1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "ac_llvm_cull.h"
25 #include "si_pipe.h"
26 #include "si_shader_internal.h"
27 #include "sid.h"
28 #include "util/u_memory.h"
29 #include "util/u_prim.h"
30 
get_wave_id_in_tg(struct si_shader_context * ctx)31 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
32 {
33    return si_unpack_param(ctx, ctx->args.merged_wave_info, 24, 4);
34 }
35 
get_tgsize(struct si_shader_context * ctx)36 static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
37 {
38    return si_unpack_param(ctx, ctx->args.merged_wave_info, 28, 4);
39 }
40 
get_thread_id_in_tg(struct si_shader_context * ctx)41 static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
42 {
43    LLVMBuilderRef builder = ctx->ac.builder;
44    LLVMValueRef tmp;
45    tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
46                       LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
47    return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
48 }
49 
ngg_get_vtx_cnt(struct si_shader_context * ctx)50 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
51 {
52    return si_unpack_param(ctx, ctx->args.gs_tg_info, 12, 9);
53 }
54 
ngg_get_prim_cnt(struct si_shader_context * ctx)55 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
56 {
57    return si_unpack_param(ctx, ctx->args.gs_tg_info, 22, 9);
58 }
59 
ngg_get_ordered_id(struct si_shader_context * ctx)60 static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
61 {
62    return si_unpack_param(ctx, ctx->args.gs_tg_info, 0, 12);
63 }
64 
ngg_get_query_buf(struct si_shader_context * ctx)65 static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
66 {
67    LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
68 
69    return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
70                                 LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
71 }
72 
73 /**
74  * Return the number of vertices as a constant in \p num_vertices,
75  * and return a more precise value as LLVMValueRef from the function.
76  */
ngg_get_vertices_per_prim(struct si_shader_context * ctx,unsigned * num_vertices)77 static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx, unsigned *num_vertices)
78 {
79    const struct si_shader_info *info = &ctx->shader->selector->info;
80 
81    if (ctx->stage == MESA_SHADER_VERTEX) {
82       if (info->base.vs.blit_sgprs_amd) {
83          /* Blits always use axis-aligned rectangles with 3 vertices. */
84          *num_vertices = 3;
85          return LLVMConstInt(ctx->ac.i32, 3, 0);
86       } else if (ctx->shader->key.opt.ngg_culling & SI_NGG_CULL_LINES) {
87          *num_vertices = 2;
88          return LLVMConstInt(ctx->ac.i32, 2, 0);
89       } else {
90          /* We always build up all three indices for the prim export
91           * independent of the primitive type. The additional garbage
92           * data shouldn't hurt. This is used by exports and streamout.
93           */
94          *num_vertices = 3;
95 
96          /* Extract OUTPRIM field. */
97          LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
98          return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
99       }
100    } else {
101       assert(ctx->stage == MESA_SHADER_TESS_EVAL);
102 
103       if (info->base.tess.point_mode)
104          *num_vertices = 1;
105       else if (info->base.tess.primitive_mode == GL_LINES)
106          *num_vertices = 2;
107       else
108          *num_vertices = 3;
109 
110       return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
111    }
112 }
113 
gfx10_ngg_export_prim_early(struct si_shader * shader)114 bool gfx10_ngg_export_prim_early(struct si_shader *shader)
115 {
116    struct si_shader_selector *sel = shader->selector;
117 
118    assert(shader->key.as_ngg && !shader->key.as_es);
119 
120    return sel->info.stage != MESA_SHADER_GEOMETRY &&
121           !gfx10_ngg_writes_user_edgeflags(shader);
122 }
123 
gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context * ctx)124 void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
125 {
126    /* Newer chips can use PRIMGEN_PASSTHRU_NO_MSG to skip gs_alloc_req for NGG passthrough. */
127    if (gfx10_is_ngg_passthrough(ctx->shader) &&
128        ctx->screen->info.family >= CHIP_DIMGREY_CAVEFISH)
129       return;
130 
131    ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ngg_get_vtx_cnt(ctx),
132                                  ngg_get_prim_cnt(ctx));
133 }
134 
gfx10_ngg_build_export_prim(struct si_shader_context * ctx,LLVMValueRef user_edgeflags[3],LLVMValueRef prim_passthrough)135 void gfx10_ngg_build_export_prim(struct si_shader_context *ctx, LLVMValueRef user_edgeflags[3],
136                                  LLVMValueRef prim_passthrough)
137 {
138    LLVMBuilderRef builder = ctx->ac.builder;
139 
140    if (gfx10_is_ngg_passthrough(ctx->shader) || ctx->shader->key.opt.ngg_culling) {
141       ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
142       {
143          struct ac_ngg_prim prim = {};
144 
145          if (prim_passthrough)
146             prim.passthrough = prim_passthrough;
147          else
148             prim.passthrough = ac_get_arg(&ctx->ac, ctx->args.gs_vtx_offset[0]);
149 
150          /* This is only used with NGG culling, which returns the NGG
151           * passthrough prim export encoding.
152           */
153          if (gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
154             unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
155             LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
156 
157             unsigned num_vertices;
158             ngg_get_vertices_per_prim(ctx, &num_vertices);
159 
160             for (unsigned i = 0; i < num_vertices; i++) {
161                unsigned shift = 9 + i * 10;
162                LLVMValueRef edge;
163 
164                edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
165                edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
166                edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
167                edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
168             }
169             prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
170          }
171 
172          ac_build_export_prim(&ctx->ac, &prim);
173       }
174       ac_build_endif(&ctx->ac, 6001);
175       return;
176    }
177 
178    ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
179    {
180       struct ac_ngg_prim prim = {};
181 
182       ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
183 
184       prim.isnull = ctx->ac.i1false;
185 
186       if (gfx10_edgeflags_have_effect(ctx->shader))
187          prim.edgeflags = ac_pack_edgeflags_for_export(&ctx->ac, &ctx->args);
188       else
189          prim.edgeflags = ctx->ac.i32_0;
190 
191       for (unsigned i = 0; i < prim.num_vertices; ++i)
192          prim.index[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[i / 2], (i & 1) * 16, 16);
193 
194       if (gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
195          LLVMValueRef edgeflags = ctx->ac.i32_0;
196 
197          for (unsigned i = 0; i < prim.num_vertices; ++i) {
198             LLVMValueRef edge;
199 
200             edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
201             edge = LLVMBuildZExt(ctx->ac.builder, edge, ctx->ac.i32, "");
202             edge = LLVMBuildShl(ctx->ac.builder, edge, LLVMConstInt(ctx->ac.i32, 9 + i*10, 0), "");
203             edgeflags = LLVMBuildOr(ctx->ac.builder, edgeflags, edge, "");
204          }
205          prim.edgeflags = LLVMBuildAnd(ctx->ac.builder, prim.edgeflags, edgeflags, "");
206       }
207 
208       ac_build_export_prim(&ctx->ac, &prim);
209    }
210    ac_build_endif(&ctx->ac, 6001);
211 }
212 
build_streamout_vertex(struct si_shader_context * ctx,LLVMValueRef * so_buffer,LLVMValueRef * wg_offset_dw,unsigned stream,LLVMValueRef offset_vtx,LLVMValueRef vertexptr)213 static void build_streamout_vertex(struct si_shader_context *ctx, LLVMValueRef *so_buffer,
214                                    LLVMValueRef *wg_offset_dw, unsigned stream,
215                                    LLVMValueRef offset_vtx, LLVMValueRef vertexptr)
216 {
217    struct si_shader_info *info = &ctx->shader->selector->info;
218    struct pipe_stream_output_info *so = &ctx->shader->selector->so;
219    LLVMBuilderRef builder = ctx->ac.builder;
220    LLVMValueRef offset[4] = {};
221    LLVMValueRef tmp;
222 
223    for (unsigned buffer = 0; buffer < 4; ++buffer) {
224       if (!wg_offset_dw[buffer])
225          continue;
226 
227       tmp = LLVMBuildMul(builder, offset_vtx, LLVMConstInt(ctx->ac.i32, so->stride[buffer], false),
228                          "");
229       tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
230       offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
231    }
232 
233    for (unsigned i = 0; i < so->num_outputs; ++i) {
234       if (so->output[i].stream != stream)
235          continue;
236 
237       unsigned reg = so->output[i].register_index;
238       struct si_shader_output_values out;
239       out.semantic = info->output_semantic[reg];
240 
241       for (unsigned comp = 0; comp < 4; comp++) {
242          tmp = ac_build_gep0(&ctx->ac, vertexptr, LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
243          out.values[comp] = LLVMBuildLoad(builder, tmp, "");
244          out.vertex_stream[comp] = (info->output_streams[reg] >> (2 * comp)) & 3;
245       }
246 
247       si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
248    }
249 }
250 
251 struct ngg_streamout {
252    LLVMValueRef num_vertices;
253 
254    /* per-thread data */
255    LLVMValueRef prim_enable[4]; /* i1 per stream */
256    LLVMValueRef vertices[3];    /* [N x i32] addrspace(LDS)* */
257 
258    /* Output */
259    LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
260 };
261 
262 /**
263  * Build streamout logic.
264  *
265  * Implies a barrier.
266  *
267  * Writes number of emitted primitives to gs_ngg_scratch[4:8].
268  *
269  * Clobbers gs_ngg_scratch[8:].
