1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_nir.h"
25 #include "brw_vec4.h"
26 #include "brw_vec4_builder.h"
27 #include "brw_vec4_surface_builder.h"
28 #include "brw_eu.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 namespace brw {
34
35 void
emit_nir_code()36 vec4_visitor::emit_nir_code()
37 {
38 if (nir->num_uniforms > 0)
39 nir_setup_uniforms();
40
41 nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
42 }
43
44 void
nir_setup_uniforms()45 vec4_visitor::nir_setup_uniforms()
46 {
47 uniforms = nir->num_uniforms / 16;
48 }
49
50 void
nir_emit_impl(nir_function_impl * impl)51 vec4_visitor::nir_emit_impl(nir_function_impl *impl)
52 {
53 nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
54 for (unsigned i = 0; i < impl->reg_alloc; i++) {
55 nir_locals[i] = dst_reg();
56 }
57
58 foreach_list_typed(nir_register, reg, node, &impl->registers) {
59 unsigned array_elems =
60 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
61 const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
62 nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
63
64 if (reg->bit_size == 64)
65 nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
66 }
67
68 nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
69
70 nir_emit_cf_list(&impl->body);
71 }
72
73 void
nir_emit_cf_list(exec_list * list)74 vec4_visitor::nir_emit_cf_list(exec_list *list)
75 {
76 exec_list_validate(list);
77 foreach_list_typed(nir_cf_node, node, node, list) {
78 switch (node->type) {
79 case nir_cf_node_if:
80 nir_emit_if(nir_cf_node_as_if(node));
81 break;
82
83 case nir_cf_node_loop:
84 nir_emit_loop(nir_cf_node_as_loop(node));
85 break;
86
87 case nir_cf_node_block:
88 nir_emit_block(nir_cf_node_as_block(node));
89 break;
90
91 default:
92 unreachable("Invalid CFG node block");
93 }
94 }
95 }
96
97 void
nir_emit_if(nir_if * if_stmt)98 vec4_visitor::nir_emit_if(nir_if *if_stmt)
99 {
100 /* First, put the condition in f0 */
101 src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
102 vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
103 inst->conditional_mod = BRW_CONDITIONAL_NZ;
104
105 /* We can just predicate based on the X channel, as the condition only
106 * goes on its own line */
107 emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
108
109 nir_emit_cf_list(&if_stmt->then_list);
110
111 /* note: if the else is empty, dead CF elimination will remove it */
112 emit(BRW_OPCODE_ELSE);
113
114 nir_emit_cf_list(&if_stmt->else_list);
115
116 emit(BRW_OPCODE_ENDIF);
117 }
118
119 void
nir_emit_loop(nir_loop * loop)120 vec4_visitor::nir_emit_loop(nir_loop *loop)
121 {
122 emit(BRW_OPCODE_DO);
123
124 nir_emit_cf_list(&loop->body);
125
126 emit(BRW_OPCODE_WHILE);
127 }
128
129 void
nir_emit_block(nir_block * block)130 vec4_visitor::nir_emit_block(nir_block *block)
131 {
132 nir_foreach_instr(instr, block) {
133 nir_emit_instr(instr);
134 }
135 }
136
137 void
nir_emit_instr(nir_instr * instr)138 vec4_visitor::nir_emit_instr(nir_instr *instr)
139 {
140 base_ir = instr;
141
142 switch (instr->type) {
143 case nir_instr_type_load_const:
144 nir_emit_load_const(nir_instr_as_load_const(instr));
145 break;
146
147 case nir_instr_type_intrinsic:
148 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
149 break;
150
151 case nir_instr_type_alu:
152 nir_emit_alu(nir_instr_as_alu(instr));
153 break;
154
155 case nir_instr_type_jump:
156 nir_emit_jump(nir_instr_as_jump(instr));
157 break;
158
159 case nir_instr_type_tex:
160 nir_emit_texture(nir_instr_as_tex(instr));
161 break;
162
163 case nir_instr_type_ssa_undef:
164 nir_emit_undef(nir_instr_as_ssa_undef(instr));
165 break;
166
167 default:
168 unreachable("VS instruction not yet implemented by NIR->vec4");
169 }
170 }
171
172 static dst_reg
dst_reg_for_nir_reg(vec4_visitor * v,nir_register * nir_reg,unsigned base_offset,nir_src * indirect)173 dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
174 unsigned base_offset, nir_src *indirect)
175 {
176 dst_reg reg;
177
178 reg = v->nir_locals[nir_reg->index];
179 if (nir_reg->bit_size == 64)
180 reg.type = BRW_REGISTER_TYPE_DF;
181 reg = offset(reg, 8, base_offset);
182 if (indirect) {
183 reg.reladdr =
184 new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
185 BRW_REGISTER_TYPE_D,
186 1));
187 }
188 return reg;
189 }
190
191 dst_reg
get_nir_dest(const nir_dest & dest)192 vec4_visitor::get_nir_dest(const nir_dest &dest)
193 {
194 if (dest.is_ssa) {
195 dst_reg dst =
196 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
197 if (dest.ssa.bit_size == 64)
198 dst.type = BRW_REGISTER_TYPE_DF;
199 nir_ssa_values[dest.ssa.index] = dst;
200 return dst;
201 } else {
202 return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
203 dest.reg.indirect);
204 }
205 }
206
207 dst_reg
get_nir_dest(const nir_dest & dest,enum brw_reg_type type)208 vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
209 {
210 return retype(get_nir_dest(dest), type);
211 }
212
213 dst_reg
get_nir_dest(const nir_dest & dest,nir_alu_type type)214 vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
215 {
216 return get_nir_dest(dest, brw_type_for_nir_type(devinfo, type));
217 }
218
219 src_reg
get_nir_src(const nir_src & src,enum brw_reg_type type,unsigned num_components)220 vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
221 unsigned num_components)
222 {
223 dst_reg reg;
224
225 if (src.is_ssa) {
226 assert(src.ssa != NULL);
227 reg = nir_ssa_values[src.ssa->index];
228 }
229 else {
230 reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
231 src.reg.indirect);
232 }
233
234 reg = retype(reg, type);
235
236 src_reg reg_as_src = src_reg(reg);
237 reg_as_src.swizzle = brw_swizzle_for_size(num_components);
238 return reg_as_src;
239 }
240
241 src_reg
get_nir_src(const nir_src & src,nir_alu_type type,unsigned num_components)242 vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
243 unsigned num_components)
244 {
245 return get_nir_src(src, brw_type_for_nir_type(devinfo, type),
246 num_components);
247 }
248
249 src_reg
get_nir_src(const nir_src & src,unsigned num_components)250 vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
251 {
252 /* if type is not specified, default to signed int */
253 return get_nir_src(src, nir_type_int32, num_components);
254 }
255
256 src_reg
get_nir_src_imm(const nir_src & src)257 vec4_visitor::get_nir_src_imm(const nir_src &src)
258 {
259 assert(nir_src_num_components(src) == 1);
260 assert(nir_src_bit_size(src) == 32);
261 return nir_src_is_const(src) ? src_reg(brw_imm_d(nir_src_as_int(src))) :
262 get_nir_src(src, 1);
263 }
264
265 src_reg
get_indirect_offset(nir_intrinsic_instr * instr)266 vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
267 {
268 nir_src *offset_src = nir_get_io_offset_src(instr);
269
270 if (nir_src_is_const(*offset_src)) {
271 /* The only constant offset we should find is 0. brw_nir.c's
272 * add_const_offset_to_base() will fold other constant offsets
273 * into instr->const_index[0].
274 */
275 assert(nir_src_as_uint(*offset_src) == 0);
276 return src_reg();
277 }
278
279 return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
280 }
281
282 static src_reg
setup_imm_df(const vec4_builder & bld,double v)283 setup_imm_df(const vec4_builder &bld, double v)
284 {
285 const intel_device_info *devinfo = bld.shader->devinfo;
286 assert(devinfo->ver == 7);
287
288 /* gfx7.5 does not support DF immediates straighforward but the DIM
289 * instruction allows to set the 64-bit immediate value.
290 */
291 if (devinfo->is_haswell) {
292 const vec4_builder ubld = bld.exec_all();
293 const dst_reg dst = bld.vgrf(BRW_REGISTER_TYPE_DF);
294 ubld.DIM(dst, brw_imm_df(v));
295 return swizzle(src_reg(dst), BRW_SWIZZLE_XXXX);
296 }
297
298 /* gfx7 does not support DF immediates */
299 union {
300 double d;
301 struct {
302 uint32_t i1;
303 uint32_t i2;
304 };
305 } di;
306
307 di.d = v;
308
309 /* Write the low 32-bit of the constant to the X:UD channel and the
310 * high 32-bit to the Y:UD channel to build the constant in a VGRF.
311 * We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
312 * two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
313 * XXXX so any access to the VGRF only reads the constant data in these
314 * channels.
