1 /*
2  * Copyright 2012 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "ac_exp_param.h"
26 #include "ac_rtld.h"
27 #include "compiler/nir/nir.h"
28 #include "compiler/nir/nir_serialize.h"
29 #include "si_pipe.h"
30 #include "si_shader_internal.h"
31 #include "sid.h"
32 #include "tgsi/tgsi_from_mesa.h"
33 #include "tgsi/tgsi_strings.h"
34 #include "util/u_memory.h"
35 
36 static const char scratch_rsrc_dword0_symbol[] = "SCRATCH_RSRC_DWORD0";
37 
38 static const char scratch_rsrc_dword1_symbol[] = "SCRATCH_RSRC_DWORD1";
39 
40 static void si_dump_shader_key(const struct si_shader *shader, FILE *f);
41 
42 /** Whether the shader runs as a combination of multiple API shaders */
si_is_multi_part_shader(struct si_shader * shader)43 bool si_is_multi_part_shader(struct si_shader *shader)
44 {
45    if (shader->selector->screen->info.chip_class <= GFX8)
46       return false;
47 
48    return shader->key.as_ls || shader->key.as_es ||
49           shader->selector->info.stage == MESA_SHADER_TESS_CTRL ||
50           shader->selector->info.stage == MESA_SHADER_GEOMETRY;
51 }
52 
53 /** Whether the shader runs on a merged HW stage (LSHS or ESGS) */
si_is_merged_shader(struct si_shader * shader)54 bool si_is_merged_shader(struct si_shader *shader)
55 {
56    return shader->key.as_ngg || si_is_multi_part_shader(shader);
57 }
58 
59 /**
60  * Returns a unique index for a per-patch semantic name and index. The index
61  * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
62  * can be calculated.
63  */
si_shader_io_get_unique_index_patch(unsigned semantic)64 unsigned si_shader_io_get_unique_index_patch(unsigned semantic)
65 {
66    switch (semantic) {
67    case VARYING_SLOT_TESS_LEVEL_OUTER:
68       return 0;
69    case VARYING_SLOT_TESS_LEVEL_INNER:
70       return 1;
71    default:
72       if (semantic >= VARYING_SLOT_PATCH0 && semantic < VARYING_SLOT_PATCH0 + 30)
73          return 2 + (semantic - VARYING_SLOT_PATCH0);
74 
75       assert(!"invalid semantic");
76       return 0;
77    }
78 }
79 
80 /**
81  * Returns a unique index for a semantic name and index. The index must be
82  * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
83  * calculated.
84  */
si_shader_io_get_unique_index(unsigned semantic,bool is_varying)85 unsigned si_shader_io_get_unique_index(unsigned semantic, bool is_varying)
86 {
87    switch (semantic) {
88    case VARYING_SLOT_POS:
89       return 0;
90    default:
91       /* Since some shader stages use the highest used IO index
92        * to determine the size to allocate for inputs/outputs
93        * (in LDS, tess and GS rings). GENERIC should be placed right
94        * after POSITION to make that size as small as possible.
95        */
96       if (semantic >= VARYING_SLOT_VAR0 && semantic <= VARYING_SLOT_VAR31)
97          return 1 + (semantic - VARYING_SLOT_VAR0); /* 1..32 */
98 
99       /* Put 16-bit GLES varyings after 32-bit varyings. They can use the same indices as
100        * legacy desktop GL varyings because they are mutually exclusive.
