1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "util/ralloc.h"
25 
26 #include "main/macros.h" /* Needed for MAX3 and MAX2 for format_rgb9e5 */
27 #include "util/format_rgb9e5.h"
28 #include "util/format_srgb.h"
29 
30 #include "blorp_priv.h"
31 #include "compiler/brw_eu_defines.h"
32 #include "dev/intel_debug.h"
33 
34 #include "blorp_nir_builder.h"
35 
36 #define FILE_DEBUG_FLAG DEBUG_BLORP
37 
38 #pragma pack(push, 1)
39 struct brw_blorp_const_color_prog_key
40 {
41    struct brw_blorp_base_key base;
42    bool use_simd16_replicated_data;
43    bool clear_rgb_as_red;
44    uint8_t local_y;
45 };
46 #pragma pack(pop)
47 
48 static bool
blorp_params_get_clear_kernel_fs(struct blorp_batch * batch,struct blorp_params * params,bool use_replicated_data,bool clear_rgb_as_red)49 blorp_params_get_clear_kernel_fs(struct blorp_batch *batch,
50                                  struct blorp_params *params,
51                                  bool use_replicated_data,
52                                  bool clear_rgb_as_red)
53 {
54    struct blorp_context *blorp = batch->blorp;
55 
56    const struct brw_blorp_const_color_prog_key blorp_key = {
57       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR),
58       .base.shader_pipeline = BLORP_SHADER_PIPELINE_RENDER,
59       .use_simd16_replicated_data = use_replicated_data,
60       .clear_rgb_as_red = clear_rgb_as_red,
61       .local_y = 0,
62    };
63 
64    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
65                             &params->wm_prog_kernel, &params->wm_prog_data))
66       return true;
67 
68    void *mem_ctx = ralloc_context(NULL);
69 
70    nir_builder b;
71    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
72                          blorp_shader_type_to_name(blorp_key.base.shader_type));
73 
74    nir_variable *v_color =
75       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
76    nir_ssa_def *color = nir_load_var(&b, v_color);
77 
78    if (clear_rgb_as_red) {
79       nir_ssa_def *pos = nir_f2i32(&b, nir_load_frag_coord(&b));
80       nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, pos, 0),
81                                        nir_imm_int(&b, 3));
82       color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp));
83    }
84 
85    nir_variable *frag_color = nir_variable_create(b.shader, nir_var_shader_out,
86                                                   glsl_vec4_type(),
87                                                   "gl_FragColor");
88    frag_color->data.location = FRAG_RESULT_COLOR;
89    nir_store_var(&b, frag_color, color, 0xf);
90 
91    struct brw_wm_prog_key wm_key;
92    brw_blorp_init_wm_prog_key(&wm_key);
93 
94    struct brw_wm_prog_data prog_data;
95    const unsigned *program =
96       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, use_replicated_data,
97                        &prog_data);
98 
99    bool result =
100       blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
101                            &blorp_key, sizeof(blorp_key),
102                            program, prog_data.base.program_size,
103                            &prog_data.base, sizeof(prog_data),
104                            &params->wm_prog_kernel, &params->wm_prog_data);
105 
106    ralloc_free(mem_ctx);
107    return result;
108 }
109 
110 static bool
blorp_params_get_clear_kernel_cs(struct blorp_batch * batch,struct blorp_params * params,bool clear_rgb_as_red)111 blorp_params_get_clear_kernel_cs(struct blorp_batch *batch,
112                                  struct blorp_params *params,
113                                  bool clear_rgb_as_red)
114 {
115    struct blorp_context *blorp = batch->blorp;
116 
117    const struct brw_blorp_const_color_prog_key blorp_key = {
118       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_CLEAR),
119       .base.shader_pipeline = BLORP_SHADER_PIPELINE_COMPUTE,
120       .use_simd16_replicated_data = false,
121       .clear_rgb_as_red = clear_rgb_as_red,
122       .local_y = blorp_get_cs_local_y(params),
123    };
124 
125    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
126                             &params->cs_prog_kernel, &params->cs_prog_data))
127       return true;
128 
129    void *mem_ctx = ralloc_context(NULL);
130 
131    nir_builder b;
132    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_COMPUTE, "BLORP-gpgpu-clear");
133    blorp_set_cs_dims(b.shader, blorp_key.local_y);
134 
135    nir_ssa_def *dst_pos = nir_load_global_invocation_id(&b, 32);
136 
137    nir_variable *v_color =
138       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
139    nir_ssa_def *color = nir_load_var(&b, v_color);
140 
141    nir_variable *v_bounds_rect =
142       BLORP_CREATE_NIR_INPUT(b.shader, bounds_rect, glsl_vec4_type());
143    nir_ssa_def *bounds_rect = nir_load_var(&b, v_bounds_rect);
144    nir_ssa_def *in_bounds = blorp_check_in_bounds(&b, bounds_rect, dst_pos);
145 
146    if (clear_rgb_as_red) {
147       nir_ssa_def *comp = nir_umod(&b, nir_channel(&b, dst_pos, 0),
148                                        nir_imm_int(&b, 3));
149       color = nir_pad_vec4(&b, nir_vector_extract(&b, color, comp));
150    }
151 
152    nir_push_if(&b, in_bounds);
153 
154    nir_image_store(&b, nir_imm_int(&b, 0),
155                    nir_pad_vector_imm_int(&b, dst_pos, 0, 4),
156                    nir_imm_int(&b, 0),
157                    nir_pad_vector_imm_int(&b, color, 0, 4),
158                    nir_imm_int(&b, 0),
159                    .image_dim = GLSL_SAMPLER_DIM_2D,
160                    .image_array = true,
161                    .access = ACCESS_NON_READABLE);
162 
163    nir_pop_if(&b, NULL);
164 
165    struct brw_cs_prog_key cs_key;
166    brw_blorp_init_cs_prog_key(&cs_key);
167 
168    struct brw_cs_prog_data prog_data;
169    const unsigned *program =
170       blorp_compile_cs(blorp, mem_ctx, b.shader, &cs_key, &prog_data);
171 
172    bool result =
173       blorp->upload_shader(batch, MESA_SHADER_COMPUTE,
174                            &blorp_key, sizeof(blorp_key),
175                            program, prog_data.base.program_size,
176                            &prog_data.base, sizeof(prog_data),
177                            &params->cs_prog_kernel, &params->cs_prog_data);
178 
179    ralloc_free(mem_ctx);
180    return result;
181 }
182 
183 static bool
blorp_params_get_clear_kernel(struct blorp_batch * batch,struct blorp_params * params,bool use_replicated_data,bool clear_rgb_as_red)184 blorp_params_get_clear_kernel(struct blorp_batch *batch,
185                               struct blorp_params *params,
186                               bool use_replicated_data,
187                               bool clear_rgb_as_red)
188 {
189    if (batch->flags & BLORP_BATCH_USE_COMPUTE) {
190       assert(!use_replicated_data);
191       return blorp_params_get_clear_kernel_cs(batch, params, clear_rgb_as_red);
192    } else {
193       return blorp_params_get_clear_kernel_fs(batch, params,
194                                               use_replicated_data,
195                                               clear_rgb_as_red);
196    }
197 }
198 
199 #pragma pack(push, 1)
200 struct layer_offset_vs_key {
201    struct brw_blorp_base_key base;
202    unsigned num_inputs;
203 };
204 #pragma pack(pop)
205 
206 /* In the case of doing attachment clears, we are using a surface state that
207  * is handed to us so we can't set (and don't even know) the base array layer.
208  * In order to do a layered clear in this scenario, we need some way of adding
209  * the base array layer to the instance id.  Unfortunately, our hardware has
210  * no real concept of "base instance", so we have to do it manually in a
211  * vertex shader.