315 */
316 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
317 for (unsigned n = 0; n < 2; n++) {
318 const vec4_builder ubld = bld.exec_all().group(4, n);
319 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1));
320 ubld.MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2));
321 }
322
323 return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
324 }
325
326 void
nir_emit_load_const(nir_load_const_instr * instr)327 vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
328 {
329 dst_reg reg;
330
331 if (instr->def.bit_size == 64) {
332 reg = dst_reg(VGRF, alloc.allocate(2));
333 reg.type = BRW_REGISTER_TYPE_DF;
334 } else {
335 reg = dst_reg(VGRF, alloc.allocate(1));
336 reg.type = BRW_REGISTER_TYPE_D;
337 }
338
339 const vec4_builder ibld = vec4_builder(this).at_end();
340 unsigned remaining = brw_writemask_for_size(instr->def.num_components);
341
342 /* @FIXME: consider emitting vector operations to save some MOVs in
343 * cases where the components are representable in 8 bits.
344 * For now, we emit a MOV for each distinct value.
345 */
346 for (unsigned i = 0; i < instr->def.num_components; i++) {
347 unsigned writemask = 1 << i;
348
349 if ((remaining & writemask) == 0)
350 continue;
351
352 for (unsigned j = i; j < instr->def.num_components; j++) {
353 if ((instr->def.bit_size == 32 &&
354 instr->value[i].u32 == instr->value[j].u32) ||
355 (instr->def.bit_size == 64 &&
356 instr->value[i].f64 == instr->value[j].f64)) {
357 writemask |= 1 << j;
358 }
359 }
360
361 reg.writemask = writemask;
362 if (instr->def.bit_size == 64) {
363 emit(MOV(reg, setup_imm_df(ibld, instr->value[i].f64)));
364 } else {
365 emit(MOV(reg, brw_imm_d(instr->value[i].i32)));
366 }
367
368 remaining &= ~writemask;
369 }
370
371 /* Set final writemask */
372 reg.writemask = brw_writemask_for_size(instr->def.num_components);
373
374 nir_ssa_values[instr->def.index] = reg;
375 }
376
377 src_reg
get_nir_ssbo_intrinsic_index(nir_intrinsic_instr * instr)378 vec4_visitor::get_nir_ssbo_intrinsic_index(nir_intrinsic_instr *instr)
379 {
380 /* SSBO stores are weird in that their index is in src[1] */
381 const unsigned src = instr->intrinsic == nir_intrinsic_store_ssbo ? 1 : 0;
382
383 src_reg surf_index;
384 if (nir_src_is_const(instr->src[src])) {
385 unsigned index = prog_data->base.binding_table.ssbo_start +
386 nir_src_as_uint(instr->src[src]);
387 surf_index = brw_imm_ud(index);
388 } else {
389 surf_index = src_reg(this, glsl_type::uint_type);
390 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[src], 1),
391 brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
392 surf_index = emit_uniformize(surf_index);
393 }
394
395 return surf_index;
396 }
397
398 void
nir_emit_intrinsic(nir_intrinsic_instr * instr)399 vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
400 {
401 dst_reg dest;
402 src_reg src;
403
404 switch (instr->intrinsic) {
405
406 case nir_intrinsic_load_input: {
407 assert(nir_dest_bit_size(instr->dest) == 32);
408 /* We set EmitNoIndirectInput for VS */
409 unsigned load_offset = nir_src_as_uint(instr->src[0]);
410
411 dest = get_nir_dest(instr->dest);
412 dest.writemask = brw_writemask_for_size(instr->num_components);
413
414 src = src_reg(ATTR, instr->const_index[0] + load_offset,
415 glsl_type::uvec4_type);
416 src = retype(src, dest.type);
417
418 /* Swizzle source based on component layout qualifier */
419 src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
420 emit(MOV(dest, src));
421 break;
422 }
423
424 case nir_intrinsic_store_output: {
425 assert(nir_src_bit_size(instr->src[0]) == 32);
426 unsigned store_offset = nir_src_as_uint(instr->src[1]);
427 int varying = instr->const_index[0] + store_offset;
428 src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
429 instr->num_components);
430
431 unsigned c = nir_intrinsic_component(instr);
432 output_reg[varying][c] = dst_reg(src);
433 output_num_components[varying][c] = instr->num_components;
434 break;
435 }
436
437 case nir_intrinsic_get_ssbo_size: {
438 assert(nir_src_num_components(instr->src[0]) == 1);
439 unsigned ssbo_index = nir_src_is_const(instr->src[0]) ?
440 nir_src_as_uint(instr->src[0]) : 0;
441
442 const unsigned index =
443 prog_data->base.binding_table.ssbo_start + ssbo_index;
444 dst_reg result_dst = get_nir_dest(instr->dest);
445 vec4_instruction *inst = new(mem_ctx)
446 vec4_instruction(SHADER_OPCODE_GET_BUFFER_SIZE, result_dst);
447
448 inst->base_mrf = 2;
449 inst->mlen = 1; /* always at least one */
450 inst->src[1] = brw_imm_ud(index);
451
452 /* MRF for the first parameter */
453 src_reg lod = brw_imm_d(0);
454 int param_base = inst->base_mrf;
455 int writemask = WRITEMASK_X;
456 emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
457
458 emit(inst);
459 break;
460 }
461
462 case nir_intrinsic_store_ssbo: {
463 assert(devinfo->ver == 7);
464
465 /* brw_nir_lower_mem_access_bit_sizes takes care of this */
466 assert(nir_src_bit_size(instr->src[0]) == 32);
467 assert(nir_intrinsic_write_mask(instr) ==
468 (1u << instr->num_components) - 1);
469
470 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
471 src_reg offset_reg = retype(get_nir_src_imm(instr->src[2]),
472 BRW_REGISTER_TYPE_UD);
473
474 /* Value */
475 src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
476
477 /* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
478 * writes will use SIMD8 mode. In order to hide this and keep symmetry across
479 * typed and untyped messages and across hardware platforms, the
480 * current implementation of the untyped messages will transparently convert
481 * the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
482 * and enabling only channel X on the SEND instruction.
483 *
484 * The above, works well for full vector writes, but not for partial writes
485 * where we want to write some channels and not others, like when we have
486 * code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
487 * quite restrictive with regards to the channel enables we can configure in
488 * the message descriptor (not all combinations are allowed) we cannot simply
489 * implement these scenarios with a single message while keeping the
490 * aforementioned symmetry in the implementation. For now we de decided that
491 * it is better to keep the symmetry to reduce complexity, so in situations
492 * such as the one described we end up emitting two untyped write messages
493 * (one for xy and another for w).
494 *
495 * The code below packs consecutive channels into a single write message,
496 * detects gaps in the vector write and if needed, sends a second message
497 * with the remaining channels. If in the future we decide that we want to
498 * emit a single message at the expense of losing the symmetry in the
499 * implementation we can:
500 *
501 * 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
502 * message payload. In this mode we can write up to 8 offsets and dwords
503 * to the red channel only (for the two vec4s in the SIMD4x2 execution)
504 * and select which of the 8 channels carry data to write by setting the
505 * appropriate writemask in the dst register of the SEND instruction.
506 * It would require to write a new generator opcode specifically for
507 * IvyBridge since we would need to prepare a SIMD8 payload that could
508 * use any channel, not just X.
509 *
510 * 2) For Haswell+: Simply send a single write message but set the writemask
511 * on the dst of the SEND instruction to select the channels we want to
512 * write. It would require to modify the current messages to receive
513 * and honor the writemask provided.
514 */
515 const vec4_builder bld = vec4_builder(this).at_end()
516 .annotate(current_annotation, base_ir);
517
518 emit_untyped_write(bld, surf_index, offset_reg, val_reg,
519 1 /* dims */, instr->num_components /* size */,
520 BRW_PREDICATE_NONE);
521 break;
522 }
523
524 case nir_intrinsic_load_ssbo: {
525 assert(devinfo->ver == 7);
526
527 /* brw_nir_lower_mem_access_bit_sizes takes care of this */
528 assert(nir_dest_bit_size(instr->dest) == 32);
529
530 src_reg surf_index = get_nir_ssbo_intrinsic_index(instr);
531 src_reg offset_reg = retype(get_nir_src_imm(instr->src[1]),
532 BRW_REGISTER_TYPE_UD);
533
534 /* Read the vector */
535 const vec4_builder bld = vec4_builder(this).at_end()
536 .annotate(current_annotation, base_ir);
537
538 src_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
539 1 /* dims */, 4 /* size*/,
540 BRW_PREDICATE_NONE);
541 dst_reg dest = get_nir_dest(instr->dest);
542 read_result.type = dest.type;
543 read_result.swizzle = brw_swizzle_for_size(instr->num_components);
544 emit(MOV(dest, read_result));
545 break;
546 }
547
548 case nir_intrinsic_ssbo_atomic_add:
549 case nir_intrinsic_ssbo_atomic_imin:
550 case nir_intrinsic_ssbo_atomic_umin:
551 case nir_intrinsic_ssbo_atomic_imax:
552 case nir_intrinsic_ssbo_atomic_umax:
553 case nir_intrinsic_ssbo_atomic_and:
554 case nir_intrinsic_ssbo_atomic_or:
555 case nir_intrinsic_ssbo_atomic_xor:
556 case nir_intrinsic_ssbo_atomic_exchange:
557 case nir_intrinsic_ssbo_atomic_comp_swap:
558 nir_emit_ssbo_atomic(brw_aop_for_nir_intrinsic(instr), instr);
559 break;
560
561 case nir_intrinsic_load_vertex_id:
562 unreachable("should be lowered by lower_vertex_id()");
563
564 case nir_intrinsic_load_vertex_id_zero_base:
565 case nir_intrinsic_load_base_vertex:
566 case nir_intrinsic_load_instance_id:
567 case nir_intrinsic_load_base_instance:
568 case nir_intrinsic_load_draw_id:
569 case nir_intrinsic_load_invocation_id:
570 unreachable("should be lowered by brw_nir_lower_vs_inputs()");
571
572 case nir_intrinsic_load_uniform: {
573 /* Offsets are in bytes but they should always be multiples of 4 */
574 assert(nir_intrinsic_base(instr) % 4 == 0);
575
576 dest = get_nir_dest(instr->dest);
577
578 src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
579 src.type = dest.type;
580
581 /* Uniforms don't actually have to be vec4 aligned. In the case that
582 * it isn't, we have to use a swizzle to shift things around. They
583 * do still have the std140 alignment requirement that vec2's have to
584 * be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
585 *
586 * The swizzle also works in the indirect case as the generator adds
587 * the swizzle to the offset for us.