270  */
build_streamout(struct si_shader_context * ctx,struct ngg_streamout * nggso)271 static void build_streamout(struct si_shader_context *ctx, struct ngg_streamout *nggso)
272 {
273    struct si_shader_info *info = &ctx->shader->selector->info;
274    struct pipe_stream_output_info *so = &ctx->shader->selector->so;
275    LLVMBuilderRef builder = ctx->ac.builder;
276    LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->internal_bindings);
277    LLVMValueRef tid = get_thread_id_in_tg(ctx);
278    LLVMValueRef tmp, tmp2;
279    LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
280    LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
281    LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
282    LLVMValueRef so_buffer[4] = {};
283    unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) + (nggso->vertices[2] ? 1 : 0);
284    LLVMValueRef prim_stride_dw[4] = {};
285    LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
286    int stream_for_buffer[4] = {-1, -1, -1, -1};
287    unsigned bufmask_for_stream[4] = {};
288    bool isgs = ctx->stage == MESA_SHADER_GEOMETRY;
289    unsigned scratch_emit_base = isgs ? 4 : 0;
290    LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
291    unsigned scratch_offset_base = isgs ? 8 : 4;
292    LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
293 
294    ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
295 
296    /* Determine the mapping of streamout buffers to vertex streams. */
297    for (unsigned i = 0; i < so->num_outputs; ++i) {
298       unsigned buf = so->output[i].output_buffer;
299       unsigned stream = so->output[i].stream;
300       assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
301       stream_for_buffer[buf] = stream;
302       bufmask_for_stream[stream] |= 1 << buf;
303    }
304 
305    for (unsigned buffer = 0; buffer < 4; ++buffer) {
306       if (stream_for_buffer[buffer] == -1)
307          continue;
308 
309       assert(so->stride[buffer]);
310 
311       tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
312       prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
313       prim_stride_dw_vgpr =
314          ac_build_writelane(&ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
315                             LLVMConstInt(ctx->ac.i32, buffer, false));
316 
317       so_buffer[buffer] = ac_build_load_to_sgpr(
318          &ctx->ac, buf_ptr, LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
319    }
320 
321    tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
322    ac_build_ifcc(&ctx->ac, tmp, 5200);
323    {
324       LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
325       LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
326 
327       /* Advance the streamout offsets in GDS. */
328       LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
329       LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
330 
331       tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
332       ac_build_ifcc(&ctx->ac, tmp, 5210);
333       {
334          if (isgs) {
335             tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
336             tmp = LLVMBuildLoad(builder, tmp, "");
337          } else {
338             tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0, ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
339          }
340          LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
341 
342          unsigned swizzle[4];
343          int unused_stream = -1;
344          for (unsigned stream = 0; stream < 4; ++stream) {
345             if (!info->num_stream_output_components[stream]) {
346                unused_stream = stream;
347                break;
348             }
349          }
350          for (unsigned buffer = 0; buffer < 4; ++buffer) {
351             if (stream_for_buffer[buffer] >= 0) {
352                swizzle[buffer] = stream_for_buffer[buffer];
353             } else {
354                assert(unused_stream >= 0);
355                swizzle[buffer] = unused_stream;
356             }
357          }
358 
359          tmp = ac_build_quad_swizzle(&ctx->ac, tmp, swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
360          tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
361 
362          LLVMValueRef args[] = {
363             LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
364             tmp,
365             ctx->ac.i32_0,                             // ordering
366             ctx->ac.i32_0,                             // scope
367             ctx->ac.i1false,                           // isVolatile
368             LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
369             ctx->ac.i1true,                            // wave release
370             ctx->ac.i1true,                            // wave done
371          };
372          tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add", ctx->ac.i32, args,
373                                   ARRAY_SIZE(args), 0);
374 
375          /* Keep offsets in a VGPR for quick retrieval via readlane by
376           * the first wave for bounds checking, and also store in LDS
377           * for retrieval by all waves later. */
378          LLVMBuildStore(builder, tmp, offsets_vgpr);
379 
380          tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_offset_basev, "");
381          tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
382          LLVMBuildStore(builder, tmp, tmp2);
383       }
384       ac_build_endif(&ctx->ac, 5210);
385 
386       /* Determine the max emit per buffer. This is done via the SALU, in part
387        * because LLVM can't generate divide-by-multiply if we try to do this
388        * via VALU with one lane per buffer.
389        */
390       LLVMValueRef max_emit[4] = {};
391       for (unsigned buffer = 0; buffer < 4; ++buffer) {
392          if (stream_for_buffer[buffer] == -1)
393             continue;
394 
395          LLVMValueRef bufsize_dw = LLVMBuildLShr(
396             builder, LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""), i32_2, "");
397 
398          tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
399          LLVMValueRef offset_dw =
400             ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, buffer, false));
401 
402          tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
403          tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
404 
405          tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
406          max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
407       }
408 
409       /* Determine the number of emitted primitives per stream and fixup the
410        * GDS counter if necessary.
411        *
412        * This is complicated by the fact that a single stream can emit to
413        * multiple buffers (but luckily not vice versa).
414        */
415       LLVMValueRef emit_vgpr = ctx->ac.i32_0;
416 
417       for (unsigned stream = 0; stream < 4; ++stream) {
418          if (!info->num_stream_output_components[stream])
419             continue;
420 
421          tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
422          LLVMValueRef generated =
423             ac_build_readlane(&ctx->ac, tmp, LLVMConstInt(ctx->ac.i32, stream, false));
424 
425          LLVMValueRef emit = generated;
426          for (unsigned buffer = 0; buffer < 4; ++buffer) {
427             if (stream_for_buffer[buffer] == stream)
428                emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
429          }
430 
431          emit_vgpr =
432             ac_build_writelane(&ctx->ac, emit_vgpr, emit, LLVMConstInt(ctx->ac.i32, stream, false));
433 
434          /* Fixup the offset using a plain GDS atomic if we overflowed. */
435          tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
436          ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
437          tmp = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
438                              ac_get_thread_id(&ctx->ac), "");
439          tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
440          ac_build_ifcc(&ctx->ac, tmp, 5222);
441          {
442             tmp = LLVMBuildSub(builder, generated, emit, "");
443             tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
444             tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
445             LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
446                                LLVMAtomicOrderingMonotonic, false);
447          }
448          ac_build_endif(&ctx->ac, 5222);
449          ac_build_endif(&ctx->ac, 5221);
450       }
451 
452       tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
453       ac_build_ifcc(&ctx->ac, tmp, 5225);
454       {
455          tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac), scratch_emit_basev, "");
456          tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
457          LLVMBuildStore(builder, emit_vgpr, tmp);
458       }
459       ac_build_endif(&ctx->ac, 5225);
460    }
461    ac_build_endif(&ctx->ac, 5200);
462 
463    /* Determine the workgroup-relative per-thread / primitive offset into
464     * the streamout buffers */
465    struct ac_wg_scan primemit_scan[4] = {};
466 
467    if (isgs) {
468       for (unsigned stream = 0; stream < 4; ++stream) {
469          if (!info->num_stream_output_components[stream])
470             continue;
471 
472          primemit_scan[stream].enable_exclusive = true;
473          primemit_scan[stream].op = nir_op_iadd;
474          primemit_scan[stream].src = nggso->prim_enable[stream];
475          primemit_scan[stream].scratch = ac_build_gep0(
476             &ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
477          primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
478          primemit_scan[stream].numwaves = get_tgsize(ctx);
479          if (ctx->stage == MESA_SHADER_GEOMETRY) {
480             /* ngg_subgroup_size is only the input size. GS can always generate up to 256 vertices. */
481             primemit_scan[stream].maxwaves = DIV_ROUND_UP(256, ctx->ac.wave_size);
482          } else {
483             primemit_scan[stream].maxwaves = DIV_ROUND_UP(ctx->screen->ngg_subgroup_size,
484                                                           ctx->ac.wave_size);
485          }
486          ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
487       }
488    }
489 
490    ac_build_s_barrier(&ctx->ac);
491 
492    /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
493    LLVMValueRef wgoffset_dw[4] = {};
494 
495    {
496       LLVMValueRef scratch_vgpr;
497 
498       tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
499       scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
500 
501       for (unsigned buffer = 0; buffer < 4; ++buffer) {
502          if (stream_for_buffer[buffer] >= 0) {
503             wgoffset_dw[buffer] =
504                ac_build_readlane(&ctx->ac, scratch_vgpr,
505                                  LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
506          }
507       }
508 
509       for (unsigned stream = 0; stream < 4; ++stream) {
510          if (info->num_stream_output_components[stream]) {
511             nggso->emit[stream] =
512                ac_build_readlane(&ctx->ac, scratch_vgpr,
513                                  LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
514          }
515       }
516    }
517 
518    /* Write out primitive data */
519    for (unsigned stream = 0; stream < 4; ++stream) {
520       if (!info->num_stream_output_components[stream])
521          continue;
522 
523       if (isgs) {
524          ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
525       } else {
526          primemit_scan[stream].result_exclusive = tid;
527       }
528 
529       tmp = LLVMBuildICmp(builder, LLVMIntULT, primemit_scan[stream].result_exclusive,
530                           nggso->emit[stream], "");
531       tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
532       ac_build_ifcc(&ctx->ac, tmp, 5240);
533       {
534          LLVMValueRef offset_vtx =
535             LLVMBuildMul(builder, primemit_scan[stream].result_exclusive, nggso->num_vertices, "");
536 
537          for (unsigned i = 0; i < max_num_vertices; ++i) {
538             tmp = LLVMBuildICmp(builder, LLVMIntULT, LLVMConstInt(ctx->ac.i32, i, false),
539                                 nggso->num_vertices, "");
540             ac_build_ifcc(&ctx->ac, tmp, 5241);
541             build_streamout_vertex(ctx, so_buffer, wgoffset_dw, stream, offset_vtx,
542                                    nggso->vertices[i]);
543             ac_build_endif(&ctx->ac, 5241);
544             offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
545          }
546       }
547       ac_build_endif(&ctx->ac, 5240);
548    }
549 }
550 
551 /* LDS layout of ES vertex data for NGG culling. */
552 enum
553 {
554    /* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
555     *         ES thread ID. After vertex compaction, compacted ES threads
556     *         store the old thread ID here to copy input VGPRs from uncompacted
557     *         ES threads.
558     * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
559     * Byte 2: TES rel patch ID
560     * Byte 3: Unused
561     */
562    lds_byte0_accept_flag = 0,
563    lds_byte1_new_thread_id,
564    lds_byte2_tes_rel_patch_id,
565    lds_byte3_unused,
566 
567    lds_packed_data = 0, /* lds_byteN_... */
568    lds_pos_cull_x_div_w,
569    lds_pos_cull_y_div_w,
570    lds_pos_cull_w,
571 
572    lds_pos_x = lds_packed_data + 1,
573    lds_pos_y,
574    lds_pos_z,
575    lds_pos_w,
576    /* If VS: */
577    lds_vertex_id,
578    lds_instance_id, /* optional */
579    /* If TES: */
580    lds_tes_u = lds_vertex_id,
581    lds_tes_v = lds_instance_id,
582    lds_tes_patch_id, /* optional */
583 };
584 
si_build_gep_i8_var(struct si_shader_context * ctx,LLVMValueRef ptr,LLVMValueRef index)585 static LLVMValueRef si_build_gep_i8_var(struct si_shader_context *ctx, LLVMValueRef ptr,
586                                         LLVMValueRef index)
587 {
588    LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
589 
590    return LLVMBuildGEP(ctx->ac.builder, LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""), &index,
591                        1, "");
592 }
593 
si_build_gep_i8(struct si_shader_context * ctx,LLVMValueRef ptr,unsigned byte_index)594 static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx, LLVMValueRef ptr,
595                                     unsigned byte_index)
596 {
597    assert(byte_index < 4);
598    return si_build_gep_i8_var(ctx, ptr, LLVMConstInt(ctx->ac.i32, byte_index, 0));
599 }
600 
ngg_nogs_vertex_size(struct si_shader * shader)601 static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
602 {
603    unsigned lds_vertex_size = 0;
604 
605    /* The edgeflag is always stored in the last element that's also
606     * used for padding to reduce LDS bank conflicts. */
607    if (shader->selector->so.num_outputs)
608       lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
609    if (gfx10_ngg_writes_user_edgeflags(shader))
610       lds_vertex_size = MAX2(lds_vertex_size, 1);
611 
612    /* LDS size for passing data from GS to ES.
