1 /*
2  * Copyright © 2018 Valve Corporation
3  * Copyright © 2018 Google
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25 
26 #include "aco_ir.h"
27 
28 #include "util/u_math.h"
29 
30 #include <set>
31 #include <vector>
32 
33 namespace aco {
34 RegisterDemand
get_live_changes(aco_ptr<Instruction> & instr)35 get_live_changes(aco_ptr<Instruction>& instr)
36 {
37    RegisterDemand changes;
38    for (const Definition& def : instr->definitions) {
39       if (!def.isTemp() || def.isKill())
40          continue;
41       changes += def.getTemp();
42    }
43 
44    for (const Operand& op : instr->operands) {
45       if (!op.isTemp() || !op.isFirstKill())
46          continue;
47       changes -= op.getTemp();
48    }
49 
50    return changes;
51 }
52 
53 RegisterDemand
get_temp_registers(aco_ptr<Instruction> & instr)54 get_temp_registers(aco_ptr<Instruction>& instr)
55 {
56    RegisterDemand temp_registers;
57 
58    for (Definition def : instr->definitions) {
59       if (!def.isTemp())
60          continue;
61       if (def.isKill())
62          temp_registers += def.getTemp();
63    }
64 
65    for (Operand op : instr->operands) {
66       if (op.isTemp() && op.isLateKill() && op.isFirstKill())
67          temp_registers += op.getTemp();
68    }
69 
70    return temp_registers;
71 }
72 
73 RegisterDemand
get_demand_before(RegisterDemand demand,aco_ptr<Instruction> & instr,aco_ptr<Instruction> & instr_before)74 get_demand_before(RegisterDemand demand, aco_ptr<Instruction>& instr,
75                   aco_ptr<Instruction>& instr_before)
76 {
77    demand -= get_live_changes(instr);
78    demand -= get_temp_registers(instr);
79    if (instr_before)
80       demand += get_temp_registers(instr_before);
81    return demand;
82 }
83 
84 namespace {
85 struct PhiInfo {
86    uint16_t logical_phi_sgpr_ops = 0;
87    uint16_t linear_phi_ops = 0;
88    uint16_t linear_phi_defs = 0;
89 };
90 
91 void
process_live_temps_per_block(Program * program,live & lives,Block * block,unsigned & worklist,std::vector<PhiInfo> & phi_info)92 process_live_temps_per_block(Program* program, live& lives, Block* block, unsigned& worklist,
93                              std::vector<PhiInfo>& phi_info)
94 {
95    std::vector<RegisterDemand>& register_demand = lives.register_demand[block->index];
96    RegisterDemand new_demand;
97 
98    register_demand.resize(block->instructions.size());
99    RegisterDemand block_register_demand;
100    IDSet live = lives.live_out[block->index];
101 
102    /* initialize register demand */
103    for (unsigned t : live)
104       new_demand += Temp(t, program->temp_rc[t]);
105    new_demand.sgpr -= phi_info[block->index].logical_phi_sgpr_ops;
106 
107    /* traverse the instructions backwards */
108    int idx;
109    for (idx = block->instructions.size() - 1; idx >= 0; idx--) {
110       Instruction* insn = block->instructions[idx].get();
111       if (is_phi(insn))
112          break;
113 
114       register_demand[idx] = RegisterDemand(new_demand.vgpr, new_demand.sgpr);
115 
116       /* KILL */
117       for (Definition& definition : insn->definitions) {
118          if (!definition.isTemp()) {
119             continue;
120          }
121          if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
122             program->needs_vcc = true;
123 
124          const Temp temp = definition.getTemp();
125          const size_t n = live.erase(temp.id());
126 
127          if (n) {
128             new_demand -= temp;
129             definition.setKill(false);
130          } else {
131             register_demand[idx] += temp;
132             definition.setKill(true);
133          }
134       }
135 
136       /* GEN */
137       if (insn->opcode == aco_opcode::p_logical_end) {
138          new_demand.sgpr += phi_info[block->index].logical_phi_sgpr_ops;
139       } else {
140          /* we need to do this in a separate loop because the next one can
141           * setKill() for several operands at once and we don't want to
142           * overwrite that in a later iteration */
143          for (Operand& op : insn->operands)
144             op.setKill(false);
145 
146          for (unsigned i = 0; i < insn->operands.size(); ++i) {
147             Operand& operand = insn->operands[i];
148             if (!operand.isTemp())
