1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_varyings_to_packed.cpp
26  *
27  * This lowering pass generates GLSL code that manually packs varyings into
28  * vec4 slots, for the benefit of back-ends that don't support packed varyings
29  * natively.
30  *
31  * For example, the following shader:
32  *
33  *   out mat3x2 foo;  // location=4, location_frac=0
34  *   out vec3 bar[2]; // location=5, location_frac=2
35  *
36  *   main()
37  *   {
38  *     ...
39  *   }
40  *
41  * Is rewritten to:
42  *
43  *   mat3x2 foo;
44  *   vec3 bar[2];
45  *   out vec4 packed4; // location=4, location_frac=0
46  *   out vec4 packed5; // location=5, location_frac=0
47  *   out vec4 packed6; // location=6, location_frac=0
48  *
49  *   main()
50  *   {
51  *     ...
52  *     packed4.xy = foo[0];
53  *     packed4.zw = foo[1];
54  *     packed5.xy = foo[2];
55  *     packed5.zw = bar[0].xy;
56  *     packed6.x = bar[0].z;
57  *     packed6.yzw = bar[1];
58  *   }
59  *
60  * This lowering pass properly handles "double parking" of a varying vector
61  * across two varying slots.  For example, in the code above, two of the
62  * components of bar[0] are stored in packed5, and the remaining component is
63  * stored in packed6.
64  *
65  * Note that in theory, the extra instructions may cause some loss of
66  * performance.  However, hopefully in most cases the performance loss will
67  * either be absorbed by a later optimization pass, or it will be offset by
68  * memory bandwidth savings (because fewer varyings are used).
69  *
70  * This lowering pass also packs flat floats, ints, and uints together, by
71  * using ivec4 as the base type of flat "varyings", and using appropriate
72  * casts to convert floats and uints into ints.
73  *
74  * This lowering pass also handles varyings whose type is a struct or an array
75  * of struct.  Structs are packed in order and with no gaps, so there may be a
76  * performance penalty due to structure elements being double-parked.
77  *
78  * Lowering of geometry shader inputs is slightly more complex, since geometry
79  * inputs are always arrays, so we need to lower arrays to arrays.  For
80  * example, the following input:
81  *
82  *   in struct Foo {
83  *     float f;
84  *     vec3 v;
85  *     vec2 a[2];
86  *   } arr[3];         // location=4, location_frac=0
87  *
88  * Would get lowered like this if it occurred in a fragment shader:
89  *
90  *   struct Foo {
91  *     float f;
92  *     vec3 v;
93  *     vec2 a[2];
94  *   } arr[3];
95  *   in vec4 packed4;  // location=4, location_frac=0
96  *   in vec4 packed5;  // location=5, location_frac=0
97  *   in vec4 packed6;  // location=6, location_frac=0
98  *   in vec4 packed7;  // location=7, location_frac=0
99  *   in vec4 packed8;  // location=8, location_frac=0
100  *   in vec4 packed9;  // location=9, location_frac=0
101  *
102  *   main()
103  *   {
104  *     arr[0].f = packed4.x;
105  *     arr[0].v = packed4.yzw;
106  *     arr[0].a[0] = packed5.xy;
107  *     arr[0].a[1] = packed5.zw;
108  *     arr[1].f = packed6.x;
109  *     arr[1].v = packed6.yzw;
110  *     arr[1].a[0] = packed7.xy;
111  *     arr[1].a[1] = packed7.zw;
112  *     arr[2].f = packed8.x;
113  *     arr[2].v = packed8.yzw;
114  *     arr[2].a[0] = packed9.xy;
115  *     arr[2].a[1] = packed9.zw;
116  *     ...
117  *   }
118  *
119  * But it would get lowered like this if it occurred in a geometry shader:
120  *
121  *   struct Foo {
122  *     float f;
123  *     vec3 v;
124  *     vec2 a[2];
125  *   } arr[3];
126  *   in vec4 packed4[3];  // location=4, location_frac=0
127  *   in vec4 packed5[3];  // location=5, location_frac=0
128  *
129  *   main()
130  *   {
131  *     arr[0].f = packed4[0].x;
132  *     arr[0].v = packed4[0].yzw;
133  *     arr[0].a[0] = packed5[0].xy;
134  *     arr[0].a[1] = packed5[0].zw;
135  *     arr[1].f = packed4[1].x;
136  *     arr[1].v = packed4[1].yzw;
137  *     arr[1].a[0] = packed5[1].xy;
138  *     arr[1].a[1] = packed5[1].zw;
139  *     arr[2].f = packed4[2].x;
140  *     arr[2].v = packed4[2].yzw;
141  *     arr[2].a[0] = packed5[2].xy;
142  *     arr[2].a[1] = packed5[2].zw;
143  *     ...