212  */
213 static bool
blorp_params_get_layer_offset_vs(struct blorp_batch * batch,struct blorp_params * params)214 blorp_params_get_layer_offset_vs(struct blorp_batch *batch,
215                                  struct blorp_params *params)
216 {
217    struct blorp_context *blorp = batch->blorp;
218    struct layer_offset_vs_key blorp_key = {
219       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_LAYER_OFFSET_VS),
220    };
221 
222    if (params->wm_prog_data)
223       blorp_key.num_inputs = params->wm_prog_data->num_varying_inputs;
224 
225    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
226                             &params->vs_prog_kernel, &params->vs_prog_data))
227       return true;
228 
229    void *mem_ctx = ralloc_context(NULL);
230 
231    nir_builder b;
232    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_VERTEX,
233                          blorp_shader_type_to_name(blorp_key.base.shader_type));
234 
235    const struct glsl_type *uvec4_type = glsl_vector_type(GLSL_TYPE_UINT, 4);
236 
237    /* First we deal with the header which has instance and base instance */
238    nir_variable *a_header = nir_variable_create(b.shader, nir_var_shader_in,
239                                                 uvec4_type, "header");
240    a_header->data.location = VERT_ATTRIB_GENERIC0;
241 
242    nir_variable *v_layer = nir_variable_create(b.shader, nir_var_shader_out,
243                                                glsl_int_type(), "layer_id");
244    v_layer->data.location = VARYING_SLOT_LAYER;
245 
246    /* Compute the layer id */
247    nir_ssa_def *header = nir_load_var(&b, a_header);
248    nir_ssa_def *base_layer = nir_channel(&b, header, 0);
249    nir_ssa_def *instance = nir_channel(&b, header, 1);
250    nir_store_var(&b, v_layer, nir_iadd(&b, instance, base_layer), 0x1);
251 
252    /* Then we copy the vertex from the next slot to VARYING_SLOT_POS */
253    nir_variable *a_vertex = nir_variable_create(b.shader, nir_var_shader_in,
254                                                 glsl_vec4_type(), "a_vertex");
255    a_vertex->data.location = VERT_ATTRIB_GENERIC1;
256 
257    nir_variable *v_pos = nir_variable_create(b.shader, nir_var_shader_out,
258                                              glsl_vec4_type(), "v_pos");
259    v_pos->data.location = VARYING_SLOT_POS;
260 
261    nir_copy_var(&b, v_pos, a_vertex);
262 
263    /* Then we copy everything else */
264    for (unsigned i = 0; i < blorp_key.num_inputs; i++) {
265       nir_variable *a_in = nir_variable_create(b.shader, nir_var_shader_in,
266                                                uvec4_type, "input");
267       a_in->data.location = VERT_ATTRIB_GENERIC2 + i;
268 
269       nir_variable *v_out = nir_variable_create(b.shader, nir_var_shader_out,
270                                                 uvec4_type, "output");
271       v_out->data.location = VARYING_SLOT_VAR0 + i;
272 
273       nir_copy_var(&b, v_out, a_in);
274    }
275 
276    struct brw_vs_prog_data vs_prog_data;
277    memset(&vs_prog_data, 0, sizeof(vs_prog_data));
278 
279    const unsigned *program =
280       blorp_compile_vs(blorp, mem_ctx, b.shader, &vs_prog_data);
281 
282    bool result =
283       blorp->upload_shader(batch, MESA_SHADER_VERTEX,
284                            &blorp_key, sizeof(blorp_key),
285                            program, vs_prog_data.base.base.program_size,
286                            &vs_prog_data.base.base, sizeof(vs_prog_data),
287                            &params->vs_prog_kernel, &params->vs_prog_data);
288 
289    ralloc_free(mem_ctx);
290    return result;
291 }
292 
293 /* The x0, y0, x1, and y1 parameters must already be populated with the render
294  * area of the framebuffer to be cleared.
295  */
296 static void
get_fast_clear_rect(const struct isl_device * dev,const struct isl_surf * aux_surf,unsigned * x0,unsigned * y0,unsigned * x1,unsigned * y1)297 get_fast_clear_rect(const struct isl_device *dev,
298                     const struct isl_surf *aux_surf,
299                     unsigned *x0, unsigned *y0,
300                     unsigned *x1, unsigned *y1)
301 {
302    unsigned int x_align, y_align;
303    unsigned int x_scaledown, y_scaledown;
304 
305    /* Only single sampled surfaces need to (and actually can) be resolved. */
306    if (aux_surf->usage == ISL_SURF_USAGE_CCS_BIT) {
307       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
308        * Target(s)", beneath the "Fast Color Clear" bullet (p327):
309        *
310        *     Clear pass must have a clear rectangle that must follow
311        *     alignment rules in terms of pixels and lines as shown in the
312        *     table below. Further, the clear-rectangle height and width
313        *     must be multiple of the following dimensions. If the height
314        *     and width of the render target being cleared do not meet these
315        *     requirements, an MCS buffer can be created such that it
316        *     follows the requirement and covers the RT.
317        *
318        * The alignment size in the table that follows is related to the
319        * alignment size that is baked into the CCS surface format but with X
320        * alignment multiplied by 16 and Y alignment multiplied by 32.
321        */
322       x_align = isl_format_get_layout(aux_surf->format)->bw;
323       y_align = isl_format_get_layout(aux_surf->format)->bh;
324 
325       x_align *= 16;
326 
327       /* The line alignment requirement for Y-tiled is halved at SKL and again
328        * at TGL.
329        */
330       if (dev->info->ver >= 12)
331          y_align *= 8;
332       else if (dev->info->ver >= 9)
333          y_align *= 16;
334       else
335          y_align *= 32;
336 
337       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
338        * Target(s)", beneath the "Fast Color Clear" bullet (p327):
339        *
340        *     In order to optimize the performance MCS buffer (when bound to
341        *     1X RT) clear similarly to MCS buffer clear for MSRT case,
342        *     clear rect is required to be scaled by the following factors
343        *     in the horizontal and vertical directions:
344        *
345        * The X and Y scale down factors in the table that follows are each
346        * equal to half the alignment value computed above.
347        */
348       x_scaledown = x_align / 2;
349       y_scaledown = y_align / 2;
350 
351       if (ISL_DEV_IS_HASWELL(dev)) {
352          /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
353           * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
354           * Clear of Non-MultiSampled Render Target Restrictions":
355           *
356           *   Clear rectangle must be aligned to two times the number of
357           *   pixels in the table shown below due to 16x16 hashing across the
358           *   slice.
359           *
360           * This restriction is only documented to exist on HSW GT3 but
361           * empirical evidence suggests that it's also needed GT2.
362           */
363          x_align *= 2;
364          y_align *= 2;
365       }
366    } else {
367       assert(aux_surf->usage == ISL_SURF_USAGE_MCS_BIT);
368 
369       /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
370        * Target(s)", beneath the "MSAA Compression" bullet (p326):
371        *
372        *     Clear pass for this case requires that scaled down primitive
373        *     is sent down with upper left co-ordinate to coincide with
374        *     actual rectangle being cleared. For MSAA, clear rectangle’s
375        *     height and width need to as show in the following table in
376        *     terms of (width,height) of the RT.
377        *
378        *     MSAA  Width of Clear Rect  Height of Clear Rect
379        *      2X     Ceil(1/8*width)      Ceil(1/2*height)
380        *      4X     Ceil(1/8*width)      Ceil(1/2*height)
381        *      8X     Ceil(1/2*width)      Ceil(1/2*height)
382        *     16X         width            Ceil(1/2*height)
383        *
384        * The text "with upper left co-ordinate to coincide with actual
385        * rectangle being cleared" is a little confusing--it seems to imply
386        * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
387        * feed the pipeline using the rectangle (x,y) to
388        * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
389        * the number of samples.  Experiments indicate that this is not
390        * quite correct; actually, what the hardware appears to do is to
391        * align whatever rectangle is sent down the pipeline to the nearest
392        * multiple of 2x2 blocks, and then scale it up by a factor of N
393        * horizontally and 2 vertically.  So the resulting alignment is 4
394        * vertically and either 4 or 16 horizontally, and the scaledown
395        * factor is 2 vertically and either 2 or 8 horizontally.
396        */
397       switch (aux_surf->format) {
398       case ISL_FORMAT_MCS_2X:
399       case ISL_FORMAT_MCS_4X:
400          x_scaledown = 8;
401          break;
402       case ISL_FORMAT_MCS_8X:
403          x_scaledown = 2;
404          break;
405       case ISL_FORMAT_MCS_16X:
406          x_scaledown = 1;
407          break;
408       default:
409          unreachable("Unexpected MCS format for fast clear");
410       }
411       y_scaledown = 2;
412       x_align = x_scaledown * 2;
413       y_align = y_scaledown * 2;
414    }
415 
416    *x0 = ROUND_DOWN_TO(*x0,  x_align) / x_scaledown;
417    *y0 = ROUND_DOWN_TO(*y0, y_align) / y_scaledown;
418    *x1 = ALIGN(*x1, x_align) / x_scaledown;
419    *y1 = ALIGN(*y1, y_align) / y_scaledown;
420 }
421 
422 void
blorp_fast_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,struct isl_swizzle swizzle,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)423 blorp_fast_clear(struct blorp_batch *batch,
424                  const struct blorp_surf *surf,
425                  enum isl_format format, struct isl_swizzle swizzle,
426                  uint32_t level, uint32_t start_layer, uint32_t num_layers,
427                  uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
428 {
429    struct blorp_params params;
430    blorp_params_init(&params);
431    params.num_layers = num_layers;
432    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
433 
434    params.x0 = x0;
435    params.y0 = y0;
436    params.x1 = x1;
437    params.y1 = y1;
438 
439    memset(&params.wm_inputs.clear_color, 0xff, 4*sizeof(float));
440    params.fast_clear_op = ISL_AUX_OP_FAST_CLEAR;
441 
442    get_fast_clear_rect(batch->blorp->isl_dev, surf->aux_surf,
443                        &params.x0, &params.y0, &params.x1, &params.y1);
444 
445    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
446       return;
447 
448    brw_blorp_surface_info_init(batch, &params.dst, surf, level,
449                                start_layer, format, true);
450    params.num_samples = params.dst.surf.samples;
451 
452    assert(params.num_samples != 0);
453    if (params.num_samples == 1)
454       params.snapshot_type = INTEL_SNAPSHOT_CCS_COLOR_CLEAR;
455    else
456       params.snapshot_type = INTEL_SNAPSHOT_MCS_COLOR_CLEAR;
457 
458    /* If a swizzle was provided, we need to swizzle the clear color so that
459     * the hardware color format conversion will work properly.