101        */
102       if (semantic >= VARYING_SLOT_VAR0_16BIT && semantic <= VARYING_SLOT_VAR15_16BIT)
103          return 33 + (semantic - VARYING_SLOT_VAR0_16BIT); /* 33..48 */
104 
105       assert(!"invalid generic index");
106       return 0;
107 
108    /* Legacy desktop GL varyings. */
109    case VARYING_SLOT_FOGC:
110       return 33;
111    case VARYING_SLOT_COL0:
112       return 34;
113    case VARYING_SLOT_COL1:
114       return 35;
115    case VARYING_SLOT_BFC0:
116       /* If it's a varying, COLOR and BCOLOR alias. */
117       if (is_varying)
118          return 34;
119       else
120          return 36;
121    case VARYING_SLOT_BFC1:
122       if (is_varying)
123          return 35;
124       else
125          return 37;
126    case VARYING_SLOT_TEX0:
127    case VARYING_SLOT_TEX1:
128    case VARYING_SLOT_TEX2:
129    case VARYING_SLOT_TEX3:
130    case VARYING_SLOT_TEX4:
131    case VARYING_SLOT_TEX5:
132    case VARYING_SLOT_TEX6:
133    case VARYING_SLOT_TEX7:
134       return 38 + (semantic - VARYING_SLOT_TEX0);
135    case VARYING_SLOT_CLIP_VERTEX:
136       return 46;
137 
138    /* Varyings present in both GLES and desktop GL must start at 49 after 16-bit varyings. */
139    case VARYING_SLOT_CLIP_DIST0:
140       return 49;
141    case VARYING_SLOT_CLIP_DIST1:
142       return 50;
143    case VARYING_SLOT_PSIZ:
144       return 51;
145 
146    /* These can't be written by LS, HS, and ES. */
147    case VARYING_SLOT_LAYER:
148       return 52;
149    case VARYING_SLOT_VIEWPORT:
150       return 53;
151    case VARYING_SLOT_PRIMITIVE_ID:
152       return 54;
153    }
154 }
155 
si_dump_streamout(struct pipe_stream_output_info * so)156 static void si_dump_streamout(struct pipe_stream_output_info *so)
157 {
158    unsigned i;
159 
160    if (so->num_outputs)
161       fprintf(stderr, "STREAMOUT\n");
162 
163    for (i = 0; i < so->num_outputs; i++) {
164       unsigned mask = ((1 << so->output[i].num_components) - 1) << so->output[i].start_component;
165       fprintf(stderr, "  %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n", i, so->output[i].output_buffer,
166               so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
167               so->output[i].register_index, mask & 1 ? "x" : "", mask & 2 ? "y" : "",
168               mask & 4 ? "z" : "", mask & 8 ? "w" : "");
169    }
170 }
171 
declare_streamout_params(struct si_shader_context * ctx,struct pipe_stream_output_info * so)172 static void declare_streamout_params(struct si_shader_context *ctx,
173                                      struct pipe_stream_output_info *so)
174 {
175    if (ctx->screen->use_ngg_streamout) {
176       if (ctx->stage == MESA_SHADER_TESS_EVAL)
177          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
178       return;
179    }
180 
181    /* Streamout SGPRs. */
182    if (so->num_outputs) {
183       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_config);
184       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_write_index);
185    } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
186       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
187    }
188 
189    /* A streamout buffer offset is loaded if the stride is non-zero. */
190    for (int i = 0; i < 4; i++) {
191       if (!so->stride[i])
192          continue;
193 
194       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.streamout_offset[i]);
195    }
196 }
197 
si_get_max_workgroup_size(const struct si_shader * shader)198 unsigned si_get_max_workgroup_size(const struct si_shader *shader)
199 {
200    switch (shader->selector->info.stage) {
201    case MESA_SHADER_VERTEX:
202    case MESA_SHADER_TESS_EVAL:
203       return shader->key.as_ngg ? 128 : 0;
204 
205    case MESA_SHADER_TESS_CTRL:
206       /* Return this so that LLVM doesn't remove s_barrier
207        * instructions on chips where we use s_barrier. */
208       return shader->selector->screen->info.chip_class >= GFX7 ? 128 : 0;
209 
210    case MESA_SHADER_GEOMETRY:
211       return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 0;
212 
213    case MESA_SHADER_COMPUTE:
214       break; /* see below */
215 
216    default:
217       return 0;
218    }
219 
220    /* Compile a variable block size using the maximum variable size. */
221    if (shader->selector->info.base.workgroup_size_variable)
222       return SI_MAX_VARIABLE_THREADS_PER_BLOCK;
223 
224    uint16_t *local_size = shader->selector->info.base.workgroup_size;
225    unsigned max_work_group_size = (uint32_t)local_size[0] *
226                                   (uint32_t)local_size[1] *
227                                   (uint32_t)local_size[2];
228    assert(max_work_group_size);
229    return max_work_group_size;
230 }
231 
declare_const_and_shader_buffers(struct si_shader_context * ctx,bool assign_params)232 static void declare_const_and_shader_buffers(struct si_shader_context *ctx, bool assign_params)
233 {
234    enum ac_arg_type const_shader_buf_type;
