1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included
12  * in all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20  * DEALINGS IN THE SOFTWARE.
21  */
22 
23 /**
24  * @file iris_bufmgr.c
25  *
26  * The Iris buffer manager.
27  *
28  * XXX: write better comments
29  * - BOs
30  * - Explain BO cache
31  * - main interface to GEM in the kernel
32  */
33 
34 #include <xf86drm.h>
35 #include <util/u_atomic.h>
36 #include <fcntl.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40 #include <unistd.h>
41 #include <assert.h>
42 #include <sys/ioctl.h>
43 #include <sys/mman.h>
44 #include <sys/stat.h>
45 #include <sys/types.h>
46 #include <stdbool.h>
47 #include <time.h>
48 #include <unistd.h>
49 
50 #include "errno.h"
51 #include "common/intel_aux_map.h"
52 #include "common/intel_clflush.h"
53 #include "dev/intel_debug.h"
54 #include "common/intel_gem.h"
55 #include "dev/intel_device_info.h"
56 #include "isl/isl.h"
57 #include "main/macros.h"
58 #include "os/os_mman.h"
59 #include "util/debug.h"
60 #include "util/macros.h"
61 #include "util/hash_table.h"
62 #include "util/list.h"
63 #include "util/os_file.h"
64 #include "util/u_dynarray.h"
65 #include "util/vma.h"
66 #include "iris_bufmgr.h"
67 #include "iris_context.h"
68 #include "string.h"
69 
70 #include "drm-uapi/i915_drm.h"
71 
72 #ifdef HAVE_VALGRIND
73 #include <valgrind.h>
74 #include <memcheck.h>
75 #define VG(x) x
76 #else
77 #define VG(x)
78 #endif
79 
80 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
81  * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
82  * leaked. All because it does not call VG(cli_free) from its
83  * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
84  * and allocation, we mark it available for use upon mmapping and remove
85  * it upon unmapping.
86  */
87 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
88 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
89 
90 /* On FreeBSD PAGE_SIZE is already defined in
91  * /usr/include/machine/param.h that is indirectly
92  * included here.
93  */
94 #ifndef PAGE_SIZE
95 #define PAGE_SIZE 4096
96 #endif
97 
98 #define WARN_ONCE(cond, fmt...) do {                            \
99    if (unlikely(cond)) {                                        \
100       static bool _warned = false;                              \
101       if (!_warned) {                                           \
102          fprintf(stderr, "WARNING: ");                          \
103          fprintf(stderr, fmt);                                  \
104          _warned = true;                                        \
105       }                                                         \
106    }                                                            \
107 } while (0)
108 
109 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
110 
111 /**
112  * For debugging purposes, this returns a time in seconds.
113  */
114 static double
get_time(void)115 get_time(void)
116 {
117    struct timespec tp;
118 
119    clock_gettime(CLOCK_MONOTONIC, &tp);
120 
121    return tp.tv_sec + tp.tv_nsec / 1000000000.0;
122 }
123 
124 static inline int
atomic_add_unless(int * v,int add,int unless)125 atomic_add_unless(int *v, int add, int unless)
126 {
127    int c, old;
128    c = p_atomic_read(v);
129    while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
130       c = old;
131    return c == unless;
132 }
133 
134 static const char *
memzone_name(enum iris_memory_zone memzone)135 memzone_name(enum iris_memory_zone memzone)
136 {
137    const char *names[] = {
138       [IRIS_MEMZONE_SHADER]   = "shader",
139       [IRIS_MEMZONE_BINDER]   = "binder",
140       [IRIS_MEMZONE_BINDLESS] = "scratchsurf",
141       [IRIS_MEMZONE_SURFACE]  = "surface",
142       [IRIS_MEMZONE_DYNAMIC]  = "dynamic",
143       [IRIS_MEMZONE_OTHER]    = "other",
144       [IRIS_MEMZONE_BORDER_COLOR_POOL] = "bordercolor",
145    };
146    assert(memzone < ARRAY_SIZE(names));
147    return names[memzone];
148 }
149 
150 struct bo_cache_bucket {
151    /** List of cached BOs. */
152    struct list_head head;
153 
154    /** Size of this bucket, in bytes. */
155    uint64_t size;
156 };
157 
158 struct bo_export {
159    /** File descriptor associated with a handle export. */
160    int drm_fd;
161 
162    /** GEM handle in drm_fd */
163    uint32_t gem_handle;
164 
165    struct list_head link;
166 };
167 
168 struct iris_memregion {
169    struct drm_i915_gem_memory_class_instance region;
170    uint64_t size;
171 };
172 
173 #define NUM_SLAB_ALLOCATORS 3
174 
175 enum iris_heap {
176    IRIS_HEAP_SYSTEM_MEMORY,
177    IRIS_HEAP_DEVICE_LOCAL,
178    IRIS_HEAP_MAX,
179 };
180 
181 struct iris_slab {
182    struct pb_slab base;
183 
184    unsigned entry_size;
185 
186    /** The BO representing the entire slab */
187    struct iris_bo *bo;
188 
189    /** Array of iris_bo structs representing BOs allocated out of this slab */
190    struct iris_bo *entries;
191 };
192 
193 struct iris_bufmgr {
194    /**
195     * List into the list of bufmgr.
196     */
197    struct list_head link;
198 
199    uint32_t refcount;
200 
201    int fd;
202 
203    simple_mtx_t lock;
204    simple_mtx_t bo_deps_lock;
205 
206    /** Array of lists of cached gem objects of power-of-two sizes */
207    struct bo_cache_bucket cache_bucket[14 * 4];
208    int num_buckets;
209 
210    /** Same as cache_bucket, but for local memory gem objects */
211    struct bo_cache_bucket local_cache_bucket[14 * 4];
212    int num_local_buckets;
213 
214    time_t time;
215 
216    struct hash_table *name_table;
217    struct hash_table *handle_table;
218 
219    /**
220     * List of BOs which we've effectively freed, but are hanging on to
221     * until they're idle before closing and returning the VMA.
222     */
223    struct list_head zombie_list;
224 
225    struct util_vma_heap vma_allocator[IRIS_MEMZONE_COUNT];
226 
227    uint64_t vma_min_align;
228    struct iris_memregion vram, sys;
229 
230    int next_screen_id;
231 
232    bool has_llc:1;
233    bool has_local_mem:1;
234    bool has_mmap_offset:1;
235    bool has_tiling_uapi:1;
236    bool has_userptr_probe:1;
237    bool bo_reuse:1;
238 
239    struct intel_aux_map_context *aux_map_ctx;
240 
241    struct pb_slabs bo_slabs[NUM_SLAB_ALLOCATORS];
242 };
243 
244 static simple_mtx_t global_bufmgr_list_mutex = _SIMPLE_MTX_INITIALIZER_NP;
245 static struct list_head global_bufmgr_list = {
246    .next = &global_bufmgr_list,
247    .prev = &global_bufmgr_list,
248 };
249 
250 static void bo_free(struct iris_bo *bo);
251 
252 static struct iris_bo *
find_and_ref_external_bo(struct hash_table * ht,unsigned int key)253 find_and_ref_external_bo(struct hash_table *ht, unsigned int key)
254 {
255    struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
256    struct iris_bo *bo = entry ? entry->data : NULL;
257 
258    if (bo) {
259       assert(iris_bo_is_external(bo));
260       assert(iris_bo_is_real(bo));
261       assert(!bo->real.reusable);
262 
263       /* Being non-reusable, the BO cannot be in the cache lists, but it
264        * may be in the zombie list if it had reached zero references, but
265        * we hadn't yet closed it...and then reimported the same BO.  If it
266        * is, then remove it since it's now been resurrected.
267        */
268       if (list_is_linked(&bo->head))
269          list_del(&bo->head);
270 
271       iris_bo_reference(bo);
272    }
273 
274    return bo;
275 }
276 
277 /**
278  * This function finds the correct bucket fit for the input size.
279  * The function works with O(1) complexity when the requested size
280  * was queried instead of iterating the size through all the buckets.
281  */
282 static struct bo_cache_bucket *
bucket_for_size(struct iris_bufmgr * bufmgr,uint64_t size,bool local)283 bucket_for_size(struct iris_bufmgr *bufmgr, uint64_t size, bool local)
284 {
285    /* Calculating the pages and rounding up to the page size. */
286    const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
287 
288    /* Row  Bucket sizes    clz((x-1) | 3)   Row    Column
289     *        in pages                      stride   size
290     *   0:   1  2  3  4 -> 30 30 30 30        4       1
291     *   1:   5  6  7  8 -> 29 29 29 29        4       1
292     *   2:  10 12 14 16 -> 28 28 28 28        8       2
293     *   3:  20 24 28 32 -> 27 27 27 27       16       4
294     */
295    const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
296    const unsigned row_max_pages = 4 << row;
297 
298    /* The '& ~2' is the special case for row 1. In row 1, max pages /
299     * 2 is 2, but the previous row maximum is zero (because there is
300     * no previous row). All row maximum sizes are power of 2, so that
301     * is the only case where that bit will be set.
302     */
303    const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
304    int col_size_log2 = row - 1;
305    col_size_log2 += (col_size_log2 < 0);
306 
307    const unsigned col = (pages - prev_row_max_pages +
308                         ((1 << col_size_log2) - 1)) >> col_size_log2;
309 
310    /* Calculating the index based on the row and column. */
311    const unsigned index = (row * 4) + (col - 1);
312 
313    int num_buckets = local ? bufmgr->num_local_buckets : bufmgr->num_buckets;
314    struct bo_cache_bucket *buckets = local ?
315       bufmgr->local_cache_bucket : bufmgr->cache_bucket;
316 
317    return (index < num_buckets) ? &buckets[index] : NULL;
318 }
319 
320 enum iris_memory_zone
iris_memzone_for_address(uint64_t address)321 iris_memzone_for_address(uint64_t address)
322 {
323    STATIC_ASSERT(IRIS_MEMZONE_OTHER_START    > IRIS_MEMZONE_DYNAMIC_START);
324    STATIC_ASSERT(IRIS_MEMZONE_DYNAMIC_START  > IRIS_MEMZONE_SURFACE_START);
325    STATIC_ASSERT(IRIS_MEMZONE_SURFACE_START  > IRIS_MEMZONE_BINDLESS_START);
326    STATIC_ASSERT(IRIS_MEMZONE_BINDLESS_START > IRIS_MEMZONE_BINDER_START);
327    STATIC_ASSERT(IRIS_MEMZONE_BINDER_START   > IRIS_MEMZONE_SHADER_START);
328    STATIC_ASSERT(IRIS_BORDER_COLOR_POOL_ADDRESS == IRIS_MEMZONE_DYNAMIC_START);
329 
330    if (address >= IRIS_MEMZONE_OTHER_START)
331       return IRIS_MEMZONE_OTHER;
332 
333    if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
334       return IRIS_MEMZONE_BORDER_COLOR_POOL;
335 
336    if (address > IRIS_MEMZONE_DYNAMIC_START)
337       return IRIS_MEMZONE_DYNAMIC;
338 
339    if (address >= IRIS_MEMZONE_SURFACE_START)
340       return IRIS_MEMZONE_SURFACE;
341 
342    if (address >= IRIS_MEMZONE_BINDLESS_START)
343       return IRIS_MEMZONE_BINDLESS;
344 
345    if (address >= IRIS_MEMZONE_BINDER_START)
346       return IRIS_MEMZONE_BINDER;
347 
348    return IRIS_MEMZONE_SHADER;
349 }
350 
351 /**
352  * Allocate a section of virtual memory for a buffer, assigning an address.