460     */
461    params.dst.clear_color =
462       isl_color_value_swizzle_inv(params.dst.clear_color, swizzle);
463 
464    batch->blorp->exec(batch, &params);
465 }
466 
467 bool
blorp_clear_supports_compute(struct blorp_context * blorp,uint8_t color_write_disable,bool blend_enabled,enum isl_aux_usage aux_usage)468 blorp_clear_supports_compute(struct blorp_context *blorp,
469                              uint8_t color_write_disable, bool blend_enabled,
470                              enum isl_aux_usage aux_usage)
471 {
472    if (blorp->isl_dev->info->ver < 7)
473       return false;
474    if (color_write_disable != 0 || blend_enabled)
475       return false;
476    if (blorp->isl_dev->info->ver >= 12) {
477       return aux_usage == ISL_AUX_USAGE_GFX12_CCS_E ||
478              aux_usage == ISL_AUX_USAGE_CCS_E ||
479              aux_usage == ISL_AUX_USAGE_NONE;
480    } else {
481       return aux_usage == ISL_AUX_USAGE_NONE;
482    }
483 }
484 
485 void
blorp_clear(struct blorp_batch * batch,const struct blorp_surf * surf,enum isl_format format,struct isl_swizzle swizzle,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,union isl_color_value clear_color,uint8_t color_write_disable)486 blorp_clear(struct blorp_batch *batch,
487             const struct blorp_surf *surf,
488             enum isl_format format, struct isl_swizzle swizzle,
489             uint32_t level, uint32_t start_layer, uint32_t num_layers,
490             uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
491             union isl_color_value clear_color,
492             uint8_t color_write_disable)
493 {
494    struct blorp_params params;
495    blorp_params_init(&params);
496    params.snapshot_type = INTEL_SNAPSHOT_SLOW_COLOR_CLEAR;
497 
498    const bool compute = batch->flags & BLORP_BATCH_USE_COMPUTE;
499    if (compute)
500       assert(blorp_clear_supports_compute(batch->blorp, color_write_disable,
501                                           false, surf->aux_usage));
502 
503    /* Manually apply the clear destination swizzle.  This way swizzled clears
504     * will work for swizzles which we can't normally use for rendering and it
505     * also ensures that they work on pre-Haswell hardware which can't swizlle
506     * at all.
507     */
508    clear_color = isl_color_value_swizzle_inv(clear_color, swizzle);
509    swizzle = ISL_SWIZZLE_IDENTITY;
510 
511    bool clear_rgb_as_red = false;
512    if (format == ISL_FORMAT_R9G9B9E5_SHAREDEXP) {
513       clear_color.u32[0] = float3_to_rgb9e5(clear_color.f32);
514       format = ISL_FORMAT_R32_UINT;
515    } else if (format == ISL_FORMAT_L8_UNORM_SRGB) {
516       clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
517       format = ISL_FORMAT_R8_UNORM;
518    } else if (format == ISL_FORMAT_A4B4G4R4_UNORM) {
519       /* Broadwell and earlier cannot render to this format so we need to work
520        * around it by swapping the colors around and using B4G4R4A4 instead.
521        */
522       const struct isl_swizzle ARGB = ISL_SWIZZLE(ALPHA, RED, GREEN, BLUE);
523       clear_color = isl_color_value_swizzle_inv(clear_color, ARGB);
524       format = ISL_FORMAT_B4G4R4A4_UNORM;
525    } else if (isl_format_get_layout(format)->bpb % 3 == 0) {
526       clear_rgb_as_red = true;
527       if (format == ISL_FORMAT_R8G8B8_UNORM_SRGB) {
528          clear_color.f32[0] = util_format_linear_to_srgb_float(clear_color.f32[0]);
529          clear_color.f32[1] = util_format_linear_to_srgb_float(clear_color.f32[1]);
530          clear_color.f32[2] = util_format_linear_to_srgb_float(clear_color.f32[2]);
531       }
532    }
533 
534    memcpy(&params.wm_inputs.clear_color, clear_color.f32, sizeof(float) * 4);
535 
536    bool use_simd16_replicated_data = true;
537 
538    /* From the SNB PRM (Vol4_Part1):
539     *
540     *     "Replicated data (Message Type = 111) is only supported when
541     *      accessing tiled memory.  Using this Message Type to access linear
542     *      (untiled) memory is UNDEFINED."
543     */
544    if (surf->surf->tiling == ISL_TILING_LINEAR)
545       use_simd16_replicated_data = false;
546 
547    /* Replicated clears don't work yet before gfx6 */
548    if (batch->blorp->isl_dev->info->ver < 6)
549       use_simd16_replicated_data = false;
550 
551    if (compute)
552       use_simd16_replicated_data = false;
553 
554    /* Constant color writes ignore everyting in blend and color calculator
555     * state.  This is not documented.
556     */
557    params.color_write_disable = color_write_disable & BITFIELD_MASK(4);
558    if (color_write_disable)
559       use_simd16_replicated_data = false;
560 
561    if (!blorp_params_get_clear_kernel(batch, &params,
562                                       use_simd16_replicated_data,
563                                       clear_rgb_as_red))
564       return;
565 
566    if (!compute && !blorp_ensure_sf_program(batch, &params))
567       return;
568 
569    while (num_layers > 0) {
570       brw_blorp_surface_info_init(batch, &params.dst, surf, level,
571                                   start_layer, format, true);
572       params.dst.view.swizzle = swizzle;
573 
574       params.x0 = x0;
575       params.y0 = y0;
576       params.x1 = x1;
577       params.y1 = y1;
578 
579       if (compute) {
580          params.wm_inputs.bounds_rect.x0 = x0;
581          params.wm_inputs.bounds_rect.y0 = y0;
582          params.wm_inputs.bounds_rect.x1 = x1;
583          params.wm_inputs.bounds_rect.y1 = y1;
584       }
585 
586       if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
587          assert(params.dst.surf.samples == 1);
588          assert(num_layers == 1);
589          params.x0 += params.dst.tile_x_sa;
590          params.y0 += params.dst.tile_y_sa;
591          params.x1 += params.dst.tile_x_sa;
592          params.y1 += params.dst.tile_y_sa;
593       }
594 
595       /* The MinLOD and MinimumArrayElement don't work properly for cube maps.
596        * Convert them to a single slice on gfx4.
597        */
598       if (batch->blorp->isl_dev->info->ver == 4 &&
599           (params.dst.surf.usage & ISL_SURF_USAGE_CUBE_BIT)) {
600          blorp_surf_convert_to_single_slice(batch->blorp->isl_dev, &params.dst);
601       }
602 
603       if (clear_rgb_as_red) {
604          surf_fake_rgb_with_red(batch->blorp->isl_dev, &params.dst);
605          params.x0 *= 3;
606          params.x1 *= 3;
607       }
608 
609       if (isl_format_is_compressed(params.dst.surf.format)) {
610          blorp_surf_convert_to_uncompressed(batch->blorp->isl_dev, &params.dst,
611                                             NULL, NULL, NULL, NULL);
612                                             //&dst_x, &dst_y, &dst_w, &dst_h);
613       }
614 
615       if (params.dst.tile_x_sa || params.dst.tile_y_sa) {
616          /* Either we're on gfx4 where there is no multisampling or the
617           * surface is compressed which also implies no multisampling.
618           * Therefore, sa == px and we don't need to do a conversion.