613     * GS stores Primitive IDs into LDS at the address corresponding
614     * to the ES thread of the provoking vertex. All ES threads
615     * load and export PrimitiveID for their thread.
616     */
617    if (shader->selector->info.stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id)
618       lds_vertex_size = MAX2(lds_vertex_size, 1);
619 
620    if (shader->key.opt.ngg_culling) {
621       if (shader->selector->info.stage == MESA_SHADER_VERTEX) {
622          STATIC_ASSERT(lds_instance_id + 1 == 7);
623          lds_vertex_size = MAX2(lds_vertex_size, 7);
624       } else {
625          assert(shader->selector->info.stage == MESA_SHADER_TESS_EVAL);
626 
627          if (shader->selector->info.uses_primid || shader->key.mono.u.vs_export_prim_id) {
628             STATIC_ASSERT(lds_tes_patch_id + 2 == 9); /* +1 for LDS padding */
629             lds_vertex_size = MAX2(lds_vertex_size, 9);
630          } else {
631             STATIC_ASSERT(lds_tes_v + 1 == 7);
632             lds_vertex_size = MAX2(lds_vertex_size, 7);
633          }
634       }
635    }
636 
637    return lds_vertex_size;
638 }
639 
640 /**
641  * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
642  * for the vertex outputs.
643  */
ngg_nogs_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef vtxid)644 static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vtxid)
645 {
646    /* The extra dword is used to avoid LDS bank conflicts. */
647    unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
648    LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
649    LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
650    LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
651    return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
652 }
653 
si_insert_input_v4i32(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)654 static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx, LLVMValueRef ret,
655                                           struct ac_arg param, unsigned return_index)
656 {
657    LLVMValueRef v = ac_get_arg(&ctx->ac, param);
658 
659    for (unsigned i = 0; i < 4; i++) {
660       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, ac_llvm_extract_elem(&ctx->ac, v, i),
661                                  return_index + i, "");
662    }
663    return ret;
664 }
665 
load_vertex_counts(struct si_shader_context * ctx,LLVMValueRef lds,unsigned max_waves,LLVMValueRef tid,LLVMValueRef * total_count,LLVMValueRef * prefix_sum)666 static void load_vertex_counts(struct si_shader_context *ctx, LLVMValueRef lds,
667                                unsigned max_waves, LLVMValueRef tid,
668                                LLVMValueRef *total_count,
669                                LLVMValueRef *prefix_sum)
670 {
671    LLVMBuilderRef builder = ctx->ac.builder;
672    LLVMValueRef i8vec4_lane = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
673    unsigned num_i8vec4 = DIV_ROUND_UP(max_waves, 4);
674 
675    /* If all threads loaded the vertex counts, it would cause many LDS bank conflicts
676     * and the performance could decrease up to WaveSize times (32x or 64x).
677     *
678     * Therefore, only load the i-th tuple of vertex counts in the i-th thread. Other threads will
679     * get them through readlane. 4 8-bit vertex counts are loaded per thread.
680     */
681    ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntULT, tid,
682                                          LLVMConstInt(ctx->ac.i32, num_i8vec4, 0), ""), 17771);
683    LLVMBuildStore(builder, LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, lds, tid), ""), i8vec4_lane);
684    ac_build_endif(&ctx->ac, 17771);
685 
686    /* Compute the number of ES waves. */
687    LLVMValueRef num_waves = get_tgsize(ctx);
688 
689    /* Compute a byte mask where each byte is either 0 or 0xff depending on whether the wave
690     * exists. We need the mask to clear uninitialized bytes in LDS and to compute the prefix sum.
691     *
692     * 8 waves: valid_mask = ~0ull >> (64 - num_waves * 8)
693     * 4 waves: valid_mask = ~0 >> (32 - num_waves * 8)
694     */
695    LLVMValueRef num_waves8 = LLVMBuildShl(builder, num_waves, LLVMConstInt(ctx->ac.i32, 3, 0), "");
696    LLVMValueRef valid_mask;
697 
698    if (max_waves > 4) {
699       LLVMValueRef num_waves8_rev = LLVMBuildSub(builder, LLVMConstInt(ctx->ac.i32, 64, 0),
700                                                  num_waves8, "");
701       valid_mask = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i64, ~0ull, 0),
702                                  LLVMBuildZExt(builder, num_waves8_rev, ctx->ac.i64, ""), "");
703    } else {
704       LLVMValueRef num_waves8_rev = LLVMBuildSub(builder, LLVMConstInt(ctx->ac.i32, 32, 0),
705                                                  num_waves8, "");
706       valid_mask = LLVMBuildLShr(builder, LLVMConstInt(ctx->ac.i32, ~0, 0), num_waves8_rev, "");
707    }
708 
709    /* Compute a byte mask where bytes below wave_id are 0xff, else they are 0.
710     *
711     * prefix_mask = ~(~0 << (wave_id * 8))
712     */
713    LLVMTypeRef type = max_waves > 4 ? ctx->ac.i64 : ctx->ac.i32;
714    LLVMValueRef wave_id8 = LLVMBuildShl(builder, get_wave_id_in_tg(ctx),
715                                         LLVMConstInt(ctx->ac.i32, 3, 0), "");
716    LLVMValueRef prefix_mask =
717       LLVMBuildNot(builder, LLVMBuildShl(builder, LLVMConstInt(type, ~0ull, 0),
718                                          LLVMBuildZExt(builder, wave_id8, type, ""), ""), "");
719 
720    /* Compute the total vertex count and the vertex count of previous waves (prefix). */
721    *total_count = ctx->ac.i32_0;
722    *prefix_sum = ctx->ac.i32_0;
723 
724    for (unsigned i = 0; i < num_i8vec4; i++) {
725       LLVMValueRef i8vec4;
726 
727       i8vec4 = ac_build_readlane_no_opt_barrier(&ctx->ac, LLVMBuildLoad(builder, i8vec4_lane, ""),
728                                                 LLVMConstInt(ctx->ac.i32, i, 0));
729       /* Inactive waves have uninitialized vertex counts. Set them to 0 using this. */
730       i8vec4 = LLVMBuildAnd(builder, i8vec4,
731                             ac_unpack_param(&ctx->ac, valid_mask, 32 * i, 32), "");
732       /* Compute the sum of all i8vec4 components and add it to the result. */
733       *total_count = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.sad.u8", ctx->ac.i32,
734                                         (LLVMValueRef[]){i8vec4, ctx->ac.i32_0, *total_count},
735                                         3, AC_FUNC_ATTR_READNONE);
736       ac_set_range_metadata(&ctx->ac, *total_count, 0, 64*4 + 1); /* the result is at most 64*4 */
737 
738       /* Compute the sum of the vertex counts of all previous waves. */
739       i8vec4 = LLVMBuildAnd(builder, i8vec4,
740                                 ac_unpack_param(&ctx->ac, prefix_mask, 32 * i, 32), "");
741       *prefix_sum = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.sad.u8", ctx->ac.i32,
742                                        (LLVMValueRef[]){i8vec4, ctx->ac.i32_0, *prefix_sum},
743                                        3, AC_FUNC_ATTR_READNONE);
744       ac_set_range_metadata(&ctx->ac, *prefix_sum, 0, 64*4 + 1); /* the result is at most 64*4 */
745    }
746    *total_count = ac_build_readlane_no_opt_barrier(&ctx->ac, *total_count, NULL);
747 }
748 
749 /**
750  * Given a total thread count, update total and per-wave thread counts in input SGPRs
751  * and return the per-wave thread count.
752  *
753  * \param new_num_threads    Total thread count on the input, per-wave thread count on the output.
754  * \param tg_info            tg_info SGPR value
755  * \param tg_info_num_bits   the bit size of thread count field in tg_info
756  * \param tg_info_shift      the bit offset of the thread count field in tg_info
757  * \param wave_info          merged_wave_info SGPR value
758  * \param wave_info_num_bits the bit size of thread count field in merged_wave_info
759  * \param wave_info_shift    the bit offset of the thread count field in merged_wave_info
760  */
update_thread_counts(struct si_shader_context * ctx,LLVMValueRef * new_num_threads,LLVMValueRef * tg_info,unsigned tg_info_num_bits,unsigned tg_info_shift,LLVMValueRef * wave_info,unsigned wave_info_num_bits,unsigned wave_info_shift)761 static void update_thread_counts(struct si_shader_context *ctx, LLVMValueRef *new_num_threads,
762                                  LLVMValueRef *tg_info, unsigned tg_info_num_bits,
763                                  unsigned tg_info_shift, LLVMValueRef *wave_info,
764                                  unsigned wave_info_num_bits, unsigned wave_info_shift)
765 {
766    LLVMBuilderRef builder = ctx->ac.builder;
767 
768    /* Update the total thread count. */
769    unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
770    *tg_info = LLVMBuildAnd(builder, *tg_info, LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
771    *tg_info = LLVMBuildOr(
772       builder, *tg_info,
773       LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
774 
775    /* Update the per-wave thread count. */
776    LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
777                                             LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
778    *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
779    *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
780    *new_num_threads =
781       ac_build_imin(&ctx->ac, *new_num_threads, LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
782    unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
783    *wave_info = LLVMBuildAnd(builder, *wave_info, LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
784    *wave_info = LLVMBuildOr(
785       builder, *wave_info,
786       LLVMBuildShl(builder, *new_num_threads, LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""),
787       "");
788 }
789 
gfx10_build_primitive_accepted(struct ac_llvm_context * ac,LLVMValueRef accepted,void * userdata)790 static void gfx10_build_primitive_accepted(struct ac_llvm_context *ac, LLVMValueRef accepted,
791                                            void *userdata)
792 {
793    struct si_shader_context *ctx = container_of(ac, struct si_shader_context, ac);
794    LLVMValueRef *params = (LLVMValueRef *)userdata;
795    LLVMValueRef gs_accepted = params[0];
796    LLVMValueRef *gs_vtxptr = (LLVMValueRef *)params[1];
797 
798    unsigned num_vertices;
799    ngg_get_vertices_per_prim(ctx, &num_vertices);
800 
801    ac_build_ifcc(&ctx->ac, accepted, 0);
802    LLVMBuildStore(ctx->ac.builder, ctx->ac.i32_1, gs_accepted);
803    for (unsigned vtx = 0; vtx < num_vertices; vtx++) {
804       LLVMBuildStore(ctx->ac.builder, ctx->ac.i8_1,
805                      si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
806    }
807    ac_build_endif(&ctx->ac, 0);
808 }
809 
810 /**
811  * Cull primitives for NGG VS or TES, then compact vertices, which happens
812  * before the VS or TES main function. Return values for the main function.
813  * Also return the position, which is passed to the shader as an input,
814  * so that we don't compute it twice.