144  *   }
145  */
146 
147 #include "glsl_symbol_table.h"
148 #include "ir.h"
149 #include "ir_builder.h"
150 #include "ir_optimization.h"
151 #include "program/prog_instruction.h"
152 #include "main/mtypes.h"
153 
154 using namespace ir_builder;
155 
156 namespace {
157 
158 /**
159  * Visitor that performs varying packing.  For each varying declared in the
160  * shader, this visitor determines whether it needs to be packed.  If so, it
161  * demotes it to an ordinary global, creates new packed varyings, and
162  * generates assignments to convert between the original varying and the
163  * packed varying.
164  */
165 class lower_packed_varyings_visitor
166 {
167 public:
168    lower_packed_varyings_visitor(void *mem_ctx,
169                                  unsigned locations_used,
170                                  const uint8_t *components,
171                                  ir_variable_mode mode,
172                                  unsigned gs_input_vertices,
173                                  exec_list *out_instructions,
174                                  exec_list *out_variables,
175                                  bool disable_varying_packing,
176                                  bool disable_xfb_packing,
177                                  bool xfb_enabled);
178 
179    void run(struct gl_linked_shader *shader);
180 
181 private:
182    void bitwise_assign_pack(ir_rvalue *lhs, ir_rvalue *rhs);
183    void bitwise_assign_unpack(ir_rvalue *lhs, ir_rvalue *rhs);
184    unsigned lower_rvalue(ir_rvalue *rvalue, unsigned fine_location,
185                          ir_variable *unpacked_var, const char *name,
186                          bool gs_input_toplevel, unsigned vertex_index);
187    unsigned lower_arraylike(ir_rvalue *rvalue, unsigned array_size,
188                             unsigned fine_location,
189                             ir_variable *unpacked_var, const char *name,
190                             bool gs_input_toplevel, unsigned vertex_index);
191    ir_dereference *get_packed_varying_deref(unsigned location,
192                                             ir_variable *unpacked_var,
193                                             const char *name,
194                                             unsigned vertex_index);
195    bool needs_lowering(ir_variable *var);
196 
197    /**
198     * Memory context used to allocate new instructions for the shader.
199     */
200    void * const mem_ctx;
201 
202    /**
203     * Number of generic varying slots which are used by this shader.  This is
204     * used to allocate temporary intermediate data structures.  If any varying
205     * used by this shader has a location greater than or equal to
206     * VARYING_SLOT_VAR0 + locations_used, an assertion will fire.
207     */
208    const unsigned locations_used;
209 
210    const uint8_t* components;
211 
212    /**
213     * Array of pointers to the packed varyings that have been created for each
214     * generic varying slot.  NULL entries in this array indicate varying slots
215     * for which a packed varying has not been created yet.
216     */
217    ir_variable **packed_varyings;
218 
219    /**
220     * Type of varying which is being lowered in this pass (either
221     * ir_var_shader_in or ir_var_shader_out).
222     */
223    const ir_variable_mode mode;
224 
225    /**
226     * If we are currently lowering geometry shader inputs, the number of input
227     * vertices the geometry shader accepts.  Otherwise zero.
228     */
229    const unsigned gs_input_vertices;
230 
231    /**
232     * Exec list into which the visitor should insert the packing instructions.
233     * Caller provides this list; it should insert the instructions into the
234     * appropriate place in the shader once the visitor has finished running.
235     */
236    exec_list *out_instructions;
237 
238    /**
239     * Exec list into which the visitor should insert any new variables.
240     */
241    exec_list *out_variables;
242 
243    bool disable_varying_packing;
244    bool disable_xfb_packing;
245    bool xfb_enabled;
246 };
247 
248 } /* anonymous namespace */
249 
lower_packed_varyings_visitor(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,exec_list * out_instructions,exec_list * out_variables,bool disable_varying_packing,bool disable_xfb_packing,bool xfb_enabled)250 lower_packed_varyings_visitor::lower_packed_varyings_visitor(
251       void *mem_ctx, unsigned locations_used, const uint8_t *components,
252       ir_variable_mode mode,
253       unsigned gs_input_vertices, exec_list *out_instructions,
254       exec_list *out_variables, bool disable_varying_packing,
255       bool disable_xfb_packing, bool xfb_enabled)
256    : mem_ctx(mem_ctx),
257      locations_used(locations_used),
258      components(components),
259      packed_varyings((ir_variable **)
260                      rzalloc_array_size(mem_ctx, sizeof(*packed_varyings),
261                                         locations_used)),
262      mode(mode),
263      gs_input_vertices(gs_input_vertices),
264      out_instructions(out_instructions),
265      out_variables(out_variables),
266      disable_varying_packing(disable_varying_packing),
267      disable_xfb_packing(disable_xfb_packing),
268      xfb_enabled(xfb_enabled)
269 {
270 }
271 
272 void
run(struct gl_linked_shader * shader)273 lower_packed_varyings_visitor::run(struct gl_linked_shader *shader)
274 {
275    foreach_in_list(ir_instruction, node, shader->ir) {
276       ir_variable *var = node->as_variable();
277       if (var == NULL)
278          continue;
279 
280       if (var->data.mode != this->mode ||
281           var->data.location < VARYING_SLOT_VAR0 ||
282           !this->needs_lowering(var))
283          continue;
284 
285       /* This lowering pass is only capable of packing floats and ints
286        * together when their interpolation mode is "flat".  Treat integers as
287        * being flat when the interpolation mode is none.