235 
236    if (ctx->shader->selector->info.base.num_ubos == 1 &&
237        ctx->shader->selector->info.base.num_ssbos == 0)
238       const_shader_buf_type = AC_ARG_CONST_FLOAT_PTR;
239    else
240       const_shader_buf_type = AC_ARG_CONST_DESC_PTR;
241 
242    ac_add_arg(
243       &ctx->args, AC_ARG_SGPR, 1, const_shader_buf_type,
244       assign_params ? &ctx->const_and_shader_buffers : &ctx->other_const_and_shader_buffers);
245 }
246 
declare_samplers_and_images(struct si_shader_context * ctx,bool assign_params)247 static void declare_samplers_and_images(struct si_shader_context *ctx, bool assign_params)
248 {
249    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
250               assign_params ? &ctx->samplers_and_images : &ctx->other_samplers_and_images);
251 }
252 
declare_per_stage_desc_pointers(struct si_shader_context * ctx,bool assign_params)253 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx, bool assign_params)
254 {
255    declare_const_and_shader_buffers(ctx, assign_params);
256    declare_samplers_and_images(ctx, assign_params);
257 }
258 
declare_global_desc_pointers(struct si_shader_context * ctx)259 static void declare_global_desc_pointers(struct si_shader_context *ctx)
260 {
261    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->internal_bindings);
262    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_IMAGE_PTR,
263               &ctx->bindless_samplers_and_images);
264 }
265 
declare_vs_specific_input_sgprs(struct si_shader_context * ctx)266 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx)
267 {
268    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
269    if (!ctx->shader->is_gs_copy_shader) {
270       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.base_vertex);
271       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.draw_id);
272       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.start_instance);
273    }
274 }
275 
declare_vb_descriptor_input_sgprs(struct si_shader_context * ctx)276 static void declare_vb_descriptor_input_sgprs(struct si_shader_context *ctx)
277 {
278    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR, &ctx->args.vertex_buffers);
279 
280    unsigned num_vbos_in_user_sgprs = ctx->shader->selector->num_vbos_in_user_sgprs;
281    if (num_vbos_in_user_sgprs) {
282       unsigned user_sgprs = ctx->args.num_sgprs_used;
283 
284       if (si_is_merged_shader(ctx->shader))
285          user_sgprs -= 8;
286       assert(user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
287 
288       /* Declare unused SGPRs to align VB descriptors to 4 SGPRs (hw requirement). */
289       for (unsigned i = user_sgprs; i < SI_SGPR_VS_VB_DESCRIPTOR_FIRST; i++)
290          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
291 
292       assert(num_vbos_in_user_sgprs <= ARRAY_SIZE(ctx->vb_descriptors));
293       for (unsigned i = 0; i < num_vbos_in_user_sgprs; i++)
294          ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->vb_descriptors[i]);
295    }
296 }
297 
declare_vs_input_vgprs(struct si_shader_context * ctx,unsigned * num_prolog_vgprs)298 static void declare_vs_input_vgprs(struct si_shader_context *ctx, unsigned *num_prolog_vgprs)
299 {
300    struct si_shader *shader = ctx->shader;
301 
302    ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vertex_id);
303    if (shader->key.as_ls) {
304       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_rel_patch_id);
305       if (ctx->screen->info.chip_class >= GFX10) {
306          ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
307          ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
308       } else {
309          ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
310          ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
311       }
312    } else if (ctx->screen->info.chip_class >= GFX10) {
313       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* user VGPR */
314       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT,
315                  &ctx->args.vs_prim_id); /* user vgpr or PrimID (legacy) */
316       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
317    } else {
318       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.instance_id);
319       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.vs_prim_id);
320       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL); /* unused */
321    }
322 
323    if (!shader->is_gs_copy_shader) {
324       /* Vertex load indices. */
325       if (shader->selector->info.num_inputs) {
326          ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->vertex_index0);
327          for (unsigned i = 1; i < shader->selector->info.num_inputs; i++)
328             ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, NULL);
329       }
330       *num_prolog_vgprs += shader->selector->info.num_inputs;
331    }
332 }
333 
declare_vs_blit_inputs(struct si_shader_context * ctx,unsigned vs_blit_property)334 static void declare_vs_blit_inputs(struct si_shader_context *ctx, unsigned vs_blit_property)
