1 /*
2  * Copyright (c) 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_nir.h"
25 #include "compiler/nir/nir_builder.h"
26 
27 struct lower_intrinsics_state {
28    nir_shader *nir;
29    nir_function_impl *impl;
30    bool progress;
31    nir_builder builder;
32 };
33 
34 static bool
lower_cs_intrinsics_convert_block(struct lower_intrinsics_state * state,nir_block * block)35 lower_cs_intrinsics_convert_block(struct lower_intrinsics_state *state,
36                                   nir_block *block)
37 {
38    bool progress = false;
39    nir_builder *b = &state->builder;
40    nir_shader *nir = state->nir;
41 
42    /* Reuse calculated values inside the block. */
43    nir_ssa_def *local_index = NULL;
44    nir_ssa_def *local_id = NULL;
45 
46    nir_foreach_instr_safe(instr, block) {
47       if (instr->type != nir_instr_type_intrinsic)
48          continue;
49 
50       nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr);
51 
52       b->cursor = nir_after_instr(&intrinsic->instr);
53 
54       nir_ssa_def *sysval;
55       switch (intrinsic->intrinsic) {
56       case nir_intrinsic_load_workgroup_size:
57       case nir_intrinsic_load_workgroup_id:
58       case nir_intrinsic_load_num_workgroups:
59          /* Convert this to 32-bit if it's not */
60          if (intrinsic->dest.ssa.bit_size == 64) {
61             intrinsic->dest.ssa.bit_size = 32;
62             sysval = nir_u2u64(b, &intrinsic->dest.ssa);
63             nir_ssa_def_rewrite_uses_after(&intrinsic->dest.ssa,
64                                            sysval,
65                                            sysval->parent_instr);
66          }
67          continue;
68 
69       case nir_intrinsic_load_local_invocation_index:
70       case nir_intrinsic_load_local_invocation_id: {
71          /* First time we are using those, so let's calculate them. */
72          if (!local_index) {
73             assert(!local_id);
74 
75             nir_ssa_def *subgroup_id = nir_load_subgroup_id(b);
76 
77             nir_ssa_def *thread_local_id =
78                nir_imul(b, subgroup_id, nir_load_simd_width_intel(b));
79             nir_ssa_def *channel = nir_load_subgroup_invocation(b);
80             nir_ssa_def *linear = nir_iadd(b, channel, thread_local_id);
81 
82             nir_ssa_def *size_x;
83             nir_ssa_def *size_y;
84             if (state->nir->info.workgroup_size_variable) {
85                nir_ssa_def *size_xyz = nir_load_workgroup_size(b);
86                size_x = nir_channel(b, size_xyz, 0);
87                size_y = nir_channel(b, size_xyz, 1);
88             } else {
89                size_x = nir_imm_int(b, nir->info.workgroup_size[0]);
90                size_y = nir_imm_int(b, nir->info.workgroup_size[1]);
91             }
92             nir_ssa_def *size_xy = nir_imul(b, size_x, size_y);
93 
94             /* The local invocation index and ID must respect the following
95              *
96              *    gl_LocalInvocationID.x =
97              *       gl_LocalInvocationIndex % gl_WorkGroupSize.x;
98              *    gl_LocalInvocationID.y =
99              *       (gl_LocalInvocationIndex / gl_WorkGroupSize.x) %
100              *       gl_WorkGroupSize.y;
101              *    gl_LocalInvocationID.z =
102              *       (gl_LocalInvocationIndex /
103              *        (gl_WorkGroupSize.x * gl_WorkGroupSize.y)) %
104              *       gl_WorkGroupSize.z;
105              *
106              * However, the final % gl_WorkGroupSize.z does nothing unless we
107              * accidentally end up with a gl_LocalInvocationIndex that is too
108              * large so it can safely be omitted.