619           */
620          assert(params.dst.surf.samples == 1);
621          params.x0 += params.dst.tile_x_sa;
622          params.y0 += params.dst.tile_y_sa;
623          params.x1 += params.dst.tile_x_sa;
624          params.y1 += params.dst.tile_y_sa;
625       }
626 
627       params.num_samples = params.dst.surf.samples;
628 
629       /* We may be restricted on the number of layers we can bind at any one
630        * time.  In particular, Sandy Bridge has a maximum number of layers of
631        * 512 but a maximum 3D texture size is much larger.
632        */
633       params.num_layers = MIN2(params.dst.view.array_len, num_layers);
634 
635       const unsigned max_image_width = 16 * 1024;
636       if (params.dst.surf.logical_level0_px.width > max_image_width) {
637          /* Clearing an RGB image as red multiplies the surface width by 3
638           * so it may now be too wide for the hardware surface limits.  We
639           * have to break the clear up into pieces in order to clear wide
640           * images.
641           */
642          assert(clear_rgb_as_red);
643          assert(params.dst.surf.dim == ISL_SURF_DIM_2D);
644          assert(params.dst.surf.tiling == ISL_TILING_LINEAR);
645          assert(params.dst.surf.logical_level0_px.depth == 1);
646          assert(params.dst.surf.logical_level0_px.array_len == 1);
647          assert(params.dst.surf.levels == 1);
648          assert(params.dst.surf.samples == 1);
649          assert(params.dst.tile_x_sa == 0 || params.dst.tile_y_sa == 0);
650          assert(params.dst.aux_usage == ISL_AUX_USAGE_NONE);
651 
652          /* max_image_width rounded down to a multiple of 3 */
653          const unsigned max_fake_rgb_width = (max_image_width / 3) * 3;
654          const unsigned cpp =
655             isl_format_get_layout(params.dst.surf.format)->bpb / 8;
656 
657          params.dst.surf.logical_level0_px.width = max_fake_rgb_width;
658          params.dst.surf.phys_level0_sa.width = max_fake_rgb_width;
659 
660          uint32_t orig_x0 = params.x0, orig_x1 = params.x1;
661          uint64_t orig_offset = params.dst.addr.offset;
662          for (uint32_t x = orig_x0; x < orig_x1; x += max_fake_rgb_width) {
663             /* Offset to the surface.  It's easy because we're linear */
664             params.dst.addr.offset = orig_offset + x * cpp;
665 
666             params.x0 = 0;
667             params.x1 = MIN2(orig_x1 - x, max_image_width);
668 
669             batch->blorp->exec(batch, &params);
670          }
671       } else {
672          batch->blorp->exec(batch, &params);
673       }
674 
675       start_layer += params.num_layers;
676       num_layers -= params.num_layers;
677    }
678 }
679 
680 static bool
blorp_clear_stencil_as_rgba(struct blorp_batch * batch,const struct blorp_surf * surf,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,uint8_t stencil_mask,uint8_t stencil_value)681 blorp_clear_stencil_as_rgba(struct blorp_batch *batch,
682                             const struct blorp_surf *surf,
683                             uint32_t level, uint32_t start_layer,
684                             uint32_t num_layers,
685                             uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
686                             uint8_t stencil_mask, uint8_t stencil_value)
687 {
688    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
689 
690    /* We only support separate W-tiled stencil for now */
691    if (surf->surf->format != ISL_FORMAT_R8_UINT ||
692        surf->surf->tiling != ISL_TILING_W)
693       return false;
694 
695    /* Stencil mask support would require piles of shader magic */
696    if (stencil_mask != 0xff)
697       return false;
698 
699    if (surf->surf->samples > 1) {
700       /* Adjust x0, y0, x1, and y1 to be in units of samples */
701       assert(surf->surf->msaa_layout == ISL_MSAA_LAYOUT_INTERLEAVED);
702       struct isl_extent2d msaa_px_size_sa =
703          isl_get_interleaved_msaa_px_size_sa(surf->surf->samples);
704 
705       x0 *= msaa_px_size_sa.w;
706       y0 *= msaa_px_size_sa.h;
707       x1 *= msaa_px_size_sa.w;
708       y1 *= msaa_px_size_sa.h;
709    }
710 
711    /* W-tiles and Y-tiles have the same layout as far as cache lines are
712     * concerned: both are 8x8 cache lines laid out Y-major.  The difference is
713     * entirely in how the data is arranged withing the cache line.  W-tiling
714     * is 8x8 pixels in a swizzled pattern while Y-tiling is 16B by 4 rows
715     * regardless of image format size.  As long as everything is aligned to 8,
716     * we can just treat the W-tiled image as Y-tiled, ignore the layout
717     * difference within a cache line, and blast out data.
718     */
719    if (x0 % 8 != 0 || y0 % 8 != 0 || x1 % 8 != 0 || y1 % 8 != 0)
720       return false;
721 
722    struct blorp_params params;
723    blorp_params_init(&params);
724    params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
725 
726    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
727       return false;
728 
729    memset(&params.wm_inputs.clear_color, stencil_value,
730           sizeof(params.wm_inputs.clear_color));
731 
732    /* The Sandy Bridge PRM Vol. 4 Pt. 2, section 2.11.2.1.1 has the
733     * following footnote to the format table:
734     *
735     *    128 BPE Formats cannot be Tiled Y when used as render targets
736     *
737     * We have to use RGBA16_UINT on SNB.
738     */
739    enum isl_format wide_format;
740    if (ISL_GFX_VER(batch->blorp->isl_dev) <= 6) {
741       wide_format = ISL_FORMAT_R16G16B16A16_UINT;
742 
743       /* For RGBA16_UINT, we need to mask the stencil value otherwise, we risk
744        * clamping giving us the wrong values
745        */
746       for (unsigned i = 0; i < 4; i++)
747          params.wm_inputs.clear_color[i] &= 0xffff;
748    } else {
749       wide_format = ISL_FORMAT_R32G32B32A32_UINT;
750    }
751 
752    for (uint32_t a = 0; a < num_layers; a++) {
753       uint32_t layer = start_layer + a;
754 
755       brw_blorp_surface_info_init(batch, &params.dst, surf, level,
756                                   layer, ISL_FORMAT_UNSUPPORTED, true);
757 
758       if (surf->surf->samples > 1)
759          blorp_surf_fake_interleaved_msaa(batch->blorp->isl_dev, &params.dst);
760 
761       /* Make it Y-tiled */
762       blorp_surf_retile_w_to_y(batch->blorp->isl_dev, &params.dst);
763 
764       unsigned wide_Bpp =
765          isl_format_get_layout(wide_format)->bpb / 8;
766 
767       params.dst.view.format = params.dst.surf.format = wide_format;
768       assert(params.dst.surf.logical_level0_px.width % wide_Bpp == 0);
769       params.dst.surf.logical_level0_px.width /= wide_Bpp;
770       assert(params.dst.tile_x_sa % wide_Bpp == 0);
771       params.dst.tile_x_sa /= wide_Bpp;
772 
773       params.x0 = params.dst.tile_x_sa + x0 / (wide_Bpp / 2);
774       params.y0 = params.dst.tile_y_sa + y0 / 2;
775       params.x1 = params.dst.tile_x_sa + x1 / (wide_Bpp / 2);
776       params.y1 = params.dst.tile_y_sa + y1 / 2;
777 
778       batch->blorp->exec(batch, &params);
779    }
780 
781    return true;
782 }
783 
784 void
blorp_clear_depth_stencil(struct blorp_batch * batch,const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)785 blorp_clear_depth_stencil(struct blorp_batch *batch,
786                           const struct blorp_surf *depth,
787                           const struct blorp_surf *stencil,
788                           uint32_t level, uint32_t start_layer,
789                           uint32_t num_layers,
790                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
791                           bool clear_depth, float depth_value,
792                           uint8_t stencil_mask, uint8_t stencil_value)
793 {
794    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
795 
796    if (!clear_depth && blorp_clear_stencil_as_rgba(batch, stencil, level,
797                                                    start_layer, num_layers,
798                                                    x0, y0, x1, y1,
799                                                    stencil_mask,
800                                                    stencil_value))
801       return;
802 
803    struct blorp_params params;
804    blorp_params_init(&params);
805    params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
806 
807    params.x0 = x0;
808    params.y0 = y0;
809    params.x1 = x1;
810    params.y1 = y1;
811 
812    if (ISL_GFX_VER(batch->blorp->isl_dev) == 6) {
813       /* For some reason, Sandy Bridge gets occlusion queries wrong if we
814        * don't have a shader.  In particular, it records samples even though
815        * we disable statistics in 3DSTATE_WM.  Give it the usual clear shader
816        * to work around the issue.