353  *
354  * This uses either the bucket allocator for the given size, or the large
355  * object allocator (util_vma).
356  */
357 static uint64_t
vma_alloc(struct iris_bufmgr * bufmgr,enum iris_memory_zone memzone,uint64_t size,uint64_t alignment)358 vma_alloc(struct iris_bufmgr *bufmgr,
359           enum iris_memory_zone memzone,
360           uint64_t size,
361           uint64_t alignment)
362 {
363    /* Force minimum alignment based on device requirements */
364    assert((alignment & (alignment - 1)) == 0);
365    alignment = MAX2(alignment, bufmgr->vma_min_align);
366 
367    if (memzone == IRIS_MEMZONE_BORDER_COLOR_POOL)
368       return IRIS_BORDER_COLOR_POOL_ADDRESS;
369 
370    /* The binder handles its own allocations.  Return non-zero here. */
371    if (memzone == IRIS_MEMZONE_BINDER)
372       return IRIS_MEMZONE_BINDER_START;
373 
374    uint64_t addr =
375       util_vma_heap_alloc(&bufmgr->vma_allocator[memzone], size, alignment);
376 
377    assert((addr >> 48ull) == 0);
378    assert((addr % alignment) == 0);
379 
380    return intel_canonical_address(addr);
381 }
382 
383 static void
vma_free(struct iris_bufmgr * bufmgr,uint64_t address,uint64_t size)384 vma_free(struct iris_bufmgr *bufmgr,
385          uint64_t address,
386          uint64_t size)
387 {
388    if (address == IRIS_BORDER_COLOR_POOL_ADDRESS)
389       return;
390 
391    /* Un-canonicalize the address. */
392    address = intel_48b_address(address);
393 
394    if (address == 0ull)
395       return;
396 
397    enum iris_memory_zone memzone = iris_memzone_for_address(address);
398 
399    /* The binder handles its own allocations. */
400    if (memzone == IRIS_MEMZONE_BINDER)
401       return;
402 
403    assert(memzone < ARRAY_SIZE(bufmgr->vma_allocator));
404 
405    util_vma_heap_free(&bufmgr->vma_allocator[memzone], address, size);
406 }
407 
408 static bool
iris_bo_busy_gem(struct iris_bo * bo)409 iris_bo_busy_gem(struct iris_bo *bo)
410 {
411    assert(iris_bo_is_real(bo));
412 
413    struct iris_bufmgr *bufmgr = bo->bufmgr;
414    struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
415 
416    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
417    if (ret == 0) {
418       return busy.busy;
419    }
420    return false;
421 }
422 
423 /* A timeout of 0 just checks for busyness. */
424 static int
iris_bo_wait_syncobj(struct iris_bo * bo,int64_t timeout_ns)425 iris_bo_wait_syncobj(struct iris_bo *bo, int64_t timeout_ns)
426 {
427    int ret = 0;
428    struct iris_bufmgr *bufmgr = bo->bufmgr;
429 
430    /* If we know it's idle, don't bother with the kernel round trip */
431    if (bo->idle)
432       return 0;
433 
434    simple_mtx_lock(&bufmgr->bo_deps_lock);
435 
436    uint32_t handles[bo->deps_size * IRIS_BATCH_COUNT * 2];
437    int handle_count = 0;
438 
439    for (int d = 0; d < bo->deps_size; d++) {
440       for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
441          struct iris_syncobj *r = bo->deps[d].read_syncobjs[b];
442          struct iris_syncobj *w = bo->deps[d].write_syncobjs[b];
443          if (r)
444             handles[handle_count++] = r->handle;
445          if (w)
446             handles[handle_count++] = w->handle;
447       }
448    }
449 
450    if (handle_count == 0)
451       goto out;
452 
453    /* Unlike the gem wait, negative values are not infinite here. */
454    int64_t timeout_abs = os_time_get_absolute_timeout(timeout_ns);
455    if (timeout_abs < 0)
456       timeout_abs = INT64_MAX;
457 
458    struct drm_syncobj_wait args = {
459       .handles = (uintptr_t) handles,
460       .timeout_nsec = timeout_abs,
461       .count_handles = handle_count,
462       .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL,
463    };
464 
465    ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args);
466    if (ret != 0) {
467       ret = -errno;
468       goto out;
469    }
470 
471    /* We just waited everything, so clean all the deps. */
472    for (int d = 0; d < bo->deps_size; d++) {
473       for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
474          iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
475          iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
476       }
477    }
478 
479 out:
480    simple_mtx_unlock(&bufmgr->bo_deps_lock);
481    return ret;
482 }
483 
484 static bool
iris_bo_busy_syncobj(struct iris_bo * bo)485 iris_bo_busy_syncobj(struct iris_bo *bo)
486 {
487    return iris_bo_wait_syncobj(bo, 0) == -ETIME;
488 }
489 
490 bool
iris_bo_busy(struct iris_bo * bo)491 iris_bo_busy(struct iris_bo *bo)
492 {
493    bool busy;
494    if (iris_bo_is_external(bo))
495       busy = iris_bo_busy_gem(bo);
496    else
497       busy = iris_bo_busy_syncobj(bo);
498 
499    bo->idle = !busy;
500 
501    return busy;
502 }
503 
504 int
iris_bo_madvise(struct iris_bo * bo,int state)505 iris_bo_madvise(struct iris_bo *bo, int state)
506 {
507    /* We can't madvise suballocated BOs. */
508    assert(iris_bo_is_real(bo));
509 
510    struct drm_i915_gem_madvise madv = {
511       .handle = bo->gem_handle,
512       .madv = state,
513       .retained = 1,
514    };
515 
516    intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
517 
518    return madv.retained;
519 }
520 
521 static struct iris_bo *
bo_calloc(void)522 bo_calloc(void)
523 {
524    struct iris_bo *bo = calloc(1, sizeof(*bo));
525    if (!bo)
526       return NULL;
527 
528    list_inithead(&bo->real.exports);
529 
530    bo->hash = _mesa_hash_pointer(bo);
531 
532    return bo;
533 }
534 
535 static void
bo_unmap(struct iris_bo * bo)536 bo_unmap(struct iris_bo *bo)
537 {
538    assert(iris_bo_is_real(bo));
539 
540    VG_NOACCESS(bo->real.map, bo->size);
541    os_munmap(bo->real.map, bo->size);
542    bo->real.map = NULL;
543 }
544 
545 static struct pb_slabs *
get_slabs(struct iris_bufmgr * bufmgr,uint64_t size)546 get_slabs(struct iris_bufmgr *bufmgr, uint64_t size)
547 {
548    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
549       struct pb_slabs *slabs = &bufmgr->bo_slabs[i];
550 
551       if (size <= 1ull << (slabs->min_order + slabs->num_orders - 1))
552          return slabs;
553    }
554 
555    unreachable("should have found a valid slab for this size");
556 }
557 
558 /* Return the power of two size of a slab entry matching the input size. */
559 static unsigned
get_slab_pot_entry_size(struct iris_bufmgr * bufmgr,unsigned size)560 get_slab_pot_entry_size(struct iris_bufmgr *bufmgr, unsigned size)
561 {
562    unsigned entry_size = util_next_power_of_two(size);
563    unsigned min_entry_size = 1 << bufmgr->bo_slabs[0].min_order;
564 
565    return MAX2(entry_size, min_entry_size);
566 }
567 
568 /* Return the slab entry alignment. */
569 static unsigned
get_slab_entry_alignment(struct iris_bufmgr * bufmgr,unsigned size)570 get_slab_entry_alignment(struct iris_bufmgr *bufmgr, unsigned size)
571 {
572    unsigned entry_size = get_slab_pot_entry_size(bufmgr, size);
573 
574    if (size <= entry_size * 3 / 4)
575       return entry_size / 4;
576 
577    return entry_size;
578 }
579 
580 static bool
iris_can_reclaim_slab(void * priv,struct pb_slab_entry * entry)581 iris_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
582 {
583    struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry);
584 
585    return !iris_bo_busy(bo);
586 }
587 
588 static void
iris_slab_free(void * priv,struct pb_slab * pslab)589 iris_slab_free(void *priv, struct pb_slab *pslab)
590 {
591    struct iris_bufmgr *bufmgr = priv;
592    struct iris_slab *slab = (void *) pslab;
593    struct intel_aux_map_context *aux_map_ctx = bufmgr->aux_map_ctx;
594 
595    assert(!slab->bo->aux_map_address);
596 
597    /* Since we're freeing the whole slab, all buffers allocated out of it
598     * must be reclaimable.  We require buffers to be idle to be reclaimed
599     * (see iris_can_reclaim_slab()), so we know all entries must be idle.
600     * Therefore, we can safely unmap their aux table entries.
601     */
602    for (unsigned i = 0; i < pslab->num_entries; i++) {
603       struct iris_bo *bo = &slab->entries[i];
604       if (aux_map_ctx && bo->aux_map_address) {
605          intel_aux_map_unmap_range(aux_map_ctx, bo->address, bo->size);
606          bo->aux_map_address = 0;
607       }
608 
609       /* Unref read/write dependency syncobjs and free the array. */
610       for (int d = 0; d < bo->deps_size; d++) {
611          for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
612             iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
613             iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
614          }
615       }
616       free(bo->deps);
617    }
618 
619    iris_bo_unreference(slab->bo);
620 
621    free(slab->entries);
622    free(slab);
623 }
624 
625 static struct pb_slab *
iris_slab_alloc(void * priv,unsigned heap,unsigned entry_size,unsigned group_index)626 iris_slab_alloc(void *priv,
627                 unsigned heap,
628                 unsigned entry_size,
629                 unsigned group_index)
630 {
631    struct iris_bufmgr *bufmgr = priv;
632    struct iris_slab *slab = calloc(1, sizeof(struct iris_slab));
633    unsigned flags = heap == IRIS_HEAP_SYSTEM_MEMORY ? BO_ALLOC_SMEM : 0;
634    unsigned slab_size = 0;
635    /* We only support slab allocation for IRIS_MEMZONE_OTHER */
636    enum iris_memory_zone memzone = IRIS_MEMZONE_OTHER;
637 
638    if (!slab)
639       return NULL;
640 
641    struct pb_slabs *slabs = bufmgr->bo_slabs;
642 
643    /* Determine the slab buffer size. */
644    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
645       unsigned max_entry_size =
646          1 << (slabs[i].min_order + slabs[i].num_orders - 1);
647 
648       if (entry_size <= max_entry_size) {
649          /* The slab size is twice the size of the largest possible entry. */
650          slab_size = max_entry_size * 2;
651 
652          if (!util_is_power_of_two_nonzero(entry_size)) {
653             assert(util_is_power_of_two_nonzero(entry_size * 4 / 3));
654 
655             /* If the entry size is 3/4 of a power of two, we would waste
656              * space and not gain anything if we allocated only twice the
657              * power of two for the backing buffer:
658              *
659              *    2 * 3/4 = 1.5 usable with buffer size 2
660              *
661              * Allocating 5 times the entry size leads us to the next power
662              * of two and results in a much better memory utilization:
663              *
664              *    5 * 3/4 = 3.75 usable with buffer size 4
665              */
666             if (entry_size * 5 > slab_size)
667                slab_size = util_next_power_of_two(entry_size * 5);
668          }
669 
670          /* The largest slab should have the same size as the PTE fragment
671           * size to get faster address translation.