109              */
110 
111             nir_ssa_def *id_x, *id_y, *id_z;
112             switch (state->nir->info.cs.derivative_group) {
113             case DERIVATIVE_GROUP_NONE:
114                if (nir->info.num_images == 0 &&
115                    nir->info.num_textures == 0) {
116                   /* X-major lid order. Optimal for linear accesses only,
117                    * which are usually buffers. X,Y ordering will look like:
118                    * (0,0) (1,0) (2,0) ... (size_x-1,0) (0,1) (1,1) ...
119                    */
120                   id_x = nir_umod(b, linear, size_x);
121                   id_y = nir_umod(b, nir_udiv(b, linear, size_x), size_y);
122                   local_index = linear;
123                } else if (!nir->info.workgroup_size_variable &&
124                           nir->info.workgroup_size[1] % 4 == 0) {
125                   /* 1x4 block X-major lid order. Same as X-major except increments in
126                    * blocks of width=1 height=4. Always optimal for tileY and usually
127                    * optimal for linear accesses.
128                    *   x = (linear / 4) % size_x
129                    *   y = ((linear % 4) + (linear / 4 / size_x) * 4) % size_y
130                    * X,Y ordering will look like: (0,0) (0,1) (0,2) (0,3) (1,0) (1,1)
131                    * (1,2) (1,3) (2,0) ... (size_x-1,3) (0,4) (0,5) (0,6) (0,7) (1,4) ...
132                    */
133                   const unsigned height = 4;
134                   nir_ssa_def *block = nir_udiv_imm(b, linear, height);
135                   id_x = nir_umod(b, block, size_x);
136                   id_y = nir_umod(b,
137                                   nir_iadd(b,
138                                            nir_umod(b, linear, nir_imm_int(b, height)),
139                                            nir_imul_imm(b,
140                                                         nir_udiv(b, block, size_x),
141                                                         height)),
142                                   size_y);
143                } else {
144                   /* Y-major lid order. Optimal for tileY accesses only,
145                    * which are usually images. X,Y ordering will look like:
146                    * (0,0) (0,1) (0,2) ... (0,size_y-1) (1,0) (1,1) ...
147                    */
148                   id_y = nir_umod(b, linear, size_y);
149                   id_x = nir_umod(b, nir_udiv(b, linear, size_y), size_x);
150                }
151 
152                id_z = nir_udiv(b, linear, size_xy);
153                local_id = nir_vec3(b, id_x, id_y, id_z);
154                if (!local_index) {
155                   local_index = nir_iadd(b, nir_iadd(b, id_x,
156                                                         nir_imul(b, id_y, size_x)),
157                                                         nir_imul(b, id_z, size_xy));
158                }
159                break;
160             case DERIVATIVE_GROUP_LINEAR:
161                /* For linear, just set the local invocation index linearly,
162                 * and calculate local invocation ID from that.
163                 */
164                id_x = nir_umod(b, linear, size_x);
165                id_y = nir_umod(b, nir_udiv(b, linear, size_x), size_y);
166                id_z = nir_udiv(b, linear, size_xy);
167                local_id = nir_vec3(b, id_x, id_y, id_z);
168                local_index = linear;
169                break;
170             case DERIVATIVE_GROUP_QUADS: {
171                /* For quads, first we figure out the 2x2 grid the invocation
172                 * belongs to -- treating extra Z layers as just more rows.
173                 * Then map that into local invocation ID (trivial) and local
174                 * invocation index.  Skipping Z simplify index calculation.