817        */
818       if (!blorp_params_get_clear_kernel(batch, &params, false, false))
819          return;
820    }
821 
822    while (num_layers > 0) {
823       params.num_layers = num_layers;
824 
825       if (stencil_mask) {
826          brw_blorp_surface_info_init(batch, &params.stencil, stencil,
827                                      level, start_layer,
828                                      ISL_FORMAT_UNSUPPORTED, true);
829          params.stencil_mask = stencil_mask;
830          params.stencil_ref = stencil_value;
831 
832          params.dst.surf.samples = params.stencil.surf.samples;
833          params.dst.surf.logical_level0_px =
834             params.stencil.surf.logical_level0_px;
835          params.dst.view = params.stencil.view;
836 
837          params.num_samples = params.stencil.surf.samples;
838 
839          /* We may be restricted on the number of layers we can bind at any
840           * one time.  In particular, Sandy Bridge has a maximum number of
841           * layers of 512 but a maximum 3D texture size is much larger.
842           */
843          if (params.stencil.view.array_len < params.num_layers)
844             params.num_layers = params.stencil.view.array_len;
845       }
846 
847       if (clear_depth) {
848          brw_blorp_surface_info_init(batch, &params.depth, depth,
849                                      level, start_layer,
850                                      ISL_FORMAT_UNSUPPORTED, true);
851          params.z = depth_value;
852          params.depth_format =
853             isl_format_get_depth_format(depth->surf->format, false);
854 
855          params.dst.surf.samples = params.depth.surf.samples;
856          params.dst.surf.logical_level0_px =
857             params.depth.surf.logical_level0_px;
858          params.dst.view = params.depth.view;
859 
860          params.num_samples = params.depth.surf.samples;
861 
862          /* We may be restricted on the number of layers we can bind at any
863           * one time.  In particular, Sandy Bridge has a maximum number of
864           * layers of 512 but a maximum 3D texture size is much larger.
865           */
866          if (params.depth.view.array_len < params.num_layers)
867             params.num_layers = params.depth.view.array_len;
868       }
869 
870       batch->blorp->exec(batch, &params);
871 
872       start_layer += params.num_layers;
873       num_layers -= params.num_layers;
874    }
875 }
876 
877 bool
blorp_can_hiz_clear_depth(const struct intel_device_info * devinfo,const struct isl_surf * surf,enum isl_aux_usage aux_usage,uint32_t level,uint32_t layer,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1)878 blorp_can_hiz_clear_depth(const struct intel_device_info *devinfo,
879                           const struct isl_surf *surf,
880                           enum isl_aux_usage aux_usage,
881                           uint32_t level, uint32_t layer,
882                           uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1)
883 {
884    /* This function currently doesn't support any gen prior to gfx8 */
885    assert(devinfo->ver >= 8);
886 
887    if (devinfo->ver == 8 && surf->format == ISL_FORMAT_R16_UNORM) {
888       /* Apply the D16 alignment restrictions. On BDW, HiZ has an 8x4 sample
889        * block with the following property: as the number of samples increases,
890        * the number of pixels representable by this block decreases by a factor
891        * of the sample dimensions. Sample dimensions scale following the MSAA
892        * interleaved pattern.
893        *
894        * Sample|Sample|Pixel
895        * Count |Dim   |Dim
896        * ===================
897        *    1  | 1x1  | 8x4
898        *    2  | 2x1  | 4x4
899        *    4  | 2x2  | 4x2
900        *    8  | 4x2  | 2x2
901        *   16  | 4x4  | 2x1
902        *
903        * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
904        */
905       const struct isl_extent2d sa_block_dim =
906          isl_get_interleaved_msaa_px_size_sa(surf->samples);
907       const uint8_t align_px_w = 8 / sa_block_dim.w;
908       const uint8_t align_px_h = 4 / sa_block_dim.h;
909 
910       /* Fast depth clears clear an entire sample block at a time. As a result,
911        * the rectangle must be aligned to the dimensions of the encompassing
912        * pixel block for a successful operation.
913        *
914        * Fast clears can still work if the upper-left corner is aligned and the
915        * bottom-rigtht corner touches the edge of a depth buffer whose extent
916        * is unaligned. This is because each miplevel in the depth buffer is
917        * padded by the Pixel Dim (similar to a standard compressed texture).
918        * In this case, the clear rectangle could be padded by to match the full
919        * depth buffer extent but to support multiple clearing techniques, we
920        * chose to be unaware of the depth buffer's extent and thus don't handle
921        * this case.
922        */
923       if (x0 % align_px_w || y0 % align_px_h ||
924           x1 % align_px_w || y1 % align_px_h)
925          return false;
926    } else if (aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT) {
927       /* We have to set the WM_HZ_OP::FullSurfaceDepthandStencilClear bit
928        * whenever we clear an uninitialized HIZ buffer (as some drivers
929        * currently do). However, this bit seems liable to clear 16x8 pixels in
930        * the ZCS on Gfx12 - greater than the slice alignments for depth
931        * buffers.
932        */
933       assert(surf->image_alignment_el.w % 16 != 0 ||
934              surf->image_alignment_el.h % 8 != 0);
935 
936       /* This is the hypothesis behind some corruption that was seen with the
937        * amd_vertex_shader_layer-layered-depth-texture-render piglit test.
938        *
939        * From the Compressed Depth Buffers section of the Bspec, under the
940        * Gfx12 texture performant and ZCS columns:
941        *
942        *    Update with clear at either 16x8 or 8x4 granularity, based on
943        *    fs_clr or otherwise.
944        *
945        * There are a number of ways to avoid full surface CCS clears that
946        * overlap other slices, but for now we choose to disable fast-clears
947        * when an initializing clear could hit another miplevel.
948        *
949        * NOTE: Because the CCS compresses the depth buffer and not a version
950        * of it that has been rearranged with different alignments (like Gfx8+
951        * HIZ), we have to make sure that the x0 and y0 are at least 16x8
952        * aligned in the context of the entire surface.
953        */
954       uint32_t slice_x0, slice_y0, slice_z0, slice_a0;
955       isl_surf_get_image_offset_el(surf, level,
956                                    surf->dim == ISL_SURF_DIM_3D ? 0 : layer,
957                                    surf->dim == ISL_SURF_DIM_3D ? layer: 0,
958                                    &slice_x0, &slice_y0, &slice_z0, &slice_a0);
959       assert(slice_z0 == 0 && slice_a0 == 0);
960       const bool max_x1_y1 =
961          x1 == minify(surf->logical_level0_px.width, level) &&
962          y1 == minify(surf->logical_level0_px.height, level);
963       const uint32_t haligned_x1 = ALIGN(x1, surf->image_alignment_el.w);
964       const uint32_t valigned_y1 = ALIGN(y1, surf->image_alignment_el.h);
965       const bool unaligned = (slice_x0 + x0) % 16 || (slice_y0 + y0) % 8 ||
966                              (max_x1_y1 ? haligned_x1 % 16 || valigned_y1 % 8 :
967                               x1 % 16 || y1 % 8);
968       const bool partial_clear = x0 > 0 || y0 > 0 || !max_x1_y1;
969       const bool multislice_surf = surf->levels > 1 ||
970                                    surf->logical_level0_px.depth > 1 ||
971                                    surf->logical_level0_px.array_len > 1;
972 
973       if (unaligned && (partial_clear || multislice_surf))
974          return false;
975    }
976 
977    return isl_aux_usage_has_hiz(aux_usage);
978 }
979 
980 static bool
blorp_can_clear_full_surface(const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,bool clear_stencil)981 blorp_can_clear_full_surface(const struct blorp_surf *depth,
982                              const struct blorp_surf *stencil,
983                              uint32_t level,
984                              uint32_t x0, uint32_t y0,
985                              uint32_t x1, uint32_t y1,
986                              bool clear_depth,
987                              bool clear_stencil)
988 {
989    uint32_t width = 0, height = 0;
990    if (clear_stencil) {
991       width = minify(stencil->surf->logical_level0_px.width, level);
992       height = minify(stencil->surf->logical_level0_px.height, level);
993    }
994 
995    if (clear_depth && !(width || height)) {
996       width = minify(depth->surf->logical_level0_px.width, level);
997       height = minify(depth->surf->logical_level0_px.height, level);
998    }
999 
1000    return x0 == 0 && y0 == 0 && width == x1 && height == y1;
1001 }
1002 
1003 void
blorp_hiz_clear_depth_stencil(struct blorp_batch * batch,const struct blorp_surf * depth,const struct blorp_surf * stencil,uint32_t level,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,float depth_value,bool clear_stencil,uint8_t stencil_value)1004 blorp_hiz_clear_depth_stencil(struct blorp_batch *batch,
1005                               const struct blorp_surf *depth,
1006                               const struct blorp_surf *stencil,
1007                               uint32_t level,
1008                               uint32_t start_layer, uint32_t num_layers,
1009                               uint32_t x0, uint32_t y0,
1010                               uint32_t x1, uint32_t y1,
1011                               bool clear_depth, float depth_value,
1012                               bool clear_stencil, uint8_t stencil_value)
1013 {
1014    struct blorp_params params;
1015    blorp_params_init(&params);
1016    params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
1017 
1018    /* This requires WM_HZ_OP which only exists on gfx8+ */
1019    assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 8);
1020 
1021    params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
1022    /* From BSpec: 3DSTATE_WM_HZ_OP_BODY >> Full Surface Depth and Stencil Clear
1023     *
1024     *    "Software must set this only when the APP requires the entire Depth
1025     *    surface to be cleared."