335 {
336    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_blit_inputs); /* i16 x1, y1 */
337    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);                 /* i16 x1, y1 */
338    ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL);               /* depth */
339 
340    if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
341       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color0 */
342       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color1 */
343       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color2 */
344       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* color3 */
345    } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
346       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x1 */
347       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y1 */
348       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.x2 */
349       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.y2 */
350       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.z */
351       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT, NULL); /* texcoord.w */
352    }
353 }
354 
declare_tes_input_vgprs(struct si_shader_context * ctx)355 static void declare_tes_input_vgprs(struct si_shader_context *ctx)
356 {
357    ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_u);
358    ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.tes_v);
359    ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_rel_patch_id);
360    ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tes_patch_id);
361 }
362 
363 enum
364 {
365    /* Convenient merged shader definitions. */
366    SI_SHADER_MERGED_VERTEX_TESSCTRL = MESA_ALL_SHADER_STAGES,
367    SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
368 };
369 
si_add_arg_checked(struct ac_shader_args * args,enum ac_arg_regfile file,unsigned registers,enum ac_arg_type type,struct ac_arg * arg,unsigned idx)370 void si_add_arg_checked(struct ac_shader_args *args, enum ac_arg_regfile file, unsigned registers,
371                         enum ac_arg_type type, struct ac_arg *arg, unsigned idx)
372 {
373    assert(args->arg_count == idx);
374    ac_add_arg(args, file, registers, type, arg);
375 }
376 
si_init_shader_args(struct si_shader_context * ctx,bool ngg_cull_shader)377 void si_init_shader_args(struct si_shader_context *ctx, bool ngg_cull_shader)
378 {
379    struct si_shader *shader = ctx->shader;
380    unsigned i, num_returns, num_return_sgprs;
381    unsigned num_prolog_vgprs = 0;
382    unsigned stage = ctx->stage;
383 
384    memset(&ctx->args, 0, sizeof(ctx->args));
385 
386    /* Set MERGED shaders. */
387    if (ctx->screen->info.chip_class >= GFX9) {
388       if (shader->key.as_ls || stage == MESA_SHADER_TESS_CTRL)
389          stage = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
390       else if (shader->key.as_es || shader->key.as_ngg || stage == MESA_SHADER_GEOMETRY)
391          stage = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
392    }
393 
394    switch (stage) {
395    case MESA_SHADER_VERTEX:
396       declare_global_desc_pointers(ctx);
397 
398       if (shader->selector->info.base.vs.blit_sgprs_amd) {
399          declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
400 
401          /* VGPRs */
402          declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
403          break;
404       }
405 
406       declare_per_stage_desc_pointers(ctx, true);
407       declare_vs_specific_input_sgprs(ctx);
408       if (!shader->is_gs_copy_shader)
409          declare_vb_descriptor_input_sgprs(ctx);
410 
411       if (shader->key.as_es) {
412          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset);
413       } else if (shader->key.as_ls) {
414          /* no extra parameters */
415       } else {
416          /* The locations of the other parameters are assigned dynamically. */
417          declare_streamout_params(ctx, &shader->selector->so);
418       }
419 
420       /* VGPRs */
421       declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
422       break;
423 
424    case MESA_SHADER_TESS_CTRL: /* GFX6-GFX8 */
425       declare_global_desc_pointers(ctx);
426       declare_per_stage_desc_pointers(ctx, true);
427       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
428       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
429       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
430       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
431       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
432       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset);
433 
434       /* VGPRs */
435       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
436       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
437 
438       /* param_tcs_offchip_offset and param_tcs_factor_offset are
439        * placed after the user SGPRs.