588 */
589 const int type_size = type_sz(src.type);
590 unsigned shift = (nir_intrinsic_base(instr) % 16) / type_size;
591 assert(shift + instr->num_components <= 4);
592
593 if (nir_src_is_const(instr->src[0])) {
594 const unsigned load_offset = nir_src_as_uint(instr->src[0]);
595 /* Offsets are in bytes but they should always be multiples of 4 */
596 assert(load_offset % 4 == 0);
597
598 src.swizzle = brw_swizzle_for_size(instr->num_components);
599 dest.writemask = brw_writemask_for_size(instr->num_components);
600 unsigned offset = load_offset + shift * type_size;
601 src.offset = ROUND_DOWN_TO(offset, 16);
602 shift = (offset % 16) / type_size;
603 assert(shift + instr->num_components <= 4);
604 src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
605
606 emit(MOV(dest, src));
607 } else {
608 /* Uniform arrays are vec4 aligned, because of std140 alignment
609 * rules.
610 */
611 assert(shift == 0);
612
613 src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
614
615 /* MOV_INDIRECT is going to stomp the whole thing anyway */
616 dest.writemask = WRITEMASK_XYZW;
617
618 emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
619 indirect, brw_imm_ud(instr->const_index[1]));
620 }
621 break;
622 }
623
624 case nir_intrinsic_load_ubo: {
625 src_reg surf_index;
626
627 dest = get_nir_dest(instr->dest);
628
629 if (nir_src_is_const(instr->src[0])) {
630 /* The block index is a constant, so just emit the binding table entry
631 * as an immediate.
632 */
633 const unsigned index = prog_data->base.binding_table.ubo_start +
634 nir_src_as_uint(instr->src[0]);
635 surf_index = brw_imm_ud(index);
636 } else {
637 /* The block index is not a constant. Evaluate the index expression
638 * per-channel and add the base UBO index; we have to select a value
639 * from any live channel.
640 */
641 surf_index = src_reg(this, glsl_type::uint_type);
642 emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
643 instr->num_components),
644 brw_imm_ud(prog_data->base.binding_table.ubo_start)));
645 surf_index = emit_uniformize(surf_index);
646 }
647
648 src_reg push_reg;
649 src_reg offset_reg;
650 if (nir_src_is_const(instr->src[1])) {
651 unsigned load_offset = nir_src_as_uint(instr->src[1]);
652 unsigned aligned_offset = load_offset & ~15;
653 offset_reg = brw_imm_ud(aligned_offset);
654
655 /* See if we've selected this as a push constant candidate */
656 if (nir_src_is_const(instr->src[0])) {
657 const unsigned ubo_block = nir_src_as_uint(instr->src[0]);
658 const unsigned offset_256b = aligned_offset / 32;
659
660 for (int i = 0; i < 4; i++) {
661 const struct brw_ubo_range *range = &prog_data->base.ubo_ranges[i];
662 if (range->block == ubo_block &&
663 offset_256b >= range->start &&
664 offset_256b < range->start + range->length) {
665
666 push_reg = src_reg(dst_reg(UNIFORM, UBO_START + i));
667 push_reg.type = dest.type;
668 push_reg.offset = aligned_offset - 32 * range->start;
669 break;
670 }
671 }
672 }
673 } else {
674 offset_reg = src_reg(this, glsl_type::uint_type);
675 emit(MOV(dst_reg(offset_reg),
676 get_nir_src(instr->src[1], nir_type_uint32, 1)));
677 }
678
679 src_reg packed_consts;
680 if (push_reg.file != BAD_FILE) {
681 packed_consts = push_reg;
682 } else if (nir_dest_bit_size(instr->dest) == 32) {
683 packed_consts = src_reg(this, glsl_type::vec4_type);
684 emit_pull_constant_load_reg(dst_reg(packed_consts),
685 surf_index,
686 offset_reg,
687 NULL, NULL /* before_block/inst */);
688 prog_data->base.has_ubo_pull = true;
689 } else {
690 src_reg temp = src_reg(this, glsl_type::dvec4_type);
691 src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
692
693 emit_pull_constant_load_reg(dst_reg(temp_float),
694 surf_index, offset_reg, NULL, NULL);
695 if (offset_reg.file == IMM)
696 offset_reg.ud += 16;
697 else
698 emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
699 emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
700 surf_index, offset_reg, NULL, NULL);
701 prog_data->base.has_ubo_pull = true;
702
703 packed_consts = src_reg(this, glsl_type::dvec4_type);
704 shuffle_64bit_data(dst_reg(packed_consts), temp, false);
705 }
706
707 packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
708 if (nir_src_is_const(instr->src[1])) {
709 unsigned load_offset = nir_src_as_uint(instr->src[1]);
710 unsigned type_size = type_sz(dest.type);
711 packed_consts.swizzle +=
712 BRW_SWIZZLE4(load_offset % 16 / type_size,
713 load_offset % 16 / type_size,
714 load_offset % 16 / type_size,
715 load_offset % 16 / type_size);
716 }
717
718 emit(MOV(dest, retype(packed_consts, dest.type)));
719
720 break;
721 }
722
723 case nir_intrinsic_scoped_barrier:
724 assert(nir_intrinsic_execution_scope(instr) == NIR_SCOPE_NONE);
725 FALLTHROUGH;
726 case nir_intrinsic_memory_barrier: {
727 const vec4_builder bld =
728 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
729 const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
730 vec4_instruction *fence =
731 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp, brw_vec8_grf(0, 0));
732 fence->sfid = GFX7_SFID_DATAPORT_DATA_CACHE;
733 break;
734 }
735
736 case nir_intrinsic_shader_clock: {
737 /* We cannot do anything if there is an event, so ignore it for now */
738 const src_reg shader_clock = get_timestamp();
739 const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
740
741 dest = get_nir_dest(instr->dest, type);
742 emit(MOV(dest, shader_clock));
743 break;
744 }
745
746 default:
747 unreachable("Unknown intrinsic");
748 }
749 }
750
751 void
nir_emit_ssbo_atomic(int op,nir_intrinsic_instr * instr)752 vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
753 {
754 dst_reg dest;
755 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
756 dest = get_nir_dest(instr->dest);
757
758 src_reg surface = get_nir_ssbo_intrinsic_index(instr);
759 src_reg offset = get_nir_src(instr->src[1], 1);
760 src_reg data1;
761 if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
762 data1 = get_nir_src(instr->src[2], 1);
763 src_reg data2;
764 if (op == BRW_AOP_CMPWR)
765 data2 = get_nir_src(instr->src[3], 1);
766
767 /* Emit the actual atomic operation operation */
768 const vec4_builder bld =
769 vec4_builder(this).at_end().annotate(current_annotation, base_ir);
770
771 src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
772 data1, data2,
773 1 /* dims */, 1 /* rsize */,
774 op,
775 BRW_PREDICATE_NONE);
776 dest.type = atomic_result.type;
777 bld.MOV(dest, atomic_result);
778 }
779
780 static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])781 brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
782 {
783 return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
784 }
785
786 bool
optimize_predicate(nir_alu_instr * instr,enum brw_predicate * predicate)787 vec4_visitor::optimize_predicate(nir_alu_instr *instr,
788 enum brw_predicate *predicate)
789 {
790 if (!instr->src[0].src.is_ssa ||
791 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
792 return false;
793
794 nir_alu_instr *cmp_instr =
795 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
796
797 switch (cmp_instr->op) {
798 case nir_op_b32any_fnequal2:
799 case nir_op_b32any_inequal2:
800 case nir_op_b32any_fnequal3:
801 case nir_op_b32any_inequal3:
802 case nir_op_b32any_fnequal4:
803 case nir_op_b32any_inequal4:
804 *predicate = BRW_PREDICATE_ALIGN16_ANY4H;
805 break;
806 case nir_op_b32all_fequal2:
807 case nir_op_b32all_iequal2:
808 case nir_op_b32all_fequal3:
809 case nir_op_b32all_iequal3:
810 case nir_op_b32all_fequal4:
811 case nir_op_b32all_iequal4:
812 *predicate = BRW_PREDICATE_ALIGN16_ALL4H;
813 break;
814 default:
815 return false;
816 }
817
818 unsigned size_swizzle =
819 brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
820
821 src_reg op[2];
822 assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
823 for (unsigned i = 0; i < 2; i++) {
824 nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
825 unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
826 type = (nir_alu_type) (((unsigned) type) | bit_size);
827 op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
828 unsigned base_swizzle =
829 brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
830 op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
831 }
832
833 emit(CMP(dst_null_d(), op[0], op[1],
834 brw_cmod_for_nir_comparison(cmp_instr->op)));
835
836 return true;
837 }
838
839 static void
emit_find_msb_using_lzd(const vec4_builder & bld,const dst_reg & dst,const src_reg & src,bool is_signed)840 emit_find_msb_using_lzd(const vec4_builder &bld,
841 const dst_reg &dst,
842 const src_reg &src,
843 bool is_signed)
844 {
845 vec4_instruction *inst;
846 src_reg temp = src;
847
848 if (is_signed) {
849 /* LZD of an absolute value source almost always does the right
850 * thing. There are two problem values:
851 *
852 * * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
853 * 0. However, findMSB(int(0x80000000)) == 30.