288        */
289       assert(var->data.interpolation == INTERP_MODE_FLAT ||
290              var->data.interpolation == INTERP_MODE_NONE ||
291              !var->type->contains_integer());
292 
293       /* Clone the variable for program resource list before
294        * it gets modified and lost.
295        */
296       if (!shader->packed_varyings)
297          shader->packed_varyings = new (shader) exec_list;
298 
299       shader->packed_varyings->push_tail(var->clone(shader, NULL));
300 
301       /* Change the old varying into an ordinary global. */
302       assert(var->data.mode != ir_var_temporary);
303       var->data.mode = ir_var_auto;
304 
305       /* Create a reference to the old varying. */
306       ir_dereference_variable *deref
307          = new(this->mem_ctx) ir_dereference_variable(var);
308 
309       /* Recursively pack or unpack it. */
310       this->lower_rvalue(deref, var->data.location * 4 + var->data.location_frac, var,
311                          var->name, this->gs_input_vertices != 0, 0);
312    }
313 }
314 
315 #define SWIZZLE_ZWZW MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W)
316 
317 /**
318  * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
319  * bitcasts if necessary to match up types.
320  *
321  * This function is called when packing varyings.
322  */
323 void
bitwise_assign_pack(ir_rvalue * lhs,ir_rvalue * rhs)324 lower_packed_varyings_visitor::bitwise_assign_pack(ir_rvalue *lhs,
325                                                    ir_rvalue *rhs)
326 {
327    if (lhs->type->base_type != rhs->type->base_type) {
328       /* Since we only mix types in flat varyings, and we always store flat
329        * varyings as type ivec4, we need only produce conversions from (uint
330        * or float) to int.
331        */
332       assert(lhs->type->base_type == GLSL_TYPE_INT);
333       switch (rhs->type->base_type) {
334       case GLSL_TYPE_UINT:
335          rhs = new(this->mem_ctx)
336             ir_expression(ir_unop_u2i, lhs->type, rhs);
337          break;
338       case GLSL_TYPE_FLOAT:
339          rhs = new(this->mem_ctx)
340             ir_expression(ir_unop_bitcast_f2i, lhs->type, rhs);
341          break;
342       case GLSL_TYPE_DOUBLE:
343          assert(rhs->type->vector_elements <= 2);
344          if (rhs->type->vector_elements == 2) {
345             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
346 
347             assert(lhs->type->vector_elements == 4);
348             this->out_variables->push_tail(t);
349             this->out_instructions->push_tail(
350                   assign(t, u2i(expr(ir_unop_unpack_double_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
351             this->out_instructions->push_tail(
352                   assign(t,  u2i(expr(ir_unop_unpack_double_2x32, swizzle_y(rhs))), 0xc));
353             rhs = deref(t).val;
354          } else {
355             rhs = u2i(expr(ir_unop_unpack_double_2x32, rhs));
356          }
357          break;
358       case GLSL_TYPE_INT64:
359          assert(rhs->type->vector_elements <= 2);
360          if (rhs->type->vector_elements == 2) {
361             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
362 
363             assert(lhs->type->vector_elements == 4);
364             this->out_variables->push_tail(t);
365             this->out_instructions->push_tail(
366                assign(t, expr(ir_unop_unpack_int_2x32, swizzle_x(rhs->clone(mem_ctx, NULL))), 0x3));
367             this->out_instructions->push_tail(
368                assign(t,  expr(ir_unop_unpack_int_2x32, swizzle_y(rhs)), 0xc));
369             rhs = deref(t).val;
370          } else {
371             rhs = expr(ir_unop_unpack_int_2x32, rhs);
372          }
373          break;
374       case GLSL_TYPE_UINT64:
375          assert(rhs->type->vector_elements <= 2);
376          if (rhs->type->vector_elements == 2) {
377             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "pack", ir_var_temporary);
378 
379             assert(lhs->type->vector_elements == 4);
380             this->out_variables->push_tail(t);
381             this->out_instructions->push_tail(
382                   assign(t, u2i(expr(ir_unop_unpack_uint_2x32, swizzle_x(rhs->clone(mem_ctx, NULL)))), 0x3));
383             this->out_instructions->push_tail(
384                   assign(t,  u2i(expr(ir_unop_unpack_uint_2x32, swizzle_y(rhs))), 0xc));
385             rhs = deref(t).val;
386          } else {
387             rhs = u2i(expr(ir_unop_unpack_uint_2x32, rhs));
388          }
389          break;
390       case GLSL_TYPE_SAMPLER:
391          rhs = u2i(expr(ir_unop_unpack_sampler_2x32, rhs));
392          break;
393       case GLSL_TYPE_IMAGE:
394          rhs = u2i(expr(ir_unop_unpack_image_2x32, rhs));
395          break;
396       default:
397          assert(!"Unexpected type conversion while lowering varyings");
398          break;
399       }
400    }
401    this->out_instructions->push_tail(new (this->mem_ctx) ir_assignment(lhs, rhs));
402 }
403 
404 
405 /**
406  * Make an ir_assignment from \c rhs to \c lhs, performing appropriate
407  * bitcasts if necessary to match up types.