672           *
673           * TODO: move this to intel_device_info?
674           */
675          const unsigned pte_size = 2 * 1024 * 1024;
676 
677          if (i == NUM_SLAB_ALLOCATORS - 1 && slab_size < pte_size)
678             slab_size = pte_size;
679 
680          break;
681       }
682    }
683    assert(slab_size != 0);
684 
685    slab->bo =
686       iris_bo_alloc(bufmgr, "slab", slab_size, slab_size, memzone, flags);
687    if (!slab->bo)
688       goto fail;
689 
690    slab_size = slab->bo->size;
691 
692    slab->base.num_entries = slab_size / entry_size;
693    slab->base.num_free = slab->base.num_entries;
694    slab->entry_size = entry_size;
695    slab->entries = calloc(slab->base.num_entries, sizeof(*slab->entries));
696    if (!slab->entries)
697       goto fail_bo;
698 
699    list_inithead(&slab->base.free);
700 
701    for (unsigned i = 0; i < slab->base.num_entries; i++) {
702       struct iris_bo *bo = &slab->entries[i];
703 
704       bo->size = entry_size;
705       bo->bufmgr = bufmgr;
706       bo->hash = _mesa_hash_pointer(bo);
707       bo->gem_handle = 0;
708       bo->address = slab->bo->address + i * entry_size;
709       bo->aux_map_address = 0;
710       bo->index = -1;
711       bo->refcount = 0;
712       bo->idle = true;
713 
714       bo->slab.entry.slab = &slab->base;
715       bo->slab.entry.group_index = group_index;
716       bo->slab.entry.entry_size = entry_size;
717 
718       bo->slab.real = iris_get_backing_bo(slab->bo);
719 
720       list_addtail(&bo->slab.entry.head, &slab->base.free);
721    }
722 
723    return &slab->base;
724 
725 fail_bo:
726    iris_bo_unreference(slab->bo);
727 fail:
728    free(slab);
729    return NULL;
730 }
731 
732 static struct iris_bo *
alloc_bo_from_slabs(struct iris_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t alignment,unsigned flags,bool local)733 alloc_bo_from_slabs(struct iris_bufmgr *bufmgr,
734                     const char *name,
735                     uint64_t size,
736                     uint32_t alignment,
737                     unsigned flags,
738                     bool local)
739 {
740    if (flags & BO_ALLOC_NO_SUBALLOC)
741       return NULL;
742 
743    struct pb_slabs *last_slab = &bufmgr->bo_slabs[NUM_SLAB_ALLOCATORS - 1];
744    unsigned max_slab_entry_size =
745       1 << (last_slab->min_order + last_slab->num_orders - 1);
746 
747    if (size > max_slab_entry_size)
748       return NULL;
749 
750    struct pb_slab_entry *entry;
751 
752    enum iris_heap heap =
753       local ? IRIS_HEAP_DEVICE_LOCAL : IRIS_HEAP_SYSTEM_MEMORY;
754 
755    unsigned alloc_size = size;
756 
757    /* Always use slabs for sizes less than 4 KB because the kernel aligns
758     * everything to 4 KB.
759     */
760    if (size < alignment && alignment <= 4 * 1024)
761       alloc_size = alignment;
762 
763    if (alignment > get_slab_entry_alignment(bufmgr, alloc_size)) {
764       /* 3/4 allocations can return too small alignment.
765        * Try again with a power of two allocation size.
766        */
767       unsigned pot_size = get_slab_pot_entry_size(bufmgr, alloc_size);
768 
769       if (alignment <= pot_size) {
770          /* This size works but wastes some memory to fulfill the alignment. */
771          alloc_size = pot_size;
772       } else {
773          /* can't fulfill alignment requirements */
774          return NULL;
775       }
776    }
777 
778    struct pb_slabs *slabs = get_slabs(bufmgr, alloc_size);
779    entry = pb_slab_alloc(slabs, alloc_size, heap);
780    if (!entry) {
781       /* Clean up and try again... */
782       pb_slabs_reclaim(slabs);
783 
784       entry = pb_slab_alloc(slabs, alloc_size, heap);
785    }
786    if (!entry)
787       return NULL;
788 
789    struct iris_bo *bo = container_of(entry, struct iris_bo, slab.entry);
790 
791    if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
792       /* This buffer was associated with an aux-buffer range.  We only allow
793        * slab allocated buffers to be reclaimed when idle (not in use by an
794        * executing batch).  (See iris_can_reclaim_slab().)  So we know that
795        * our previous aux mapping is no longer in use, and we can safely
796        * remove it.
797        */
798       intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
799                                 bo->size);
800       bo->aux_map_address = 0;
801    }
802 
803    p_atomic_set(&bo->refcount, 1);
804    bo->name = name;
805    bo->size = size;
806 
807    /* Zero the contents if necessary.  If this fails, fall back to
808     * allocating a fresh BO, which will always be zeroed by the kernel.
809     */
810    if (flags & BO_ALLOC_ZEROED) {
811       void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
812       if (map) {
813          memset(map, 0, bo->size);
814       } else {
815          pb_slab_free(slabs, &bo->slab.entry);
816          return NULL;
817       }
818    }
819 
820    return bo;
821 }
822 
823 static struct iris_bo *
alloc_bo_from_cache(struct iris_bufmgr * bufmgr,struct bo_cache_bucket * bucket,uint32_t alignment,enum iris_memory_zone memzone,enum iris_mmap_mode mmap_mode,unsigned flags,bool match_zone)824 alloc_bo_from_cache(struct iris_bufmgr *bufmgr,
825                     struct bo_cache_bucket *bucket,
826                     uint32_t alignment,
827                     enum iris_memory_zone memzone,
828                     enum iris_mmap_mode mmap_mode,
829                     unsigned flags,
830                     bool match_zone)
831 {
832    if (!bucket)
833       return NULL;
834 
835    struct iris_bo *bo = NULL;
836 
837    list_for_each_entry_safe(struct iris_bo, cur, &bucket->head, head) {
838       assert(iris_bo_is_real(cur));
839 
840       /* Find one that's got the right mapping type.  We used to swap maps
841        * around but the kernel doesn't allow this on discrete GPUs.
842        */
843       if (mmap_mode != cur->real.mmap_mode)
844          continue;
845 
846       /* Try a little harder to find one that's already in the right memzone */
847       if (match_zone && memzone != iris_memzone_for_address(cur->address))
848          continue;
849 
850       /* If the last BO in the cache is busy, there are no idle BOs.  Bail,
851        * either falling back to a non-matching memzone, or if that fails,
852        * allocating a fresh buffer.
853        */
854       if (iris_bo_busy(cur))
855          return NULL;
856 
857       list_del(&cur->head);
858 
859       /* Tell the kernel we need this BO.  If it still exists, we're done! */
860       if (iris_bo_madvise(cur, I915_MADV_WILLNEED)) {
861          bo = cur;
862          break;
863       }
864 
865       /* This BO was purged, throw it out and keep looking. */
866       bo_free(cur);
867    }
868 
869    if (!bo)
870       return NULL;
871 
872    if (bo->aux_map_address) {
873       /* This buffer was associated with an aux-buffer range. We make sure
874        * that buffers are not reused from the cache while the buffer is (busy)
875        * being used by an executing batch. Since we are here, the buffer is no
876        * longer being used by a batch and the buffer was deleted (in order to
877        * end up in the cache). Therefore its old aux-buffer range can be
878        * removed from the aux-map.
879        */
880       if (bo->bufmgr->aux_map_ctx)
881          intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
882                                    bo->size);
883       bo->aux_map_address = 0;
884    }
885 
886    /* If the cached BO isn't in the right memory zone, or the alignment
887     * isn't sufficient, free the old memory and assign it a new address.
888     */
889    if (memzone != iris_memzone_for_address(bo->address) ||
890        bo->address % alignment != 0) {
891       vma_free(bufmgr, bo->address, bo->size);
892       bo->address = 0ull;
893    }
894 
895    /* Zero the contents if necessary.  If this fails, fall back to
896     * allocating a fresh BO, which will always be zeroed by the kernel.
897     */
898    if (flags & BO_ALLOC_ZEROED) {
899       void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
900       if (map) {
901          memset(map, 0, bo->size);
902       } else {
903          bo_free(bo);
904          return NULL;
905       }
906    }
907 
908    return bo;
909 }
910 
911 static struct iris_bo *
alloc_fresh_bo(struct iris_bufmgr * bufmgr,uint64_t bo_size,bool local)912 alloc_fresh_bo(struct iris_bufmgr *bufmgr, uint64_t bo_size, bool local)
913 {
914    struct iris_bo *bo = bo_calloc();
915    if (!bo)
916       return NULL;
917 
918    /* If we have vram size, we have multiple memory regions and should choose
919     * one of them.
920     */
921    if (bufmgr->vram.size > 0) {
922       /* All new BOs we get from the kernel are zeroed, so we don't need to
923        * worry about that here.
924        */
925       struct drm_i915_gem_memory_class_instance regions[2];
926       uint32_t nregions = 0;
927       if (local) {
928          /* For vram allocations, still use system memory as a fallback. */
929          regions[nregions++] = bufmgr->vram.region;
930          regions[nregions++] = bufmgr->sys.region;
931       } else {
932          regions[nregions++] = bufmgr->sys.region;
933       }
934 
935       struct drm_i915_gem_create_ext_memory_regions ext_regions = {
936          .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS },
937          .num_regions = nregions,
938          .regions = (uintptr_t)regions,
939       };
940 
941       struct drm_i915_gem_create_ext create = {
942          .size = bo_size,
943          .extensions = (uintptr_t)&ext_regions,
944       };
945 
946       /* It should be safe to use GEM_CREATE_EXT without checking, since we are
947        * in the side of the branch where discrete memory is available. So we
948        * can assume GEM_CREATE_EXT is supported already.
949        */
950       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &create) != 0) {
951          free(bo);
952          return NULL;
953       }
954       bo->gem_handle = create.handle;
955    } else {
956       struct drm_i915_gem_create create = { .size = bo_size };
957 
958       /* All new BOs we get from the kernel are zeroed, so we don't need to
959        * worry about that here.
960        */
961       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create) != 0) {
962          free(bo);
963          return NULL;
964       }
965       bo->gem_handle = create.handle;
966    }
967 
968    bo->bufmgr = bufmgr;
969    bo->size = bo_size;
970    bo->idle = true;
971    bo->real.local = local;
972 
973    if (bufmgr->vram.size == 0) {
974       /* Calling set_domain() will allocate pages for the BO outside of the
975        * struct mutex lock in the kernel, which is more efficient than waiting
976        * to create them during the first execbuf that uses the BO.