854 *
855 * * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
856 * 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
857 *
858 * For a value of zero or negative one, -1 will be returned.
859 *
860 * * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
861 * findMSB(-(1<<x)) should return x-1.
862 *
863 * For all negative number cases, including 0x80000000 and
864 * 0xffffffff, the correct value is obtained from LZD if instead of
865 * negating the (already negative) value the logical-not is used. A
866 * conditonal logical-not can be achieved in two instructions.
867 */
868 temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
869
870 bld.ASR(dst_reg(temp), src, brw_imm_d(31));
871 bld.XOR(dst_reg(temp), temp, src);
872 }
873
874 bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
875 retype(temp, BRW_REGISTER_TYPE_UD));
876
877 /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
878 * from the LSB side. Subtract the result from 31 to convert the MSB count
879 * into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
880 * which is exactly what findMSB() is supposed to return.
881 */
882 inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
883 brw_imm_d(31));
884 inst->src[0].negate = true;
885 }
886
887 void
emit_conversion_from_double(dst_reg dst,src_reg src)888 vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src)
889 {
890 enum opcode op;
891 switch (dst.type) {
892 case BRW_REGISTER_TYPE_D:
893 op = VEC4_OPCODE_DOUBLE_TO_D32;
894 break;
895 case BRW_REGISTER_TYPE_UD:
896 op = VEC4_OPCODE_DOUBLE_TO_U32;
897 break;
898 case BRW_REGISTER_TYPE_F:
899 op = VEC4_OPCODE_DOUBLE_TO_F32;
900 break;
901 default:
902 unreachable("Unknown conversion");
903 }
904
905 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
906 emit(MOV(temp, src));
907 dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
908 emit(op, temp2, src_reg(temp));
909
910 emit(VEC4_OPCODE_PICK_LOW_32BIT, retype(temp2, dst.type), src_reg(temp2));
911 emit(MOV(dst, src_reg(retype(temp2, dst.type))));
912 }
913
914 void
emit_conversion_to_double(dst_reg dst,src_reg src)915 vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src)
916 {
917 dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
918 src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), src.type);
919 emit(MOV(dst_reg(tmp_src), src));
920 emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
921 emit(MOV(dst, src_reg(tmp_dst)));
922 }
923
924 /**
925 * Try to use an immediate value for a source
926 *
927 * In cases of flow control, constant propagation is sometimes unable to
928 * determine that a register contains a constant value. To work around this,
929 * try to emit a literal as one of the sources. If \c try_src0_also is set,
930 * \c op[0] will also be tried for an immediate value.
931 *
932 * If \c op[0] is modified, the operands will be exchanged so that \c op[1]
933 * will always be the immediate value.
934 *
935 * \return The index of the source that was modified, 0 or 1, if successful.
936 * Otherwise, -1.
937 *
938 * \param op - Operands to the instruction
939 * \param try_src0_also - True if \c op[0] should also be a candidate for
940 * getting an immediate value. This should only be set
941 * for commutative operations.
942 */
943 static int
try_immediate_source(const nir_alu_instr * instr,src_reg * op,bool try_src0_also)944 try_immediate_source(const nir_alu_instr *instr, src_reg *op,
945 bool try_src0_also)
946 {
947 unsigned idx;
948
949 /* MOV should be the only single-source instruction passed to this
950 * function. Any other unary instruction with a constant source should
951 * have been constant-folded away!
952 */
953 assert(nir_op_infos[instr->op].num_inputs > 1 ||
954 instr->op == nir_op_mov);
955
956 if (instr->op != nir_op_mov &&
957 nir_src_bit_size(instr->src[1].src) == 32 &&
958 nir_src_is_const(instr->src[1].src)) {
959 idx = 1;
960 } else if (try_src0_also &&
961 nir_src_bit_size(instr->src[0].src) == 32 &&
962 nir_src_is_const(instr->src[0].src)) {
963 idx = 0;
964 } else {
965 return -1;
966 }
967
968 const enum brw_reg_type old_type = op[idx].type;
969
970 switch (old_type) {
971 case BRW_REGISTER_TYPE_D:
972 case BRW_REGISTER_TYPE_UD: {
973 int first_comp = -1;
974 int d = 0;
975
976 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
977 if (nir_alu_instr_channel_used(instr, idx, i)) {
978 if (first_comp < 0) {
979 first_comp = i;
980 d = nir_src_comp_as_int(instr->src[idx].src,
981 instr->src[idx].swizzle[i]);
982 } else if (d != nir_src_comp_as_int(instr->src[idx].src,
983 instr->src[idx].swizzle[i])) {
984 return -1;
985 }
986 }
987 }
988
989 assert(first_comp >= 0);
990
991 if (op[idx].abs)
992 d = MAX2(-d, d);
993
994 if (op[idx].negate)
995 d = -d;
996
997 op[idx] = retype(src_reg(brw_imm_d(d)), old_type);
998 break;
999 }
1000
1001 case BRW_REGISTER_TYPE_F: {
1002 int first_comp = -1;
1003 float f[NIR_MAX_VEC_COMPONENTS] = { 0.0f };
1004 bool is_scalar = true;
1005
1006 for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) {
1007 if (nir_alu_instr_channel_used(instr, idx, i)) {
1008 f[i] = nir_src_comp_as_float(instr->src[idx].src,
1009 instr->src[idx].swizzle[i]);
1010 if (first_comp < 0) {
1011 first_comp = i;
1012 } else if (f[first_comp] != f[i]) {
1013 is_scalar = false;
1014 }
1015 }
1016 }
1017
1018 if (is_scalar) {
1019 if (op[idx].abs)
1020 f[first_comp] = fabs(f[first_comp]);
1021
1022 if (op[idx].negate)
1023 f[first_comp] = -f[first_comp];
1024
1025 op[idx] = src_reg(brw_imm_f(f[first_comp]));
1026 assert(op[idx].type == old_type);
1027 } else {
1028 uint8_t vf_values[4] = { 0, 0, 0, 0 };
1029
1030 for (unsigned i = 0; i < ARRAY_SIZE(vf_values); i++) {
1031
1032 if (op[idx].abs)
1033 f[i] = fabs(f[i]);
1034
1035 if (op[idx].negate)
1036 f[i] = -f[i];
1037
1038 const int vf = brw_float_to_vf(f[i]);
1039 if (vf == -1)
1040 return -1;
1041
1042 vf_values[i] = vf;
1043 }
1044
1045 op[idx] = src_reg(brw_imm_vf4(vf_values[0], vf_values[1],
1046 vf_values[2], vf_values[3]));
1047 }
1048 break;
1049 }
1050
1051 default:
1052 unreachable("Non-32bit type.");
1053 }
1054
1055 /* If the instruction has more than one source, the instruction format only
1056 * allows source 1 to be an immediate value. If the immediate value was
1057 * source 0, then the sources must be exchanged.