408  *
409  * This function is called when unpacking varyings.
410  */
411 void
bitwise_assign_unpack(ir_rvalue * lhs,ir_rvalue * rhs)412 lower_packed_varyings_visitor::bitwise_assign_unpack(ir_rvalue *lhs,
413                                                      ir_rvalue *rhs)
414 {
415    if (lhs->type->base_type != rhs->type->base_type) {
416       /* Since we only mix types in flat varyings, and we always store flat
417        * varyings as type ivec4, we need only produce conversions from int to
418        * (uint or float).
419        */
420       assert(rhs->type->base_type == GLSL_TYPE_INT);
421       switch (lhs->type->base_type) {
422       case GLSL_TYPE_UINT:
423          rhs = new(this->mem_ctx)
424             ir_expression(ir_unop_i2u, lhs->type, rhs);
425          break;
426       case GLSL_TYPE_FLOAT:
427          rhs = new(this->mem_ctx)
428             ir_expression(ir_unop_bitcast_i2f, lhs->type, rhs);
429          break;
430       case GLSL_TYPE_DOUBLE:
431          assert(lhs->type->vector_elements <= 2);
432          if (lhs->type->vector_elements == 2) {
433             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
434             assert(rhs->type->vector_elements == 4);
435             this->out_variables->push_tail(t);
436             this->out_instructions->push_tail(
437                   assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
438             this->out_instructions->push_tail(
439                   assign(t, expr(ir_unop_pack_double_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
440             rhs = deref(t).val;
441          } else {
442             rhs = expr(ir_unop_pack_double_2x32, i2u(rhs));
443          }
444          break;
445       case GLSL_TYPE_INT64:
446          assert(lhs->type->vector_elements <= 2);
447          if (lhs->type->vector_elements == 2) {
448             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
449             assert(rhs->type->vector_elements == 4);
450             this->out_variables->push_tail(t);
451             this->out_instructions->push_tail(
452                   assign(t, expr(ir_unop_pack_int_2x32, swizzle_xy(rhs->clone(mem_ctx, NULL))), 0x1));
453             this->out_instructions->push_tail(
454                   assign(t, expr(ir_unop_pack_int_2x32, swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2)), 0x2));
455             rhs = deref(t).val;
456          } else {
457             rhs = expr(ir_unop_pack_int_2x32, rhs);
458          }
459          break;
460       case GLSL_TYPE_UINT64:
461          assert(lhs->type->vector_elements <= 2);
462          if (lhs->type->vector_elements == 2) {
463             ir_variable *t = new(mem_ctx) ir_variable(lhs->type, "unpack", ir_var_temporary);
464             assert(rhs->type->vector_elements == 4);
465             this->out_variables->push_tail(t);
466             this->out_instructions->push_tail(
467                   assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle_xy(rhs->clone(mem_ctx, NULL)))), 0x1));
468             this->out_instructions->push_tail(
469                   assign(t, expr(ir_unop_pack_uint_2x32, i2u(swizzle(rhs->clone(mem_ctx, NULL), SWIZZLE_ZWZW, 2))), 0x2));
470             rhs = deref(t).val;
471          } else {
472             rhs = expr(ir_unop_pack_uint_2x32, i2u(rhs));
473          }
474          break;
475       case GLSL_TYPE_SAMPLER:
476          rhs = new(mem_ctx)
477             ir_expression(ir_unop_pack_sampler_2x32, lhs->type, i2u(rhs));
478          break;
479       case GLSL_TYPE_IMAGE:
480          rhs = new(mem_ctx)
481             ir_expression(ir_unop_pack_image_2x32, lhs->type, i2u(rhs));
482          break;
483       default:
484          assert(!"Unexpected type conversion while lowering varyings");
485          break;
486       }
487    }
488    this->out_instructions->push_tail(new(this->mem_ctx) ir_assignment(lhs, rhs));
489 }
490 
491 
492 /**
493  * Recursively pack or unpack the given varying (or portion of a varying) by
494  * traversing all of its constituent vectors.
495  *
496  * \param fine_location is the location where the first constituent vector
497  * should be packed--the word "fine" indicates that this location is expressed
498  * in multiples of a float, rather than multiples of a vec4 as is used
499  * elsewhere in Mesa.
