1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 #ifndef BITSCAN_H
30 #define BITSCAN_H
31 
32 #include <assert.h>
33 #include <stdint.h>
34 #include <stdbool.h>
35 #include <string.h>
36 
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
40 
41 #if defined(__POPCNT__)
42 #include <popcntintrin.h>
43 #endif
44 
45 #include "c99_compat.h"
46 
47 #ifdef __cplusplus
48 extern "C" {
49 #endif
50 
51 
52 /**
53  * Find first bit set in word.  Least significant bit is 1.
54  * Return 0 if no bits set.
55  */
56 #ifdef HAVE___BUILTIN_FFS
57 #define ffs __builtin_ffs
58 #elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
59 static inline
60 int ffs(int i)
61 {
62    unsigned long index;
63    if (_BitScanForward(&index, i))
64       return index + 1;
65    else
66       return 0;
67 }
68 #else
69 extern
70 int ffs(int i);
71 #endif
72 
73 #ifdef HAVE___BUILTIN_FFSLL
74 #define ffsll __builtin_ffsll
75 #elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
76 static inline int
77 ffsll(long long int i)
78 {
79    unsigned long index;
80    if (_BitScanForward64(&index, i))
81       return index + 1;
82    else
83       return 0;
84 }
85 #else
86 extern int
87 ffsll(long long int val);
88 #endif
89 
90 
91 /* Destructively loop over all of the bits in a mask as in:
92  *
93  * while (mymask) {
94  *   int i = u_bit_scan(&mymask);
95  *   ... process element i
96  * }
97  *
98  */
99 static inline int
u_bit_scan(unsigned * mask)100 u_bit_scan(unsigned *mask)
101 {
102    const int i = ffs(*mask) - 1;
103    *mask ^= (1u << i);
104    return i;
105 }
106 
107 #define u_foreach_bit(b, dword)                          \
108    for (uint32_t __dword = (dword), b;                     \
109         ((b) = ffs(__dword) - 1, __dword);      \
110         __dword &= ~(1 << (b)))
111 
112 static inline int
u_bit_scan64(uint64_t * mask)113 u_bit_scan64(uint64_t *mask)
114 {
115    const int i = ffsll(*mask) - 1;
116    *mask ^= (((uint64_t)1) << i);
117    return i;
118 }
119 
120 #define u_foreach_bit64(b, dword)                          \
121    for (uint64_t __dword = (dword), b;                     \
122         ((b) = ffsll(__dword) - 1, __dword);      \
123         __dword &= ~(1ull << (b)))
124 
125 /* Determine if an unsigned value is a power of two.
126  *
127  * \note
128  * Zero is treated as a power of two.
129  */
130 static inline bool
util_is_power_of_two_or_zero(unsigned v)131 util_is_power_of_two_or_zero(unsigned v)
132 {
133    return (v & (v - 1)) == 0;
134 }
135 
136 /* Determine if an uint64_t value is a power of two.
137  *
138  * \note
139  * Zero is treated as a power of two.
140  */
141 static inline bool
util_is_power_of_two_or_zero64(uint64_t v)142 util_is_power_of_two_or_zero64(uint64_t v)
143 {
144    return (v & (v - 1)) == 0;
145 }
146 
147 /* Determine if an unsigned value is a power of two.
148  *
149  * \note
150  * Zero is \b not treated as a power of two.
151  */
152 static inline bool
util_is_power_of_two_nonzero(unsigned v)153 util_is_power_of_two_nonzero(unsigned v)
154 {
155    /* __POPCNT__ is different from HAVE___BUILTIN_POPCOUNT.  The latter
156     * indicates the existence of the __builtin_popcount function.  The former
157     * indicates that _mm_popcnt_u32 exists and is a native instruction.
158     *
159     * The other alternative is to use SSE 4.2 compile-time flags.  This has
160     * two drawbacks.  First, there is currently no build infrastructure for
161     * SSE 4.2 (only 4.1), so that would have to be added.  Second, some AMD
162     * CPUs support POPCNT but not SSE 4.2 (e.g., Barcelona).
163     */
164 #ifdef __POPCNT__
165    return _mm_popcnt_u32(v) == 1;
166 #else
167    return v != 0 && (v & (v - 1)) == 0;
168 #endif
169 }
170 
171 /* For looping over a bitmask when you want to loop over consecutive bits
172  * manually, for example:
173  *
174  * while (mask) {
175  *    int start, count, i;
176  *
177  *    u_bit_scan_consecutive_range(&mask, &start, &count);
178  *
179  *    for (i = 0; i < count; i++)
180  *       ... process element (start+i)
181  * }
182  */
183 static inline void
u_bit_scan_consecutive_range(unsigned * mask,int * start,int * count)184 u_bit_scan_consecutive_range(unsigned *mask, int *start, int *count)
185 {
186    if (*mask == 0xffffffff) {
187       *start = 0;
188       *count = 32;
189       *mask = 0;
190       return;
191    }
192    *start = ffs(*mask) - 1;
193    *count = ffs(~(*mask >> *start)) - 1;
194    *mask &= ~(((1u << *count) - 1) << *start);
195 }
196 
197 static inline void
u_bit_scan_consecutive_range64(uint64_t * mask,int * start,int * count)198 u_bit_scan_consecutive_range64(uint64_t *mask, int *start, int *count)
199 {
200    if (*mask == ~0ull) {
201       *start = 0;
202       *count = 64;
203       *mask = 0;
204       return;
205    }
206    *start = ffsll(*mask) - 1;
207    *count = ffsll(~(*mask >> *start)) - 1;
208    *mask &= ~(((((uint64_t)1) << *count) - 1) << *start);
209 }
210 
211 
212 /**
213  * Find last bit set in a word.  The least significant bit is 1.