977        */
978       struct drm_i915_gem_set_domain sd = {
979          .handle = bo->gem_handle,
980          .read_domains = I915_GEM_DOMAIN_CPU,
981          .write_domain = 0,
982       };
983 
984       intel_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd);
985    }
986 
987    return bo;
988 }
989 
990 struct iris_bo *
iris_bo_alloc(struct iris_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t alignment,enum iris_memory_zone memzone,unsigned flags)991 iris_bo_alloc(struct iris_bufmgr *bufmgr,
992               const char *name,
993               uint64_t size,
994               uint32_t alignment,
995               enum iris_memory_zone memzone,
996               unsigned flags)
997 {
998    struct iris_bo *bo;
999    unsigned int page_size = getpagesize();
1000    bool local = bufmgr->vram.size > 0 &&
1001       !(flags & BO_ALLOC_COHERENT || flags & BO_ALLOC_SMEM);
1002    struct bo_cache_bucket *bucket = bucket_for_size(bufmgr, size, local);
1003 
1004    if (memzone != IRIS_MEMZONE_OTHER || (flags & BO_ALLOC_COHERENT))
1005       flags |= BO_ALLOC_NO_SUBALLOC;
1006 
1007    bo = alloc_bo_from_slabs(bufmgr, name, size, alignment, flags, local);
1008 
1009    if (bo)
1010       return bo;
1011 
1012    /* Round the size up to the bucket size, or if we don't have caching
1013     * at this size, a multiple of the page size.
1014     */
1015    uint64_t bo_size =
1016       bucket ? bucket->size : MAX2(ALIGN(size, page_size), page_size);
1017 
1018    bool is_coherent = bufmgr->has_llc ||
1019                       (bufmgr->vram.size > 0 && !local) ||
1020                       (flags & BO_ALLOC_COHERENT);
1021    bool is_scanout = (flags & BO_ALLOC_SCANOUT) != 0;
1022    enum iris_mmap_mode mmap_mode =
1023       !local && is_coherent && !is_scanout ? IRIS_MMAP_WB : IRIS_MMAP_WC;
1024 
1025    simple_mtx_lock(&bufmgr->lock);
1026 
1027    /* Get a buffer out of the cache if available.  First, we try to find
1028     * one with a matching memory zone so we can avoid reallocating VMA.
1029     */
1030    bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode,
1031                             flags, true);
1032 
1033    /* If that fails, we try for any cached BO, without matching memzone. */
1034    if (!bo) {
1035       bo = alloc_bo_from_cache(bufmgr, bucket, alignment, memzone, mmap_mode,
1036                                flags, false);
1037    }
1038 
1039    simple_mtx_unlock(&bufmgr->lock);
1040 
1041    if (!bo) {
1042       bo = alloc_fresh_bo(bufmgr, bo_size, local);
1043       if (!bo)
1044          return NULL;
1045    }
1046 
1047    if (bo->address == 0ull) {
1048       simple_mtx_lock(&bufmgr->lock);
1049       bo->address = vma_alloc(bufmgr, memzone, bo->size, alignment);
1050       simple_mtx_unlock(&bufmgr->lock);
1051 
1052       if (bo->address == 0ull)
1053          goto err_free;
1054    }
1055 
1056    bo->name = name;
1057    p_atomic_set(&bo->refcount, 1);
1058    bo->real.reusable = bucket && bufmgr->bo_reuse;
1059    bo->index = -1;
1060    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1061 
1062    /* By default, capture all driver-internal buffers like shader kernels,
1063     * surface states, dynamic states, border colors, and so on.
1064     */
1065    if (memzone < IRIS_MEMZONE_OTHER)
1066       bo->real.kflags |= EXEC_OBJECT_CAPTURE;
1067 
1068    assert(bo->real.map == NULL || bo->real.mmap_mode == mmap_mode);
1069    bo->real.mmap_mode = mmap_mode;
1070 
1071    /* On integrated GPUs, enable snooping to ensure coherency if needed.
1072     * For discrete, we instead use SMEM and avoid WB maps for coherency.
1073     */
1074    if ((flags & BO_ALLOC_COHERENT) &&
1075        !bufmgr->has_llc && bufmgr->vram.size == 0) {
1076       struct drm_i915_gem_caching arg = {
1077          .handle = bo->gem_handle,
1078          .caching = 1,
1079       };
1080       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) != 0)
1081          goto err_free;
1082 
1083       bo->real.reusable = false;
1084    }
1085 
1086    DBG("bo_create: buf %d (%s) (%s memzone) (%s) %llub\n", bo->gem_handle,
1087        bo->name, memzone_name(memzone), bo->real.local ? "local" : "system",
1088        (unsigned long long) size);
1089 
1090    return bo;
1091 
1092 err_free:
1093    bo_free(bo);
1094    return NULL;
1095 }
1096 
1097 struct iris_bo *
iris_bo_create_userptr(struct iris_bufmgr * bufmgr,const char * name,void * ptr,size_t size,enum iris_memory_zone memzone)1098 iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name,
1099                        void *ptr, size_t size,
1100                        enum iris_memory_zone memzone)
1101 {
1102    struct drm_gem_close close = { 0, };
1103    struct iris_bo *bo;
1104 
1105    bo = bo_calloc();
1106    if (!bo)
1107       return NULL;
1108 
1109    struct drm_i915_gem_userptr arg = {
1110       .user_ptr = (uintptr_t)ptr,
1111       .user_size = size,
1112       .flags = bufmgr->has_userptr_probe ? I915_USERPTR_PROBE : 0,
1113    };
1114    if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg))
1115       goto err_free;
1116    bo->gem_handle = arg.handle;
1117 
1118    if (!bufmgr->has_userptr_probe) {
1119       /* Check the buffer for validity before we try and use it in a batch */
1120       struct drm_i915_gem_set_domain sd = {
1121          .handle = bo->gem_handle,
1122          .read_domains = I915_GEM_DOMAIN_CPU,
1123       };
1124       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd))
1125          goto err_close;
1126    }
1127 
1128    bo->name = name;
1129    bo->size = size;
1130    bo->real.map = ptr;
1131 
1132    bo->bufmgr = bufmgr;
1133    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1134 
1135    simple_mtx_lock(&bufmgr->lock);
1136    bo->address = vma_alloc(bufmgr, memzone, size, 1);
1137    simple_mtx_unlock(&bufmgr->lock);
1138 
1139    if (bo->address == 0ull)
1140       goto err_close;
1141 
1142    p_atomic_set(&bo->refcount, 1);
1143    bo->real.userptr = true;
1144    bo->index = -1;
1145    bo->idle = true;
1146    bo->real.mmap_mode = IRIS_MMAP_WB;
1147 
1148    return bo;
1149 
1150 err_close:
1151    close.handle = bo->gem_handle;
1152    intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1153 err_free:
1154    free(bo);
1155    return NULL;
1156 }
1157 
1158 /**
1159  * Returns a iris_bo wrapping the given buffer object handle.
1160  *
1161  * This can be used when one application needs to pass a buffer object
1162  * to another.
1163  */
1164 struct iris_bo *
iris_bo_gem_create_from_name(struct iris_bufmgr * bufmgr,const char * name,unsigned int handle)1165 iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr,
1166                              const char *name, unsigned int handle)
1167 {
1168    struct iris_bo *bo;
1169 
1170    /* At the moment most applications only have a few named bo.
1171     * For instance, in a DRI client only the render buffers passed
1172     * between X and the client are named. And since X returns the
1173     * alternating names for the front/back buffer a linear search
1174     * provides a sufficiently fast match.
1175     */
1176    simple_mtx_lock(&bufmgr->lock);
1177    bo = find_and_ref_external_bo(bufmgr->name_table, handle);
1178    if (bo)
1179       goto out;
1180 
1181    struct drm_gem_open open_arg = { .name = handle };
1182    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
1183    if (ret != 0) {
1184       DBG("Couldn't reference %s handle 0x%08x: %s\n",
1185           name, handle, strerror(errno));
1186       bo = NULL;
1187       goto out;
1188    }
1189    /* Now see if someone has used a prime handle to get this
1190     * object from the kernel before by looking through the list
1191     * again for a matching gem_handle
1192     */
1193    bo = find_and_ref_external_bo(bufmgr->handle_table, open_arg.handle);
1194    if (bo)
1195       goto out;
1196 
1197    bo = bo_calloc();
1198    if (!bo)
1199       goto out;
1200 
1201    p_atomic_set(&bo->refcount, 1);
1202 
1203    bo->size = open_arg.size;
1204    bo->bufmgr = bufmgr;
1205    bo->gem_handle = open_arg.handle;
1206    bo->name = name;
1207    bo->real.global_name = handle;
1208    bo->real.reusable = false;
1209    bo->real.imported = true;
1210    bo->real.mmap_mode = IRIS_MMAP_NONE;
1211    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1212    bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1);
1213 
1214    _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1215    _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo);
1216 
1217    DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
1218 
1219 out:
1220    simple_mtx_unlock(&bufmgr->lock);
1221    return bo;
1222 }
1223 
1224 static void
bo_close(struct iris_bo * bo)1225 bo_close(struct iris_bo *bo)
1226 {
1227    struct iris_bufmgr *bufmgr = bo->bufmgr;
1228 
1229    assert(iris_bo_is_real(bo));
1230 
1231    if (iris_bo_is_external(bo)) {
1232       struct hash_entry *entry;
1233 
1234       if (bo->real.global_name) {
1235          entry = _mesa_hash_table_search(bufmgr->name_table,
1236                                          &bo->real.global_name);
1237          _mesa_hash_table_remove(bufmgr->name_table, entry);
1238       }
1239 
1240       entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
1241       _mesa_hash_table_remove(bufmgr->handle_table, entry);
1242 
1243       list_for_each_entry_safe(struct bo_export, export, &bo->real.exports, link) {
1244          struct drm_gem_close close = { .handle = export->gem_handle };
1245          intel_ioctl(export->drm_fd, DRM_IOCTL_GEM_CLOSE, &close);
1246 
1247          list_del(&export->link);
1248          free(export);
1249       }
1250    } else {
1251       assert(list_is_empty(&bo->real.exports));
1252    }
1253 
1254    /* Close this object */
1255    struct drm_gem_close close = { .handle = bo->gem_handle };
1256    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
1257    if (ret != 0) {
1258       DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1259           bo->gem_handle, bo->name, strerror(errno));
1260    }
1261 
1262    if (bo->aux_map_address && bo->bufmgr->aux_map_ctx) {
1263       intel_aux_map_unmap_range(bo->bufmgr->aux_map_ctx, bo->address,
1264                                 bo->size);
1265    }
1266 
1267    /* Return the VMA for reuse */
1268    vma_free(bo->bufmgr, bo->address, bo->size);
1269 
1270    for (int d = 0; d < bo->deps_size; d++) {
1271       for (int b = 0; b < IRIS_BATCH_COUNT; b++) {
1272          iris_syncobj_reference(bufmgr, &bo->deps[d].write_syncobjs[b], NULL);
1273          iris_syncobj_reference(bufmgr, &bo->deps[d].read_syncobjs[b], NULL);
1274       }
1275    }
1276    free(bo->deps);
1277 
1278    free(bo);
1279 }
1280 
1281 static void
bo_free(struct iris_bo * bo)1282 bo_free(struct iris_bo *bo)
1283 {
1284    struct iris_bufmgr *bufmgr = bo->bufmgr;
1285 
1286    assert(iris_bo_is_real(bo));
1287 
1288    if (!bo->real.userptr && bo->real.map)
1289       bo_unmap(bo);
1290 
1291    if (bo->idle) {
1292       bo_close(bo);
1293    } else {
1294       /* Defer closing the GEM BO and returning the VMA for reuse until the
1295        * BO is idle.  Just move it to the dead list for now.