175                 */
176 
177                nir_ssa_def *one = nir_imm_int(b, 1);
178                nir_ssa_def *double_size_x = nir_ishl(b, size_x, one);
179 
180                /* ID within a pair of rows, where each group of 4 is 2x2 quad. */
181                nir_ssa_def *row_pair_id = nir_umod(b, linear, double_size_x);
182                nir_ssa_def *y_row_pairs = nir_udiv(b, linear, double_size_x);
183 
184                nir_ssa_def *x =
185                   nir_ior(b,
186                           nir_iand(b, row_pair_id, one),
187                           nir_iand(b, nir_ishr(b, row_pair_id, one),
188                                    nir_imm_int(b, 0xfffffffe)));
189                nir_ssa_def *y =
190                   nir_ior(b,
191                           nir_ishl(b, y_row_pairs, one),
192                           nir_iand(b, nir_ishr(b, row_pair_id, one), one));
193 
194                local_id = nir_vec3(b, x,
195                                    nir_umod(b, y, size_y),
196                                    nir_udiv(b, y, size_y));
197                local_index = nir_iadd(b, x, nir_imul(b, y, size_x));
198                break;
199             }
200             default:
201                unreachable("invalid derivative group");
202             }
203          }
204 
205          assert(local_id);
206          assert(local_index);
207          if (intrinsic->intrinsic == nir_intrinsic_load_local_invocation_id)
208             sysval = local_id;
209          else
210             sysval = local_index;
211          break;
212       }
213 
214       case nir_intrinsic_load_num_subgroups: {
215          nir_ssa_def *size;
216          if (state->nir->info.workgroup_size_variable) {
217             nir_ssa_def *size_xyz = nir_load_workgroup_size(b);
218             nir_ssa_def *size_x = nir_channel(b, size_xyz, 0);
219             nir_ssa_def *size_y = nir_channel(b, size_xyz, 1);
220             nir_ssa_def *size_z = nir_channel(b, size_xyz, 2);
221             size = nir_imul(b, nir_imul(b, size_x, size_y), size_z);
222          } else {
223             size = nir_imm_int(b, nir->info.workgroup_size[0] *
224                                   nir->info.workgroup_size[1] *
225                                   nir->info.workgroup_size[2]);
226          }
227 
228          /* Calculate the equivalent of DIV_ROUND_UP. */
229          nir_ssa_def *simd_width = nir_load_simd_width_intel(b);
230          sysval =
231             nir_udiv(b, nir_iadd_imm(b, nir_iadd(b, size, simd_width), -1),
232                         simd_width);
233          break;
234       }
235 
236       default:
237          continue;
238       }
239 
240       if (intrinsic->dest.ssa.bit_size == 64)
241          sysval = nir_u2u64(b, sysval);
242 
243       nir_ssa_def_rewrite_uses(&intrinsic->dest.ssa, sysval);
244       nir_instr_remove(&intrinsic->instr);
245 
246       state->progress = true;
247    }
248 
249    return progress;
250 }
251 
252 static void
lower_cs_intrinsics_convert_impl(struct lower_intrinsics_state * state)253 lower_cs_intrinsics_convert_impl(struct lower_intrinsics_state *state)
254 {
255    nir_builder_init(&state->builder, state->impl);
256 
257    nir_foreach_block(block, state->impl) {
258       lower_cs_intrinsics_convert_block(state, block);
259    }
260 
261    nir_metadata_preserve(state->impl,
262                          nir_metadata_block_index | nir_metadata_dominance);
263 }
264 
265 bool
brw_nir_lower_cs_intrinsics(nir_shader * nir)266 brw_nir_lower_cs_intrinsics(nir_shader *nir)
267 {
268    assert(nir->info.stage == MESA_SHADER_COMPUTE ||
269           nir->info.stage == MESA_SHADER_KERNEL);
270 
271    struct lower_intrinsics_state state = {
272       .nir = nir,
273    };
274 
275    /* Constraints from NV_compute_shader_derivatives. */
276    if (!nir->info.workgroup_size_variable) {
277       if (nir->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) {
278          assert(nir->info.workgroup_size[0] % 2 == 0);
279          assert(nir->info.workgroup_size[1] % 2 == 0);
280       } else if (nir->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) {
281          ASSERTED unsigned workgroup_size =
282             nir->info.workgroup_size[0] *
283             nir->info.workgroup_size[1] *
284             nir->info.workgroup_size[2];
285          assert(workgroup_size % 4 == 0);
286       }
287    }
288 
289    nir_foreach_function(function, nir) {
290       if (function->impl) {
291          state.impl = function->impl;
292          lower_cs_intrinsics_convert_impl(&state);
293       }
294    }
295 
296    return state.progress;
297 }
298