440        */
441       for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
442          ac_add_return(&ctx->args, AC_ARG_SGPR);
443       for (i = 0; i < 11; i++)
444          ac_add_return(&ctx->args, AC_ARG_VGPR);
445       break;
446 
447    case SI_SHADER_MERGED_VERTEX_TESSCTRL:
448       /* Merged stages have 8 system SGPRs at the beginning. */
449       /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
450       declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_TESS_CTRL);
451       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
452       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info);
453       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tcs_factor_offset);
454       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset);
455       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
456       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL); /* unused */
457 
458       declare_global_desc_pointers(ctx);
459       declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_VERTEX);
460       declare_vs_specific_input_sgprs(ctx);
461 
462       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
463       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_offsets);
464       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_out_lds_layout);
465       if (ctx->stage == MESA_SHADER_VERTEX)
466          declare_vb_descriptor_input_sgprs(ctx);
467 
468       /* VGPRs (first TCS, then VS) */
469       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_patch_id);
470       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.tcs_rel_ids);
471 
472       if (ctx->stage == MESA_SHADER_VERTEX) {
473          declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
474 
475          /* LS return values are inputs to the TCS main shader part. */
476          for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
477             ac_add_return(&ctx->args, AC_ARG_SGPR);
478          for (i = 0; i < 2; i++)
479             ac_add_return(&ctx->args, AC_ARG_VGPR);
480 
481          /* VS outputs passed via VGPRs to TCS. */
482          if (shader->key.opt.same_patch_vertices) {
483             unsigned num_outputs = util_last_bit64(shader->selector->outputs_written);
484             for (i = 0; i < num_outputs * 4; i++)
485                ac_add_return(&ctx->args, AC_ARG_VGPR);
486          }
487       } else {
488          /* TCS inputs are passed via VGPRs from VS. */
489          if (shader->key.opt.same_patch_vertices) {
490             unsigned num_inputs = util_last_bit64(shader->previous_stage_sel->outputs_written);
491             for (i = 0; i < num_inputs * 4; i++)
492                ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
493          }
494 
495          /* TCS return values are inputs to the TCS epilog.
496           *
497           * param_tcs_offchip_offset, param_tcs_factor_offset,
498           * param_tcs_offchip_layout, and internal_bindings
499           * should be passed to the epilog.
500           */
501          for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
502             ac_add_return(&ctx->args, AC_ARG_SGPR);
503          for (i = 0; i < 11; i++)
504             ac_add_return(&ctx->args, AC_ARG_VGPR);
505       }
506       break;
507 
508    case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
509       /* Merged stages have 8 system SGPRs at the beginning. */
510       /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
511       declare_per_stage_desc_pointers(ctx, ctx->stage == MESA_SHADER_GEOMETRY);
512 
513       if (ctx->shader->key.as_ngg)
514          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_tg_info);
515       else
516          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset);
517 
518       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.merged_wave_info);
519       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
520       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.scratch_offset);
521       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_CONST_DESC_PTR,
522                  &ctx->small_prim_cull_info); /* SPI_SHADER_PGM_LO_GS << 8 */
523       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
524                  NULL); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
525 
526       declare_global_desc_pointers(ctx);
527       if (ctx->stage != MESA_SHADER_VERTEX || !shader->selector->info.base.vs.blit_sgprs_amd) {
528          declare_per_stage_desc_pointers(
529             ctx, (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL));
530       }
531 
532       if (ctx->stage == MESA_SHADER_VERTEX) {
533          if (shader->selector->info.base.vs.blit_sgprs_amd)
534             declare_vs_blit_inputs(ctx, shader->selector->info.base.vs.blit_sgprs_amd);
535          else
536             declare_vs_specific_input_sgprs(ctx);
537       } else {
538          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
539 
540          if (ctx->stage == MESA_SHADER_TESS_EVAL) {
541             ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
542             ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
543          }
544       }
545 
546       if (ctx->stage == MESA_SHADER_VERTEX)
547          declare_vb_descriptor_input_sgprs(ctx);
548 
549       /* VGPRs (first GS, then VS/TES) */
550       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]);
551       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]);
552       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
553       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
554       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]);
555 
556       if (ctx->stage == MESA_SHADER_VERTEX) {
557          declare_vs_input_vgprs(ctx, &num_prolog_vgprs);
558       } else if (ctx->stage == MESA_SHADER_TESS_EVAL) {
559          declare_tes_input_vgprs(ctx);
560       }
561 
562       if ((ctx->shader->key.as_es || ngg_cull_shader) &&
563           (ctx->stage == MESA_SHADER_VERTEX || ctx->stage == MESA_SHADER_TESS_EVAL)) {
564          unsigned num_user_sgprs, num_vgprs;
565 
566          if (ctx->stage == MESA_SHADER_VERTEX && ngg_cull_shader) {
567             /* For the NGG cull shader, add 1 SGPR to hold
568              * the vertex buffer pointer.
569              */
570             num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR + 1;
571 
572             if (shader->selector->num_vbos_in_user_sgprs) {
573                assert(num_user_sgprs <= SI_SGPR_VS_VB_DESCRIPTOR_FIRST);
574                num_user_sgprs =
575                   SI_SGPR_VS_VB_DESCRIPTOR_FIRST + shader->selector->num_vbos_in_user_sgprs * 4;
576             }
577          } else if (ctx->stage == MESA_SHADER_TESS_EVAL && ngg_cull_shader) {
578             num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
579          } else {
580             num_user_sgprs = SI_NUM_VS_STATE_RESOURCE_SGPRS;
581          }
582 
583          /* The NGG cull shader has to return all 9 VGPRs.