1296        */
1297       list_addtail(&bo->head, &bufmgr->zombie_list);
1298    }
1299 }
1300 
1301 /** Frees all cached buffers significantly older than @time. */
1302 static void
cleanup_bo_cache(struct iris_bufmgr * bufmgr,time_t time)1303 cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time)
1304 {
1305    int i;
1306 
1307    if (bufmgr->time == time)
1308       return;
1309 
1310    for (i = 0; i < bufmgr->num_buckets; i++) {
1311       struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1312 
1313       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1314          if (time - bo->real.free_time <= 1)
1315             break;
1316 
1317          list_del(&bo->head);
1318 
1319          bo_free(bo);
1320       }
1321    }
1322 
1323    for (i = 0; i < bufmgr->num_local_buckets; i++) {
1324       struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i];
1325 
1326       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1327          if (time - bo->real.free_time <= 1)
1328             break;
1329 
1330          list_del(&bo->head);
1331 
1332          bo_free(bo);
1333       }
1334    }
1335 
1336    list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1337       /* Stop once we reach a busy BO - all others past this point were
1338        * freed more recently so are likely also busy.
1339        */
1340       if (!bo->idle && iris_bo_busy(bo))
1341          break;
1342 
1343       list_del(&bo->head);
1344       bo_close(bo);
1345    }
1346 
1347    bufmgr->time = time;
1348 }
1349 
1350 static void
bo_unreference_final(struct iris_bo * bo,time_t time)1351 bo_unreference_final(struct iris_bo *bo, time_t time)
1352 {
1353    struct iris_bufmgr *bufmgr = bo->bufmgr;
1354    struct bo_cache_bucket *bucket;
1355 
1356    DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
1357 
1358    assert(iris_bo_is_real(bo));
1359 
1360    bucket = NULL;
1361    if (bo->real.reusable)
1362       bucket = bucket_for_size(bufmgr, bo->size, bo->real.local);
1363    /* Put the buffer into our internal cache for reuse if we can. */
1364    if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) {
1365       bo->real.free_time = time;
1366       bo->name = NULL;
1367 
1368       list_addtail(&bo->head, &bucket->head);
1369    } else {
1370       bo_free(bo);
1371    }
1372 }
1373 
1374 void
iris_bo_unreference(struct iris_bo * bo)1375 iris_bo_unreference(struct iris_bo *bo)
1376 {
1377    if (bo == NULL)
1378       return;
1379 
1380    assert(p_atomic_read(&bo->refcount) > 0);
1381 
1382    if (atomic_add_unless(&bo->refcount, -1, 1)) {
1383       struct iris_bufmgr *bufmgr = bo->bufmgr;
1384       struct timespec time;
1385 
1386       clock_gettime(CLOCK_MONOTONIC, &time);
1387 
1388       if (bo->gem_handle == 0) {
1389          pb_slab_free(get_slabs(bufmgr, bo->size), &bo->slab.entry);
1390       } else {
1391          simple_mtx_lock(&bufmgr->lock);
1392 
1393          if (p_atomic_dec_zero(&bo->refcount)) {
1394             bo_unreference_final(bo, time.tv_sec);
1395             cleanup_bo_cache(bufmgr, time.tv_sec);
1396          }
1397 
1398          simple_mtx_unlock(&bufmgr->lock);
1399       }
1400    }
1401 }
1402 
1403 static void
bo_wait_with_stall_warning(struct pipe_debug_callback * dbg,struct iris_bo * bo,const char * action)1404 bo_wait_with_stall_warning(struct pipe_debug_callback *dbg,
1405                            struct iris_bo *bo,
1406                            const char *action)
1407 {
1408    bool busy = dbg && !bo->idle;
1409    double elapsed = unlikely(busy) ? -get_time() : 0.0;
1410 
1411    iris_bo_wait_rendering(bo);
1412 
1413    if (unlikely(busy)) {
1414       elapsed += get_time();
1415       if (elapsed > 1e-5) /* 0.01ms */ {
1416          perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n",
1417                     action, bo->name, elapsed * 1000);
1418       }
1419    }
1420 }
1421 
1422 static void
print_flags(unsigned flags)1423 print_flags(unsigned flags)
1424 {
1425    if (flags & MAP_READ)
1426       DBG("READ ");
1427    if (flags & MAP_WRITE)
1428       DBG("WRITE ");
1429    if (flags & MAP_ASYNC)
1430       DBG("ASYNC ");
1431    if (flags & MAP_PERSISTENT)
1432       DBG("PERSISTENT ");
1433    if (flags & MAP_COHERENT)
1434       DBG("COHERENT ");
1435    if (flags & MAP_RAW)
1436       DBG("RAW ");
1437    DBG("\n");
1438 }
1439 
1440 static void *
iris_bo_gem_mmap_legacy(struct pipe_debug_callback * dbg,struct iris_bo * bo)1441 iris_bo_gem_mmap_legacy(struct pipe_debug_callback *dbg, struct iris_bo *bo)
1442 {
1443    struct iris_bufmgr *bufmgr = bo->bufmgr;
1444 
1445    assert(bufmgr->vram.size == 0);
1446    assert(iris_bo_is_real(bo));
1447    assert(bo->real.mmap_mode == IRIS_MMAP_WB ||
1448           bo->real.mmap_mode == IRIS_MMAP_WC);
1449 
1450    struct drm_i915_gem_mmap mmap_arg = {
1451       .handle = bo->gem_handle,
1452       .size = bo->size,
1453       .flags = bo->real.mmap_mode == IRIS_MMAP_WC ? I915_MMAP_WC : 0,
1454    };
1455 
1456    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
1457    if (ret != 0) {
1458       DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1459           __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1460       return NULL;
1461    }
1462    void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
1463 
1464    return map;
1465 }
1466 
1467 static void *
iris_bo_gem_mmap_offset(struct pipe_debug_callback * dbg,struct iris_bo * bo)1468 iris_bo_gem_mmap_offset(struct pipe_debug_callback *dbg, struct iris_bo *bo)
1469 {
1470    struct iris_bufmgr *bufmgr = bo->bufmgr;
1471 
1472    assert(iris_bo_is_real(bo));
1473 
1474    struct drm_i915_gem_mmap_offset mmap_arg = {
1475       .handle = bo->gem_handle,
1476    };
1477 
1478    if (bufmgr->has_local_mem) {
1479       /* On discrete memory platforms, we cannot control the mmap caching mode
1480        * at mmap time.  Instead, it's fixed when the object is created (this
1481        * is a limitation of TTM).
1482        *
1483        * On DG1, our only currently enabled discrete platform, there is no
1484        * control over what mode we get.  For SMEM, we always get WB because
1485        * it's fast (probably what we want) and when the device views SMEM
1486        * across PCIe, it's always snooped.  The only caching mode allowed by
1487        * DG1 hardware for LMEM is WC.
1488        */
1489       if (bo->real.local)
1490          assert(bo->real.mmap_mode == IRIS_MMAP_WC);
1491       else
1492          assert(bo->real.mmap_mode == IRIS_MMAP_WB);
1493 
1494       mmap_arg.flags = I915_MMAP_OFFSET_FIXED;
1495    } else {
1496       /* Only integrated platforms get to select a mmap caching mode here */
1497       static const uint32_t mmap_offset_for_mode[] = {
1498          [IRIS_MMAP_UC]    = I915_MMAP_OFFSET_UC,
1499          [IRIS_MMAP_WC]    = I915_MMAP_OFFSET_WC,
1500          [IRIS_MMAP_WB]    = I915_MMAP_OFFSET_WB,
1501       };
1502       assert(bo->real.mmap_mode != IRIS_MMAP_NONE);
1503       assert(bo->real.mmap_mode < ARRAY_SIZE(mmap_offset_for_mode));
1504       mmap_arg.flags = mmap_offset_for_mode[bo->real.mmap_mode];
1505    }
1506 
1507    /* Get the fake offset back */
1508    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &mmap_arg);
1509    if (ret != 0) {
1510       DBG("%s:%d: Error preparing buffer %d (%s): %s .\n",
1511           __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1512       return NULL;
1513    }
1514 
1515    /* And map it */
1516    void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
1517                     bufmgr->fd, mmap_arg.offset);
1518    if (map == MAP_FAILED) {
1519       DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1520           __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
1521       return NULL;
1522    }
1523 
1524    return map;
1525 }
1526 
1527 void *
iris_bo_map(struct pipe_debug_callback * dbg,struct iris_bo * bo,unsigned flags)1528 iris_bo_map(struct pipe_debug_callback *dbg,
1529             struct iris_bo *bo, unsigned flags)
1530 {
1531    struct iris_bufmgr *bufmgr = bo->bufmgr;
1532    void *map = NULL;
1533 
1534    if (bo->gem_handle == 0) {
1535       struct iris_bo *real = iris_get_backing_bo(bo);
1536       uint64_t offset = bo->address - real->address;
1537       map = iris_bo_map(dbg, real, flags | MAP_ASYNC) + offset;
1538    } else {
1539       assert(bo->real.mmap_mode != IRIS_MMAP_NONE);
1540       if (bo->real.mmap_mode == IRIS_MMAP_NONE)
1541          return NULL;
1542 
1543       if (!bo->real.map) {
1544          DBG("iris_bo_map: %d (%s)\n", bo->gem_handle, bo->name);
1545          map = bufmgr->has_mmap_offset ? iris_bo_gem_mmap_offset(dbg, bo)
1546                                        : iris_bo_gem_mmap_legacy(dbg, bo);
1547          if (!map) {
1548             return NULL;
1549          }
1550 
1551          VG_DEFINED(map, bo->size);
1552 
1553          if (p_atomic_cmpxchg(&bo->real.map, NULL, map)) {
1554             VG_NOACCESS(map, bo->size);
1555             os_munmap(map, bo->size);
1556          }
1557       }
1558       assert(bo->real.map);
1559       map = bo->real.map;
1560    }
1561 
1562    DBG("iris_bo_map: %d (%s) -> %p\n",
1563        bo->gem_handle, bo->name, bo->real.map);
1564    print_flags(flags);
1565 
1566    if (!(flags & MAP_ASYNC)) {
1567       bo_wait_with_stall_warning(dbg, bo, "memory mapping");
1568    }
1569 
1570    return map;
1571 }
1572 
1573 /** Waits for all GPU rendering with the object to have completed. */
1574 void
iris_bo_wait_rendering(struct iris_bo * bo)1575 iris_bo_wait_rendering(struct iris_bo *bo)
1576 {
1577    /* We require a kernel recent enough for WAIT_IOCTL support.