1058 */
1059 if (idx == 0 && instr->op != nir_op_mov) {
1060 src_reg tmp = op[0];
1061 op[0] = op[1];
1062 op[1] = tmp;
1063 }
1064
1065 return idx;
1066 }
1067
1068 void
fix_float_operands(src_reg op[3],nir_alu_instr * instr)1069 vec4_visitor::fix_float_operands(src_reg op[3], nir_alu_instr *instr)
1070 {
1071 bool fixed[3] = { false, false, false };
1072
1073 for (unsigned i = 0; i < 2; i++) {
1074 if (!nir_src_is_const(instr->src[i].src))
1075 continue;
1076
1077 for (unsigned j = i + 1; j < 3; j++) {
1078 if (fixed[j])
1079 continue;
1080
1081 if (!nir_src_is_const(instr->src[j].src))
1082 continue;
1083
1084 if (nir_alu_srcs_equal(instr, instr, i, j)) {
1085 if (!fixed[i])
1086 op[i] = fix_3src_operand(op[i]);
1087
1088 op[j] = op[i];
1089
1090 fixed[i] = true;
1091 fixed[j] = true;
1092 } else if (nir_alu_srcs_negative_equal(instr, instr, i, j)) {
1093 if (!fixed[i])
1094 op[i] = fix_3src_operand(op[i]);
1095
1096 op[j] = op[i];
1097 op[j].negate = !op[j].negate;
1098
1099 fixed[i] = true;
1100 fixed[j] = true;
1101 }
1102 }
1103 }
1104
1105 for (unsigned i = 0; i < 3; i++) {
1106 if (!fixed[i])
1107 op[i] = fix_3src_operand(op[i]);
1108 }
1109 }
1110
1111 static bool
const_src_fits_in_16_bits(const nir_src & src,brw_reg_type type)1112 const_src_fits_in_16_bits(const nir_src &src, brw_reg_type type)
1113 {
1114 assert(nir_src_is_const(src));
1115 if (brw_reg_type_is_unsigned_integer(type)) {
1116 return nir_src_comp_as_uint(src, 0) <= UINT16_MAX;
1117 } else {
1118 const int64_t c = nir_src_comp_as_int(src, 0);
1119 return c <= INT16_MAX && c >= INT16_MIN;
1120 }
1121 }
1122
1123 void
nir_emit_alu(nir_alu_instr * instr)1124 vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
1125 {
1126 vec4_instruction *inst;
1127
1128 nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
1129 nir_dest_bit_size(instr->dest.dest));
1130 dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
1131 dst.writemask = instr->dest.write_mask;
1132
1133 assert(!instr->dest.saturate);
1134
1135 src_reg op[4];
1136 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1137 /* We don't lower to source modifiers, so they shouldn't exist. */
1138 assert(!instr->src[i].abs);
1139 assert(!instr->src[i].negate);
1140
1141 nir_alu_type src_type = (nir_alu_type)
1142 (nir_op_infos[instr->op].input_types[i] |
1143 nir_src_bit_size(instr->src[i].src));
1144 op[i] = get_nir_src(instr->src[i].src, src_type, 4);
1145 op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
1146 }
1147
1148 #ifndef NDEBUG
1149 /* On Gen7 and earlier, no functionality is exposed that should allow 8-bit
1150 * integer types to ever exist.
1151 */
1152 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1153 assert(type_sz(op[i].type) > 1);
1154 #endif
1155
1156 switch (instr->op) {
1157 case nir_op_mov:
1158 try_immediate_source(instr, &op[0], true);
1159 inst = emit(MOV(dst, op[0]));
1160 break;
1161
1162 case nir_op_vec2:
1163 case nir_op_vec3:
1164 case nir_op_vec4:
1165 unreachable("not reached: should be handled by lower_vec_to_movs()");
1166
1167 case nir_op_i2f32:
1168 case nir_op_u2f32:
1169 inst = emit(MOV(dst, op[0]));
1170 break;
1171
1172 case nir_op_f2f32:
1173 case nir_op_f2i32:
1174 case nir_op_f2u32:
1175 if (nir_src_bit_size(instr->src[0].src) == 64)
1176 emit_conversion_from_double(dst, op[0]);
1177 else
1178 inst = emit(MOV(dst, op[0]));
1179 break;
1180
1181 case nir_op_f2f64:
1182 case nir_op_i2f64:
1183 case nir_op_u2f64:
1184 emit_conversion_to_double(dst, op[0]);
1185 break;
1186
1187 case nir_op_fsat:
1188 inst = emit(MOV(dst, op[0]));
1189 inst->saturate = true;
1190 break;
1191
1192 case nir_op_fneg:
1193 case nir_op_ineg:
1194 op[0].negate = true;
1195 inst = emit(MOV(dst, op[0]));
1196 break;
1197
1198 case nir_op_fabs:
1199 case nir_op_iabs:
1200 op[0].negate = false;
1201 op[0].abs = true;
1202 inst = emit(MOV(dst, op[0]));
1203 break;
1204
1205 case nir_op_iadd:
1206 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1207 FALLTHROUGH;
1208 case nir_op_fadd:
1209 try_immediate_source(instr, op, true);
1210 inst = emit(ADD(dst, op[0], op[1]));
1211 break;
1212
1213 case nir_op_uadd_sat:
1214 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1215 inst = emit(ADD(dst, op[0], op[1]));
1216 inst->saturate = true;
1217 break;
1218
1219 case nir_op_fmul:
1220 try_immediate_source(instr, op, true);
1221 inst = emit(MUL(dst, op[0], op[1]));
1222 break;
1223
1224 case nir_op_imul: {
1225 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1226
1227 /* For integer multiplication, the MUL uses the low 16 bits of one of
1228 * the operands (src0 through SNB, src1 on IVB and later). The MACH
1229 * accumulates in the contribution of the upper 16 bits of that
1230 * operand. If we can determine that one of the args is in the low
1231 * 16 bits, though, we can just emit a single MUL.
1232 */
1233 if (nir_src_is_const(instr->src[0].src) &&
1234 nir_alu_instr_src_read_mask(instr, 0) == 1 &&
1235 const_src_fits_in_16_bits(instr->src[0].src, op[0].type)) {
1236 if (devinfo->ver < 7)
1237 emit(MUL(dst, op[0], op[1]));
1238 else
1239 emit(MUL(dst, op[1], op[0]));
1240 } else if (nir_src_is_const(instr->src[1].src) &&
1241 nir_alu_instr_src_read_mask(instr, 1) == 1 &&
1242 const_src_fits_in_16_bits(instr->src[1].src, op[1].type)) {
1243 if (devinfo->ver < 7)
1244 emit(MUL(dst, op[1], op[0]));
1245 else
1246 emit(MUL(dst, op[0], op[1]));
1247 } else {
1248 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1249
1250 emit(MUL(acc, op[0], op[1]));
1251 emit(MACH(dst_null_d(), op[0], op[1]));
1252 emit(MOV(dst, src_reg(acc)));
1253 }
1254 break;
1255 }
1256
1257 case nir_op_imul_high:
1258 case nir_op_umul_high: {
1259 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1260 struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
1261
1262 emit(MUL(acc, op[0], op[1]));
1263 emit(MACH(dst, op[0], op[1]));
1264 break;
1265 }
1266
1267 case nir_op_frcp:
1268 inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
1269 break;
1270
1271 case nir_op_fexp2:
1272 inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
1273 break;
1274
1275 case nir_op_flog2:
1276 inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
1277 break;
1278
1279 case nir_op_fsin:
1280 inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
1281 break;
1282
1283 case nir_op_fcos:
1284 inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
1285 break;
1286
1287 case nir_op_idiv:
1288 case nir_op_udiv:
1289 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1290 emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
1291 break;
1292
1293 case nir_op_umod:
1294 case nir_op_irem:
1295 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1296 * appears that our hardware just does the right thing for signed
1297 * remainder.
1298 */
1299 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1300 emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1301 break;
1302
1303 case nir_op_imod: {
1304 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
1305 inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
1306
1307 /* Math instructions don't support conditional mod */
1308 inst = emit(MOV(dst_null_d(), src_reg(dst)));
1309 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1310
1311 /* Now, we need to determine if signs of the sources are different.
1312 * When we XOR the sources, the top bit is 0 if they are the same and 1
1313 * if they are different. We can then use a conditional modifier to
1314 * turn that into a predicate. This leads us to an XOR.l instruction.
1315 *
1316 * Technically, according to the PRM, you're not allowed to use .l on a
1317 * XOR instruction. However, emperical experiments and Curro's reading
1318 * of the simulator source both indicate that it's safe.
1319 */
1320 src_reg tmp = src_reg(this, glsl_type::ivec4_type);
1321 inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
1322 inst->predicate = BRW_PREDICATE_NORMAL;
1323 inst->conditional_mod = BRW_CONDITIONAL_L;
1324
1325 /* If the result of the initial remainder operation is non-zero and the
1326 * two sources have different signs, add in a copy of op[1] to get the
1327 * final integer modulus value.
1328 */
1329 inst = emit(ADD(dst, src_reg(dst), op[1]));
1330 inst->predicate = BRW_PREDICATE_NORMAL;
1331 break;
1332 }
1333
1334 case nir_op_ldexp:
1335 unreachable("not reached: should be handled by ldexp_to_arith()");
1336
1337 case nir_op_fsqrt:
1338 inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
1339 break;
1340
1341 case nir_op_frsq:
1342 inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
1343 break;
1344
1345 case nir_op_fpow:
1346 inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
1347 break;
1348
1349 case nir_op_uadd_carry: {
1350 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1351 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1352
1353 emit(ADDC(dst_null_ud(), op[0], op[1]));
1354 emit(MOV(dst, src_reg(acc)));
1355 break;
1356 }
1357
1358 case nir_op_usub_borrow: {
1359 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1360 struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
1361
1362 emit(SUBB(dst_null_ud(), op[0], op[1]));
1363 emit(MOV(dst, src_reg(acc)));
1364 break;
1365 }
1366
1367 case nir_op_ftrunc:
1368 inst = emit(RNDZ(dst, op[0]));
1369 if (devinfo->ver < 6) {
1370 inst->conditional_mod = BRW_CONDITIONAL_R;
1371 inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1372 inst->predicate = BRW_PREDICATE_NORMAL;
1373 inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1374 }
1375 break;
1376
1377 case nir_op_fceil: {
1378 src_reg tmp = src_reg(this, glsl_type::float_type);
1379 tmp.swizzle =
1380 brw_swizzle_for_size(instr->src[0].src.is_ssa ?
