1 /*
2 * Copyright © 2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23 #include <math.h>
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "util/u_vector.h"
27
28 /**
29 * Lower flrp instructions.
30 *
31 * Unlike the lowerings that are possible in nir_opt_algrbraic, this pass can
32 * examine more global information to determine a possibly more efficient
33 * lowering for each flrp.
34 */
35
36 static void
append_flrp_to_dead_list(struct u_vector * dead_flrp,struct nir_alu_instr * alu)37 append_flrp_to_dead_list(struct u_vector *dead_flrp, struct nir_alu_instr *alu)
38 {
39 struct nir_alu_instr **tail = u_vector_add(dead_flrp);
40 *tail = alu;
41 }
42
43 /**
44 * Replace flrp(a, b, c) with ffma(b, c, ffma(-a, c, a)).
45 */
46 static void
replace_with_strict_ffma(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)47 replace_with_strict_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
48 struct nir_alu_instr *alu)
49 {
50 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
51 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
52 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
53
54 nir_ssa_def *const neg_a = nir_fneg(bld, a);
55 nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
56
57 nir_ssa_def *const inner_ffma = nir_ffma(bld, neg_a, c, a);
58 nir_instr_as_alu(inner_ffma->parent_instr)->exact = alu->exact;
59
60 nir_ssa_def *const outer_ffma = nir_ffma(bld, b, c, inner_ffma);
61 nir_instr_as_alu(outer_ffma->parent_instr)->exact = alu->exact;
62
63 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, outer_ffma);
64
65 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
66 * based on other uses of the sources. Removing the flrp may cause the
67 * last flrp in a sequence to make a different, incorrect choice.
68 */
69 append_flrp_to_dead_list(dead_flrp, alu);
70 }
71
72 /**
73 * Replace flrp(a, b, c) with ffma(a, (1 - c), bc)
74 */
75 static void
replace_with_single_ffma(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)76 replace_with_single_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
77 struct nir_alu_instr *alu)
78 {
79 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
80 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
81 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
82
83 nir_ssa_def *const neg_c = nir_fneg(bld, c);
84 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
85
86 nir_ssa_def *const one_minus_c =
87 nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
88 nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
89
90 nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
91 nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
92
93 nir_ssa_def *const final_ffma = nir_ffma(bld, a, one_minus_c, b_times_c);
94 nir_instr_as_alu(final_ffma->parent_instr)->exact = alu->exact;
95
96 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, final_ffma);
97
98 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
99 * based on other uses of the sources. Removing the flrp may cause the
100 * last flrp in a sequence to make a different, incorrect choice.
101 */
102 append_flrp_to_dead_list(dead_flrp, alu);
103 }
104
105 /**
106 * Replace flrp(a, b, c) with a(1-c) + bc.
107 */
108 static void
replace_with_strict(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)109 replace_with_strict(struct nir_builder *bld, struct u_vector *dead_flrp,
110 struct nir_alu_instr *alu)
111 {
112 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
113 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
114 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
115
116 nir_ssa_def *const neg_c = nir_fneg(bld, c);
117 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
118
119 nir_ssa_def *const one_minus_c =
120 nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
121 nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
122
123 nir_ssa_def *const first_product = nir_fmul(bld, a, one_minus_c);
124 nir_instr_as_alu(first_product->parent_instr)->exact = alu->exact;
125
126 nir_ssa_def *const second_product = nir_fmul(bld, b, c);
127 nir_instr_as_alu(second_product->parent_instr)->exact = alu->exact;
128
129 nir_ssa_def *const sum = nir_fadd(bld, first_product, second_product);
130 nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
131
132 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, sum);
133
134 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
135 * based on other uses of the sources. Removing the flrp may cause the
136 * last flrp in a sequence to make a different, incorrect choice.
137 */
138 append_flrp_to_dead_list(dead_flrp, alu);
139 }
140
141 /**
142 * Replace flrp(a, b, c) with a + c(b-a).
143 */
144 static void
replace_with_fast(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)145 replace_with_fast(struct nir_builder *bld, struct u_vector *dead_flrp,
146 struct nir_alu_instr *alu)
147 {
148 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
149 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
150 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
151
152 nir_ssa_def *const neg_a = nir_fneg(bld, a);
153 nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
154
155 nir_ssa_def *const b_minus_a = nir_fadd(bld, b, neg_a);
156 nir_instr_as_alu(b_minus_a->parent_instr)->exact = alu->exact;
157
158 nir_ssa_def *const product = nir_fmul(bld, c, b_minus_a);
159 nir_instr_as_alu(product->parent_instr)->exact = alu->exact;
160
161 nir_ssa_def *const sum = nir_fadd(bld, a, product);
162 nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
163
164 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, sum);
165
166 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
167 * based on other uses of the sources. Removing the flrp may cause the
168 * last flrp in a sequence to make a different, incorrect choice.