815  */
gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi * abi)816 void gfx10_emit_ngg_culling_epilogue(struct ac_shader_abi *abi)
817 {
818    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
819    struct si_shader *shader = ctx->shader;
820    struct si_shader_selector *sel = shader->selector;
821    struct si_shader_info *info = &sel->info;
822    LLVMBuilderRef builder = ctx->ac.builder;
823    LLVMValueRef *addrs = abi->outputs;
824    unsigned max_waves = DIV_ROUND_UP(ctx->screen->ngg_subgroup_size, ctx->ac.wave_size);
825 
826    assert(shader->key.opt.ngg_culling);
827    assert(shader->key.as_ngg);
828    assert(sel->info.stage == MESA_SHADER_VERTEX ||
829           (sel->info.stage == MESA_SHADER_TESS_EVAL && !shader->key.as_es));
830 
831    LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
832    unsigned pos_index = 0;
833 
834    for (unsigned i = 0; i < info->num_outputs; i++) {
835       LLVMValueRef position[4];
836 
837       switch (info->output_semantic[i]) {
838       case VARYING_SLOT_POS:
839          /* If we are going to cull everything (rasterizer_discard), discard
840           * the position. This is useful for analyzing maximum theoretical
841           * performance without VS input loads.
842           */
843          if (shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE &&
844              shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE) {
845             for (unsigned j = 0; j < 4; j++)
846                LLVMBuildStore(builder, LLVMGetUndef(ctx->ac.f32), addrs[4 * i + j]);
847             break;
848          }
849 
850          pos_index = i;
851          for (unsigned j = 0; j < 4; j++) {
852             position[j] = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + j], "");
853          }
854 
855          /* Store Position.W into LDS. */
856          LLVMBuildStore(
857             builder, ac_to_integer(&ctx->ac, position[3]),
858             ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_cull_w, 0)));
859 
860          /* Store Position.XY / W into LDS. */
861          for (unsigned chan = 0; chan < 2; chan++) {
862             LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
863             LLVMBuildStore(
864                builder, ac_to_integer(&ctx->ac, val),
865                ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_pos_cull_x_div_w + chan, 0)));
866          }
867          break;
868       }
869    }
870 
871    /* Initialize the packed data. */
872    LLVMBuildStore(
873       builder, ctx->ac.i32_0,
874       ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
875    ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
876    ac_build_s_barrier(&ctx->ac);
877 
878    LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
879 
880    unsigned num_vertices;
881    ngg_get_vertices_per_prim(ctx, &num_vertices);
882 
883    /* The hardware requires that there are no holes between unculled vertices,
884     * which means we have to pack ES threads, i.e. reduce the ES thread count
885     * and move ES input VGPRs to lower threads. The upside is that varyings
886     * are only fetched and computed for unculled vertices.
887     *
888     * Vertex compaction:
889     *
890     * Part 1: Store the surviving vertex count for each wave in LDS.
891     *   - The GS culling code notifies ES threads which vertices were accepted.
892     *   - Barrier
893     *   - ES threads will compute the vertex count and store it in LDS.
894     * - Barrier
895     * - Each wave loads the vertex counts from LDS.
896     *
897     * Part 2: Compact ES threads:
898     * - Compute the prefix sum for each surviving vertex. This is the new thread ID
899     *   of the vertex.
900     * - Write input VGPRs and vertex positions for each surviving vertex into the LDS
901     *   address of the new thread ID.
902     * - Now kill all waves that have inactive threads.
903     * - Barrier
904     * - Update vertex indices and null flag in the GS input VGPRs.
905     *
906     * Part 3: Update inputs GPRs
907     * - For all waves, update per-wave thread counts in input SGPRs.
908     * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
909     */
910 
911    LLVMValueRef vtxindex[3];
912    for (unsigned i = 0; i < num_vertices; ++i)
913       vtxindex[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[i / 2], (i & 1) * 16, 16);
914 
915    LLVMValueRef gs_vtxptr[3];
916    for (unsigned i = 0; i < num_vertices; i++)
917       gs_vtxptr[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
918 
919    es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
920 
921    /* Adding these optimization barriers improves the generated code as follows. Crazy right?
922     *
923     * - s_mov_b32 s4, 0xffff
924     * - v_lshrrev_b32_e32 v10, 16, v0
925     * - v_and_b32_e32 v12, s4, v0
926     * - v_and_b32_e32 v11, s4, v1
927     *   s_bfe_u32 s4, s3, 0x80008
928     * - s_mov_b64 s[8:9], 0
929     * - v_mul_u32_u24_e32 v0, 28, v10
930     * - v_mul_u32_u24_e32 v9, 28, v12
931     * - v_mul_u32_u24_e32 v1, 28, v11
932     * + v_mov_b32_e32 v11, 28
933     *   v_cmp_gt_u32_e32 vcc, s4, v2
934     * + s_mov_b64 s[8:9], 0
935     *   s_waitcnt lgkmcnt(0)
936     *   s_barrier
937     * + v_mul_u32_u24_sdwa v10, v0, v11 dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_0 src1_sel:DWORD
938     * + v_mul_u32_u24_sdwa v23, v0, v11 dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
939     * + v_mul_u32_u24_sdwa v0, v1, v11 dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_0 src1_sel:DWORD
940     *   s_and_saveexec_b64 s[44:45], vcc
941     *   s_cbranch_execz BB2_8
942     * - v_mul_u32_u24_e32 v16, 28, v12
943     * - v_mul_u32_u24_e32 v17, 28, v11
944     * - v_mul_u32_u24_e32 v18, 28, v10
945     */
946    for (unsigned i = 0; i < num_vertices; i++)
947       ac_build_optimization_barrier(&ctx->ac, &gs_vtxptr[i], false);
948 
949    LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
950 
951    /* Do culling in GS threads. */
952    ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
953    {
954       /* Load positions. */
955       LLVMValueRef pos[3][4] = {};
956       for (unsigned vtx = 0; vtx < num_vertices; vtx++) {
957          for (unsigned chan = 0; chan < 4; chan++) {
958             unsigned index;
959             if (chan == 0 || chan == 1)
960                index = lds_pos_cull_x_div_w + chan;
961             else if (chan == 3)
962                index = lds_pos_cull_w;
963             else
964                continue;
965 
966             LLVMValueRef addr =
967                ac_build_gep0(&ctx->ac, gs_vtxptr[vtx], LLVMConstInt(ctx->ac.i32, index, 0));
968             pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
969             pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
970          }
971       }
972 
973       /* Load the viewport state for small prim culling. */
974       LLVMValueRef vp = ac_build_load_invariant(
975          &ctx->ac, ac_get_arg(&ctx->ac, ctx->small_prim_cull_info), ctx->ac.i32_0);
976       vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
977       LLVMValueRef vp_scale[2], vp_translate[2];
978       vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
979       vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
980       vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
981       vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
982 
983       /* Get the small prim filter precision. */
984       LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
985       small_prim_precision =
986          LLVMBuildOr(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
987       small_prim_precision =
988          LLVMBuildShl(builder, small_prim_precision, LLVMConstInt(ctx->ac.i32, 23, 0), "");
989       small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
990 
991       /* Execute culling code. */
992       struct ac_cull_options options = {};
993       options.cull_view_xy = true;
994       options.cull_w = true;
995 
996       if (shader->key.opt.ngg_culling & SI_NGG_CULL_LINES) {
997          options.num_vertices = 2;
998 
999          assert(!(shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE));
1000          assert(!(shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE));
1001       } else {
1002          options.num_vertices = 3;
1003          options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
1004          options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
1005          options.cull_small_prims = true; /* this would only be false with conservative rasterization */
1006          options.cull_zero_area = options.cull_front || options.cull_back;
1007       }
1008 
1009       /* Tell ES threads whether their vertex survived. */
1010       LLVMValueRef params[] = {
1011          gs_accepted,
1012          (void*)gs_vtxptr,
1013       };
1014       ac_cull_primitive(&ctx->ac, pos, ctx->ac.i1true, vp_scale, vp_translate,
1015                         small_prim_precision, &options,
1016                         gfx10_build_primitive_accepted, params);
1017    }
1018    ac_build_endif(&ctx->ac, 16002);
1019    ac_build_s_barrier(&ctx->ac);
1020 
1021    gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
1022 
1023    LLVMValueRef vertex_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
1024    LLVMValueRef vertex_mask = ac_build_alloca(&ctx->ac, ctx->ac.iN_wavemask, "");
1025 
1026    /* Convert the per-vertex accept flag to a vertex thread mask, store it in registers. */
1027    ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
1028    {
1029       LLVMValueRef accepted =
1030          LLVMBuildLoad(builder, si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
1031       accepted = LLVMBuildICmp(builder, LLVMIntNE, accepted, ctx->ac.i8_0, "");
1032       LLVMValueRef mask = ac_get_i1_sgpr_mask(&ctx->ac, accepted);
1033 
1034       LLVMBuildStore(builder, accepted, vertex_accepted);
1035       LLVMBuildStore(builder, mask, vertex_mask);
1036    }
1037    ac_build_endif(&ctx->ac, 16007);
1038 
1039    /* Store the per-wave vertex count to LDS. Non-ES waves store 0. */
1040    vertex_mask = LLVMBuildLoad(builder, vertex_mask, "");
1041    ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ, tid, ctx->ac.i32_0, ""), 16008);
1042    {
1043       LLVMValueRef vertex_count = ac_build_bit_count(&ctx->ac, vertex_mask);
1044       LLVMBuildStore(builder, LLVMBuildTrunc(builder, vertex_count, ctx->ac.i8, ""),
1045                      si_build_gep_i8_var(ctx, ctx->gs_ngg_scratch, get_wave_id_in_tg(ctx)));
1046    }
1047    ac_build_endif(&ctx->ac, 16008);
1048 
1049    ac_build_s_barrier(&ctx->ac);
1050 
1051    /* Load the vertex masks and compute the new ES thread count. */
1052    LLVMValueRef new_num_es_threads, prefix_sum, kill_wave;
1053    load_vertex_counts(ctx, ctx->gs_ngg_scratch, max_waves, tid, &new_num_es_threads,
1054                       &prefix_sum);
1055 
1056    bool uses_instance_id = ctx->stage == MESA_SHADER_VERTEX &&
1057                            (sel->info.uses_instanceid ||
1058                             shader->key.part.vs.prolog.instance_divisor_is_one ||
1059                             shader->key.part.vs.prolog.instance_divisor_is_fetched);
1060    bool uses_tes_prim_id = ctx->stage == MESA_SHADER_TESS_EVAL &&
1061                            (sel->info.uses_primid || shader->key.mono.u.vs_export_prim_id);
1062 
1063    /* ES threads compute their prefix sum, which is the new ES thread ID.