1381 instr->src[0].src.ssa->num_components :
1382 instr->src[0].src.reg.reg->num_components);
1383
1384 op[0].negate = !op[0].negate;
1385 emit(RNDD(dst_reg(tmp), op[0]));
1386 tmp.negate = true;
1387 inst = emit(MOV(dst, tmp));
1388 break;
1389 }
1390
1391 case nir_op_ffloor:
1392 inst = emit(RNDD(dst, op[0]));
1393 break;
1394
1395 case nir_op_ffract:
1396 inst = emit(FRC(dst, op[0]));
1397 break;
1398
1399 case nir_op_fround_even:
1400 inst = emit(RNDE(dst, op[0]));
1401 if (devinfo->ver < 6) {
1402 inst->conditional_mod = BRW_CONDITIONAL_R;
1403 inst = emit(ADD(dst, src_reg(dst), brw_imm_f(1.0f)));
1404 inst->predicate = BRW_PREDICATE_NORMAL;
1405 inst = emit(MOV(dst, src_reg(dst))); /* for potential saturation */
1406 }
1407 break;
1408
1409 case nir_op_fquantize2f16: {
1410 /* See also vec4_visitor::emit_pack_half_2x16() */
1411 src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
1412 src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
1413 src_reg zero = src_reg(this, glsl_type::vec4_type);
1414
1415 /* Check for denormal */
1416 src_reg abs_src0 = op[0];
1417 abs_src0.abs = true;
1418 emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1419 BRW_CONDITIONAL_L));
1420 /* Get the appropriately signed zero */
1421 emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
1422 retype(op[0], BRW_REGISTER_TYPE_UD),
1423 brw_imm_ud(0x80000000)));
1424 /* Do the actual F32 -> F16 -> F32 conversion */
1425 emit(F32TO16(dst_reg(tmp16), op[0]));
1426 emit(F16TO32(dst_reg(tmp32), tmp16));
1427 /* Select that or zero based on normal status */
1428 inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
1429 inst->predicate = BRW_PREDICATE_NORMAL;
1430 break;
1431 }
1432
1433 case nir_op_imin:
1434 case nir_op_umin:
1435 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1436 FALLTHROUGH;
1437 case nir_op_fmin:
1438 try_immediate_source(instr, op, true);
1439 inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
1440 break;
1441
1442 case nir_op_imax:
1443 case nir_op_umax:
1444 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1445 FALLTHROUGH;
1446 case nir_op_fmax:
1447 try_immediate_source(instr, op, true);
1448 inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
1449 break;
1450
1451 case nir_op_fddx:
1452 case nir_op_fddx_coarse:
1453 case nir_op_fddx_fine:
1454 case nir_op_fddy:
1455 case nir_op_fddy_coarse:
1456 case nir_op_fddy_fine:
1457 unreachable("derivatives are not valid in vertex shaders");
1458
1459 case nir_op_ilt32:
1460 case nir_op_ult32:
1461 case nir_op_ige32:
1462 case nir_op_uge32:
1463 case nir_op_ieq32:
1464 case nir_op_ine32:
1465 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1466 FALLTHROUGH;
1467 case nir_op_flt32:
1468 case nir_op_fge32:
1469 case nir_op_feq32:
1470 case nir_op_fneu32: {
1471 enum brw_conditional_mod conditional_mod =
1472 brw_cmod_for_nir_comparison(instr->op);
1473
1474 if (nir_src_bit_size(instr->src[0].src) < 64) {
1475 /* If the order of the sources is changed due to an immediate value,
1476 * then the condition must also be changed.
1477 */
1478 if (try_immediate_source(instr, op, true) == 0)
1479 conditional_mod = brw_swap_cmod(conditional_mod);
1480
1481 emit(CMP(dst, op[0], op[1], conditional_mod));
1482 } else {
1483 /* Produce a 32-bit boolean result from the DF comparison by selecting
1484 * only the low 32-bit in each DF produced. Do this in a temporary
1485 * so we can then move from there to the result using align16 again
1486 * to honor the original writemask.
1487 */
1488 dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
1489 emit(CMP(temp, op[0], op[1], conditional_mod));
1490 dst_reg result = dst_reg(this, glsl_type::bvec4_type);
1491 emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
1492 emit(MOV(dst, src_reg(result)));
1493 }
1494 break;
1495 }
1496
1497 case nir_op_b32all_iequal2:
1498 case nir_op_b32all_iequal3:
1499 case nir_op_b32all_iequal4:
1500 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1501 FALLTHROUGH;
1502 case nir_op_b32all_fequal2:
1503 case nir_op_b32all_fequal3:
1504 case nir_op_b32all_fequal4: {
1505 unsigned swiz =
1506 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1507
1508 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1509 brw_cmod_for_nir_comparison(instr->op)));
1510 emit(MOV(dst, brw_imm_d(0)));
1511 inst = emit(MOV(dst, brw_imm_d(~0)));
1512 inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
1513 break;
1514 }
1515
1516 case nir_op_b32any_inequal2:
1517 case nir_op_b32any_inequal3:
1518 case nir_op_b32any_inequal4:
1519 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1520 FALLTHROUGH;
1521 case nir_op_b32any_fnequal2:
1522 case nir_op_b32any_fnequal3:
1523 case nir_op_b32any_fnequal4: {
1524 unsigned swiz =
1525 brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
1526
1527 emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
1528 brw_cmod_for_nir_comparison(instr->op)));
1529
1530 emit(MOV(dst, brw_imm_d(0)));
1531 inst = emit(MOV(dst, brw_imm_d(~0)));
1532 inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
1533 break;
1534 }
1535
1536 case nir_op_inot:
1537 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1538 emit(NOT(dst, op[0]));
1539 break;
1540
1541 case nir_op_ixor:
1542 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1543 try_immediate_source(instr, op, true);
1544 emit(XOR(dst, op[0], op[1]));
1545 break;
1546
1547 case nir_op_ior:
1548 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1549 try_immediate_source(instr, op, true);
1550 emit(OR(dst, op[0], op[1]));
1551 break;
1552
1553 case nir_op_iand:
1554 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1555 try_immediate_source(instr, op, true);
1556 emit(AND(dst, op[0], op[1]));
1557 break;
1558
1559 case nir_op_b2i32:
1560 case nir_op_b2f32:
1561 case nir_op_b2f64:
1562 if (nir_dest_bit_size(instr->dest.dest) > 32) {
1563 assert(dst.type == BRW_REGISTER_TYPE_DF);
1564 emit_conversion_to_double(dst, negate(op[0]));
1565 } else {
1566 emit(MOV(dst, negate(op[0])));
1567 }
1568 break;
1569
1570 case nir_op_f2b32:
1571 if (nir_src_bit_size(instr->src[0].src) == 64) {
1572 /* We use a MOV with conditional_mod to check if the provided value is
1573 * 0.0. We want this to flush denormalized numbers to zero, so we set a
1574 * source modifier on the source operand to trigger this, as source
1575 * modifiers don't affect the result of the testing against 0.0.
1576 */
1577 src_reg value = op[0];
1578 value.abs = true;
1579 vec4_instruction *inst = emit(MOV(dst_null_df(), value));
1580 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1581
1582 src_reg one = src_reg(this, glsl_type::ivec4_type);
1583 emit(MOV(dst_reg(one), brw_imm_d(~0)));
1584 inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
1585 inst->predicate = BRW_PREDICATE_NORMAL;
1586 } else {
1587 emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1588 }
1589 break;
1590
1591 case nir_op_i2b32:
1592 emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1593 break;
1594
1595 case nir_op_unpack_half_2x16_split_x:
1596 case nir_op_unpack_half_2x16_split_y:
1597 case nir_op_pack_half_2x16_split:
1598 unreachable("not reached: should not occur in vertex shader");
1599
1600 case nir_op_unpack_snorm_2x16:
1601 case nir_op_unpack_unorm_2x16:
1602 case nir_op_pack_snorm_2x16:
1603 case nir_op_pack_unorm_2x16:
1604 unreachable("not reached: should be handled by lower_packing_builtins");
1605
1606 case nir_op_pack_uvec4_to_uint:
1607 unreachable("not reached");
1608
1609 case nir_op_pack_uvec2_to_uint: {
1610 dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
1611 tmp1.writemask = WRITEMASK_X;
1612 op[0].swizzle = BRW_SWIZZLE_YYYY;
1613 emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
1614
1615 dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
1616 tmp2.writemask = WRITEMASK_X;
1617 op[0].swizzle = BRW_SWIZZLE_XXXX;
1618 emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
1619
1620 emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
1621 break;
1622 }
1623
1624 case nir_op_pack_64_2x32_split: {
1625 dst_reg result = dst_reg(this, glsl_type::dvec4_type);
1626 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1627 emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
1628 emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
1629 emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
1630 emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
1631 emit(MOV(dst, src_reg(result)));
1632 break;
1633 }
1634
1635 case nir_op_unpack_64_2x32_split_x:
1636 case nir_op_unpack_64_2x32_split_y: {
1637 enum opcode oper = (instr->op == nir_op_unpack_64_2x32_split_x) ?