1026     */
1027    params.full_surface_hiz_op =
1028       blorp_can_clear_full_surface(depth, stencil, level, x0, y0, x1, y1,
1029                                    clear_depth, clear_stencil);
1030    params.num_layers = 1;
1031 
1032    params.x0 = x0;
1033    params.y0 = y0;
1034    params.x1 = x1;
1035    params.y1 = y1;
1036 
1037    for (uint32_t l = 0; l < num_layers; l++) {
1038       const uint32_t layer = start_layer + l;
1039       if (clear_stencil) {
1040          brw_blorp_surface_info_init(batch, &params.stencil, stencil,
1041                                      level, layer,
1042                                      ISL_FORMAT_UNSUPPORTED, true);
1043          params.stencil_mask = 0xff;
1044          params.stencil_ref = stencil_value;
1045          params.num_samples = params.stencil.surf.samples;
1046       }
1047 
1048       if (clear_depth) {
1049          /* If we're clearing depth, we must have HiZ */
1050          assert(depth && isl_aux_usage_has_hiz(depth->aux_usage));
1051 
1052          brw_blorp_surface_info_init(batch, &params.depth, depth,
1053                                      level, layer,
1054                                      ISL_FORMAT_UNSUPPORTED, true);
1055          params.depth.clear_color.f32[0] = depth_value;
1056          params.depth_format =
1057             isl_format_get_depth_format(depth->surf->format, false);
1058          params.num_samples = params.depth.surf.samples;
1059       }
1060 
1061       batch->blorp->exec(batch, &params);
1062    }
1063 }
1064 
1065 /* Given a depth stencil attachment, this function performs a fast depth clear
1066  * on a depth portion and a regular clear on the stencil portion. When
1067  * performing a fast depth clear on the depth portion, the HiZ buffer is simply
1068  * tagged as cleared so the depth clear value is not actually needed.
1069  */
1070 void
blorp_gfx8_hiz_clear_attachments(struct blorp_batch * batch,uint32_t num_samples,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_depth,bool clear_stencil,uint8_t stencil_value)1071 blorp_gfx8_hiz_clear_attachments(struct blorp_batch *batch,
1072                                  uint32_t num_samples,
1073                                  uint32_t x0, uint32_t y0,
1074                                  uint32_t x1, uint32_t y1,
1075                                  bool clear_depth, bool clear_stencil,
1076                                  uint8_t stencil_value)
1077 {
1078    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
1079 
1080    struct blorp_params params;
1081    blorp_params_init(&params);
1082    params.snapshot_type = INTEL_SNAPSHOT_HIZ_CLEAR;
1083    params.num_layers = 1;
1084    params.hiz_op = ISL_AUX_OP_FAST_CLEAR;
1085    params.x0 = x0;
1086    params.y0 = y0;
1087    params.x1 = x1;
1088    params.y1 = y1;
1089    params.num_samples = num_samples;
1090    params.depth.enabled = clear_depth;
1091    params.stencil.enabled = clear_stencil;
1092    params.stencil_ref = stencil_value;
1093    batch->blorp->exec(batch, &params);
1094 }
1095 
1096 /** Clear active color/depth/stencili attachments
1097  *
1098  * This function performs a clear operation on the currently bound
1099  * color/depth/stencil attachments.  It is assumed that any information passed
1100  * in here is valid, consistent, and in-bounds relative to the currently
1101  * attached depth/stencil.  The binding_table_offset parameter is the 32-bit
1102  * offset relative to surface state base address where pre-baked binding table
1103  * that we are to use lives.  If clear_color is false, binding_table_offset
1104  * must point to a binding table with one entry which is a valid null surface
1105  * that matches the currently bound depth and stencil.
1106  */
1107 void
blorp_clear_attachments(struct blorp_batch * batch,uint32_t binding_table_offset,enum isl_format depth_format,uint32_t num_samples,uint32_t start_layer,uint32_t num_layers,uint32_t x0,uint32_t y0,uint32_t x1,uint32_t y1,bool clear_color,union isl_color_value color_value,bool clear_depth,float depth_value,uint8_t stencil_mask,uint8_t stencil_value)1108 blorp_clear_attachments(struct blorp_batch *batch,
1109                         uint32_t binding_table_offset,
1110                         enum isl_format depth_format,
1111                         uint32_t num_samples,
1112                         uint32_t start_layer, uint32_t num_layers,
1113                         uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1,
1114                         bool clear_color, union isl_color_value color_value,
1115                         bool clear_depth, float depth_value,
1116                         uint8_t stencil_mask, uint8_t stencil_value)
1117 {
1118    struct blorp_params params;
1119    blorp_params_init(&params);
1120 
1121    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
1122    assert(batch->flags & BLORP_BATCH_NO_EMIT_DEPTH_STENCIL);
1123 
1124    params.x0 = x0;
1125    params.y0 = y0;
1126    params.x1 = x1;
1127    params.y1 = y1;
1128 
1129    params.use_pre_baked_binding_table = true;
1130    params.pre_baked_binding_table_offset = binding_table_offset;
1131 
1132    params.num_layers = num_layers;
1133    params.num_samples = num_samples;
1134 
1135    if (clear_color) {
1136       params.dst.enabled = true;
1137       params.snapshot_type = INTEL_SNAPSHOT_SLOW_COLOR_CLEAR;
1138 
1139       memcpy(&params.wm_inputs.clear_color, color_value.f32, sizeof(float) * 4);
1140 
1141       /* Unfortunately, without knowing whether or not our destination surface
1142        * is tiled or not, we have to assume it may be linear.  This means no
1143        * SIMD16_REPDATA for us. :-(
1144        */
1145       if (!blorp_params_get_clear_kernel(batch, &params, false, false))
1146          return;
1147    }
1148 
1149    if (clear_depth) {
1150       params.depth.enabled = true;
1151       params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
1152 
1153       params.z = depth_value;
1154       params.depth_format = isl_format_get_depth_format(depth_format, false);
1155    }
1156 
1157    if (stencil_mask) {
1158       params.stencil.enabled = true;
1159       params.snapshot_type = INTEL_SNAPSHOT_SLOW_DEPTH_CLEAR;
1160 
1161       params.stencil_mask = stencil_mask;
1162       params.stencil_ref = stencil_value;
1163    }
1164 
1165    if (!blorp_params_get_layer_offset_vs(batch, &params))
1166       return;
1167 
1168    params.vs_inputs.base_layer = start_layer;
1169 
1170    batch->blorp->exec(batch, &params);
1171 }
1172 
1173 void
blorp_ccs_resolve(struct blorp_batch * batch,struct blorp_surf * surf,uint32_t level,uint32_t start_layer,uint32_t num_layers,enum isl_format format,enum isl_aux_op resolve_op)1174 blorp_ccs_resolve(struct blorp_batch *batch,
1175                   struct blorp_surf *surf, uint32_t level,
1176                   uint32_t start_layer, uint32_t num_layers,
1177                   enum isl_format format,
1178                   enum isl_aux_op resolve_op)
1179 {
1180    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
1181    struct blorp_params params;
1182 
1183    blorp_params_init(&params);
1184    switch(resolve_op) {
1185    case ISL_AUX_OP_AMBIGUATE:
1186       params.snapshot_type = INTEL_SNAPSHOT_CCS_AMBIGUATE;
1187       break;
1188    case ISL_AUX_OP_FULL_RESOLVE:
1189       params.snapshot_type = INTEL_SNAPSHOT_CCS_RESOLVE;
1190       break;
1191    case ISL_AUX_OP_PARTIAL_RESOLVE:
1192       params.snapshot_type = INTEL_SNAPSHOT_CCS_PARTIAL_RESOLVE;
1193       break;
1194    default:
1195       assert(false);
1196    }
1197    brw_blorp_surface_info_init(batch, &params.dst, surf,
1198                                level, start_layer, format, true);
1199 
1200    /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
1201     *
1202     *     A rectangle primitive must be scaled down by the following factors
1203     *     with respect to render target being resolved.