1064     * Then they write the vertex position and input VGPRs into the LDS address
1065     * of the new thread ID. It will be used to load input VGPRs by compacted
1066     * threads.
1067     */
1068    vertex_accepted = LLVMBuildLoad(builder, vertex_accepted, "");
1069    ac_build_ifcc(&ctx->ac, vertex_accepted, 16009);
1070    {
1071       /* Add the number of bits set in vertex_mask up to the current thread ID - 1
1072        * to get the prefix sum.
1073        */
1074       prefix_sum = LLVMBuildAdd(builder, prefix_sum, ac_build_mbcnt(&ctx->ac, vertex_mask), "");
1075 
1076       LLVMValueRef new_id = prefix_sum;
1077       LLVMValueRef new_vtx = ngg_nogs_vertex_ptr(ctx, new_id);
1078 
1079       LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
1080                      si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
1081 
1082       /* Store Position.XYZW into LDS. */
1083       for (unsigned chan = 0; chan < 4; chan++) {
1084          LLVMBuildStore(
1085             builder, ac_to_integer(&ctx->ac, LLVMBuildLoad(builder, addrs[4 * pos_index + chan], "")),
1086             ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
1087       }
1088 
1089       /* Store VertexID and InstanceID into LDS. ES threads will have to load them
1090        * from LDS after vertex compaction and use them instead of their own
1091        * system values.
1092        */
1093       if (ctx->stage == MESA_SHADER_VERTEX) {
1094          LLVMBuildStore(
1095             builder, ctx->abi.vertex_id,
1096             ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
1097          if (uses_instance_id) {
1098             LLVMBuildStore(
1099                builder, ctx->abi.instance_id,
1100                ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
1101          }
1102       } else {
1103          assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1104          LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.tes_u)),
1105                         ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
1106          LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.tes_v)),
1107                         ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
1108          LLVMBuildStore(builder, LLVMBuildTrunc(builder, ac_get_arg(&ctx->ac, ctx->args.tes_rel_patch_id), ctx->ac.i8, ""),
1109                         si_build_gep_i8(ctx, new_vtx, lds_byte2_tes_rel_patch_id));
1110          if (uses_tes_prim_id) {
1111             LLVMBuildStore(
1112                builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
1113                ac_build_gep0(&ctx->ac, new_vtx, LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
1114          }
1115       }
1116    }
1117    ac_build_endif(&ctx->ac, 16009);
1118 
1119    /* If all vertices are culled, set the primitive count to 0, so that all waves are culled here. */
1120    LLVMValueRef num_primitives = ngg_get_prim_cnt(ctx);
1121    num_primitives = LLVMBuildSelect(builder,
1122                                     LLVMBuildICmp(builder, LLVMIntEQ, new_num_es_threads,
1123                                                   ctx->ac.i32_0, ""),
1124                                     ctx->ac.i32_0, num_primitives, "");
1125    /* Kill waves that have inactive threads. */
1126    kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
1127                              ac_build_imax(&ctx->ac, new_num_es_threads, num_primitives),
1128                              LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
1129                                           LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""),
1130                              "");
1131    ac_build_ifcc(&ctx->ac, kill_wave, 19202);
1132    {
1133       /* If we are killing wave 0, send that there are no primitives
1134        * in this threadgroup.
1135        */
1136       ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), ctx->ac.i32_0, ctx->ac.i32_0);
1137       ac_build_s_endpgm(&ctx->ac);
1138    }
1139    ac_build_endif(&ctx->ac, 19202);
1140    ac_build_s_barrier(&ctx->ac);
1141 
1142    /* Send the final vertex and primitive counts. */
1143    ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), new_num_es_threads,
1144                                  ngg_get_prim_cnt(ctx));
1145 
1146    /* Update thread counts in SGPRs. */
1147    LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->args.gs_tg_info);
1148    LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->args.merged_wave_info);
1149 
1150    /* This also converts the thread count from the total count to the per-wave count. */
1151    update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12, &new_merged_wave_info, 8,
1152                         0);
1153 
1154    /* Update vertex indices in VGPR0 (same format as NGG passthrough).
1155     *
1156     * Set the null flag at the beginning (culled), and then
1157     * overwrite it for accepted primitives.
1158     */
1159    LLVMValueRef new_vgpr0 =
1160       ac_build_alloca_init(&ctx->ac, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), "");
1161 
1162    /* Get vertex indices after vertex compaction. */
1163    ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
1164    {
1165       struct ac_ngg_prim prim = {};
1166       prim.num_vertices = num_vertices;
1167       prim.isnull = ctx->ac.i1false;
1168 
1169       if (gfx10_edgeflags_have_effect(shader))
1170          prim.edgeflags = ac_pack_edgeflags_for_export(&ctx->ac, &ctx->args);
1171       else
1172          prim.edgeflags = ctx->ac.i32_0;
1173 
1174       for (unsigned vtx = 0; vtx < num_vertices; vtx++) {
1175          prim.index[vtx] = LLVMBuildLoad(
1176             builder, si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte1_new_thread_id), "");
1177          prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
1178       }
1179 
1180       /* Set the new GS input VGPR. */
1181       LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
1182    }
1183    ac_build_endif(&ctx->ac, 16011);
1184 
1185    if (gfx10_ngg_export_prim_early(shader))
1186       gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
1187 
1188    /* Prepare LDS addresses of the new ES input VGPRs. */
1189    LLVMValueRef input_vgpr_addresses[4] = {
1190       ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)),
1191       ac_build_gep0(&ctx->ac, es_vtxptr, LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)),
1192    };
1193    if (ctx->stage == MESA_SHADER_TESS_EVAL) {
1194       input_vgpr_addresses[2] = si_build_gep_i8(ctx, es_vtxptr, lds_byte2_tes_rel_patch_id);
1195       if (uses_tes_prim_id) {
1196          input_vgpr_addresses[3] = ac_build_gep0(&ctx->ac, es_vtxptr,
1197                                                  LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0));
1198       }
1199    }
1200 
1201    /* Return values for the main function. */
1202    LLVMValueRef ret = ctx->return_value;
1203    LLVMValueRef val;
1204 
1205    ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
1206    ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
1207    if (ctx->stage == MESA_SHADER_TESS_EVAL)
1208       ret = si_insert_input_ret(ctx, ret, ctx->args.tess_offchip_offset, 4);
1209 
1210    ret = si_insert_input_ptr(ctx, ret, ctx->internal_bindings, 8 + SI_SGPR_INTERNAL_BINDINGS);
1211    ret = si_insert_input_ptr(ctx, ret, ctx->bindless_samplers_and_images,
1212                              8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
1213    ret = si_insert_input_ptr(ctx, ret, ctx->const_and_shader_buffers,
1214                              8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
1215    ret = si_insert_input_ptr(ctx, ret, ctx->samplers_and_images, 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
1216    ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits, 8 + SI_SGPR_VS_STATE_BITS);
1217 
1218    if (ctx->stage == MESA_SHADER_VERTEX) {
1219       ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex, 8 + SI_SGPR_BASE_VERTEX);
1220       ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id, 8 + SI_SGPR_DRAWID);
1221       ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance, 8 + SI_SGPR_START_INSTANCE);
1222       ret = si_insert_input_ptr(ctx, ret, ctx->args.vertex_buffers, 8 + SI_VS_NUM_USER_SGPR);
1223 
1224       for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
1225          ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
1226                                      8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
1227       }
1228    } else {
1229       assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1230       ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout, 8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
1231       ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr, 8 + SI_SGPR_TES_OFFCHIP_ADDR);
1232    }
1233 
1234    unsigned vgpr;
1235    if (ctx->stage == MESA_SHADER_VERTEX) {
1236       if (shader->selector->num_vbos_in_user_sgprs) {
1237          vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
1238       } else {
1239          vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
1240       }
1241    } else {
1242       vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
1243    }
1244 
1245    val = LLVMBuildLoad(builder, new_vgpr0, "");
1246    ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1247    vgpr++; /* gs_vtx_offset[1] = offsets of vertices 2-3  */
1248 
1249    ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
1250    ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
1251    vgpr++; /* gs_vtx_offset[2] = offsets of vertices 4-5 */
1252 
1253    /* Set the input VPGRs to the corresponding LDS addresses where the VGPR values are
1254     * stored. The VS prolog will load them.
1255     */
1256    if (ctx->stage == MESA_SHADER_VERTEX) {
1257       val = LLVMBuildPtrToInt(builder, input_vgpr_addresses[0], ctx->ac.i32, "");
1258       ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1259                                  ""); /* VGPR5 - VertexID */
1260       vgpr += 2;
1261       if (uses_instance_id) {
1262          val = LLVMBuildPtrToInt(builder, input_vgpr_addresses[1], ctx->ac.i32, "");
1263          ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++,
1264                                     ""); /* VGPR8 - InstanceID */
1265       } else {
1266          vgpr++;
1267       }
1268    } else {
1269       assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1270       unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
1271       for (unsigned i = 0; i < num_vgprs; i++) {
1272          val = LLVMBuildPtrToInt(builder, input_vgpr_addresses[i], ctx->ac.i32, "");
1273          ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
1274       }
1275       if (num_vgprs == 3)
1276          vgpr++;
1277    }
1278 
1279    /* These two also use LDS. */
1280    if (gfx10_ngg_writes_user_edgeflags(shader) ||
1281        (ctx->stage == MESA_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
1282       ac_build_s_barrier(&ctx->ac);
1283 
1284    ctx->return_value = ret;
1285 }
1286 
1287 /**
1288  * Emit the epilogue of an API VS or TES shader compiled as ESGS shader.
1289  */
gfx10_emit_ngg_epilogue(struct ac_shader_abi * abi)1290 void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi)
1291 {
1292    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1293    struct si_shader_selector *sel = ctx->shader->selector;
1294    struct si_shader_info *info = &sel->info;
1295    struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1296    LLVMBuilderRef builder = ctx->ac.builder;
1297    LLVMValueRef *addrs = abi->outputs;
1298    LLVMValueRef tmp, tmp2;
1299 
1300    assert(!ctx->shader->is_gs_copy_shader);
1301    assert(info->num_outputs <= AC_LLVM_MAX_OUTPUTS);
1302 
1303    LLVMValueRef vertex_ptr = NULL;
1304 
1305    if (sel->so.num_outputs || gfx10_ngg_writes_user_edgeflags(ctx->shader))
1306       vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1307 
1308    for (unsigned i = 0; i < info->num_outputs; i++) {
1309       outputs[i].semantic = info->output_semantic[i];
1310 
1311       for (unsigned j = 0; j < 4; j++) {
1312          outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
1313 
1314          /* TODO: we may store more outputs than streamout needs,
1315           * but streamout performance isn't that important.