169 */
170 append_flrp_to_dead_list(dead_flrp, alu);
171 }
172
173 /**
174 * Replace flrp(a, b, c) with (b*c ± c) + a => b*c + (a ± c)
175 *
176 * \note: This only works if a = ±1.
177 */
178 static void
replace_with_expanded_ffma_and_add(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu,bool subtract_c)179 replace_with_expanded_ffma_and_add(struct nir_builder *bld,
180 struct u_vector *dead_flrp,
181 struct nir_alu_instr *alu, bool subtract_c)
182 {
183 nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
184 nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
185 nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
186
187 nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
188 nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
189
190 nir_ssa_def *inner_sum;
191
192 if (subtract_c) {
193 nir_ssa_def *const neg_c = nir_fneg(bld, c);
194 nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
195
196 inner_sum = nir_fadd(bld, a, neg_c);
197 } else {
198 inner_sum = nir_fadd(bld, a, c);
199 }
200
201 nir_instr_as_alu(inner_sum->parent_instr)->exact = alu->exact;
202
203 nir_ssa_def *const outer_sum = nir_fadd(bld, inner_sum, b_times_c);
204 nir_instr_as_alu(outer_sum->parent_instr)->exact = alu->exact;
205
206 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, outer_sum);
207
208 /* DO NOT REMOVE the original flrp yet. Many of the lowering choices are
209 * based on other uses of the sources. Removing the flrp may cause the
210 * last flrp in a sequence to make a different, incorrect choice.
211 */
212 append_flrp_to_dead_list(dead_flrp, alu);
213 }
214
215 /**
216 * Determines whether a swizzled source is constant w/ all components the same.
217 *
218 * The value of the constant is stored in \c result.
219 *
220 * \return
221 * True if all components of the swizzled source are the same constant.
222 * Otherwise false is returned.
223 */
224 static bool
all_same_constant(const nir_alu_instr * instr,unsigned src,double * result)225 all_same_constant(const nir_alu_instr *instr, unsigned src, double *result)
226 {
227 nir_const_value *val = nir_src_as_const_value(instr->src[src].src);
228
229 if (!val)
230 return false;
231
232 const uint8_t *const swizzle = instr->src[src].swizzle;
233 const unsigned num_components = nir_dest_num_components(instr->dest.dest);
234
235 if (instr->dest.dest.ssa.bit_size == 32) {
236 const float first = val[swizzle[0]].f32;
237
238 for (unsigned i = 1; i < num_components; i++) {
239 if (val[swizzle[i]].f32 != first)
240 return false;
241 }
242
243 *result = first;
244 } else {
245 const double first = val[swizzle[0]].f64;
246
247 for (unsigned i = 1; i < num_components; i++) {
248 if (val[swizzle[i]].f64 != first)
249 return false;
250 }
251
252 *result = first;
253 }
254
255 return true;
256 }
257
258 static bool
sources_are_constants_with_similar_magnitudes(const nir_alu_instr * instr)259 sources_are_constants_with_similar_magnitudes(const nir_alu_instr *instr)
260 {
261 nir_const_value *val0 = nir_src_as_const_value(instr->src[0].src);
262 nir_const_value *val1 = nir_src_as_const_value(instr->src[1].src);
263
264 if (val0 == NULL || val1 == NULL)
265 return false;
266
267 const uint8_t *const swizzle0 = instr->src[0].swizzle;
268 const uint8_t *const swizzle1 = instr->src[1].swizzle;
269 const unsigned num_components = nir_dest_num_components(instr->dest.dest);
270
271 if (instr->dest.dest.ssa.bit_size == 32) {
272 for (unsigned i = 0; i < num_components; i++) {
273 int exp0;
274 int exp1;
275
276 frexpf(val0[swizzle0[i]].f32, &exp0);
277 frexpf(val1[swizzle1[i]].f32, &exp1);
278
279 /* If the difference between exponents is >= 24, then A+B will always
280 * have the value whichever between A and B has the largest absolute
281 * value. So, [0, 23] is the valid range. The smaller the limit
282 * value, the more precision will be maintained at a potential
283 * performance cost. Somewhat arbitrarilly split the range in half.