214  * Return 0 if no bits are set.
215  * Essentially ffs() in the reverse direction.
216  */
217 static inline unsigned
util_last_bit(unsigned u)218 util_last_bit(unsigned u)
219 {
220 #if defined(HAVE___BUILTIN_CLZ)
221    return u == 0 ? 0 : 32 - __builtin_clz(u);
222 #elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
223    unsigned long index;
224    if (_BitScanReverse(&index, u))
225       return index + 1;
226    else
227       return 0;
228 #else
229    unsigned r = 0;
230    while (u) {
231       r++;
232       u >>= 1;
233    }
234    return r;
235 #endif
236 }
237 
238 /**
239  * Find last bit set in a word.  The least significant bit is 1.
240  * Return 0 if no bits are set.
241  * Essentially ffsll() in the reverse direction.
242  */
243 static inline unsigned
util_last_bit64(uint64_t u)244 util_last_bit64(uint64_t u)
245 {
246 #if defined(HAVE___BUILTIN_CLZLL)
247    return u == 0 ? 0 : 64 - __builtin_clzll(u);
248 #elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
249    unsigned long index;
250    if (_BitScanReverse64(&index, u))
251       return index + 1;
252    else
253       return 0;
254 #else
255    unsigned r = 0;
256    while (u) {
257       r++;
258       u >>= 1;
259    }
260    return r;
261 #endif
262 }
263 
264 /**
265  * Find last bit in a word that does not match the sign bit. The least
266  * significant bit is 1.
267  * Return 0 if no bits are set.
268  */
269 static inline unsigned
util_last_bit_signed(int i)270 util_last_bit_signed(int i)
271 {
272    if (i >= 0)
273       return util_last_bit(i);
274    else
275       return util_last_bit(~(unsigned)i);
276 }
277 
278 /* Returns a bitfield in which the first count bits starting at start are
279  * set.
280  */
281 static inline unsigned
u_bit_consecutive(unsigned start,unsigned count)282 u_bit_consecutive(unsigned start, unsigned count)
283 {
284    assert(start + count <= 32);
285    if (count == 32)
286       return ~0;
287    return ((1u << count) - 1) << start;
288 }
289 
290 static inline uint64_t
u_bit_consecutive64(unsigned start,unsigned count)291 u_bit_consecutive64(unsigned start, unsigned count)
292 {
293    assert(start + count <= 64);
294    if (count == 64)
295       return ~(uint64_t)0;
296    return (((uint64_t)1 << count) - 1) << start;
297 }
298 
299 /**
300  * Return number of bits set in n.
301  */
302 static inline unsigned
util_bitcount(unsigned n)303 util_bitcount(unsigned n)
304 {
305 #if defined(HAVE___BUILTIN_POPCOUNT)
306    return __builtin_popcount(n);
307 #else
308    /* K&R classic bitcount.
309     *
310     * For each iteration, clear the LSB from the bitfield.
311     * Requires only one iteration per set bit, instead of
312     * one iteration per bit less than highest set bit.
313     */
314    unsigned bits;
315    for (bits = 0; n; bits++) {
316       n &= n - 1;
317    }
318    return bits;
319 #endif
320 }
321 
322 /**
323  * Return the number of bits set in n using the native popcnt instruction.
324  * The caller is responsible for ensuring that popcnt is supported by the CPU.
325  *
326  * gcc doesn't use it if -mpopcnt or -march= that has popcnt is missing.
327  *
328  */
329 static inline unsigned
util_popcnt_inline_asm(unsigned n)330 util_popcnt_inline_asm(unsigned n)
331 {
332 #if defined(USE_X86_64_ASM) || defined(USE_X86_ASM)
333    uint32_t out;
334    __asm volatile("popcnt %1, %0" : "=r"(out) : "r"(n));
335    return out;
336 #else
337    /* We should never get here by accident, but I'm sure it'll happen. */
338    return util_bitcount(n);
339 #endif
340 }
341 
342 static inline unsigned
util_bitcount64(uint64_t n)343 util_bitcount64(uint64_t n)
344 {
345 #ifdef HAVE___BUILTIN_POPCOUNTLL
346    return __builtin_popcountll(n);
347 #else
348    return util_bitcount(n) + util_bitcount(n >> 32);
349 #endif
350 }
351 
352 #ifdef __cplusplus
353 }
354 #endif
355 
356 #endif /* BITSCAN_H */
357