584           *
585           * The normal merged ESGS shader only has to return the 5 VGPRs
586           * for the GS stage.
587           */
588          num_vgprs = ngg_cull_shader ? 9 : 5;
589 
590          /* ES return values are inputs to GS. */
591          for (i = 0; i < 8 + num_user_sgprs; i++)
592             ac_add_return(&ctx->args, AC_ARG_SGPR);
593          for (i = 0; i < num_vgprs; i++)
594             ac_add_return(&ctx->args, AC_ARG_VGPR);
595       }
596       break;
597 
598    case MESA_SHADER_TESS_EVAL:
599       declare_global_desc_pointers(ctx);
600       declare_per_stage_desc_pointers(ctx, true);
601       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->vs_state_bits);
602       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tcs_offchip_layout);
603       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->tes_offchip_addr);
604 
605       if (shader->key.as_es) {
606          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
607          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
608          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.es2gs_offset);
609       } else {
610          declare_streamout_params(ctx, &shader->selector->so);
611          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tess_offchip_offset);
612       }
613 
614       /* VGPRs */
615       declare_tes_input_vgprs(ctx);
616       break;
617 
618    case MESA_SHADER_GEOMETRY:
619       declare_global_desc_pointers(ctx);
620       declare_per_stage_desc_pointers(ctx, true);
621       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs2vs_offset);
622       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.gs_wave_id);
623 
624       /* VGPRs */
625       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[0]);
626       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[1]);
627       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_prim_id);
628       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[2]);
629       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[3]);
630       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[4]);
631       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_vtx_offset[5]);
632       ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.gs_invocation_id);
633       break;
634 
635    case MESA_SHADER_FRAGMENT:
636       declare_global_desc_pointers(ctx);
637       declare_per_stage_desc_pointers(ctx, true);
638       si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL, SI_PARAM_ALPHA_REF);
639       si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.prim_mask,
640                          SI_PARAM_PRIM_MASK);
641 
642       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_sample,
643                          SI_PARAM_PERSP_SAMPLE);
644       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_center,
645                          SI_PARAM_PERSP_CENTER);
646       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.persp_centroid,
647                          SI_PARAM_PERSP_CENTROID);
648       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, NULL, SI_PARAM_PERSP_PULL_MODEL);
649       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_sample,
650                          SI_PARAM_LINEAR_SAMPLE);
651       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_center,
652                          SI_PARAM_LINEAR_CENTER);
653       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 2, AC_ARG_INT, &ctx->args.linear_centroid,
654                          SI_PARAM_LINEAR_CENTROID);
655       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL, SI_PARAM_LINE_STIPPLE_TEX);
656       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[0],
657                          SI_PARAM_POS_X_FLOAT);
658       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[1],
659                          SI_PARAM_POS_Y_FLOAT);
660       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[2],
661                          SI_PARAM_POS_Z_FLOAT);
662       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.frag_pos[3],
663                          SI_PARAM_POS_W_FLOAT);
664       shader->info.face_vgpr_index = ctx->args.num_vgprs_used;
665       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.front_face,
666                          SI_PARAM_FRONT_FACE);
667       shader->info.ancillary_vgpr_index = ctx->args.num_vgprs_used;
668       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.ancillary,
669                          SI_PARAM_ANCILLARY);
670       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, &ctx->args.sample_coverage,