1638 VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
1639 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
1640 emit(MOV(tmp, op[0]));
1641 dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
1642 emit(oper, tmp2, src_reg(tmp));
1643 emit(MOV(dst, src_reg(tmp2)));
1644 break;
1645 }
1646
1647 case nir_op_unpack_half_2x16:
1648 /* As NIR does not guarantee that we have a correct swizzle outside the
1649 * boundaries of a vector, and the implementation of emit_unpack_half_2x16
1650 * uses the source operand in an operation with WRITEMASK_Y while our
1651 * source operand has only size 1, it accessed incorrect data producing
1652 * regressions in Piglit. We repeat the swizzle of the first component on the
1653 * rest of components to avoid regressions. In the vec4_visitor IR code path
1654 * this is not needed because the operand has already the correct swizzle.
1655 */
1656 op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
1657 emit_unpack_half_2x16(dst, op[0]);
1658 break;
1659
1660 case nir_op_pack_half_2x16:
1661 emit_pack_half_2x16(dst, op[0]);
1662 break;
1663
1664 case nir_op_unpack_unorm_4x8:
1665 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1666 emit_unpack_unorm_4x8(dst, op[0]);
1667 break;
1668
1669 case nir_op_pack_unorm_4x8:
1670 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1671 emit_pack_unorm_4x8(dst, op[0]);
1672 break;
1673
1674 case nir_op_unpack_snorm_4x8:
1675 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1676 emit_unpack_snorm_4x8(dst, op[0]);
1677 break;
1678
1679 case nir_op_pack_snorm_4x8:
1680 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1681 emit_pack_snorm_4x8(dst, op[0]);
1682 break;
1683
1684 case nir_op_bitfield_reverse:
1685 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1686 emit(BFREV(dst, op[0]));
1687 break;
1688
1689 case nir_op_bit_count:
1690 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1691 emit(CBIT(dst, op[0]));
1692 break;
1693
1694 case nir_op_ufind_msb:
1695 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1696 emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
1697 break;
1698
1699 case nir_op_ifind_msb: {
1700 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1701 vec4_builder bld = vec4_builder(this).at_end();
1702 src_reg src(dst);
1703
1704 if (devinfo->ver < 7) {
1705 emit_find_msb_using_lzd(bld, dst, op[0], true);
1706 } else {
1707 emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
1708
1709 /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1710 * count from the LSB side. If FBH didn't return an error
1711 * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1712 * count into an LSB count.
1713 */
1714 bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1715
1716 inst = bld.ADD(dst, src, brw_imm_d(31));
1717 inst->predicate = BRW_PREDICATE_NORMAL;
1718 inst->src[0].negate = true;
1719 }
1720 break;
1721 }
1722
1723 case nir_op_find_lsb: {
1724 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1725 vec4_builder bld = vec4_builder(this).at_end();
1726
1727 if (devinfo->ver < 7) {
1728 dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
1729
1730 /* (x & -x) generates a value that consists of only the LSB of x.
1731 * For all powers of 2, findMSB(y) == findLSB(y).
1732 */
1733 src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
1734 src_reg negated_src = src;
1735
1736 /* One must be negated, and the other must be non-negated. It
1737 * doesn't matter which is which.
1738 */
1739 negated_src.negate = true;
1740 src.negate = false;
1741
1742 bld.AND(temp, src, negated_src);
1743 emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
1744 } else {
1745 bld.FBL(dst, op[0]);
1746 }
1747 break;
1748 }
1749
1750 case nir_op_ubitfield_extract:
1751 case nir_op_ibitfield_extract:
1752 unreachable("should have been lowered");
1753 case nir_op_ubfe:
1754 case nir_op_ibfe:
1755 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1756 op[0] = fix_3src_operand(op[0]);
1757 op[1] = fix_3src_operand(op[1]);
1758 op[2] = fix_3src_operand(op[2]);
1759
1760 emit(BFE(dst, op[2], op[1], op[0]));
1761 break;
1762
1763 case nir_op_bfm:
1764 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1765 emit(BFI1(dst, op[0], op[1]));
1766 break;
1767
1768 case nir_op_bfi:
1769 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1770 op[0] = fix_3src_operand(op[0]);
1771 op[1] = fix_3src_operand(op[1]);
1772 op[2] = fix_3src_operand(op[2]);
1773
1774 emit(BFI2(dst, op[0], op[1], op[2]));
1775 break;
1776
1777 case nir_op_bitfield_insert:
1778 unreachable("not reached: should have been lowered");
1779
1780 case nir_op_fsign:
1781 if (type_sz(op[0].type) < 8) {
1782 /* AND(val, 0x80000000) gives the sign bit.
1783 *
1784 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
1785 * zero.
1786 */
1787 emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
1788
1789 op[0].type = BRW_REGISTER_TYPE_UD;
1790 dst.type = BRW_REGISTER_TYPE_UD;
1791 emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
1792
1793 inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
1794 inst->predicate = BRW_PREDICATE_NORMAL;
1795 dst.type = BRW_REGISTER_TYPE_F;
1796 } else {
1797 /* For doubles we do the same but we need to consider:
1798 *
1799 * - We use a MOV with conditional_mod instead of a CMP so that we can
1800 * skip loading a 0.0 immediate. We use a source modifier on the
1801 * source of the MOV so that we flush denormalized values to 0.
1802 * Since we want to compare against 0, this won't alter the result.
1803 * - We need to extract the high 32-bit of each DF where the sign
1804 * is stored.
1805 * - We need to produce a DF result.
1806 */
1807
1808 /* Check for zero */
1809 src_reg value = op[0];
1810 value.abs = true;
1811 inst = emit(MOV(dst_null_df(), value));
1812 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1813
1814 /* AND each high 32-bit channel with 0x80000000u */
1815 dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
1816 emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
1817 emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
1818
1819 /* Add 1.0 to each channel, predicated to skip the cases where the
1820 * channel's value was 0
1821 */
1822 inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
1823 inst->predicate = BRW_PREDICATE_NORMAL;
1824
1825 /* Now convert the result from float to double */
1826 emit_conversion_to_double(dst, retype(src_reg(tmp),
1827 BRW_REGISTER_TYPE_F));
1828 }
1829 break;
1830
1831 case nir_op_ishl:
1832 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1833 try_immediate_source(instr, op, false);
1834 emit(SHL(dst, op[0], op[1]));
1835 break;
1836
1837 case nir_op_ishr:
1838 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1839 try_immediate_source(instr, op, false);
1840 emit(ASR(dst, op[0], op[1]));
1841 break;
1842
1843 case nir_op_ushr:
1844 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1845 try_immediate_source(instr, op, false);
1846 emit(SHR(dst, op[0], op[1]));
1847 break;
1848
1849 case nir_op_ffma:
1850 if (type_sz(dst.type) == 8) {
1851 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
1852 emit(MUL(mul_dst, op[1], op[0]));
1853 inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
1854 } else {
1855 fix_float_operands(op, instr);
1856 inst = emit(MAD(dst, op[2], op[1], op[0]));
1857 }
1858 break;
1859
1860 case nir_op_flrp:
1861 fix_float_operands(op, instr);
1862 inst = emit(LRP(dst, op[2], op[1], op[0]));
1863 break;
1864
1865 case nir_op_b32csel:
1866 enum brw_predicate predicate;
1867 if (!optimize_predicate(instr, &predicate)) {
1868 emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
1869 switch (dst.writemask) {
1870 case WRITEMASK_X:
1871 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
1872 break;
1873 case WRITEMASK_Y:
1874 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
1875 break;
1876 case WRITEMASK_Z:
1877 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
1878 break;
1879 case WRITEMASK_W:
1880 predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
1881 break;
1882 default:
1883 predicate = BRW_PREDICATE_NORMAL;
1884 break;
1885 }
1886 }
1887 inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
1888 inst->predicate = predicate;
1889 break;
1890
1891 case nir_op_fdot2_replicated:
1892 try_immediate_source(instr, op, true);
1893 inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
1894 break;
1895
1896 case nir_op_fdot3_replicated:
1897 try_immediate_source(instr, op, true);
1898 inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
1899 break;
1900
1901 case nir_op_fdot4_replicated:
1902 try_immediate_source(instr, op, true);
1903 inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
1904 break;
1905
1906 case nir_op_fdph_replicated:
1907 try_immediate_source(instr, op, false);
1908 inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
1909 break;
1910
1911 case nir_op_fdiv:
1912 unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
1913
1914 case nir_op_fmod:
1915 unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
1916
1917 case nir_op_fsub:
1918 case nir_op_isub:
1919 unreachable("not reached: should be handled by ir_sub_to_add_neg");
1920
1921 default:
1922 unreachable("Unimplemented ALU operation");
1923 }
1924
1925 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1926 * to sign extend the low bit to 0/~0
1927 */