284 */
285 if (abs(exp0 - exp1) > (23 / 2))
286 return false;
287 }
288 } else {
289 for (unsigned i = 0; i < num_components; i++) {
290 int exp0;
291 int exp1;
292
293 frexp(val0[swizzle0[i]].f64, &exp0);
294 frexp(val1[swizzle1[i]].f64, &exp1);
295
296 /* If the difference between exponents is >= 53, then A+B will always
297 * have the value whichever between A and B has the largest absolute
298 * value. So, [0, 52] is the valid range. The smaller the limit
299 * value, the more precision will be maintained at a potential
300 * performance cost. Somewhat arbitrarilly split the range in half.
301 */
302 if (abs(exp0 - exp1) > (52 / 2))
303 return false;
304 }
305 }
306
307 return true;
308 }
309
310 /**
311 * Counts of similar types of nir_op_flrp instructions
312 *
313 * If a similar instruction fits into more than one category, it will only be
314 * counted once. The assumption is that no other instruction will have all
315 * sources the same, or CSE would have removed one of the instructions.
316 */
317 struct similar_flrp_stats {
318 unsigned src2;
319 unsigned src0_and_src2;
320 unsigned src1_and_src2;
321 };
322
323 /**
324 * Collection counts of similar FLRP instructions.
325 *
326 * This function only cares about similar instructions that have src2 in
327 * common.
328 */
329 static void
get_similar_flrp_stats(nir_alu_instr * alu,struct similar_flrp_stats * st)330 get_similar_flrp_stats(nir_alu_instr *alu, struct similar_flrp_stats *st)
331 {
332 memset(st, 0, sizeof(*st));
333
334 nir_foreach_use(other_use, alu->src[2].src.ssa) {
335 /* Is the use also a flrp? */
336 nir_instr *const other_instr = other_use->parent_instr;
337 if (other_instr->type != nir_instr_type_alu)
338 continue;
339
340 /* Eh-hem... don't match the instruction with itself. */
341 if (other_instr == &alu->instr)
342 continue;
343
344 nir_alu_instr *const other_alu = nir_instr_as_alu(other_instr);
345 if (other_alu->op != nir_op_flrp)
346 continue;
347
348 /* Does the other flrp use source 2 from the first flrp as its source 2
349 * as well?
350 */
351 if (!nir_alu_srcs_equal(alu, other_alu, 2, 2))
352 continue;
353
354 if (nir_alu_srcs_equal(alu, other_alu, 0, 0))
355 st->src0_and_src2++;
356 else if (nir_alu_srcs_equal(alu, other_alu, 1, 1))
357 st->src1_and_src2++;
358 else
359 st->src2++;
360 }
361 }
362
363 static void
convert_flrp_instruction(nir_builder * bld,struct u_vector * dead_flrp,nir_alu_instr * alu,bool always_precise)364 convert_flrp_instruction(nir_builder *bld,
365 struct u_vector *dead_flrp,
366 nir_alu_instr *alu,
367 bool always_precise)
368 {
369 bool have_ffma = false;
370 unsigned bit_size = nir_dest_bit_size(alu->dest.dest);
371
372 if (bit_size == 16)
373 have_ffma = !bld->shader->options->lower_ffma16;
374 else if (bit_size == 32)
375 have_ffma = !bld->shader->options->lower_ffma32;
376 else if (bit_size == 64)
377 have_ffma = !bld->shader->options->lower_ffma64;
378 else
379 unreachable("invalid bit_size");
380
381 bld->cursor = nir_before_instr(&alu->instr);
382
383 /* There are two methods to implement flrp(x, y, t). The strictly correct
384 * implementation according to the GLSL spec is:
385 *
386 * x(1 - t) + yt
387 *
388 * This can also be implemented using two chained FMAs
389 *
390 * fma(y, t, fma(-x, t, x))
391 *
392 * This method, using either formulation, has better precision when the
393 * difference between x and y is very large. It guarantess that flrp(x, y,
394 * 1) = y. For example, flrp(1e38, 1.0, 1.0) is 1.0. This is correct.
395 *
396 * The other possible implementation is:
397 *
398 * x + t(y - x)
399 *
400 * This can also be formuated as an FMA:
401 *
402 * fma(y - x, t, x)
403 *
404 * For this implementation, flrp(1e38, 1.0, 1.0) is 0.0. Since 1.0 was
405 * expected, that's a pretty significant error.