1316           */
1317          if (sel->so.num_outputs) {
1318             tmp = ac_build_gep0(&ctx->ac, vertex_ptr, LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
1319             tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1320             tmp2 = ac_to_integer(&ctx->ac, tmp2);
1321             LLVMBuildStore(builder, tmp2, tmp);
1322          }
1323       }
1324 
1325       /* Store the edgeflag at the end (if streamout is enabled) */
1326       if (info->output_semantic[i] == VARYING_SLOT_EDGE && gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
1327          LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
1328          /* The output is a float, but the hw expects a 1-bit integer. */
1329          edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
1330          edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
1331 
1332          tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1333          tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1334          LLVMBuildStore(builder, edgeflag, tmp);
1335       }
1336    }
1337 
1338    bool unterminated_es_if_block =
1339       !sel->so.num_outputs && !gfx10_ngg_writes_user_edgeflags(ctx->shader) &&
1340       !ctx->screen->use_ngg_streamout && /* no query buffer */
1341       (ctx->stage != MESA_SHADER_VERTEX || !ctx->shader->key.mono.u.vs_export_prim_id);
1342 
1343    if (!unterminated_es_if_block)
1344       ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1345 
1346    LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
1347    LLVMValueRef is_es_thread = si_is_es_thread(ctx);
1348    LLVMValueRef vtxindex[3];
1349 
1350    if (ctx->shader->key.opt.ngg_culling || gfx10_is_ngg_passthrough(ctx->shader)) {
1351       for (unsigned i = 0; i < 3; ++i)
1352          vtxindex[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[0], 10 * i, 9);
1353    } else {
1354       for (unsigned i = 0; i < 3; ++i)
1355          vtxindex[i] = si_unpack_param(ctx, ctx->args.gs_vtx_offset[i / 2], (i & 1) * 16, 16);
1356    }
1357 
1358    /* Determine the number of vertices per primitive. */
1359    unsigned num_vertices;
1360    LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
1361 
1362    /* Streamout */
1363    LLVMValueRef emitted_prims = NULL;
1364 
1365    if (sel->so.num_outputs) {
1366       assert(!unterminated_es_if_block);
1367 
1368       struct ngg_streamout nggso = {};
1369       nggso.num_vertices = num_vertices_val;
1370       nggso.prim_enable[0] = is_gs_thread;
1371 
1372       for (unsigned i = 0; i < num_vertices; ++i)
1373          nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1374 
1375       build_streamout(ctx, &nggso);
1376       emitted_prims = nggso.emit[0];
1377    }
1378 
1379    LLVMValueRef user_edgeflags[3] = {};
1380 
1381    if (gfx10_ngg_writes_user_edgeflags(ctx->shader)) {
1382       assert(!unterminated_es_if_block);
1383 
1384       /* Streamout already inserted the barrier, so don't insert it again. */
1385       if (!sel->so.num_outputs)
1386          ac_build_s_barrier(&ctx->ac);
1387 
1388       ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1389       /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
1390       for (unsigned i = 0; i < num_vertices; i++) {
1391          tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
1392          tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
1393          tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
1394          tmp = LLVMBuildLoad(builder, tmp, "");
1395          tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1396 
1397          user_edgeflags[i] = ac_build_alloca_init(&ctx->ac, tmp, "");
1398       }
1399       ac_build_endif(&ctx->ac, 5400);
1400    }
1401 
1402    /* Copy Primitive IDs from GS threads to the LDS address corresponding
1403     * to the ES thread of the provoking vertex.
1404     */
1405    if (ctx->stage == MESA_SHADER_VERTEX && ctx->shader->key.mono.u.vs_export_prim_id) {
1406       assert(!unterminated_es_if_block);
1407 
1408       /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
1409       if (sel->so.num_outputs || gfx10_ngg_writes_user_edgeflags(ctx->shader))
1410          ac_build_s_barrier(&ctx->ac);
1411 
1412       ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
1413       /* Extract the PROVOKING_VTX_INDEX field. */
1414       LLVMValueRef provoking_vtx_in_prim = si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
1415 
1416       /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
1417       LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
1418       LLVMValueRef provoking_vtx_index =
1419          LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
1420       LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
1421 
1422       LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
1423                      ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
1424       ac_build_endif(&ctx->ac, 5400);
1425    }
1426 
1427    /* Update query buffer */
1428    if (ctx->screen->use_ngg_streamout && !info->base.vs.blit_sgprs_amd) {
1429       assert(!unterminated_es_if_block);
1430 
1431       tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1432       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1433       ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
1434       tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
1435       ac_build_ifcc(&ctx->ac, tmp, 5030);
1436       tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
1437                           sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
1438       ac_build_ifcc(&ctx->ac, tmp, 5031);
1439       {
1440          LLVMValueRef args[] = {
1441             ngg_get_prim_cnt(ctx),
1442             ngg_get_query_buf(ctx),
1443             LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
1444             ctx->ac.i32_0,                        /* soffset */
1445             ctx->ac.i32_0,                        /* cachepolicy */
1446          };
1447 
1448          if (sel->so.num_outputs) {
1449             args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
1450             args[2] = ac_build_writelane(&ctx->ac, args[2], LLVMConstInt(ctx->ac.i32, 24, false),
1451                                          ctx->ac.i32_1);
1452          }
1453 
1454          /* TODO: should this be 64-bit atomics? */
1455          ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1456                             0);
1457       }
1458       ac_build_endif(&ctx->ac, 5031);
1459       ac_build_endif(&ctx->ac, 5030);
1460       ac_build_endif(&ctx->ac, 5029);
1461    }
1462 
1463    /* Build the primitive export. */
1464    if (!gfx10_ngg_export_prim_early(ctx->shader)) {
1465       assert(!unterminated_es_if_block);
1466       gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
1467    }
1468 
1469    /* Export per-vertex data (positions and parameters). */
1470    if (!unterminated_es_if_block)
1471       ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
1472    {
1473       unsigned i;
1474 
1475       /* Unconditionally (re-)load the values for proper SSA form. */
1476       for (i = 0; i < info->num_outputs; i++) {
1477          /* If the NGG cull shader part computed the position, don't
1478           * use the position from the current shader part. Instead,
1479           * load it from LDS.
1480           */
1481          if (info->output_semantic[i] == VARYING_SLOT_POS &&
1482              ctx->shader->key.opt.ngg_culling) {
1483             vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1484 
1485             for (unsigned j = 0; j < 4; j++) {
1486                tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
1487                tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
1488                tmp = LLVMBuildLoad(builder, tmp, "");
1489                outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1490             }
1491          } else {
1492             for (unsigned j = 0; j < 4; j++) {
1493                outputs[i].values[j] = LLVMBuildLoad(builder, addrs[4 * i + j], "");
1494             }
1495          }
1496       }
1497 
1498       if (ctx->shader->key.mono.u.vs_export_prim_id) {
1499          outputs[i].semantic = VARYING_SLOT_PRIMITIVE_ID;
1500 
1501          if (ctx->stage == MESA_SHADER_VERTEX) {
1502             /* Wait for GS stores to finish. */
1503             ac_build_s_barrier(&ctx->ac);
1504 
1505             tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
1506             tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1507             outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
1508          } else {
1509             assert(ctx->stage == MESA_SHADER_TESS_EVAL);
1510             outputs[i].values[0] = si_get_primitive_id(ctx, 0);
1511          }
1512 
1513          outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
1514          for (unsigned j = 1; j < 4; j++)
1515             outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
1516 
1517          memset(outputs[i].vertex_stream, 0, sizeof(outputs[i].vertex_stream));
1518          i++;
1519       }
1520 
1521       si_llvm_build_vs_exports(ctx, outputs, i);
1522    }
1523    ac_build_endif(&ctx->ac, 6002);
1524 }
1525 
ngg_gs_get_vertex_storage(struct si_shader_context * ctx)1526 static LLVMValueRef ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
1527 {
1528    const struct si_shader_selector *sel = ctx->shader->selector;
1529    const struct si_shader_info *info = &sel->info;
1530 
1531    LLVMTypeRef elements[2] = {
1532       LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
1533       LLVMArrayType(ctx->ac.i8, 4),
1534    };
1535    LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
1536    type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
1537    return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
1538 }
1539 
1540 /**
1541  * Return a pointer to the LDS storage reserved for the N'th vertex, where N
1542  * is in emit order; that is:
1543  * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
1544  * - during vertex emit, i.e. while the API GS shader invocation is running,
1545  *   N = threadidx * gs.vertices_out + emitidx
1546  *
1547  * Goals of the LDS memory layout:
1548  * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
1549  *    in uniform control flow
1550  * 2. Eliminate bank conflicts on read for export if, additionally, there is no
1551  *    culling
1552  * 3. Agnostic to the number of waves (since we don't know it before compiling)
1553  * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
1554  * 5. Avoid wasting memory.
1555  *
1556  * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
1557  * layout, elimination of bank conflicts requires that each vertex occupy an
1558  * odd number of dwords. We use the additional dword to store the output stream
1559  * index as well as a flag to indicate whether this vertex ends a primitive
1560  * for rasterization.
1561  *
1562  * Swizzling is required to satisfy points 1 and 2 simultaneously.
1563  *
1564  * Vertices are stored in export order (gsthread * gs.vertices_out + emitidx).
1565  * Indices are swizzled in groups of 32, which ensures point 1 without
1566  * disturbing point 2.
1567  *
1568  * \return an LDS pointer to type {[N x i32], [4 x i8]}
1569  */
ngg_gs_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef vertexidx)1570 static LLVMValueRef ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
1571 {
1572    struct si_shader_selector *sel = ctx->shader->selector;
1573    LLVMBuilderRef builder = ctx->ac.builder;
1574    LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
1575 
1576    /* gs.vertices_out = 2^(write_stride_2exp) * some odd number */
1577    unsigned write_stride_2exp = ffs(sel->info.base.gs.vertices_out) - 1;
1578    if (write_stride_2exp) {
1579       LLVMValueRef row = LLVMBuildLShr(builder, vertexidx, LLVMConstInt(ctx->ac.i32, 5, false), "");
1580       LLVMValueRef swizzle = LLVMBuildAnd(
1581          builder, row, LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1, false), "");
1582       vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
1583    }
1584 
1585    return ac_build_gep0(&ctx->ac, storage, vertexidx);
1586 }
1587 
ngg_gs_emit_vertex_ptr(struct si_shader_context * ctx,LLVMValueRef gsthread,LLVMValueRef emitidx)1588 static LLVMValueRef ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
1589                                            LLVMValueRef emitidx)
1590 {
1591    struct si_shader_selector *sel = ctx->shader->selector;
1592    LLVMBuilderRef builder = ctx->ac.builder;
1593    LLVMValueRef tmp;
1594 
1595    tmp = LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false);
1596    tmp = LLVMBuildMul(builder, tmp, gsthread, "");
1597    const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
1598    return ngg_gs_vertex_ptr(ctx, vertexidx);
1599 }
1600 
ngg_gs_get_emit_output_ptr(struct si_shader_context * ctx,LLVMValueRef vertexptr,unsigned out_idx)1601 static LLVMValueRef ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx,
1602                                                LLVMValueRef vertexptr, unsigned out_idx)
1603 {
1604    LLVMValueRef gep_idx[3] = {
1605       ctx->ac.i32_0, /* implied C-style array */
1606       ctx->ac.i32_0, /* first struct entry */
1607       LLVMConstInt(ctx->ac.i32, out_idx, false),
1608    };
1609    return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1610 }
1611 
ngg_gs_get_emit_primflag_ptr(struct si_shader_context * ctx,LLVMValueRef vertexptr,unsigned stream)1612 static LLVMValueRef ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx,
1613                                                  LLVMValueRef vertexptr, unsigned stream)
1614 {
1615    LLVMValueRef gep_idx[3] = {
1616       ctx->ac.i32_0, /* implied C-style array */
1617       ctx->ac.i32_1, /* second struct entry */
1618       LLVMConstInt(ctx->ac.i32, stream, false),
1619    };
1620    return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
1621 }
1622 
gfx10_ngg_gs_emit_vertex(struct si_shader_context * ctx,unsigned stream,LLVMValueRef * addrs)1623 void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx, unsigned stream, LLVMValueRef *addrs)
1624 {
1625    const struct si_shader_selector *sel = ctx->shader->selector;
1626    const struct si_shader_info *info = &sel->info;
1627    LLVMBuilderRef builder = ctx->ac.builder;
1628    LLVMValueRef tmp;
1629    const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1630 
1631    /* If this thread has already emitted the declared maximum number of
1632     * vertices, skip the write: excessive vertex emissions are not
1633     * supposed to have any effect.