1204     *
1205     * The scaledown factors in the table that follows are related to the block
1206     * size of the CCS format.  For IVB and HSW, we divide by two, for BDW we
1207     * multiply by 8 and 16. On Sky Lake, we multiply by 8.
1208     */
1209    const struct isl_format_layout *aux_fmtl =
1210       isl_format_get_layout(params.dst.aux_surf.format);
1211    assert(aux_fmtl->txc == ISL_TXC_CCS);
1212 
1213    unsigned x_scaledown, y_scaledown;
1214    if (ISL_GFX_VER(batch->blorp->isl_dev) >= 12) {
1215       x_scaledown = aux_fmtl->bw * 8;
1216       y_scaledown = aux_fmtl->bh * 4;
1217    } else if (ISL_GFX_VER(batch->blorp->isl_dev) >= 9) {
1218       x_scaledown = aux_fmtl->bw * 8;
1219       y_scaledown = aux_fmtl->bh * 8;
1220    } else if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) {
1221       x_scaledown = aux_fmtl->bw * 8;
1222       y_scaledown = aux_fmtl->bh * 16;
1223    } else {
1224       x_scaledown = aux_fmtl->bw / 2;
1225       y_scaledown = aux_fmtl->bh / 2;
1226    }
1227    params.x0 = params.y0 = 0;
1228    params.x1 = minify(params.dst.surf.logical_level0_px.width, level);
1229    params.y1 = minify(params.dst.surf.logical_level0_px.height, level);
1230    params.x1 = ALIGN(params.x1, x_scaledown) / x_scaledown;
1231    params.y1 = ALIGN(params.y1, y_scaledown) / y_scaledown;
1232 
1233    if (batch->blorp->isl_dev->info->ver >= 10) {
1234       assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1235              resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE ||
1236              resolve_op == ISL_AUX_OP_AMBIGUATE);
1237    } else if (batch->blorp->isl_dev->info->ver >= 9) {
1238       assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE ||
1239              resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
1240    } else {
1241       /* Broadwell and earlier do not have a partial resolve */
1242       assert(resolve_op == ISL_AUX_OP_FULL_RESOLVE);
1243    }
1244    params.fast_clear_op = resolve_op;
1245    params.num_layers = num_layers;
1246 
1247    /* Note: there is no need to initialize push constants because it doesn't
1248     * matter what data gets dispatched to the render target.  However, we must
1249     * ensure that the fragment shader delivers the data using the "replicated
1250     * color" message.
1251     */
1252 
1253    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1254       return;
1255 
1256    batch->blorp->exec(batch, &params);
1257 }
1258 
1259 static nir_ssa_def *
blorp_nir_bit(nir_builder * b,nir_ssa_def * src,unsigned bit)1260 blorp_nir_bit(nir_builder *b, nir_ssa_def *src, unsigned bit)
1261 {
1262    return nir_iand(b, nir_ushr(b, src, nir_imm_int(b, bit)),
1263                       nir_imm_int(b, 1));
1264 }
1265 
1266 #pragma pack(push, 1)
1267 struct blorp_mcs_partial_resolve_key
1268 {
1269    struct brw_blorp_base_key base;
1270    bool indirect_clear_color;
1271    bool int_format;
1272    uint32_t num_samples;
1273 };
1274 #pragma pack(pop)
1275 
1276 static bool
blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch * batch,struct blorp_params * params)1277 blorp_params_get_mcs_partial_resolve_kernel(struct blorp_batch *batch,
1278                                             struct blorp_params *params)
1279 {
1280    struct blorp_context *blorp = batch->blorp;
1281    const struct blorp_mcs_partial_resolve_key blorp_key = {
1282       .base = BRW_BLORP_BASE_KEY_INIT(BLORP_SHADER_TYPE_MCS_PARTIAL_RESOLVE),
1283       .indirect_clear_color = params->dst.clear_color_addr.buffer != NULL,
1284       .int_format = isl_format_has_int_channel(params->dst.view.format),
1285       .num_samples = params->num_samples,
1286    };
1287 
1288    if (blorp->lookup_shader(batch, &blorp_key, sizeof(blorp_key),
1289                             &params->wm_prog_kernel, &params->wm_prog_data))
1290       return true;
1291 
1292    void *mem_ctx = ralloc_context(NULL);
1293 
1294    nir_builder b;
1295    blorp_nir_init_shader(&b, mem_ctx, MESA_SHADER_FRAGMENT,
1296                          blorp_shader_type_to_name(blorp_key.base.shader_type));
1297 
1298    nir_variable *v_color =
1299       BLORP_CREATE_NIR_INPUT(b.shader, clear_color, glsl_vec4_type());
1300 
1301    nir_variable *frag_color =
1302       nir_variable_create(b.shader, nir_var_shader_out,
1303                           glsl_vec4_type(), "gl_FragColor");
1304    frag_color->data.location = FRAG_RESULT_COLOR;
1305 
1306    /* Do an MCS fetch and check if it is equal to the magic clear value */
1307    nir_ssa_def *mcs =
1308       blorp_nir_txf_ms_mcs(&b, nir_f2i32(&b, nir_load_frag_coord(&b)),
1309                                nir_load_layer_id(&b));
1310    nir_ssa_def *is_clear =
1311       blorp_nir_mcs_is_clear_color(&b, mcs, blorp_key.num_samples);
1312 
1313    /* If we aren't the clear value, discard. */
1314    nir_discard_if(&b, nir_inot(&b, is_clear));
1315 
1316    nir_ssa_def *clear_color = nir_load_var(&b, v_color);
1317    if (blorp_key.indirect_clear_color && blorp->isl_dev->info->ver <= 8) {
1318       /* Gfx7-8 clear colors are stored as single 0/1 bits */
1319       clear_color = nir_vec4(&b, blorp_nir_bit(&b, clear_color, 31),
1320                                  blorp_nir_bit(&b, clear_color, 30),
1321                                  blorp_nir_bit(&b, clear_color, 29),
1322                                  blorp_nir_bit(&b, clear_color, 28));
1323 
1324       if (!blorp_key.int_format)
1325          clear_color = nir_i2f32(&b, clear_color);
1326    }
1327    nir_store_var(&b, frag_color, clear_color, 0xf);
1328 
1329    struct brw_wm_prog_key wm_key;
1330    brw_blorp_init_wm_prog_key(&wm_key);
1331    wm_key.base.tex.compressed_multisample_layout_mask = 1;
1332    wm_key.base.tex.msaa_16 = blorp_key.num_samples == 16;
1333    wm_key.multisample_fbo = true;
1334 
1335    struct brw_wm_prog_data prog_data;
1336    const unsigned *program =
1337       blorp_compile_fs(blorp, mem_ctx, b.shader, &wm_key, false,
1338                        &prog_data);
1339 
1340    bool result =
1341       blorp->upload_shader(batch, MESA_SHADER_FRAGMENT,
1342                            &blorp_key, sizeof(blorp_key),
1343                            program, prog_data.base.program_size,
1344                            &prog_data.base, sizeof(prog_data),
1345                            &params->wm_prog_kernel, &params->wm_prog_data);
1346 
1347    ralloc_free(mem_ctx);
1348    return result;
1349 }
1350 
1351 void
blorp_mcs_partial_resolve(struct blorp_batch * batch,struct blorp_surf * surf,enum isl_format format,uint32_t start_layer,uint32_t num_layers)1352 blorp_mcs_partial_resolve(struct blorp_batch *batch,
1353                           struct blorp_surf *surf,
1354                           enum isl_format format,
1355                           uint32_t start_layer, uint32_t num_layers)
1356 {
1357    struct blorp_params params;
1358    blorp_params_init(&params);
1359    params.snapshot_type = INTEL_SNAPSHOT_MCS_PARTIAL_RESOLVE;
1360 
1361    assert(batch->blorp->isl_dev->info->ver >= 7);
1362 
1363    params.x0 = 0;
1364    params.y0 = 0;
1365    params.x1 = surf->surf->logical_level0_px.width;
1366    params.y1 = surf->surf->logical_level0_px.height;
1367 
1368    brw_blorp_surface_info_init(batch, &params.src, surf, 0,
1369                                start_layer, format, false);
1370    brw_blorp_surface_info_init(batch, &params.dst, surf, 0,
1371                                start_layer, format, true);
1372 
1373    params.num_samples = params.dst.surf.samples;
1374    params.num_layers = num_layers;
1375    params.dst_clear_color_as_input = surf->clear_color_addr.buffer != NULL;
1376 
1377    memcpy(&params.wm_inputs.clear_color,
1378           surf->clear_color.f32, sizeof(float) * 4);
1379 
1380    if (!blorp_params_get_mcs_partial_resolve_kernel(batch, &params))
1381       return;
1382 
1383    batch->blorp->exec(batch, &params);
1384 }
1385 
1386 /** Clear a CCS to the "uncompressed" state
1387  *
1388  * This pass is the CCS equivalent of a "HiZ resolve".  It sets the CCS values
1389  * for a given layer/level of a surface to 0x0 which is the "uncompressed"
1390  * state which tells the sampler to go look at the main surface.