1578     * See intel_init_bufmgr()
1579     */
1580    iris_bo_wait(bo, -1);
1581 }
1582 
1583 static int
iris_bo_wait_gem(struct iris_bo * bo,int64_t timeout_ns)1584 iris_bo_wait_gem(struct iris_bo *bo, int64_t timeout_ns)
1585 {
1586    assert(iris_bo_is_real(bo));
1587 
1588    struct iris_bufmgr *bufmgr = bo->bufmgr;
1589    struct drm_i915_gem_wait wait = {
1590       .bo_handle = bo->gem_handle,
1591       .timeout_ns = timeout_ns,
1592    };
1593 
1594    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1595    if (ret != 0)
1596       return -errno;
1597 
1598    return 0;
1599 }
1600 
1601 /**
1602  * Waits on a BO for the given amount of time.
1603  *
1604  * @bo: buffer object to wait for
1605  * @timeout_ns: amount of time to wait in nanoseconds.
1606  *   If value is less than 0, an infinite wait will occur.
1607  *
1608  * Returns 0 if the wait was successful ie. the last batch referencing the
1609  * object has completed within the allotted time. Otherwise some negative return
1610  * value describes the error. Of particular interest is -ETIME when the wait has
1611  * failed to yield the desired result.
1612  *
1613  * Similar to iris_bo_wait_rendering except a timeout parameter allows
1614  * the operation to give up after a certain amount of time. Another subtle
1615  * difference is the internal locking semantics are different (this variant does
1616  * not hold the lock for the duration of the wait). This makes the wait subject
1617  * to a larger userspace race window.
1618  *
1619  * The implementation shall wait until the object is no longer actively
1620  * referenced within a batch buffer at the time of the call. The wait will
1621  * not guarantee that the buffer is re-issued via another thread, or an flinked
1622  * handle. Userspace must make sure this race does not occur if such precision
1623  * is important.
1624  *
1625  * Note that some kernels have broken the infinite wait for negative values
1626  * promise, upgrade to latest stable kernels if this is the case.
1627  */
1628 int
iris_bo_wait(struct iris_bo * bo,int64_t timeout_ns)1629 iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns)
1630 {
1631    int ret;
1632 
1633    if (iris_bo_is_external(bo))
1634       ret = iris_bo_wait_gem(bo, timeout_ns);
1635    else
1636       ret = iris_bo_wait_syncobj(bo, timeout_ns);
1637 
1638    if (ret != 0)
1639       return -errno;
1640 
1641    bo->idle = true;
1642 
1643    return ret;
1644 }
1645 
1646 static void
iris_bufmgr_destroy(struct iris_bufmgr * bufmgr)1647 iris_bufmgr_destroy(struct iris_bufmgr *bufmgr)
1648 {
1649    /* Free aux-map buffers */
1650    intel_aux_map_finish(bufmgr->aux_map_ctx);
1651 
1652    /* bufmgr will no longer try to free VMA entries in the aux-map */
1653    bufmgr->aux_map_ctx = NULL;
1654 
1655    for (int i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
1656       if (bufmgr->bo_slabs[i].groups)
1657          pb_slabs_deinit(&bufmgr->bo_slabs[i]);
1658    }
1659 
1660    simple_mtx_destroy(&bufmgr->lock);
1661    simple_mtx_destroy(&bufmgr->bo_deps_lock);
1662 
1663    /* Free any cached buffer objects we were going to reuse */
1664    for (int i = 0; i < bufmgr->num_buckets; i++) {
1665       struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1666 
1667       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1668          list_del(&bo->head);
1669 
1670          bo_free(bo);
1671       }
1672    }
1673 
1674    for (int i = 0; i < bufmgr->num_local_buckets; i++) {
1675       struct bo_cache_bucket *bucket = &bufmgr->local_cache_bucket[i];
1676 
1677       list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) {
1678          list_del(&bo->head);
1679 
1680          bo_free(bo);
1681       }
1682    }
1683 
1684    /* Close any buffer objects on the dead list. */
1685    list_for_each_entry_safe(struct iris_bo, bo, &bufmgr->zombie_list, head) {
1686       list_del(&bo->head);
1687       bo_close(bo);
1688    }
1689 
1690    _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1691    _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1692 
1693    for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) {
1694       if (z != IRIS_MEMZONE_BINDER)
1695          util_vma_heap_finish(&bufmgr->vma_allocator[z]);
1696    }
1697 
1698    close(bufmgr->fd);
1699 
1700    free(bufmgr);
1701 }
1702 
1703 int
iris_gem_get_tiling(struct iris_bo * bo,uint32_t * tiling)1704 iris_gem_get_tiling(struct iris_bo *bo, uint32_t *tiling)
1705 {
1706    struct iris_bufmgr *bufmgr = bo->bufmgr;
1707 
1708    if (!bufmgr->has_tiling_uapi) {
1709       *tiling = I915_TILING_NONE;
1710       return 0;
1711    }
1712 
1713    struct drm_i915_gem_get_tiling ti = { .handle = bo->gem_handle };
1714    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &ti);
1715 
1716    if (ret) {
1717       DBG("gem_get_tiling failed for BO %u: %s\n",
1718           bo->gem_handle, strerror(errno));
1719    }
1720 
1721    *tiling = ti.tiling_mode;
1722 
1723    return ret;
1724 }
1725 
1726 int
iris_gem_set_tiling(struct iris_bo * bo,const struct isl_surf * surf)1727 iris_gem_set_tiling(struct iris_bo *bo, const struct isl_surf *surf)
1728 {
1729    struct iris_bufmgr *bufmgr = bo->bufmgr;
1730    uint32_t tiling_mode = isl_tiling_to_i915_tiling(surf->tiling);
1731    int ret;
1732 
1733    /* If we can't do map_gtt, the set/get_tiling API isn't useful. And it's
1734     * actually not supported by the kernel in those cases.
1735     */
1736    if (!bufmgr->has_tiling_uapi)
1737       return 0;
1738 
1739    /* GEM_SET_TILING is slightly broken and overwrites the input on the
1740     * error path, so we have to open code intel_ioctl().
1741     */
1742    do {
1743       struct drm_i915_gem_set_tiling set_tiling = {
1744          .handle = bo->gem_handle,
1745          .tiling_mode = tiling_mode,
1746          .stride = surf->row_pitch_B,
1747       };
1748       ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1749    } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1750 
1751    if (ret) {
1752       DBG("gem_set_tiling failed for BO %u: %s\n",
1753           bo->gem_handle, strerror(errno));
1754    }
1755 
1756    return ret;
1757 }
1758 
1759 struct iris_bo *
iris_bo_import_dmabuf(struct iris_bufmgr * bufmgr,int prime_fd)1760 iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd)
1761 {
1762    uint32_t handle;
1763    struct iris_bo *bo;
1764 
1765    simple_mtx_lock(&bufmgr->lock);
1766    int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1767    if (ret) {
1768       DBG("import_dmabuf: failed to obtain handle from fd: %s\n",
1769           strerror(errno));
1770       simple_mtx_unlock(&bufmgr->lock);
1771       return NULL;
1772    }
1773 
1774    /*
1775     * See if the kernel has already returned this buffer to us. Just as
1776     * for named buffers, we must not create two bo's pointing at the same
1777     * kernel object
1778     */
1779    bo = find_and_ref_external_bo(bufmgr->handle_table, handle);
1780    if (bo)
1781       goto out;
1782 
1783    bo = bo_calloc();
1784    if (!bo)
1785       goto out;
1786 
1787    p_atomic_set(&bo->refcount, 1);
1788 
1789    /* Determine size of bo.  The fd-to-handle ioctl really should
1790     * return the size, but it doesn't.  If we have kernel 3.12 or
1791     * later, we can lseek on the prime fd to get the size.  Older
1792     * kernels will just fail, in which case we fall back to the
1793     * provided (estimated or guess size). */
1794    ret = lseek(prime_fd, 0, SEEK_END);
1795    if (ret != -1)
1796       bo->size = ret;
1797 
1798    bo->bufmgr = bufmgr;
1799    bo->name = "prime";
1800    bo->real.reusable = false;
1801    bo->real.imported = true;
1802    bo->real.mmap_mode = IRIS_MMAP_NONE;
1803    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED;
1804 
1805    /* From the Bspec, Memory Compression - Gfx12:
1806     *
1807     *    The base address for the surface has to be 64K page aligned and the
1808     *    surface is expected to be padded in the virtual domain to be 4 4K
1809     *    pages.
1810     *
1811     * The dmabuf may contain a compressed surface. Align the BO to 64KB just
1812     * in case. We always align to 64KB even on platforms where we don't need
1813     * to, because it's a fairly reasonable thing to do anyway.
1814     */
1815    bo->address =
1816       vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
1817 
1818    bo->gem_handle = handle;
1819    _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1820 
1821 out:
1822    simple_mtx_unlock(&bufmgr->lock);
1823    return bo;
1824 }
1825 
1826 static void
iris_bo_mark_exported_locked(struct iris_bo * bo)1827 iris_bo_mark_exported_locked(struct iris_bo *bo)
1828 {
1829    /* We cannot export suballocated BOs. */
1830    assert(iris_bo_is_real(bo));
1831 
1832    if (!iris_bo_is_external(bo))
1833       _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo);
1834 
1835    if (!bo->real.exported) {
1836       /* If a BO is going to be used externally, it could be sent to the
1837        * display HW. So make sure our CPU mappings don't assume cache
1838        * coherency since display is outside that cache.
1839        */
1840       bo->real.exported = true;
1841       bo->real.reusable = false;
1842    }
1843 }
1844 
1845 void
iris_bo_mark_exported(struct iris_bo * bo)1846 iris_bo_mark_exported(struct iris_bo *bo)
1847 {
1848    struct iris_bufmgr *bufmgr = bo->bufmgr;
1849 
1850    /* We cannot export suballocated BOs. */
1851    assert(iris_bo_is_real(bo));
1852 
1853    if (bo->real.exported) {
1854       assert(!bo->real.reusable);
1855       return;
1856    }
1857 
1858    simple_mtx_lock(&bufmgr->lock);
1859    iris_bo_mark_exported_locked(bo);
1860    simple_mtx_unlock(&bufmgr->lock);
1861 }
1862 
1863 int
iris_bo_export_dmabuf(struct iris_bo * bo,int * prime_fd)1864 iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd)
1865 {
1866    struct iris_bufmgr *bufmgr = bo->bufmgr;
1867 
1868    /* We cannot export suballocated BOs. */
1869    assert(iris_bo_is_real(bo));
1870 
1871    iris_bo_mark_exported(bo);
1872 
1873    if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1874                           DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0)
1875       return -errno;
1876 
1877    return 0;
1878 }
1879 
1880 uint32_t
iris_bo_export_gem_handle(struct iris_bo * bo)1881 iris_bo_export_gem_handle(struct iris_bo *bo)
1882 {
1883    /* We cannot export suballocated BOs. */
1884    assert(iris_bo_is_real(bo));
1885 
1886    iris_bo_mark_exported(bo);
1887 
1888    return bo->gem_handle;
1889 }
1890 
1891 int
iris_bo_flink(struct iris_bo * bo,uint32_t * name)1892 iris_bo_flink(struct iris_bo *bo, uint32_t *name)
1893 {
1894    struct iris_bufmgr *bufmgr = bo->bufmgr;
1895 
1896    /* We cannot export suballocated BOs. */
1897    assert(iris_bo_is_real(bo));
1898 
1899    if (!bo->real.global_name) {
1900       struct drm_gem_flink flink = { .handle = bo->gem_handle };
1901 
1902       if (intel_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1903          return -errno;
1904 
1905       simple_mtx_lock(&bufmgr->lock);
1906       if (!bo->real.global_name) {
1907          iris_bo_mark_exported_locked(bo);
1908          bo->real.global_name = flink.name;
1909          _mesa_hash_table_insert(bufmgr->name_table, &bo->real.global_name, bo);
1910       }
1911       simple_mtx_unlock(&bufmgr->lock);
1912    }
1913 
1914    *name = bo->real.global_name;
1915    return 0;
1916 }
1917 
1918 int
iris_bo_export_gem_handle_for_device(struct iris_bo * bo,int drm_fd,uint32_t * out_handle)1919 iris_bo_export_gem_handle_for_device(struct iris_bo *bo, int drm_fd,
1920                                      uint32_t *out_handle)
1921 {
1922    /* We cannot export suballocated BOs. */
1923    assert(iris_bo_is_real(bo));
1924 
1925    /* Only add the new GEM handle to the list of export if it belongs to a
1926     * different GEM device. Otherwise we might close the same buffer multiple
1927     * times.