500  *
501  * \param gs_input_toplevel should be set to true if we are lowering geometry
502  * shader inputs, and we are currently lowering the whole input variable
503  * (i.e. we are lowering the array whose index selects the vertex).
504  *
505  * \param vertex_index: if we are lowering geometry shader inputs, and the
506  * level of the array that we are currently lowering is *not* the top level,
507  * then this indicates which vertex we are currently lowering.  Otherwise it
508  * is ignored.
509  *
510  * \return the location where the next constituent vector (after this one)
511  * should be packed.
512  */
513 unsigned
lower_rvalue(ir_rvalue * rvalue,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)514 lower_packed_varyings_visitor::lower_rvalue(ir_rvalue *rvalue,
515                                             unsigned fine_location,
516                                             ir_variable *unpacked_var,
517                                             const char *name,
518                                             bool gs_input_toplevel,
519                                             unsigned vertex_index)
520 {
521    unsigned dmul = rvalue->type->is_64bit() ? 2 : 1;
522    /* When gs_input_toplevel is set, we should be looking at a geometry shader
523     * input array.
524     */
525    assert(!gs_input_toplevel || rvalue->type->is_array());
526 
527    if (rvalue->type->is_struct()) {
528       for (unsigned i = 0; i < rvalue->type->length; i++) {
529          if (i != 0)
530             rvalue = rvalue->clone(this->mem_ctx, NULL);
531          const char *field_name = rvalue->type->fields.structure[i].name;
532          ir_dereference_record *dereference_record = new(this->mem_ctx)
533             ir_dereference_record(rvalue, field_name);
534          char *deref_name
535             = ralloc_asprintf(this->mem_ctx, "%s.%s", name, field_name);
536          fine_location = this->lower_rvalue(dereference_record, fine_location,
537                                             unpacked_var, deref_name, false,
538                                             vertex_index);
539       }
540       return fine_location;
541    } else if (rvalue->type->is_array()) {
542       /* Arrays are packed/unpacked by considering each array element in
543        * sequence.
544        */
545       return this->lower_arraylike(rvalue, rvalue->type->array_size(),
546                                    fine_location, unpacked_var, name,
547                                    gs_input_toplevel, vertex_index);
548    } else if (rvalue->type->is_matrix()) {
549       /* Matrices are packed/unpacked by considering each column vector in
550        * sequence.
551        */
552       return this->lower_arraylike(rvalue, rvalue->type->matrix_columns,
553                                    fine_location, unpacked_var, name,
554                                    false, vertex_index);
555    } else if (rvalue->type->vector_elements * dmul +
556               fine_location % 4 > 4) {
557       /* We don't have code to split up 64bit variable between two
558        * varying slots, instead we add padding if necessary.
559        */
560       unsigned aligned_fine_location = ALIGN_POT(fine_location, dmul);
561       if (aligned_fine_location != fine_location) {
562          return this->lower_rvalue(rvalue, aligned_fine_location,
563                                    unpacked_var, name, false,
564                                    vertex_index);
565       }
566 
567       /* This vector is going to be "double parked" across two varying slots,
568        * so handle it as two separate assignments. For doubles, a dvec3/dvec4
569        * can end up being spread over 3 slots. However the second splitting
570        * will happen later, here we just always want to split into 2.
571        */
572       unsigned left_components, right_components;
573       unsigned left_swizzle_values[4] = { 0, 0, 0, 0 };
574       unsigned right_swizzle_values[4] = { 0, 0, 0, 0 };
575       char left_swizzle_name[4] = { 0, 0, 0, 0 };
576       char right_swizzle_name[4] = { 0, 0, 0, 0 };
577 
578       left_components = 4 - fine_location % 4;
579       if (rvalue->type->is_64bit()) {
580          left_components /= 2;
581          assert(left_components > 0);
582       }
583       right_components = rvalue->type->vector_elements - left_components;
584 
585       for (unsigned i = 0; i < left_components; i++) {
586          left_swizzle_values[i] = i;
587          left_swizzle_name[i] = "xyzw"[i];
588       }
589       for (unsigned i = 0; i < right_components; i++) {
590          right_swizzle_values[i] = i + left_components;
591          right_swizzle_name[i] = "xyzw"[i + left_components];
592       }
593 
594       ir_swizzle *right_swizzle = new(this->mem_ctx)
595          ir_swizzle(rvalue->clone(this->mem_ctx, NULL), right_swizzle_values,
596                     right_components);
597       char *right_name
598          = ralloc_asprintf(this->mem_ctx, "%s.%s", name, right_swizzle_name);
599       if (left_components) {
600          char *left_name
601             = ralloc_asprintf(this->mem_ctx, "%s.%s", name, left_swizzle_name);
602          ir_swizzle *left_swizzle = new(this->mem_ctx)
603                                     ir_swizzle(rvalue, left_swizzle_values, left_components);
604          fine_location = this->lower_rvalue(left_swizzle, fine_location,
605                                             unpacked_var, left_name, false,
606                                             vertex_index);
607       } else
608          /* Top up the fine location to the next slot */
609          fine_location++;
610       return this->lower_rvalue(right_swizzle, fine_location, unpacked_var,
611                                 right_name, false, vertex_index);
612    } else {
613       /* No special handling is necessary; pack the rvalue into the
614        * varying.