406 *
407 * The choice made for lowering depends on a number of factors.
408 *
409 * - If the flrp is marked precise and FMA is supported:
410 *
411 * fma(y, t, fma(-x, t, x))
412 *
413 * This is strictly correct (maybe?), and the cost is two FMA
414 * instructions. It at least maintains the flrp(x, y, 1.0) == y
415 * condition.
416 *
417 * - If the flrp is marked precise and FMA is not supported:
418 *
419 * x(1 - t) + yt
420 *
421 * This is strictly correct, and the cost is 4 instructions. If FMA is
422 * supported, this may or may not be reduced to 3 instructions (a
423 * subtract, a multiply, and an FMA)... but in that case the other
424 * formulation should have been used.
425 */
426 if (alu->exact) {
427 if (have_ffma)
428 replace_with_strict_ffma(bld, dead_flrp, alu);
429 else
430 replace_with_strict(bld, dead_flrp, alu);
431
432 return;
433 }
434
435 /*
436 * - If x and y are both immediates and the relative magnitude of the
437 * values is similar (such that x-y does not lose too much precision):
438 *
439 * x + t(x - y)
440 *
441 * We rely on constant folding to eliminate x-y, and we rely on
442 * nir_opt_algebraic to possibly generate an FMA. The cost is either one
443 * FMA or two instructions.
444 */
445 if (sources_are_constants_with_similar_magnitudes(alu)) {
446 replace_with_fast(bld, dead_flrp, alu);
447 return;
448 }
449
450 /*
451 * - If x = 1:
452 *
453 * (yt + -t) + 1
454 *
455 * - If x = -1:
456 *
457 * (yt + t) - 1
458 *
459 * In both cases, x is used in place of ±1 for simplicity. Both forms
460 * lend to ffma generation on platforms that support ffma.
461 */
462 double src0_as_constant;
463 if (all_same_constant(alu, 0, &src0_as_constant)) {
464 if (src0_as_constant == 1.0) {
465 replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
466 true /* subtract t */);
467 return;
468 } else if (src0_as_constant == -1.0) {
469 replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
470 false /* add t */);
471 return;
472 }
473 }
474
475 /*
476 * - If y = ±1:
477 *
478 * x(1 - t) + yt
479 *
480 * In this case either the multiply in yt will be eliminated by
481 * nir_opt_algebraic. If FMA is supported, this results in fma(x, (1 -
482 * t), ±t) for two instructions. If FMA is not supported, then the cost
483 * is 3 instructions. We rely on nir_opt_algebraic to generate the FMA
484 * instructions as well.
485 *
486 * Another possible replacement is
487 *
488 * -xt + x ± t
489 *
490 * Some groupings of this may be better on some platforms in some
491 * circumstances, bit it is probably dependent on scheduling. Futher
492 * investigation may be required.
493 */
494 double src1_as_constant;
495 if ((all_same_constant(alu, 1, &src1_as_constant) &&
496 (src1_as_constant == -1.0 || src1_as_constant == 1.0))) {
497 replace_with_strict(bld, dead_flrp, alu);
498 return;
499 }
500
501 if (have_ffma) {
502 if (always_precise) {
503 replace_with_strict_ffma(bld, dead_flrp, alu);
504 return;
505 }
506
507 /*
508 * - If FMA is supported and other flrp(x, _, t) exists:
509 *
510 * fma(y, t, fma(-x, t, x))
511 *
512 * The hope is that the inner FMA calculation will be shared with the
513 * other lowered flrp. This results in two FMA instructions for the
514 * first flrp and one FMA instruction for each additional flrp. It
515 * also means that the live range for x might be complete after the
516 * inner ffma instead of after the last flrp.
517 */
518 struct similar_flrp_stats st;
519
520 get_similar_flrp_stats(alu, &st);
521 if (st.src0_and_src2 > 0) {
522 replace_with_strict_ffma(bld, dead_flrp, alu);
523 return;
524 }
525
526 /*
527 * - If FMA is supported and another flrp(_, y, t) exists:
528 *
529 * fma(x, (1 - t), yt)
530 *
531 * The hope is that the (1 - t) and the yt will be shared with the
532 * other lowered flrp. This results in 3 insructions for the first
533 * flrp and 1 for each additional flrp.