1391  */
1392 void
blorp_ccs_ambiguate(struct blorp_batch * batch,struct blorp_surf * surf,uint32_t level,uint32_t layer)1393 blorp_ccs_ambiguate(struct blorp_batch *batch,
1394                     struct blorp_surf *surf,
1395                     uint32_t level, uint32_t layer)
1396 {
1397    assert((batch->flags & BLORP_BATCH_USE_COMPUTE) == 0);
1398 
1399    if (ISL_GFX_VER(batch->blorp->isl_dev) >= 10) {
1400       /* On gfx10 and above, we have a hardware resolve op for this */
1401       return blorp_ccs_resolve(batch, surf, level, layer, 1,
1402                                surf->surf->format, ISL_AUX_OP_AMBIGUATE);
1403    }
1404 
1405    struct blorp_params params;
1406    blorp_params_init(&params);
1407    params.snapshot_type = INTEL_SNAPSHOT_CCS_AMBIGUATE;
1408 
1409    assert(ISL_GFX_VER(batch->blorp->isl_dev) >= 7);
1410 
1411    const struct isl_format_layout *aux_fmtl =
1412       isl_format_get_layout(surf->aux_surf->format);
1413    assert(aux_fmtl->txc == ISL_TXC_CCS);
1414 
1415    params.dst = (struct brw_blorp_surface_info) {
1416       .enabled = true,
1417       .addr = surf->aux_addr,
1418       .view = {
1419          .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1420          .format = ISL_FORMAT_R32G32B32A32_UINT,
1421          .base_level = 0,
1422          .base_array_layer = 0,
1423          .levels = 1,
1424          .array_len = 1,
1425          .swizzle = ISL_SWIZZLE_IDENTITY,
1426       },
1427    };
1428 
1429    uint32_t z = 0;
1430    if (surf->surf->dim == ISL_SURF_DIM_3D) {
1431       z = layer;
1432       layer = 0;
1433    }
1434 
1435    uint64_t offset_B;
1436    uint32_t x_offset_el, y_offset_el;
1437    isl_surf_get_image_offset_B_tile_el(surf->aux_surf, level, layer, z,
1438                                        &offset_B, &x_offset_el, &y_offset_el);
1439    params.dst.addr.offset += offset_B;
1440 
1441    const uint32_t width_px =
1442       minify(surf->aux_surf->logical_level0_px.width, level);
1443    const uint32_t height_px =
1444       minify(surf->aux_surf->logical_level0_px.height, level);
1445    const uint32_t width_el = DIV_ROUND_UP(width_px, aux_fmtl->bw);
1446    const uint32_t height_el = DIV_ROUND_UP(height_px, aux_fmtl->bh);
1447 
1448    struct isl_tile_info ccs_tile_info;
1449    isl_surf_get_tile_info(surf->aux_surf, &ccs_tile_info);
1450 
1451    /* We're going to map it as a regular RGBA32_UINT surface.  We need to
1452     * downscale a good deal.  We start by computing the area on the CCS to
1453     * clear in units of Y-tiled cache lines.
1454     */
1455    uint32_t x_offset_cl, y_offset_cl, width_cl, height_cl;
1456    if (ISL_GFX_VER(batch->blorp->isl_dev) >= 8) {
1457       /* From the Sky Lake PRM Vol. 12 in the section on planes:
1458        *
1459        *    "The Color Control Surface (CCS) contains the compression status
1460        *    of the cache-line pairs. The compression state of the cache-line
1461        *    pair is specified by 2 bits in the CCS.  Each CCS cache-line
1462        *    represents an area on the main surface of 16x16 sets of 128 byte
1463        *    Y-tiled cache-line-pairs. CCS is always Y tiled."
1464        *
1465        * Each 2-bit surface element in the CCS corresponds to a single
1466        * cache-line pair in the main surface.  This means that 16x16 el block
1467        * in the CCS maps to a Y-tiled cache line.  Fortunately, CCS layouts
1468        * are calculated with a very large alignment so we can round up to a
1469        * whole cache line without worrying about overdraw.
1470        */
1471 
1472       /* On Broadwell and above, a CCS tile is the same as a Y tile when
1473        * viewed at the cache-line granularity.  Fortunately, the horizontal
1474        * and vertical alignment requirements of the CCS are such that we can
1475        * align to an entire cache line without worrying about crossing over
1476        * from one LOD to another.
1477        */
1478       const uint32_t x_el_per_cl = ccs_tile_info.logical_extent_el.w / 8;
1479       const uint32_t y_el_per_cl = ccs_tile_info.logical_extent_el.h / 8;
1480       assert(surf->aux_surf->image_alignment_el.w % x_el_per_cl == 0);
1481       assert(surf->aux_surf->image_alignment_el.h % y_el_per_cl == 0);
1482 
1483       assert(x_offset_el % x_el_per_cl == 0);
1484       assert(y_offset_el % y_el_per_cl == 0);
1485       x_offset_cl = x_offset_el / x_el_per_cl;
1486       y_offset_cl = y_offset_el / y_el_per_cl;
1487       width_cl = DIV_ROUND_UP(width_el, x_el_per_cl);
1488       height_cl = DIV_ROUND_UP(height_el, y_el_per_cl);
1489    } else {
1490       /* On gfx7, the CCS tiling is not so nice.  However, there we are
1491        * guaranteed that we only have a single level and slice so we don't
1492        * have to worry about it and can just align to a whole tile.
1493        */
1494       assert(surf->aux_surf->logical_level0_px.depth == 1);
1495       assert(surf->aux_surf->logical_level0_px.array_len == 1);
1496       assert(x_offset_el == 0 && y_offset_el == 0);
1497       const uint32_t width_tl =
1498          DIV_ROUND_UP(width_el, ccs_tile_info.logical_extent_el.w);
1499       const uint32_t height_tl =
1500          DIV_ROUND_UP(height_el, ccs_tile_info.logical_extent_el.h);
1501       x_offset_cl = 0;
1502       y_offset_cl = 0;
1503       width_cl = width_tl * 8;
1504       height_cl = height_tl * 8;
1505    }
1506 
1507    /* We're going to use a RGBA32 format so as to write data as quickly as
1508     * possible.  A y-tiled cache line will then be 1x4 px.
1509     */
1510    const uint32_t x_offset_rgba_px = x_offset_cl;
1511    const uint32_t y_offset_rgba_px = y_offset_cl * 4;
1512    const uint32_t width_rgba_px = width_cl;
1513    const uint32_t height_rgba_px = height_cl * 4;
1514 
1515    ASSERTED bool ok =
1516       isl_surf_init(batch->blorp->isl_dev, &params.dst.surf,
1517                     .dim = ISL_SURF_DIM_2D,
1518                     .format = ISL_FORMAT_R32G32B32A32_UINT,
1519                     .width = width_rgba_px + x_offset_rgba_px,
1520                     .height = height_rgba_px + y_offset_rgba_px,
1521                     .depth = 1,
1522                     .levels = 1,
1523                     .array_len = 1,
1524                     .samples = 1,
1525                     .row_pitch_B = surf->aux_surf->row_pitch_B,
1526                     .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT,
1527                     .tiling_flags = ISL_TILING_Y0_BIT);
1528    assert(ok);
1529 
1530    params.x0 = x_offset_rgba_px;
1531    params.y0 = y_offset_rgba_px;
1532    params.x1 = x_offset_rgba_px + width_rgba_px;
1533    params.y1 = y_offset_rgba_px + height_rgba_px;
1534 
1535    /* A CCS value of 0 means "uncompressed." */
1536    memset(&params.wm_inputs.clear_color, 0,
1537           sizeof(params.wm_inputs.clear_color));
1538 
1539    if (!blorp_params_get_clear_kernel(batch, &params, true, false))
1540       return;
1541 
1542    batch->blorp->exec(batch, &params);
1543 }
1544