1928 if (devinfo->ver <= 5 &&
1929 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
1930 BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1931 dst_reg masked = dst_reg(this, glsl_type::int_type);
1932 masked.writemask = dst.writemask;
1933 emit(AND(masked, src_reg(dst), brw_imm_d(1)));
1934 src_reg masked_neg = src_reg(masked);
1935 masked_neg.negate = true;
1936 emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
1937 }
1938 }
1939
1940 void
nir_emit_jump(nir_jump_instr * instr)1941 vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
1942 {
1943 switch (instr->type) {
1944 case nir_jump_break:
1945 emit(BRW_OPCODE_BREAK);
1946 break;
1947
1948 case nir_jump_continue:
1949 emit(BRW_OPCODE_CONTINUE);
1950 break;
1951
1952 case nir_jump_return:
1953 FALLTHROUGH;
1954 default:
1955 unreachable("unknown jump");
1956 }
1957 }
1958
1959 static enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)1960 ir_texture_opcode_for_nir_texop(nir_texop texop)
1961 {
1962 enum ir_texture_opcode op;
1963
1964 switch (texop) {
1965 case nir_texop_lod: op = ir_lod; break;
1966 case nir_texop_query_levels: op = ir_query_levels; break;
1967 case nir_texop_texture_samples: op = ir_texture_samples; break;
1968 case nir_texop_tex: op = ir_tex; break;
1969 case nir_texop_tg4: op = ir_tg4; break;
1970 case nir_texop_txb: op = ir_txb; break;
1971 case nir_texop_txd: op = ir_txd; break;
1972 case nir_texop_txf: op = ir_txf; break;
1973 case nir_texop_txf_ms: op = ir_txf_ms; break;
1974 case nir_texop_txl: op = ir_txl; break;
1975 case nir_texop_txs: op = ir_txs; break;
1976 case nir_texop_samples_identical: op = ir_samples_identical; break;
1977 default:
1978 unreachable("unknown texture opcode");
1979 }
1980
1981 return op;
1982 }
1983
1984 void
nir_emit_texture(nir_tex_instr * instr)1985 vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
1986 {
1987 unsigned texture = instr->texture_index;
1988 unsigned sampler = instr->sampler_index;
1989 src_reg texture_reg = brw_imm_ud(texture);
1990 src_reg sampler_reg = brw_imm_ud(sampler);
1991 src_reg coordinate;
1992 const glsl_type *coord_type = NULL;
1993 src_reg shadow_comparator;
1994 src_reg offset_value;
1995 src_reg lod, lod2;
1996 src_reg sample_index;
1997 src_reg mcs;
1998
1999 dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
2000
2001 /* The hardware requires a LOD for buffer textures */
2002 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
2003 lod = brw_imm_d(0);
2004
2005 /* Load the texture operation sources */
2006 uint32_t constant_offset = 0;
2007 for (unsigned i = 0; i < instr->num_srcs; i++) {
2008 switch (instr->src[i].src_type) {
2009 case nir_tex_src_comparator:
2010 shadow_comparator = get_nir_src(instr->src[i].src,
2011 BRW_REGISTER_TYPE_F, 1);
2012 break;
2013
2014 case nir_tex_src_coord: {
2015 unsigned src_size = nir_tex_instr_src_size(instr, i);
2016
2017 switch (instr->op) {
2018 case nir_texop_txf:
2019 case nir_texop_txf_ms:
2020 case nir_texop_samples_identical:
2021 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
2022 src_size);
2023 coord_type = glsl_type::ivec(src_size);
2024 break;
2025
2026 default:
2027 coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2028 src_size);
2029 coord_type = glsl_type::vec(src_size);
2030 break;
2031 }
2032 break;
2033 }
2034
2035 case nir_tex_src_ddx:
2036 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2037 nir_tex_instr_src_size(instr, i));
2038 break;
2039
2040 case nir_tex_src_ddy:
2041 lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
2042 nir_tex_instr_src_size(instr, i));
2043 break;
2044
2045 case nir_tex_src_lod:
2046 switch (instr->op) {
2047 case nir_texop_txs:
2048 case nir_texop_txf:
2049 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2050 break;
2051
2052 default:
2053 lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
2054 break;
2055 }
2056 break;
2057
2058 case nir_tex_src_ms_index: {
2059 sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
2060 break;
2061 }
2062
2063 case nir_tex_src_offset:
2064 if (!brw_texture_offset(instr, i, &constant_offset)) {
2065 offset_value =
2066 get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
2067 }
2068 break;
2069
2070 case nir_tex_src_texture_offset: {
2071 /* Emit code to evaluate the actual indexing expression */
2072 src_reg src = get_nir_src(instr->src[i].src, 1);
2073 src_reg temp(this, glsl_type::uint_type);
2074 emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
2075 texture_reg = emit_uniformize(temp);
2076 break;
2077 }
2078
2079 case nir_tex_src_sampler_offset: {
2080 /* Emit code to evaluate the actual indexing expression */
2081 src_reg src = get_nir_src(instr->src[i].src, 1);
2082 src_reg temp(this, glsl_type::uint_type);
2083 emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
2084 sampler_reg = emit_uniformize(temp);
2085 break;
2086 }
2087
2088 case nir_tex_src_projector:
2089 unreachable("Should be lowered by nir_lower_tex");
2090
2091 case nir_tex_src_bias:
2092 unreachable("LOD bias is not valid for vertex shaders.\n");
2093
2094 default:
2095 unreachable("unknown texture source");
2096 }
2097 }
2098
2099 if (instr->op == nir_texop_txf_ms ||
2100 instr->op == nir_texop_samples_identical) {
2101 assert(coord_type != NULL);
2102 if (devinfo->ver >= 7 &&
2103 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
2104 mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
2105 } else {
2106 mcs = brw_imm_ud(0u);
2107 }
2108 }
2109
2110 /* Stuff the channel select bits in the top of the texture offset */
2111 if (instr->op == nir_texop_tg4) {
2112 if (instr->component == 1 &&
2113 (key_tex->gather_channel_quirk_mask & (1 << texture))) {
2114 /* gather4 sampler is broken for green channel on RG32F --
2115 * we must ask for blue instead.
2116 */
2117 constant_offset |= 2 << 16;
2118 } else {
2119 constant_offset |= instr->component << 16;
2120 }
2121 }
2122
2123 ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
2124
2125 emit_texture(op, dest, nir_tex_instr_dest_size(instr),
2126 coordinate, instr->coord_components,
2127 shadow_comparator,
2128 lod, lod2, sample_index,
2129 constant_offset, offset_value, mcs,
2130 texture, texture_reg, sampler_reg);
2131 }
2132
2133 void
nir_emit_undef(nir_ssa_undef_instr * instr)2134 vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
2135 {
2136 nir_ssa_values[instr->def.index] =
2137 dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
2138 }
2139
2140 /* SIMD4x2 64bit data is stored in register space like this:
2141 *
2142 * r0.0:DF x0 y0 z0 w0
2143 * r1.0:DF x1 y1 z1 w1
2144 *
2145 * When we need to write data such as this to memory using 32-bit write
2146 * messages we need to shuffle it in this fashion:
2147 *
2148 * r0.0:DF x0 y0 x1 y1 (to be written at base offset)
2149 * r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
2150 *
2151 * We need to do the inverse operation when we read using 32-bit messages,
2152 * which we can do by applying the same exact shuffling on the 64-bit data
2153 * read, only that because the data for each vertex is positioned differently
2154 * we need to apply different channel enables.
2155 *
2156 * This function takes 64bit data and shuffles it as explained above.
2157 *
2158 * The @for_write parameter is used to specify if the shuffling is being done
2159 * for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
2160 * write message (for_write = true), or instead we are doing the inverse
2161 * operation and we have just read 64-bit data using a 32-bit messages that we
2162 * need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
2163 *
2164 * If @block and @ref are non-NULL, then the shuffling is done after @ref,
2165 * otherwise the instructions are emitted normally at the end. The function
2166 * returns the last instruction inserted.
2167 *
2168 * Notice that @src and @dst cannot be the same register.
2169 */
2170 vec4_instruction *
shuffle_64bit_data(dst_reg dst,src_reg src,bool for_write,bool for_scratch,bblock_t * block,vec4_instruction * ref)2171 vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
2172 bool for_scratch,
2173 bblock_t *block, vec4_instruction *ref)
2174 {
2175 assert(type_sz(src.type) == 8);
2176 assert(type_sz(dst.type) == 8);
2177 assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
2178 assert(!ref == !block);
2179
2180 opcode mov_op = for_scratch ? VEC4_OPCODE_MOV_FOR_SCRATCH : BRW_OPCODE_MOV;
2181
2182 const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
2183 vec4_builder(this).at(block, ref->next);
2184
2185 /* Resolve swizzle in src */
2186 if (src.swizzle != BRW_SWIZZLE_XYZW) {
2187 dst_reg data = dst_reg(this, glsl_type::dvec4_type);
2188 bld.emit(mov_op, data, src);
2189 src = src_reg(data);
2190 }
2191
2192 /* dst+0.XY = src+0.XY */
2193 bld.group(4, 0).emit(mov_op, writemask(dst, WRITEMASK_XY), src);
2194
2195 /* dst+0.ZW = src+1.XY */
2196 bld.group(4, for_write ? 1 : 0)
2197 .emit(mov_op, writemask(dst, WRITEMASK_ZW),
2198 swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
2199
2200 /* dst+1.XY = src+0.ZW */
2201 bld.group(4, for_write ? 0 : 1)
2202 .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
2203 swizzle(src, BRW_SWIZZLE_ZWZW));
2204
2205 /* dst+1.ZW = src+1.ZW */
2206 return bld.group(4, 1)
2207 .emit(mov_op, writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
2208 byte_offset(src, REG_SIZE));
2209 }
2210
2211 }
2212