671                          SI_PARAM_SAMPLE_COVERAGE);
672       si_add_arg_checked(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->pos_fixed_pt,
673                          SI_PARAM_POS_FIXED_PT);
674 
675       /* Color inputs from the prolog. */
676       if (shader->selector->info.colors_read) {
677          unsigned num_color_elements = util_bitcount(shader->selector->info.colors_read);
678 
679          for (i = 0; i < num_color_elements; i++)
680             ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
681 
682          num_prolog_vgprs += num_color_elements;
683       }
684 
685       /* Outputs for the epilog. */
686       num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
687       num_returns = num_return_sgprs + util_bitcount(shader->selector->info.colors_written) * 4 +
688                     shader->selector->info.writes_z + shader->selector->info.writes_stencil +
689                     shader->selector->info.writes_samplemask + 1 /* SampleMaskIn */;
690 
691       num_returns = MAX2(num_returns, num_return_sgprs + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
692 
693       for (i = 0; i < num_return_sgprs; i++)
694          ac_add_return(&ctx->args, AC_ARG_SGPR);
695       for (; i < num_returns; i++)
696          ac_add_return(&ctx->args, AC_ARG_VGPR);
697       break;
698 
699    case MESA_SHADER_COMPUTE:
700       declare_global_desc_pointers(ctx);
701       declare_per_stage_desc_pointers(ctx, true);
702       if (shader->selector->info.uses_grid_size)
703          ac_add_arg(&ctx->args, AC_ARG_SGPR, 3, AC_ARG_INT, &ctx->args.num_work_groups);
704       if (shader->selector->info.uses_variable_block_size)
705          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->block_size);
706 
707       unsigned cs_user_data_dwords =
708          shader->selector->info.base.cs.user_data_components_amd;
709       if (cs_user_data_dwords) {
710          ac_add_arg(&ctx->args, AC_ARG_SGPR, cs_user_data_dwords, AC_ARG_INT, &ctx->cs_user_data);
711       }
712 
713       /* Some descriptors can be in user SGPRs. */
714       /* Shader buffers in user SGPRs. */
715       for (unsigned i = 0; i < shader->selector->cs_num_shaderbufs_in_user_sgprs; i++) {
716          while (ctx->args.num_sgprs_used % 4 != 0)
717             ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
718 
719          ac_add_arg(&ctx->args, AC_ARG_SGPR, 4, AC_ARG_INT, &ctx->cs_shaderbuf[i]);
720       }
721       /* Images in user SGPRs. */
722       for (unsigned i = 0; i < shader->selector->cs_num_images_in_user_sgprs; i++) {
723          unsigned num_sgprs = shader->selector->info.base.image_buffers & (1 << i) ? 4 : 8;
724 
725          while (ctx->args.num_sgprs_used % num_sgprs != 0)
726             ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
727 
728          ac_add_arg(&ctx->args, AC_ARG_SGPR, num_sgprs, AC_ARG_INT, &ctx->cs_image[i]);
729       }
730 
731       /* Hardware SGPRs. */
732       for (i = 0; i < 3; i++) {
733          if (shader->selector->info.uses_block_id[i]) {
734             ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.workgroup_ids[i]);
735          }
736       }
737       if (shader->selector->info.uses_subgroup_info)
738          ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->args.tg_size);
739 
740       /* Hardware VGPRs. */
741       if (!ctx->screen->info.has_graphics && ctx->screen->info.family >= CHIP_ALDEBARAN)
742          ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_INT, &ctx->args.local_invocation_ids);
743       else
744          ac_add_arg(&ctx->args, AC_ARG_VGPR, 3, AC_ARG_INT, &ctx->args.local_invocation_ids);
745       break;
746    default:
747       assert(0 && "unimplemented shader");
748       return;
749    }
750 
751    shader->info.num_input_sgprs = ctx->args.num_sgprs_used;
752    shader->info.num_input_vgprs = ctx->args.num_vgprs_used;
753 
754    assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
755    shader->info.num_input_vgprs -= num_prolog_vgprs;
756 }
757 
758 /* For the UMR disassembler. */
759 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
760 #define DEBUGGER_NUM_MARKERS        5
761 
si_shader_binary_open(struct si_screen * screen,struct si_shader * shader,struct ac_rtld_binary * rtld)762 static bool si_shader_binary_open(struct si_screen *screen, struct si_shader *shader,
763                                   struct ac_rtld_binary *rtld)
764 {
765    const struct si_shader_selector *sel = shader->selector;
766    const char *part_elfs[5];
767    size_t part_sizes[5];
768    unsigned num_parts = 0;
769 
770 #define add_part(shader_or_part)                                                                   \