149                continue;
150             if (operand.isFixed() && operand.physReg() == vcc)
151                program->needs_vcc = true;
152             const Temp temp = operand.getTemp();
153             const bool inserted = live.insert(temp.id()).second;
154             if (inserted) {
155                operand.setFirstKill(true);
156                for (unsigned j = i + 1; j < insn->operands.size(); ++j) {
157                   if (insn->operands[j].isTemp() &&
158                       insn->operands[j].tempId() == operand.tempId()) {
159                      insn->operands[j].setFirstKill(false);
160                      insn->operands[j].setKill(true);
161                   }
162                }
163                if (operand.isLateKill())
164                   register_demand[idx] += temp;
165                new_demand += temp;
166             }
167          }
168       }
169 
170       block_register_demand.update(register_demand[idx]);
171    }
172 
173    /* update block's register demand for a last time */
174    block_register_demand.update(new_demand);
175    if (program->progress < CompilationProgress::after_ra)
176       block->register_demand = block_register_demand;
177 
178    /* handle phi definitions */
179    uint16_t linear_phi_defs = 0;
180    int phi_idx = idx;
181    while (phi_idx >= 0) {
182       register_demand[phi_idx] = new_demand;
183       Instruction* insn = block->instructions[phi_idx].get();
184 
185       assert(is_phi(insn) && insn->definitions.size() == 1);
186       if (!insn->definitions[0].isTemp()) {
187          assert(insn->definitions[0].isFixed() && insn->definitions[0].physReg() == exec);
188          phi_idx--;
189          continue;
190       }
191       Definition& definition = insn->definitions[0];
192       if ((definition.isFixed() || definition.hasHint()) && definition.physReg() == vcc)
193          program->needs_vcc = true;
194       const Temp temp = definition.getTemp();
195       const size_t n = live.erase(temp.id());
196 
197       if (n)
198          definition.setKill(false);
199       else
200          definition.setKill(true);
201 
202       if (insn->opcode == aco_opcode::p_linear_phi) {
203          assert(definition.getTemp().type() == RegType::sgpr);
204          linear_phi_defs += definition.size();
205       }
206 
207       phi_idx--;
208    }
209 
210    for (unsigned pred_idx : block->linear_preds)
211       phi_info[pred_idx].linear_phi_defs = linear_phi_defs;
212 
213    /* now, we need to merge the live-ins into the live-out sets */
214    for (unsigned t : live) {
215       RegClass rc = program->temp_rc[t];
216       std::vector<unsigned>& preds = rc.is_linear() ? block->linear_preds : block->logical_preds;
217 
218 #ifndef NDEBUG
219       if (preds.empty())
220          aco_err(program, "Temporary never defined or are defined after use: %%%d in BB%d", t,
221                  block->index);
222 #endif
223 
224       for (unsigned pred_idx : preds) {
225          auto it = lives.live_out[pred_idx].insert(t);
226          if (it.second)
227             worklist = std::max(worklist, pred_idx + 1);
228       }
229    }
230 
231    /* handle phi operands */
232    phi_idx = idx;
233    while (phi_idx >= 0) {
234       Instruction* insn = block->instructions[phi_idx].get();
235       assert(is_phi(insn));
236       /* directly insert into the predecessors live-out set */
237       std::vector<unsigned>& preds =
238          insn->opcode == aco_opcode::p_phi ? block->logical_preds : block->linear_preds;
239       for (unsigned i = 0; i < preds.size(); ++i) {
240          Operand& operand = insn->operands[i];
241          if (!operand.isTemp())
242             continue;
243          if (operand.isFixed() && operand.physReg() == vcc)
244             program->needs_vcc = true;
245          /* check if we changed an already processed block */
246          const bool inserted = lives.live_out[preds[i]].insert(operand.tempId()).second;
247          if (inserted) {
248             worklist = std::max(worklist, preds[i] + 1);
249             if (insn->opcode == aco_opcode::p_phi && operand.getTemp().type() == RegType::sgpr) {
250                phi_info[preds[i]].logical_phi_sgpr_ops += operand.size();
251             } else if (insn->opcode == aco_opcode::p_linear_phi) {
