;
82          break;
83       }
84    }
85    if (desiredMatrix == GL_FALSE) {
86       /* Early error means all values are invalid. */
87       return 0xffff;
88    }
89 
90    /* Now pull the matrix itself. */
91    _mesa_GetFloatv(desiredMatrix, matrix);
92 
93    rv = 0;
94    for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
95       float normalizedFraction;
96       int exp;
97 
98       switch (fpclassify(matrix[i])) {
99       case FP_SUBNORMAL:
100       case FP_NORMAL:
101       case FP_ZERO:
102          /* A "subnormal" or denormalized number is too small to be
103           * represented in normal format; but despite that it's a
104           * valid floating point number.  FP_ZERO and FP_NORMAL
105           * are both valid as well.  We should be fine treating
106           * these three cases as legitimate floating-point numbers.
107           */
108          normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
109          mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
110          exponent[i] = (GLint) exp;
111          break;
112 
113       case FP_NAN:
114          /* If the entry is not-a-number or an infinity, then the
115           * matrix component is invalid.  The invalid flag for
116           * the component is already set; might as well set the
117           * other return values to known values.  We'll set
118           * distinct values so that a savvy end user could determine
119           * whether the matrix component was a NaN or an infinity,
120           * but this is more useful for debugging than anything else
121           * since the standard doesn't specify any such magic
122           * values to return.
123           */
124          mantissa[i] = INT_TO_FIXED(0);
125          exponent[i] = (GLint) 0;
126          rv |= bit;
127          break;
128 
129       case FP_INFINITE:
130          /* Return +/- 1 based on whether it's a positive or
131           * negative infinity.
132           */
133          if (matrix[i] > 0) {
134             mantissa[i] = INT_TO_FIXED(1);
135          }
136          else {
137             mantissa[i] = -INT_TO_FIXED(1);
138          }
139          exponent[i] = (GLint) 0;
140          rv |= bit;
141          break;
142 
143       default:
144          /* We should never get here; but here's a catching case
145           * in case fpclassify() is returnings something unexpected.
146           */
147          mantissa[i] = INT_TO_FIXED(2);
148          exponent[i] = (GLint) 0;
149          rv |= bit;
150          break;
151       }
152 
153    } /* for each component */
154 
155    /* All done */
156    return rv;
157 }
158