615        */
616       unsigned swizzle_values[4] = { 0, 0, 0, 0 };
617       unsigned components = rvalue->type->vector_elements * dmul;
618       unsigned location = fine_location / 4;
619       unsigned location_frac = fine_location % 4;
620       for (unsigned i = 0; i < components; ++i)
621          swizzle_values[i] = i + location_frac;
622       assert(this->components[location - VARYING_SLOT_VAR0] >= components);
623       ir_dereference *packed_deref =
624          this->get_packed_varying_deref(location, unpacked_var, name,
625                                         vertex_index);
626       if (unpacked_var->data.stream != 0) {
627          assert(unpacked_var->data.stream < 4);
628          ir_variable *packed_var = packed_deref->variable_referenced();
629          for (unsigned i = 0; i < components; ++i) {
630             packed_var->data.stream |=
631                unpacked_var->data.stream << (2 * (location_frac + i));
632          }
633       }
634       ir_swizzle *swizzle = new(this->mem_ctx)
635          ir_swizzle(packed_deref, swizzle_values, components);
636       if (this->mode == ir_var_shader_out) {
637          this->bitwise_assign_pack(swizzle, rvalue);
638       } else {
639          this->bitwise_assign_unpack(rvalue, swizzle);
640       }
641       return fine_location + components;
642    }
643 }
644 
645 /**
646  * Recursively pack or unpack a varying for which we need to iterate over its
647  * constituent elements, accessing each one using an ir_dereference_array.
648  * This takes care of both arrays and matrices, since ir_dereference_array
649  * treats a matrix like an array of its column vectors.
650  *
651  * \param gs_input_toplevel should be set to true if we are lowering geometry
652  * shader inputs, and we are currently lowering the whole input variable
653  * (i.e. we are lowering the array whose index selects the vertex).
654  *
655  * \param vertex_index: if we are lowering geometry shader inputs, and the
656  * level of the array that we are currently lowering is *not* the top level,
657  * then this indicates which vertex we are currently lowering.  Otherwise it
658  * is ignored.
659  */
660 unsigned
lower_arraylike(ir_rvalue * rvalue,unsigned array_size,unsigned fine_location,ir_variable * unpacked_var,const char * name,bool gs_input_toplevel,unsigned vertex_index)661 lower_packed_varyings_visitor::lower_arraylike(ir_rvalue *rvalue,
662                                                unsigned array_size,
663                                                unsigned fine_location,
664                                                ir_variable *unpacked_var,
665                                                const char *name,
666                                                bool gs_input_toplevel,
667                                                unsigned vertex_index)
668 {
669    unsigned dmul = rvalue->type->without_array()->is_64bit() ? 2 : 1;
670    if (array_size * dmul + fine_location % 4 > 4) {
671       fine_location = ALIGN_POT(fine_location, dmul);
672    }
673 
674    for (unsigned i = 0; i < array_size; i++) {
675       if (i != 0)
676          rvalue = rvalue->clone(this->mem_ctx, NULL);
677       ir_constant *constant = new(this->mem_ctx) ir_constant(i);
678       ir_dereference_array *dereference_array = new(this->mem_ctx)
679          ir_dereference_array(rvalue, constant);
680       if (gs_input_toplevel) {
681          /* Geometry shader inputs are a special case.  Instead of storing
682           * each element of the array at a different location, all elements
683           * are at the same location, but with a different vertex index.
684           */
685          (void) this->lower_rvalue(dereference_array, fine_location,
686                                    unpacked_var, name, false, i);
687       } else {
688          char *subscripted_name
689             = ralloc_asprintf(this->mem_ctx, "%s[%d]", name, i);
690          fine_location =
691             this->lower_rvalue(dereference_array, fine_location,
692                                unpacked_var, subscripted_name,
693                                false, vertex_index);
694       }
695    }
696    return fine_location;
697 }
698 
699 /**
700  * Retrieve the packed varying corresponding to the given varying location.
701  * If no packed varying has been created for the given varying location yet,
702  * create it and add it to the shader before returning it.
703  *
704  * The newly created varying inherits its interpolation parameters from \c
705  * unpacked_var.  Its base type is ivec4 if we are lowering a flat varying,
706  * vec4 otherwise.
707  *
708  * \param vertex_index: if we are lowering geometry shader inputs, then this
709  * indicates which vertex we are currently lowering.  Otherwise it is ignored.