1928     */
1929    struct iris_bufmgr *bufmgr = bo->bufmgr;
1930    int ret = os_same_file_description(drm_fd, bufmgr->fd);
1931    WARN_ONCE(ret < 0,
1932              "Kernel has no file descriptor comparison support: %s\n",
1933              strerror(errno));
1934    if (ret == 0) {
1935       *out_handle = iris_bo_export_gem_handle(bo);
1936       return 0;
1937    }
1938 
1939    struct bo_export *export = calloc(1, sizeof(*export));
1940    if (!export)
1941       return -ENOMEM;
1942 
1943    export->drm_fd = drm_fd;
1944 
1945    int dmabuf_fd = -1;
1946    int err = iris_bo_export_dmabuf(bo, &dmabuf_fd);
1947    if (err) {
1948       free(export);
1949       return err;
1950    }
1951 
1952    simple_mtx_lock(&bufmgr->lock);
1953    err = drmPrimeFDToHandle(drm_fd, dmabuf_fd, &export->gem_handle);
1954    close(dmabuf_fd);
1955    if (err) {
1956       simple_mtx_unlock(&bufmgr->lock);
1957       free(export);
1958       return err;
1959    }
1960 
1961    bool found = false;
1962    list_for_each_entry(struct bo_export, iter, &bo->real.exports, link) {
1963       if (iter->drm_fd != drm_fd)
1964          continue;
1965       /* Here we assume that for a given DRM fd, we'll always get back the
1966        * same GEM handle for a given buffer.
1967        */
1968       assert(iter->gem_handle == export->gem_handle);
1969       free(export);
1970       export = iter;
1971       found = true;
1972       break;
1973    }
1974    if (!found)
1975       list_addtail(&export->link, &bo->real.exports);
1976 
1977    simple_mtx_unlock(&bufmgr->lock);
1978 
1979    *out_handle = export->gem_handle;
1980 
1981    return 0;
1982 }
1983 
1984 static void
add_bucket(struct iris_bufmgr * bufmgr,int size,bool local)1985 add_bucket(struct iris_bufmgr *bufmgr, int size, bool local)
1986 {
1987    unsigned int i = local ?
1988       bufmgr->num_local_buckets : bufmgr->num_buckets;
1989 
1990    struct bo_cache_bucket *buckets = local ?
1991       bufmgr->local_cache_bucket : bufmgr->cache_bucket;
1992 
1993    assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1994 
1995    list_inithead(&buckets[i].head);
1996    buckets[i].size = size;
1997 
1998    if (local)
1999       bufmgr->num_local_buckets++;
2000    else
2001       bufmgr->num_buckets++;
2002 
2003    assert(bucket_for_size(bufmgr, size, local) == &buckets[i]);
2004    assert(bucket_for_size(bufmgr, size - 2048, local) == &buckets[i]);
2005    assert(bucket_for_size(bufmgr, size + 1, local) != &buckets[i]);
2006 }
2007 
2008 static void
init_cache_buckets(struct iris_bufmgr * bufmgr,bool local)2009 init_cache_buckets(struct iris_bufmgr *bufmgr, bool local)
2010 {
2011    uint64_t size, cache_max_size = 64 * 1024 * 1024;
2012 
2013    /* OK, so power of two buckets was too wasteful of memory.
2014     * Give 3 other sizes between each power of two, to hopefully
2015     * cover things accurately enough.  (The alternative is
2016     * probably to just go for exact matching of sizes, and assume
2017     * that for things like composited window resize the tiled
2018     * width/height alignment and rounding of sizes to pages will
2019     * get us useful cache hit rates anyway)
2020     */
2021    add_bucket(bufmgr, PAGE_SIZE, local);
2022    add_bucket(bufmgr, PAGE_SIZE * 2, local);
2023    add_bucket(bufmgr, PAGE_SIZE * 3, local);
2024 
2025    /* Initialize the linked lists for BO reuse cache. */
2026    for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) {
2027       add_bucket(bufmgr, size, local);
2028 
2029       add_bucket(bufmgr, size + size * 1 / 4, local);
2030       add_bucket(bufmgr, size + size * 2 / 4, local);
2031       add_bucket(bufmgr, size + size * 3 / 4, local);
2032    }
2033 }
2034 
2035 uint32_t
iris_create_hw_context(struct iris_bufmgr * bufmgr)2036 iris_create_hw_context(struct iris_bufmgr *bufmgr)
2037 {
2038    struct drm_i915_gem_context_create create = { };
2039    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
2040    if (ret != 0) {
2041       DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
2042       return 0;
2043    }
2044 
2045    /* Upon declaring a GPU hang, the kernel will zap the guilty context
2046     * back to the default logical HW state and attempt to continue on to
2047     * our next submitted batchbuffer.  However, our render batches assume
2048     * the previous GPU state is preserved, and only emit commands needed
2049     * to incrementally change that state.  In particular, we inherit the
2050     * STATE_BASE_ADDRESS and PIPELINE_SELECT settings, which are critical.
2051     * With default base addresses, our next batches will almost certainly
2052     * cause more GPU hangs, leading to repeated hangs until we're banned
2053     * or the machine is dead.
2054     *
2055     * Here we tell the kernel not to attempt to recover our context but
2056     * immediately (on the next batchbuffer submission) report that the
2057     * context is lost, and we will do the recovery ourselves.  Ideally,
2058     * we'll have two lost batches instead of a continual stream of hangs.
2059     */
2060    struct drm_i915_gem_context_param p = {
2061       .ctx_id = create.ctx_id,
2062       .param = I915_CONTEXT_PARAM_RECOVERABLE,
2063       .value = false,
2064    };
2065    intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p);
2066 
2067    return create.ctx_id;
2068 }
2069 
2070 static int
iris_hw_context_get_priority(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2071 iris_hw_context_get_priority(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2072 {
2073    struct drm_i915_gem_context_param p = {
2074       .ctx_id = ctx_id,
2075       .param = I915_CONTEXT_PARAM_PRIORITY,
2076    };
2077    intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p);
2078    return p.value; /* on error, return 0 i.e. default priority */
2079 }
2080 
2081 int
iris_hw_context_set_priority(struct iris_bufmgr * bufmgr,uint32_t ctx_id,int priority)2082 iris_hw_context_set_priority(struct iris_bufmgr *bufmgr,
2083                             uint32_t ctx_id,
2084                             int priority)
2085 {
2086    struct drm_i915_gem_context_param p = {
2087       .ctx_id = ctx_id,
2088       .param = I915_CONTEXT_PARAM_PRIORITY,
2089       .value = priority,
2090    };
2091    int err;
2092 
2093    err = 0;
2094    if (intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
2095       err = -errno;
2096 
2097    return err;
2098 }
2099 
2100 uint32_t
iris_clone_hw_context(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2101 iris_clone_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2102 {
2103    uint32_t new_ctx = iris_create_hw_context(bufmgr);
2104 
2105    if (new_ctx) {
2106       int priority = iris_hw_context_get_priority(bufmgr, ctx_id);
2107       iris_hw_context_set_priority(bufmgr, new_ctx, priority);
2108    }
2109 
2110    return new_ctx;
2111 }
2112 
2113 void
iris_destroy_hw_context(struct iris_bufmgr * bufmgr,uint32_t ctx_id)2114 iris_destroy_hw_context(struct iris_bufmgr *bufmgr, uint32_t ctx_id)
2115 {
2116    struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
2117 
2118    if (ctx_id != 0 &&
2119        intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
2120       fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
2121               strerror(errno));
2122    }
2123 }
2124 
2125 int
iris_reg_read(struct iris_bufmgr * bufmgr,uint32_t offset,uint64_t * result)2126 iris_reg_read(struct iris_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
2127 {
2128    struct drm_i915_reg_read reg_read = { .offset = offset };
2129    int ret = intel_ioctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
2130 
2131    *result = reg_read.val;
2132    return ret;
2133 }
2134 
2135 static uint64_t
iris_gtt_size(int fd)2136 iris_gtt_size(int fd)
2137 {
2138    /* We use the default (already allocated) context to determine
2139     * the default configuration of the virtual address space.
2140     */
2141    struct drm_i915_gem_context_param p = {
2142       .param = I915_CONTEXT_PARAM_GTT_SIZE,
2143    };
2144    if (!intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &p))
2145       return p.value;
2146 
2147    return 0;
2148 }
2149 
2150 static struct intel_buffer *
intel_aux_map_buffer_alloc(void * driver_ctx,uint32_t size)2151 intel_aux_map_buffer_alloc(void *driver_ctx, uint32_t size)
2152 {
2153    struct intel_buffer *buf = malloc(sizeof(struct intel_buffer));
2154    if (!buf)
2155       return NULL;
2156 
2157    struct iris_bufmgr *bufmgr = (struct iris_bufmgr *)driver_ctx;
2158 
2159    bool local = bufmgr->vram.size > 0;
2160    unsigned int page_size = getpagesize();
2161    size = MAX2(ALIGN(size, page_size), page_size);
2162 
2163    struct iris_bo *bo = alloc_fresh_bo(bufmgr, size, local);
2164 
2165    simple_mtx_lock(&bufmgr->lock);
2166    bo->address = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 64 * 1024);
2167    assert(bo->address != 0ull);
2168    simple_mtx_unlock(&bufmgr->lock);
2169 
2170    bo->name = "aux-map";
2171    p_atomic_set(&bo->refcount, 1);
2172    bo->index = -1;
2173    bo->real.kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED |
2174                      EXEC_OBJECT_CAPTURE;
2175    bo->real.mmap_mode = local ? IRIS_MMAP_WC : IRIS_MMAP_WB;
2176 
2177    buf->driver_bo = bo;
2178    buf->gpu = bo->address;
2179    buf->gpu_end = buf->gpu + bo->size;
2180    buf->map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
2181    return buf;
2182 }
2183 
2184 static void
intel_aux_map_buffer_free(void * driver_ctx,struct intel_buffer * buffer)2185 intel_aux_map_buffer_free(void *driver_ctx, struct intel_buffer *buffer)
2186 {
2187    iris_bo_unreference((struct iris_bo*)buffer->driver_bo);
2188    free(buffer);
2189 }
2190 
2191 static struct intel_mapped_pinned_buffer_alloc aux_map_allocator = {
2192    .alloc = intel_aux_map_buffer_alloc,
2193    .free = intel_aux_map_buffer_free,
2194 };
2195 
2196 static int
gem_param(int fd,int name)2197 gem_param(int fd, int name)
2198 {
2199    int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
2200 
2201    struct drm_i915_getparam gp = { .param = name, .value = &v };
2202    if (intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
2203       return -1;
2204 
2205    return v;
2206 }
2207 
2208 static bool
iris_bufmgr_query_meminfo(struct iris_bufmgr * bufmgr)2209 iris_bufmgr_query_meminfo(struct iris_bufmgr *bufmgr)
2210 {
2211    struct drm_i915_query_memory_regions *meminfo =
2212       intel_i915_query_alloc(bufmgr->fd, DRM_I915_QUERY_MEMORY_REGIONS);
2213    if (meminfo == NULL)
2214       return false;
2215 
2216    for (int i = 0; i < meminfo->num_regions; i++) {
2217       const struct drm_i915_memory_region_info *mem = &meminfo->regions[i];
2218       switch (mem->region.memory_class) {
2219       case I915_MEMORY_CLASS_SYSTEM:
2220          bufmgr->sys.region = mem->region;
2221          bufmgr->sys.size = mem->probed_size;
2222          break;
2223       case I915_MEMORY_CLASS_DEVICE:
2224          bufmgr->vram.region = mem->region;
2225          bufmgr->vram.size = mem->probed_size;
2226          break;
2227       default:
2228          break;
2229       }
2230    }
2231 
2232    free(meminfo);
2233 
2234    return true;
2235 }
2236 
2237 /**
2238  * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
2239  * and manage map buffer objections.