1634     */
1635    const LLVMValueRef can_emit =
1636       LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
1637                     LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false), "");
1638 
1639    tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1640    tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
1641    LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1642 
1643    ac_build_ifcc(&ctx->ac, can_emit, 9001);
1644 
1645    const LLVMValueRef vertexptr = ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
1646    unsigned out_idx = 0;
1647    for (unsigned i = 0; i < info->num_outputs; i++) {
1648       for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
1649          if (!(info->output_usagemask[i] & (1 << chan)) ||
1650              ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
1651             continue;
1652 
1653          LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
1654          out_val = ac_to_integer(&ctx->ac, out_val);
1655          LLVMBuildStore(builder, out_val, ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
1656       }
1657    }
1658    assert(out_idx * 4 == sel->gsvs_vertex_size);
1659 
1660    /* Determine and store whether this vertex completed a primitive. */
1661    const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
1662 
1663    tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->info.base.gs.output_primitive) - 1, false);
1664    const LLVMValueRef iscompleteprim = LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
1665 
1666    /* Since the geometry shader emits triangle strips, we need to
1667     * track which primitive is odd and swap vertex indices to get
1668     * the correct vertex order.
1669     */
1670    LLVMValueRef is_odd = ctx->ac.i1false;
1671    if (stream == 0 && u_vertices_per_prim(sel->info.base.gs.output_primitive) == 3) {
1672       tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
1673       is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
1674    }
1675 
1676    tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
1677    LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
1678 
1679    /* The per-vertex primitive flag encoding:
1680     *   bit 0: whether this vertex finishes a primitive
1681     *   bit 1: whether the primitive is odd (if we are emitting triangle strips)
1682     */
1683    tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
1684    tmp = LLVMBuildOr(
1685       builder, tmp,
1686       LLVMBuildShl(builder, LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""), ctx->ac.i8_1, ""), "");
1687    LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
1688 
1689    tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1690    tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
1691    LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
1692 
1693    ac_build_endif(&ctx->ac, 9001);
1694 }
1695 
gfx10_ngg_gs_emit_prologue(struct si_shader_context * ctx)1696 void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
1697 {
1698    /* Zero out the part of LDS scratch that is used to accumulate the
1699     * per-stream generated primitive count.
1700     */
1701    LLVMBuilderRef builder = ctx->ac.builder;
1702    LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
1703    LLVMValueRef tid = get_thread_id_in_tg(ctx);
1704    LLVMValueRef tmp;
1705 
1706    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
1707    ac_build_ifcc(&ctx->ac, tmp, 5090);
1708    {
1709       LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
1710       LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
1711    }
1712    ac_build_endif(&ctx->ac, 5090);
1713 
1714    ac_build_s_barrier(&ctx->ac);
1715 }
1716 
gfx10_ngg_gs_emit_epilogue(struct si_shader_context * ctx)1717 void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
1718 {
1719    const struct si_shader_selector *sel = ctx->shader->selector;
1720    const struct si_shader_info *info = &sel->info;
1721    const unsigned verts_per_prim = u_vertices_per_prim(sel->info.base.gs.output_primitive);
1722    LLVMBuilderRef builder = ctx->ac.builder;
1723    LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
1724    LLVMValueRef tmp, tmp2;
1725 
1726    /* Zero out remaining (non-emitted) primitive flags.
1727     *
1728     * Note: Alternatively, we could pass the relevant gs_next_vertex to
1729     *       the emit threads via LDS. This is likely worse in the expected
1730     *       typical case where each GS thread emits the full set of
1731     *       vertices.
1732     */
1733    for (unsigned stream = 0; stream < 4; ++stream) {
1734       if (!info->num_stream_output_components[stream])
1735          continue;
1736 
1737       const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
1738 
1739       ac_build_bgnloop(&ctx->ac, 5100);
1740 
1741       const LLVMValueRef vertexidx = LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
1742       tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
1743                           LLVMConstInt(ctx->ac.i32, sel->info.base.gs.vertices_out, false), "");
1744       ac_build_ifcc(&ctx->ac, tmp, 5101);
1745       ac_build_break(&ctx->ac);
1746       ac_build_endif(&ctx->ac, 5101);
1747 
1748       tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
1749       LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
1750 
1751       tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
1752       LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
1753 
1754       ac_build_endloop(&ctx->ac, 5100);
1755    }
1756 
1757    /* Accumulate generated primitives counts across the entire threadgroup. */
1758    for (unsigned stream = 0; stream < 4; ++stream) {
1759       if (!info->num_stream_output_components[stream])
1760          continue;
1761 
1762       LLVMValueRef numprims = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
1763       numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
1764 
1765       tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
1766       ac_build_ifcc(&ctx->ac, tmp, 5105);
1767       {
1768          LLVMBuildAtomicRMW(
1769             builder, LLVMAtomicRMWBinOpAdd,
1770             ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, LLVMConstInt(ctx->ac.i32, stream, false)),
1771             numprims, LLVMAtomicOrderingMonotonic, false);
1772       }
1773       ac_build_endif(&ctx->ac, 5105);
1774    }
1775 
1776    ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
1777 
1778    ac_build_s_barrier(&ctx->ac);
1779 
1780    const LLVMValueRef tid = get_thread_id_in_tg(ctx);
1781    LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
1782 
1783    /* Streamout */
1784    if (sel->so.num_outputs) {
1785       struct ngg_streamout nggso = {};
1786 
1787       nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
1788 
1789       LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
1790       for (unsigned stream = 0; stream < 4; ++stream) {
1791          if (!info->num_stream_output_components[stream])
1792             continue;
1793 
1794          tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
1795          tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1796          tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1797          nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
1798       }
1799 
1800       for (unsigned i = 0; i < verts_per_prim; ++i) {
1801          tmp = LLVMBuildSub(builder, tid, LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false),
1802                             "");
1803          tmp = ngg_gs_vertex_ptr(ctx, tmp);
1804          nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
1805       }
1806 
1807       build_streamout(ctx, &nggso);
1808    }
1809 
1810    /* Write shader query data. */
1811    if (ctx->screen->use_ngg_streamout) {
1812       tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
1813       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1814       ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
1815       unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
1816       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
1817                           LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
1818       ac_build_ifcc(&ctx->ac, tmp, 5110);
1819       {
1820          LLVMValueRef offset;
1821          tmp = tid;
1822          if (sel->so.num_outputs)
1823             tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
1824          offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
1825          if (sel->so.num_outputs) {
1826             tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
1827             tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
1828             offset = LLVMBuildAdd(builder, offset, tmp, "");
1829          }
1830 
1831          tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
1832          LLVMValueRef args[] = {
1833             tmp,           ngg_get_query_buf(ctx),
1834             offset,        LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
1835             ctx->ac.i32_0,                                       /* cachepolicy */
1836          };
1837          ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32", ctx->ac.i32, args, 5,
1838                             0);
1839       }
1840       ac_build_endif(&ctx->ac, 5110);
1841       ac_build_endif(&ctx->ac, 5109);
1842    }
1843 
1844    /* Determine vertex liveness. */
1845    LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
1846 
1847    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1848    ac_build_ifcc(&ctx->ac, tmp, 5120);
1849    {
1850       for (unsigned i = 0; i < verts_per_prim; ++i) {
1851          const LLVMValueRef primidx =
1852             LLVMBuildAdd(builder, tid, LLVMConstInt(ctx->ac.i32, i, false), "");
1853 
1854          if (i > 0) {
1855             tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
1856             ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
1857          }
1858 
1859          /* Load primitive liveness */
1860          tmp = ngg_gs_vertex_ptr(ctx, primidx);
1861          tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
1862          const LLVMValueRef primlive = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
1863 
1864          tmp = LLVMBuildLoad(builder, vertliveptr, "");
1865          tmp = LLVMBuildOr(builder, tmp, primlive, ""), LLVMBuildStore(builder, tmp, vertliveptr);
1866 
1867          if (i > 0)
1868             ac_build_endif(&ctx->ac, 5121 + i);
1869       }
1870    }
1871    ac_build_endif(&ctx->ac, 5120);
1872 
1873    /* Inclusive scan addition across the current wave. */
1874    LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
1875    struct ac_wg_scan vertlive_scan = {};
1876    vertlive_scan.op = nir_op_iadd;
1877    vertlive_scan.enable_reduce = true;
1878    vertlive_scan.enable_exclusive = true;
1879    vertlive_scan.src = vertlive;
1880    vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
1881    vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
1882    vertlive_scan.numwaves = get_tgsize(ctx);
1883    vertlive_scan.maxwaves = DIV_ROUND_UP(256, ctx->ac.wave_size);
1884 
1885    ac_build_wg_scan(&ctx->ac, &vertlive_scan);
1886 
1887    /* Skip all exports (including index exports) when possible. */
1888    LLVMValueRef have_exports =
1889       LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
1890    num_emit_threads = LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
1891 
1892    /* Allocate export space. Send this message as early as possible, to
1893     * hide the latency of the SQ <-> SPI roundtrip.