710  */
711 ir_dereference *
get_packed_varying_deref(unsigned location,ir_variable * unpacked_var,const char * name,unsigned vertex_index)712 lower_packed_varyings_visitor::get_packed_varying_deref(
713       unsigned location, ir_variable *unpacked_var, const char *name,
714       unsigned vertex_index)
715 {
716    unsigned slot = location - VARYING_SLOT_VAR0;
717    assert(slot < locations_used);
718    if (this->packed_varyings[slot] == NULL) {
719       char *packed_name = ralloc_asprintf(this->mem_ctx, "packed:%s", name);
720       const glsl_type *packed_type;
721       assert(components[slot] != 0);
722       if (unpacked_var->is_interpolation_flat())
723          packed_type = glsl_type::get_instance(GLSL_TYPE_INT, components[slot], 1);
724       else
725          packed_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, components[slot], 1);
726       if (this->gs_input_vertices != 0) {
727          packed_type =
728             glsl_type::get_array_instance(packed_type,
729                                           this->gs_input_vertices);
730       }
731       ir_variable *packed_var = new(this->mem_ctx)
732          ir_variable(packed_type, packed_name, this->mode);
733       if (this->gs_input_vertices != 0) {
734          /* Prevent update_array_sizes() from messing with the size of the
735           * array.
736           */
737          packed_var->data.max_array_access = this->gs_input_vertices - 1;
738       }
739       packed_var->data.centroid = unpacked_var->data.centroid;
740       packed_var->data.sample = unpacked_var->data.sample;
741       packed_var->data.patch = unpacked_var->data.patch;
742       packed_var->data.interpolation =
743          packed_type->without_array() == glsl_type::ivec4_type
744          ? unsigned(INTERP_MODE_FLAT) : unpacked_var->data.interpolation;
745       packed_var->data.location = location;
746       packed_var->data.precision = unpacked_var->data.precision;
747       packed_var->data.always_active_io = unpacked_var->data.always_active_io;
748       packed_var->data.stream = 1u << 31;
749       unpacked_var->insert_before(packed_var);
750       this->packed_varyings[slot] = packed_var;
751    } else {
752       ir_variable *var = this->packed_varyings[slot];
753 
754       /* The slot needs to be marked as always active if any variable that got
755        * packed there was.
756        */
757       var->data.always_active_io |= unpacked_var->data.always_active_io;
758 
759       /* For geometry shader inputs, only update the packed variable name the
760        * first time we visit each component.
761        */
762       if (this->gs_input_vertices == 0 || vertex_index == 0) {
763          if (var->is_name_ralloced())
764             ralloc_asprintf_append((char **) &var->name, ",%s", name);
765          else
766             var->name = ralloc_asprintf(var, "%s,%s", var->name, name);
767       }
768    }
769 
770    ir_dereference *deref = new(this->mem_ctx)
771       ir_dereference_variable(this->packed_varyings[slot]);
772    if (this->gs_input_vertices != 0) {
773       /* When lowering GS inputs, the packed variable is an array, so we need
774        * to dereference it using vertex_index.
775        */
776       ir_constant *constant = new(this->mem_ctx) ir_constant(vertex_index);
777       deref = new(this->mem_ctx) ir_dereference_array(deref, constant);
778    }
779    return deref;
780 }
781 
782 bool
needs_lowering(ir_variable * var)783 lower_packed_varyings_visitor::needs_lowering(ir_variable *var)
784 {
785    /* Things composed of vec4's, varyings with explicitly assigned
786     * locations or varyings marked as must_be_shader_input (which might be used
787     * by interpolateAt* functions) shouldn't be lowered. Everything else can be.
788     */
789    if (var->data.explicit_location || var->data.must_be_shader_input)
790       return false;
791 
792    const glsl_type *type = var->type;
793 
794    /* Some drivers (e.g. panfrost) don't support packing of transform
795     * feedback varyings.
796     */
797    if (disable_xfb_packing && var->data.is_xfb &&
798        !(type->is_array() || type->is_struct() || type->is_matrix()) &&
799        xfb_enabled)
800       return false;
801 
802    /* Override disable_varying_packing if the var is only used by transform
803     * feedback. Also override it if transform feedback is enabled and the
804     * variable is an array, struct or matrix as the elements of these types
805     * will always have the same interpolation and therefore are safe to pack.
806     */
807    if (disable_varying_packing && !var->data.is_xfb_only &&
808        !((type->is_array() || type->is_struct() || type->is_matrix()) &&
809          xfb_enabled))
810       return false;
811 
812    type = type->without_array();
813    if (type->vector_elements == 4 && !type->is_64bit())
814       return false;
815    return true;
816 }
817 
818 
819 /**
820  * Visitor that splices varying packing code before every use of EmitVertex()
821  * in a geometry shader.
822  */
823 class lower_packed_varyings_gs_splicer : public ir_hierarchical_visitor
824 {
825 public:
826    explicit lower_packed_varyings_gs_splicer(void *mem_ctx,
827                                              const exec_list *instructions);
828 
829    virtual ir_visitor_status visit_leave(ir_emit_vertex *ev);
830 
831 private:
832    /**
833     * Memory context used to allocate new instructions for the shader.