252                assert(operand.getTemp().type() == RegType::sgpr);
253                phi_info[preds[i]].linear_phi_ops += operand.size();
254             }
255          }
256 
257          /* set if the operand is killed by this (or another) phi instruction */
258          operand.setKill(!live.count(operand.tempId()));
259       }
260       phi_idx--;
261    }
262 
263    assert(block->index != 0 || (new_demand == RegisterDemand() && live.empty()));
264 }
265 
266 unsigned
calc_waves_per_workgroup(Program * program)267 calc_waves_per_workgroup(Program* program)
268 {
269    /* When workgroup size is not known, just go with wave_size */
270    unsigned workgroup_size =
271       program->workgroup_size == UINT_MAX ? program->wave_size : program->workgroup_size;
272 
273    return align(workgroup_size, program->wave_size) / program->wave_size;
274 }
275 } /* end namespace */
276 
277 uint16_t
get_extra_sgprs(Program * program)278 get_extra_sgprs(Program* program)
279 {
280    if (program->chip_class >= GFX10) {
281       assert(!program->needs_flat_scr);
282       assert(!program->dev.xnack_enabled);
283       return 0;
284    } else if (program->chip_class >= GFX8) {
285       if (program->needs_flat_scr)
286          return 6;
287       else if (program->dev.xnack_enabled)
288          return 4;
289       else if (program->needs_vcc)
290          return 2;
291       else
292          return 0;
293    } else {
294       assert(!program->dev.xnack_enabled);
295       if (program->needs_flat_scr)
296          return 4;
297       else if (program->needs_vcc)
298          return 2;
299       else
300          return 0;
301    }
302 }
303 
304 uint16_t
get_sgpr_alloc(Program * program,uint16_t addressable_sgprs)305 get_sgpr_alloc(Program* program, uint16_t addressable_sgprs)
306 {
307    uint16_t sgprs = addressable_sgprs + get_extra_sgprs(program);
308    uint16_t granule = program->dev.sgpr_alloc_granule;
309    return ALIGN_NPOT(std::max(sgprs, granule), granule);
310 }
311 
312 uint16_t
get_vgpr_alloc(Program * program,uint16_t addressable_vgprs)313 get_vgpr_alloc(Program* program, uint16_t addressable_vgprs)
314 {
315    assert(addressable_vgprs <= program->dev.vgpr_limit);
316    uint16_t granule = program->dev.vgpr_alloc_granule;
317    return align(std::max(addressable_vgprs, granule), granule);
318 }
319 
320 unsigned
round_down(unsigned a,unsigned b)321 round_down(unsigned a, unsigned b)
322 {
323    return a - (a % b);
324 }
325 
326 uint16_t
get_addr_sgpr_from_waves(Program * program,uint16_t waves)327 get_addr_sgpr_from_waves(Program* program, uint16_t waves)
328 {
329    /* it's not possible to allocate more than 128 SGPRs */
330    uint16_t sgprs = std::min(program->dev.physical_sgprs / waves, 128);
331    sgprs = round_down(sgprs, program->dev.sgpr_alloc_granule);
332    sgprs -= get_extra_sgprs(program);
333    return std::min(sgprs, program->dev.sgpr_limit);
334 }
335 
336 uint16_t
get_addr_vgpr_from_waves(Program * program,uint16_t waves)337 get_addr_vgpr_from_waves(Program* program, uint16_t waves)
338 {
339    uint16_t vgprs = program->dev.physical_vgprs / waves & ~(program->dev.vgpr_alloc_granule - 1);
340    vgprs -= program->config->num_shared_vgprs / 2;
341    return std::min(vgprs, program->dev.vgpr_limit);
342 }
343 
344 void
calc_min_waves(Program * program)345 calc_min_waves(Program* program)
346 {
347    unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
348    unsigned simd_per_cu_wgp = program->dev.simd_per_cu * (program->wgp_mode ? 2 : 1);
349    program->min_waves = DIV_ROUND_UP(waves_per_workgroup, simd_per_cu_wgp);
350 }
351 
352 void
update_vgpr_sgpr_demand(Program * program,const RegisterDemand new_demand)353 update_vgpr_sgpr_demand(Program* program, const RegisterDemand new_demand)
354 {
355    unsigned max_waves_per_simd = program->dev.max_wave64_per_simd * (64 / program->wave_size);
356    unsigned simd_per_cu_wgp = program->dev.simd_per_cu * (program->wgp_mode ? 2 : 1);
357    unsigned lds_limit = program->wgp_mode ? program->dev.lds_limit * 2 : program->dev.lds_limit;
358    unsigned max_workgroups_per_cu_wgp = program->wgp_mode ? 32 : 16;
359 
360    assert(program->min_waves >= 1);
361    uint16_t sgpr_limit = get_addr_sgpr_from_waves(program, program->min_waves);