1894     */
1895    ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx), vertlive_scan.result_reduce,
1896                                  num_emit_threads);
1897 
1898    /* Setup the reverse vertex compaction permutation. We re-use stream 1
1899     * of the primitive liveness flags, relying on the fact that each
1900     * threadgroup can have at most 256 threads. */
1901    ac_build_ifcc(&ctx->ac, vertlive, 5130);
1902    {
1903       tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
1904       tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
1905       LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
1906    }
1907    ac_build_endif(&ctx->ac, 5130);
1908 
1909    ac_build_s_barrier(&ctx->ac);
1910 
1911    /* Export primitive data */
1912    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
1913    ac_build_ifcc(&ctx->ac, tmp, 5140);
1914    {
1915       LLVMValueRef flags;
1916       struct ac_ngg_prim prim = {};
1917       prim.num_vertices = verts_per_prim;
1918 
1919       tmp = ngg_gs_vertex_ptr(ctx, tid);
1920       flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
1921       prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
1922       prim.edgeflags = ctx->ac.i32_0;
1923 
1924       for (unsigned i = 0; i < verts_per_prim; ++i) {
1925          prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
1926                                       LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
1927       }
1928 
1929       /* Geometry shaders output triangle strips, but NGG expects triangles. */
1930       if (verts_per_prim == 3) {
1931          LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
1932          is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
1933          LLVMValueRef flatshade_first = LLVMBuildICmp(
1934             builder, LLVMIntEQ, si_unpack_param(ctx, ctx->vs_state_bits, 4, 2), ctx->ac.i32_0, "");
1935 
1936          ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd, flatshade_first, prim.index);
1937       }
1938 
1939       ac_build_export_prim(&ctx->ac, &prim);
1940    }
1941    ac_build_endif(&ctx->ac, 5140);
1942 
1943    /* Export position and parameter data */
1944    tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
1945    ac_build_ifcc(&ctx->ac, tmp, 5145);
1946    {
1947       struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
1948 
1949       tmp = ngg_gs_vertex_ptr(ctx, tid);
1950       tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
1951       tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
1952       const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
1953 
1954       unsigned out_idx = 0;
1955       for (unsigned i = 0; i < info->num_outputs; i++) {
1956          outputs[i].semantic = info->output_semantic[i];
1957 
1958          for (unsigned j = 0; j < 4; j++, out_idx++) {
1959             tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
1960             tmp = LLVMBuildLoad(builder, tmp, "");
1961             outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
1962             outputs[i].vertex_stream[j] = (info->output_streams[i] >> (2 * j)) & 3;
1963          }
1964       }
1965 
1966       si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
1967    }
1968    ac_build_endif(&ctx->ac, 5145);
1969 }
1970 
clamp_gsprims_to_esverts(unsigned * max_gsprims,unsigned max_esverts,unsigned min_verts_per_prim,bool use_adjacency)1971 static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
1972                                      unsigned min_verts_per_prim, bool use_adjacency)
1973 {
1974    unsigned max_reuse = max_esverts - min_verts_per_prim;
1975    if (use_adjacency)
1976       max_reuse /= 2;
1977    *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
1978 }
1979 
gfx10_ngg_get_scratch_dw_size(struct si_shader * shader)1980 unsigned gfx10_ngg_get_scratch_dw_size(struct si_shader *shader)
1981 {
1982    const struct si_shader_selector *sel = shader->selector;
1983 
1984    if (sel->info.stage == MESA_SHADER_GEOMETRY && sel->so.num_outputs)
1985       return 44;
1986 
1987    return 8;
1988 }
1989 
1990 /**
1991  * Determine subgroup information like maximum number of vertices and prims.
1992  *
1993  * This happens before the shader is uploaded, since LDS relocations during
1994  * upload depend on the subgroup size.
1995  */
gfx10_ngg_calculate_subgroup_info(struct si_shader * shader)1996 bool gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
1997 {
1998    const struct si_shader_selector *gs_sel = shader->selector;
1999    const struct si_shader_selector *es_sel =
2000       shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
2001    const gl_shader_stage gs_stage = gs_sel->info.stage;
2002    const unsigned gs_num_invocations = MAX2(gs_sel->info.base.gs.invocations, 1);
2003    const unsigned input_prim = si_get_input_prim(gs_sel, &shader->key);
2004    const bool use_adjacency =
2005       input_prim >= PIPE_PRIM_LINES_ADJACENCY && input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
2006    const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
2007    const unsigned min_verts_per_prim = gs_stage == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1;
2008 
2009    /* All these are in dwords: */
2010    /* GE can only use 8K dwords (32KB) of LDS per workgroup.
2011     */
2012    const unsigned max_lds_size = 8 * 1024 - gfx10_ngg_get_scratch_dw_size(shader);
2013    const unsigned target_lds_size = max_lds_size;
2014    unsigned esvert_lds_size = 0;
2015    unsigned gsprim_lds_size = 0;
2016 
2017    /* All these are per subgroup: */
2018    const unsigned min_esverts = gs_sel->screen->info.chip_class >= GFX10_3 ? 29 : 24;
2019    bool max_vert_out_per_gs_instance = false;
2020    unsigned max_gsprims_base = gs_sel->screen->ngg_subgroup_size; /* default prim group size clamp */
2021    unsigned max_esverts_base = gs_sel->screen->ngg_subgroup_size;
2022 
2023    if (gs_stage == MESA_SHADER_GEOMETRY) {
2024       bool force_multi_cycling = false;
2025       unsigned max_out_verts_per_gsprim = gs_sel->info.base.gs.vertices_out * gs_num_invocations;
2026 
2027 retry_select_mode:
2028       if (max_out_verts_per_gsprim <= 256 && !force_multi_cycling) {
2029          if (max_out_verts_per_gsprim) {
2030             max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim);
2031          }
2032       } else {
2033          /* Use special multi-cycling mode in which each GS
2034           * instance gets its own subgroup. Does not work with
2035           * tessellation. */
2036          max_vert_out_per_gs_instance = true;
2037          max_gsprims_base = 1;
2038          max_out_verts_per_gsprim = gs_sel->info.base.gs.vertices_out;
2039       }
2040 
2041       esvert_lds_size = es_sel->esgs_itemsize / 4;
2042       gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
2043 
2044       if (gsprim_lds_size > target_lds_size && !force_multi_cycling) {
2045          if (gs_sel->tess_turns_off_ngg || es_sel->info.stage != MESA_SHADER_TESS_EVAL) {
2046             force_multi_cycling = true;
2047             goto retry_select_mode;
2048          }
2049       }
2050    } else {
2051       /* VS and TES. */
2052       /* LDS size for passing data from ES to GS. */
2053       esvert_lds_size = ngg_nogs_vertex_size(shader);
2054    }
2055 
2056    unsigned max_gsprims = max_gsprims_base;
2057    unsigned max_esverts = max_esverts_base;
2058 
2059    if (esvert_lds_size)
2060       max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
2061    if (gsprim_lds_size)
2062       max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
2063 
2064    max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2065    clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2066    assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2067 
2068    if (esvert_lds_size || gsprim_lds_size) {
2069       /* Now that we have a rough proportionality between esverts
2070        * and gsprims based on the primitive type, scale both of them
2071        * down simultaneously based on required LDS space.
2072        *
2073        * We could be smarter about this if we knew how much vertex
2074        * reuse to expect.
2075        */
2076       unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size;
2077       if (lds_total > target_lds_size) {
2078          max_esverts = max_esverts * target_lds_size / lds_total;
2079          max_gsprims = max_gsprims * target_lds_size / lds_total;
2080 
2081          max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2082          clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2083          assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2084       }
2085    }
2086 
2087    /* Round up towards full wave sizes for better ALU utilization. */
2088    if (!max_vert_out_per_gs_instance) {
2089       const unsigned wavesize = si_get_shader_wave_size(shader);
2090       unsigned orig_max_esverts;
2091       unsigned orig_max_gsprims;
2092       do {
2093          orig_max_esverts = max_esverts;
2094          orig_max_gsprims = max_gsprims;
2095 
2096          max_esverts = align(max_esverts, wavesize);
2097          max_esverts = MIN2(max_esverts, max_esverts_base);
2098          if (esvert_lds_size)
2099             max_esverts =
2100                MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size);
2101          max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2102 
2103          /* Hardware restriction: minimum value of max_esverts */
2104          if (gs_sel->screen->info.chip_class == GFX10)
2105             max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
2106          else
2107             max_esverts = MAX2(max_esverts, min_esverts);
2108 
2109          max_gsprims = align(max_gsprims, wavesize);
2110          max_gsprims = MIN2(max_gsprims, max_gsprims_base);
2111          if (gsprim_lds_size) {
2112             /* Don't count unusable vertices to the LDS size. Those are vertices above
2113              * the maximum number of vertices that can occur in the workgroup,
2114              * which is e.g. max_gsprims * 3 for triangles.
2115              */
2116             unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
2117             max_gsprims =
2118                MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size);
2119          }
2120          clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
2121          assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
2122       } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
2123 
2124       /* Verify the restriction. */
2125       if (gs_sel->screen->info.chip_class == GFX10)
2126          assert(max_esverts >= min_esverts - 1 + max_verts_per_prim);
2127       else
2128          assert(max_esverts >= min_esverts);
2129    } else {
2130       /* Hardware restriction: minimum value of max_esverts */
2131       if (gs_sel->screen->info.chip_class == GFX10)
2132          max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim);
2133       else
2134          max_esverts = MAX2(max_esverts, min_esverts);
2135    }
2136 
2137    unsigned max_out_vertices =
2138       max_vert_out_per_gs_instance
2139          ? gs_sel->info.base.gs.vertices_out
2140          : gs_stage == MESA_SHADER_GEOMETRY
2141               ? max_gsprims * gs_num_invocations * gs_sel->info.base.gs.vertices_out
2142               : max_esverts;
2143    assert(max_out_vertices <= 256);
2144 
2145    unsigned prim_amp_factor = 1;
2146    if (gs_stage == MESA_SHADER_GEOMETRY) {
2147       /* Number of output primitives per GS input primitive after
2148        * GS instancing. */
2149       prim_amp_factor = gs_sel->info.base.gs.vertices_out;
2150    }
2151 
2152    shader->ngg.hw_max_esverts = max_esverts;
2153    shader->ngg.max_gsprims = max_gsprims;
2154    shader->ngg.max_out_verts = max_out_vertices;
2155    shader->ngg.prim_amp_factor = prim_amp_factor;
2156    shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
2157 
2158    /* Don't count unusable vertices. */
2159    shader->gs_info.esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) *
2160                                     esvert_lds_size;
2161    shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
2162 
2163    assert(shader->ngg.hw_max_esverts >= min_esverts); /* HW limitation */
2164 
2165    /* If asserts are disabled, we use the same conditions to return false */
2166    return max_esverts >= max_verts_per_prim && max_gsprims >= 1 &&
2167           max_out_vertices <= 256 &&
2168           shader->ngg.hw_max_esverts >= min_esverts;
2169 }
2170