834     */
835    void * const mem_ctx;
836 
837    /**
838     * Instructions that should be spliced into place before each EmitVertex()
839     * call.
840     */
841    const exec_list *instructions;
842 };
843 
844 
lower_packed_varyings_gs_splicer(void * mem_ctx,const exec_list * instructions)845 lower_packed_varyings_gs_splicer::lower_packed_varyings_gs_splicer(
846       void *mem_ctx, const exec_list *instructions)
847    : mem_ctx(mem_ctx), instructions(instructions)
848 {
849 }
850 
851 
852 ir_visitor_status
visit_leave(ir_emit_vertex * ev)853 lower_packed_varyings_gs_splicer::visit_leave(ir_emit_vertex *ev)
854 {
855    foreach_in_list(ir_instruction, ir, this->instructions) {
856       ev->insert_before(ir->clone(this->mem_ctx, NULL));
857    }
858    return visit_continue;
859 }
860 
861 /**
862  * Visitor that splices varying packing code before every return.
863  */
864 class lower_packed_varyings_return_splicer : public ir_hierarchical_visitor
865 {
866 public:
867    explicit lower_packed_varyings_return_splicer(void *mem_ctx,
868                                                  const exec_list *instructions);
869 
870    virtual ir_visitor_status visit_leave(ir_return *ret);
871 
872 private:
873    /**
874     * Memory context used to allocate new instructions for the shader.
875     */
876    void * const mem_ctx;
877 
878    /**
879     * Instructions that should be spliced into place before each return.
880     */
881    const exec_list *instructions;
882 };
883 
884 
lower_packed_varyings_return_splicer(void * mem_ctx,const exec_list * instructions)885 lower_packed_varyings_return_splicer::lower_packed_varyings_return_splicer(
886       void *mem_ctx, const exec_list *instructions)
887    : mem_ctx(mem_ctx), instructions(instructions)
888 {
889 }
890 
891 
892 ir_visitor_status
visit_leave(ir_return * ret)893 lower_packed_varyings_return_splicer::visit_leave(ir_return *ret)
894 {
895    foreach_in_list(ir_instruction, ir, this->instructions) {
896       ret->insert_before(ir->clone(this->mem_ctx, NULL));
897    }
898    return visit_continue;
899 }
900 
901 void
lower_packed_varyings(void * mem_ctx,unsigned locations_used,const uint8_t * components,ir_variable_mode mode,unsigned gs_input_vertices,gl_linked_shader * shader,bool disable_varying_packing,bool disable_xfb_packing,bool xfb_enabled)902 lower_packed_varyings(void *mem_ctx, unsigned locations_used,
903                       const uint8_t *components,
904                       ir_variable_mode mode, unsigned gs_input_vertices,
905                       gl_linked_shader *shader, bool disable_varying_packing,
906                       bool disable_xfb_packing, bool xfb_enabled)
907 {
908    exec_list *instructions = shader->ir;
909    ir_function *main_func = shader->symbols->get_function("main");
910    exec_list void_parameters;
911    ir_function_signature *main_func_sig
912       = main_func->matching_signature(NULL, &void_parameters, false);
913    exec_list new_instructions, new_variables;
914    lower_packed_varyings_visitor visitor(mem_ctx,
915                                          locations_used,
916                                          components,
917                                          mode,
918                                          gs_input_vertices,
919                                          &new_instructions,
920                                          &new_variables,
921                                          disable_varying_packing,
922                                          disable_xfb_packing,
923                                          xfb_enabled);
924    visitor.run(shader);
925    if (mode == ir_var_shader_out) {
926       if (shader->Stage == MESA_SHADER_GEOMETRY) {
927          /* For geometry shaders, outputs need to be lowered before each call
928           * to EmitVertex()
929           */
930          lower_packed_varyings_gs_splicer splicer(mem_ctx, &new_instructions);
931 
932          /* Add all the variables in first. */
933          main_func_sig->body.get_head_raw()->insert_before(&new_variables);
934 
935          /* Now update all the EmitVertex instances */
936          splicer.run(instructions);
937       } else {
938          /* For other shader types, outputs need to be lowered before each
939           * return statement and at the end of main()
940           */
941 
942          lower_packed_varyings_return_splicer splicer(mem_ctx, &new_instructions);
943 
944          main_func_sig->body.get_head_raw()->insert_before(&new_variables);
945 
946          splicer.run(instructions);
947 
948          /* Lower outputs at the end of main() if the last instruction is not
949           * a return statement
950           */
951          if (((ir_instruction*)instructions->get_tail())->ir_type != ir_type_return) {
952             main_func_sig->body.append_list(&new_instructions);
953          }
954       }
955    } else {
956       /* Shader inputs need to be lowered at the beginning of main() */
957       main_func_sig->body.get_head_raw()->insert_before(&new_instructions);
958       main_func_sig->body.get_head_raw()->insert_before(&new_variables);
959    }
960 }
961