362    uint16_t vgpr_limit = get_addr_vgpr_from_waves(program, program->min_waves);
363 
364    /* this won't compile, register pressure reduction necessary */
365    if (new_demand.vgpr > vgpr_limit || new_demand.sgpr > sgpr_limit) {
366       program->num_waves = 0;
367       program->max_reg_demand = new_demand;
368    } else {
369       program->num_waves = program->dev.physical_sgprs / get_sgpr_alloc(program, new_demand.sgpr);
370       uint16_t vgpr_demand =
371          get_vgpr_alloc(program, new_demand.vgpr) + program->config->num_shared_vgprs / 2;
372       program->num_waves =
373          std::min<uint16_t>(program->num_waves, program->dev.physical_vgprs / vgpr_demand);
374       program->max_waves = max_waves_per_simd;
375 
376       /* adjust max_waves for workgroup and LDS limits */
377       unsigned waves_per_workgroup = calc_waves_per_workgroup(program);
378       unsigned workgroups_per_cu_wgp = max_waves_per_simd * simd_per_cu_wgp / waves_per_workgroup;
379 
380       unsigned lds_per_workgroup =
381          align(program->config->lds_size * program->dev.lds_encoding_granule,
382                program->dev.lds_alloc_granule);
383 
384       if (program->stage == fragment_fs) {
385          /* PS inputs are moved from PC (parameter cache) to LDS before PS waves are launched.
386           * Each PS input occupies 3x vec4 of LDS space. See Figure 10.3 in GCN3 ISA manual.
387           * These limit occupancy the same way as other stages' LDS usage does.
388           */
389          unsigned lds_bytes_per_interp = 3 * 16;
390          unsigned lds_param_bytes = lds_bytes_per_interp * program->info->ps.num_interp;
391          lds_per_workgroup += align(lds_param_bytes, program->dev.lds_alloc_granule);
392       }
393 
394       if (lds_per_workgroup)
395          workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, lds_limit / lds_per_workgroup);
396 
397       if (waves_per_workgroup > 1)
398          workgroups_per_cu_wgp = std::min(workgroups_per_cu_wgp, max_workgroups_per_cu_wgp);
399 
400       /* in cases like waves_per_workgroup=3 or lds=65536 and
401        * waves_per_workgroup=1, we want the maximum possible number of waves per
402        * SIMD and not the minimum. so DIV_ROUND_UP is used */
403       program->max_waves = std::min<uint16_t>(
404          program->max_waves,
405          DIV_ROUND_UP(workgroups_per_cu_wgp * waves_per_workgroup, simd_per_cu_wgp));
406 
407       /* incorporate max_waves and calculate max_reg_demand */
408       program->num_waves = std::min<uint16_t>(program->num_waves, program->max_waves);
409       program->max_reg_demand.vgpr = get_addr_vgpr_from_waves(program, program->num_waves);
410       program->max_reg_demand.sgpr = get_addr_sgpr_from_waves(program, program->num_waves);
411    }
412 }
413 
414 live
live_var_analysis(Program * program)415 live_var_analysis(Program* program)
416 {
417    live result;
418    result.live_out.resize(program->blocks.size());
419    result.register_demand.resize(program->blocks.size());
420    unsigned worklist = program->blocks.size();
421    std::vector<PhiInfo> phi_info(program->blocks.size());
422    RegisterDemand new_demand;
423 
424    program->needs_vcc = false;
425 
426    /* this implementation assumes that the block idx corresponds to the block's position in
427     * program->blocks vector */
428    while (worklist) {
429       unsigned block_idx = --worklist;
430       process_live_temps_per_block(program, result, &program->blocks[block_idx], worklist,
431                                    phi_info);
432       new_demand.update(program->blocks[block_idx].register_demand);
433    }
434 
435    /* Handle branches: we will insert copies created for linear phis just before the branch. */
436    for (Block& block : program->blocks) {
437       result.register_demand[block.index].back().sgpr += phi_info[block.index].linear_phi_defs;
438       result.register_demand[block.index].back().sgpr -= phi_info[block.index].linear_phi_ops;
439    }
440 
441    /* calculate the program's register demand and number of waves */
442    if (program->progress < CompilationProgress::after_ra)
443       update_vgpr_sgpr_demand(program, new_demand);
444 
445    return result;
446 }
447 
448 } // namespace aco
449