534 */
535 if (st.src1_and_src2 > 0) {
536 replace_with_single_ffma(bld, dead_flrp, alu);
537 return;
538 }
539 } else {
540 if (always_precise) {
541 replace_with_strict(bld, dead_flrp, alu);
542 return;
543 }
544
545 /*
546 * - If FMA is not supported and another flrp(x, _, t) exists:
547 *
548 * x(1 - t) + yt
549 *
550 * The hope is that the x(1 - t) will be shared with the other lowered
551 * flrp. This results in 4 insructions for the first flrp and 2 for
552 * each additional flrp.
553 *
554 * - If FMA is not supported and another flrp(_, y, t) exists:
555 *
556 * x(1 - t) + yt
557 *
558 * The hope is that the (1 - t) and the yt will be shared with the
559 * other lowered flrp. This results in 4 insructions for the first
560 * flrp and 2 for each additional flrp.
561 */
562 struct similar_flrp_stats st;
563
564 get_similar_flrp_stats(alu, &st);
565 if (st.src0_and_src2 > 0 || st.src1_and_src2 > 0) {
566 replace_with_strict(bld, dead_flrp, alu);
567 return;
568 }
569 }
570
571 /*
572 * - If t is constant:
573 *
574 * x(1 - t) + yt
575 *
576 * The cost is three instructions without FMA or two instructions with
577 * FMA. This is the same cost as the imprecise lowering, but it gives
578 * the instruction scheduler a little more freedom.
579 *
580 * There is no need to handle t = 0.5 specially. nir_opt_algebraic
581 * already has optimizations to convert 0.5x + 0.5y to 0.5(x + y).
582 */
583 if (alu->src[2].src.ssa->parent_instr->type == nir_instr_type_load_const) {
584 replace_with_strict(bld, dead_flrp, alu);
585 return;
586 }
587
588 /*
589 * - Otherwise
590 *
591 * x + t(x - y)
592 */
593 replace_with_fast(bld, dead_flrp, alu);
594 }
595
596 static void
lower_flrp_impl(nir_function_impl * impl,struct u_vector * dead_flrp,unsigned lowering_mask,bool always_precise)597 lower_flrp_impl(nir_function_impl *impl,
598 struct u_vector *dead_flrp,
599 unsigned lowering_mask,
600 bool always_precise)
601 {
602 nir_builder b;
603 nir_builder_init(&b, impl);
604
605 nir_foreach_block(block, impl) {
606 nir_foreach_instr_safe(instr, block) {
607 if (instr->type == nir_instr_type_alu) {
608 nir_alu_instr *const alu = nir_instr_as_alu(instr);
609
610 if (alu->op == nir_op_flrp &&
611 (alu->dest.dest.ssa.bit_size & lowering_mask)) {
612 convert_flrp_instruction(&b, dead_flrp, alu, always_precise);
613 }
614 }
615 }
616 }
617
618 nir_metadata_preserve(impl, nir_metadata_block_index |
619 nir_metadata_dominance);
620 }
621
622 /**
623 * \param lowering_mask - Bitwise-or of the bit sizes that need to be lowered
624 * (e.g., 16 | 64 if only 16-bit and 64-bit flrp need
625 * lowering).
626 * \param always_precise - Always require precise lowering for flrp. This
627 * will always lower flrp to (a * (1 - c)) + (b * c).
628 * \param have_ffma - Set to true if the GPU has an FFMA instruction that
629 * should be used.
630 */
631 bool
nir_lower_flrp(nir_shader * shader,unsigned lowering_mask,bool always_precise)632 nir_lower_flrp(nir_shader *shader,
633 unsigned lowering_mask,
634 bool always_precise)
635 {
636 struct u_vector dead_flrp;
637
638 if (!u_vector_init_pow2(&dead_flrp, 8, sizeof(struct nir_alu_instr *)))
639 return false;
640
641 nir_foreach_function(function, shader) {
642 if (function->impl) {
643 lower_flrp_impl(function->impl, &dead_flrp, lowering_mask,
644 always_precise);
645 }
646 }
647
648 /* Progress was made if the dead list is not empty. Remove all the
649 * instructions from the dead list.
650 */
651 const bool progress = u_vector_length(&dead_flrp) != 0;
652
653 struct nir_alu_instr **instr;
654 u_vector_foreach(instr, &dead_flrp)
655 nir_instr_remove(&(*instr)->instr);
656
657 u_vector_finish(&dead_flrp);
658
659 return progress;
660 }
661