2240  *
2241  * \param fd File descriptor of the opened DRM device.
2242  */
2243 static struct iris_bufmgr *
iris_bufmgr_create(struct intel_device_info * devinfo,int fd,bool bo_reuse)2244 iris_bufmgr_create(struct intel_device_info *devinfo, int fd, bool bo_reuse)
2245 {
2246    uint64_t gtt_size = iris_gtt_size(fd);
2247    if (gtt_size <= IRIS_MEMZONE_OTHER_START)
2248       return NULL;
2249 
2250    struct iris_bufmgr *bufmgr = calloc(1, sizeof(*bufmgr));
2251    if (bufmgr == NULL)
2252       return NULL;
2253 
2254    /* Handles to buffer objects belong to the device fd and are not
2255     * reference counted by the kernel.  If the same fd is used by
2256     * multiple parties (threads sharing the same screen bufmgr, or
2257     * even worse the same device fd passed to multiple libraries)
2258     * ownership of those handles is shared by those independent parties.
2259     *
2260     * Don't do this! Ensure that each library/bufmgr has its own device
2261     * fd so that its namespace does not clash with another.
2262     */
2263    bufmgr->fd = os_dupfd_cloexec(fd);
2264 
2265    p_atomic_set(&bufmgr->refcount, 1);
2266 
2267    simple_mtx_init(&bufmgr->lock, mtx_plain);
2268    simple_mtx_init(&bufmgr->bo_deps_lock, mtx_plain);
2269 
2270    list_inithead(&bufmgr->zombie_list);
2271 
2272    bufmgr->has_llc = devinfo->has_llc;
2273    bufmgr->has_local_mem = devinfo->has_local_mem;
2274    bufmgr->has_tiling_uapi = devinfo->has_tiling_uapi;
2275    bufmgr->bo_reuse = bo_reuse;
2276    bufmgr->has_mmap_offset = gem_param(fd, I915_PARAM_MMAP_GTT_VERSION) >= 4;
2277    bufmgr->has_userptr_probe =
2278       gem_param(fd, I915_PARAM_HAS_USERPTR_PROBE) >= 1;
2279    iris_bufmgr_query_meminfo(bufmgr);
2280 
2281    STATIC_ASSERT(IRIS_MEMZONE_SHADER_START == 0ull);
2282    const uint64_t _4GB = 1ull << 32;
2283    const uint64_t _2GB = 1ul << 31;
2284 
2285    /* The STATE_BASE_ADDRESS size field can only hold 1 page shy of 4GB */
2286    const uint64_t _4GB_minus_1 = _4GB - PAGE_SIZE;
2287 
2288    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SHADER],
2289                       PAGE_SIZE, _4GB_minus_1 - PAGE_SIZE);
2290    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_BINDLESS],
2291                       IRIS_MEMZONE_BINDLESS_START, IRIS_BINDLESS_SIZE);
2292    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_SURFACE],
2293                       IRIS_MEMZONE_SURFACE_START,
2294                       _4GB_minus_1 - IRIS_MAX_BINDERS * IRIS_BINDER_SIZE -
2295                      IRIS_BINDLESS_SIZE);
2296    /* TODO: Why does limiting to 2GB help some state items on gfx12?
2297     *  - CC Viewport Pointer
2298     *  - Blend State Pointer
2299     *  - Color Calc State Pointer
2300     */
2301    const uint64_t dynamic_pool_size =
2302       (devinfo->ver >= 12 ? _2GB : _4GB_minus_1) - IRIS_BORDER_COLOR_POOL_SIZE;
2303    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_DYNAMIC],
2304                       IRIS_MEMZONE_DYNAMIC_START + IRIS_BORDER_COLOR_POOL_SIZE,
2305                       dynamic_pool_size);
2306 
2307    /* Leave the last 4GB out of the high vma range, so that no state
2308     * base address + size can overflow 48 bits.
2309     */
2310    util_vma_heap_init(&bufmgr->vma_allocator[IRIS_MEMZONE_OTHER],
2311                       IRIS_MEMZONE_OTHER_START,
2312                       (gtt_size - _4GB) - IRIS_MEMZONE_OTHER_START);
2313 
2314    init_cache_buckets(bufmgr, false);
2315    init_cache_buckets(bufmgr, true);
2316 
2317    unsigned min_slab_order = 8;  /* 256 bytes */
2318    unsigned max_slab_order = 20; /* 1 MB (slab size = 2 MB) */
2319    unsigned num_slab_orders_per_allocator =
2320       (max_slab_order - min_slab_order) / NUM_SLAB_ALLOCATORS;
2321 
2322    /* Divide the size order range among slab managers. */
2323    for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
2324       unsigned min_order = min_slab_order;
2325       unsigned max_order =
2326          MIN2(min_order + num_slab_orders_per_allocator, max_slab_order);
2327 
2328       if (!pb_slabs_init(&bufmgr->bo_slabs[i], min_order, max_order,
2329                          IRIS_HEAP_MAX, true, bufmgr,
2330                          iris_can_reclaim_slab,
2331                          iris_slab_alloc,
2332                          (void *) iris_slab_free)) {
2333          free(bufmgr);
2334          return NULL;
2335       }
2336       min_slab_order = max_order + 1;
2337    }
2338 
2339    bufmgr->name_table =
2340       _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
2341    bufmgr->handle_table =
2342       _mesa_hash_table_create(NULL, _mesa_hash_uint, _mesa_key_uint_equal);
2343 
2344    bufmgr->vma_min_align = devinfo->has_local_mem ? 64 * 1024 : PAGE_SIZE;
2345 
2346    if (devinfo->has_aux_map) {
2347       bufmgr->aux_map_ctx = intel_aux_map_init(bufmgr, &aux_map_allocator,
2348                                                devinfo);
2349       assert(bufmgr->aux_map_ctx);
2350    }
2351 
2352    return bufmgr;
2353 }
2354 
2355 static struct iris_bufmgr *
iris_bufmgr_ref(struct iris_bufmgr * bufmgr)2356 iris_bufmgr_ref(struct iris_bufmgr *bufmgr)
2357 {
2358    p_atomic_inc(&bufmgr->refcount);
2359    return bufmgr;
2360 }
2361 
2362 void
iris_bufmgr_unref(struct iris_bufmgr * bufmgr)2363 iris_bufmgr_unref(struct iris_bufmgr *bufmgr)
2364 {
2365    simple_mtx_lock(&global_bufmgr_list_mutex);
2366    if (p_atomic_dec_zero(&bufmgr->refcount)) {
2367       list_del(&bufmgr->link);
2368       iris_bufmgr_destroy(bufmgr);
2369    }
2370    simple_mtx_unlock(&global_bufmgr_list_mutex);
2371 }
2372 
2373 /** Returns a new unique id, to be used by screens. */
2374 int
iris_bufmgr_create_screen_id(struct iris_bufmgr * bufmgr)2375 iris_bufmgr_create_screen_id(struct iris_bufmgr *bufmgr)
2376 {
2377    return p_atomic_inc_return(&bufmgr->next_screen_id) - 1;
2378 }
2379 
2380 /**
2381  * Gets an already existing GEM buffer manager or create a new one.
2382  *
2383  * \param fd File descriptor of the opened DRM device.
2384  */
2385 struct iris_bufmgr *
iris_bufmgr_get_for_fd(struct intel_device_info * devinfo,int fd,bool bo_reuse)2386 iris_bufmgr_get_for_fd(struct intel_device_info *devinfo, int fd, bool bo_reuse)
2387 {
2388    struct stat st;
2389 
2390    if (fstat(fd, &st))
2391       return NULL;
2392 
2393    struct iris_bufmgr *bufmgr = NULL;
2394 
2395    simple_mtx_lock(&global_bufmgr_list_mutex);
2396    list_for_each_entry(struct iris_bufmgr, iter_bufmgr, &global_bufmgr_list, link) {
2397       struct stat iter_st;
2398       if (fstat(iter_bufmgr->fd, &iter_st))
2399          continue;
2400 
2401       if (st.st_rdev == iter_st.st_rdev) {
2402          assert(iter_bufmgr->bo_reuse == bo_reuse);
2403          bufmgr = iris_bufmgr_ref(iter_bufmgr);
2404          goto unlock;
2405       }
2406    }
2407 
2408    bufmgr = iris_bufmgr_create(devinfo, fd, bo_reuse);
2409    if (bufmgr)
2410       list_addtail(&bufmgr->link, &global_bufmgr_list);
2411 
2412  unlock:
2413    simple_mtx_unlock(&global_bufmgr_list_mutex);
2414 
2415    return bufmgr;
2416 }
2417 
2418 int
iris_bufmgr_get_fd(struct iris_bufmgr * bufmgr)2419 iris_bufmgr_get_fd(struct iris_bufmgr *bufmgr)
2420 {
2421    return bufmgr->fd;
2422 }
2423 
2424 void*
iris_bufmgr_get_aux_map_context(struct iris_bufmgr * bufmgr)2425 iris_bufmgr_get_aux_map_context(struct iris_bufmgr *bufmgr)
2426 {
2427    return bufmgr->aux_map_ctx;
2428 }
2429 
2430 simple_mtx_t *
iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr * bufmgr)2431 iris_bufmgr_get_bo_deps_lock(struct iris_bufmgr *bufmgr)
2432 {
2433    return &bufmgr->bo_deps_lock;
2434 }
2435