771    if (shader_or_part) {                                                                           \
772       part_elfs[num_parts] = (shader_or_part)->binary.elf_buffer;                                  \
773       part_sizes[num_parts] = (shader_or_part)->binary.elf_size;                                   \
774       num_parts++;                                                                                 \
775    }
776 
777    add_part(shader->prolog);
778    add_part(shader->previous_stage);
779    add_part(shader->prolog2);
780    add_part(shader);
781    add_part(shader->epilog);
782 
783 #undef add_part
784 
785    struct ac_rtld_symbol lds_symbols[2];
786    unsigned num_lds_symbols = 0;
787 
788    if (sel && screen->info.chip_class >= GFX9 && !shader->is_gs_copy_shader &&
789        (sel->info.stage == MESA_SHADER_GEOMETRY || shader->key.as_ngg)) {
790       struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
791       sym->name = "esgs_ring";
792       sym->size = shader->gs_info.esgs_ring_size * 4;
793       sym->align = 64 * 1024;
794    }
795 
796    if (shader->key.as_ngg && sel->info.stage == MESA_SHADER_GEOMETRY) {
797       struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++];
798       sym->name = "ngg_emit";
799       sym->size = shader->ngg.ngg_emit_size * 4;
800       sym->align = 4;
801    }
802 
803    bool ok = ac_rtld_open(
804       rtld, (struct ac_rtld_open_info){.info = &screen->info,
805                                        .options =
806                                           {
807                                              .halt_at_entry = screen->options.halt_shaders,
808                                           },
809                                        .shader_type = sel->info.stage,
810                                        .wave_size = si_get_shader_wave_size(shader),
811                                        .num_parts = num_parts,
812                                        .elf_ptrs = part_elfs,
813                                        .elf_sizes = part_sizes,
814                                        .num_shared_lds_symbols = num_lds_symbols,
815                                        .shared_lds_symbols = lds_symbols});
816 
817    if (rtld->lds_size > 0) {
818       unsigned alloc_granularity = screen->info.chip_class >= GFX7 ? 512 : 256;
819       shader->config.lds_size = align(rtld->lds_size, alloc_granularity) / alloc_granularity;
820    }
821 
822    return ok;
823 }
824 
si_get_shader_binary_size(struct si_screen * screen,struct si_shader * shader)825 static unsigned si_get_shader_binary_size(struct si_screen *screen, struct si_shader *shader)
826 {
827    struct ac_rtld_binary rtld;
828    si_shader_binary_open(screen, shader, &rtld);
829    uint64_t size = rtld.exec_size;
830    ac_rtld_close(&rtld);
831    return size;
832 }
833 
si_get_external_symbol(void * data,const char * name,uint64_t * value)834 static bool si_get_external_symbol(void *data, const char *name, uint64_t *value)
835 {
836    uint64_t *scratch_va = data;
837 
838    if (!strcmp(scratch_rsrc_dword0_symbol, name)) {
839       *value = (uint32_t)*scratch_va;
840       return true;
841    }
842    if (!strcmp(scratch_rsrc_dword1_symbol, name)) {
843       /* Enable scratch coalescing. */
844       *value = S_008F04_BASE_ADDRESS_HI(*scratch_va >> 32) | S_008F04_SWIZZLE_ENABLE(1);
845       return true;
846    }
847 
848    return false;
849 }
850 
si_shader_binary_upload(struct si_screen * sscreen,struct si_shader * shader,uint64_t scratch_va)851 bool si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader,
852                              uint64_t scratch_va)
853 {
854    struct ac_rtld_binary binary;
855    if (!si_shader_binary_open(sscreen, shader, &binary))
856       return false;
857 
858    si_resource_reference(&shader->bo, NULL);
859    shader->bo = si_aligned_buffer_create(
860       &sscreen->b,
861       (sscreen->info.cpdma_prefetch_writes_memory ? 0 : SI_RESOURCE_FLAG_READ_ONLY) |
862       SI_RESOURCE_FLAG_DRIVER_INTERNAL | SI_RESOURCE_FLAG_32BIT,
863       PIPE_USAGE_IMMUTABLE, align(binary.rx_size, SI_CPDMA_ALIGNMENT), 256);
864    if (!shader->bo)
865       return false;
866 
867    /* Upload. */
868    struct ac_rtld_upload_info u = {};
869    u.binary = &binary;
870    u.get_external_symbol = si_get_external_symbol;
871    u.cb_data = &scratch_va;
872    u.rx_va = shader->bo->gpu_address;
873    u.rx_ptr = sscreen->ws->buffer_map(sscreen->ws,
874       shader->bo->buf, NULL,
875       PIPE_MAP_READ_WRITE | PIPE_MAP_UNSYNCHRONIZED | RADEON_MAP_TEMPORARY);
876    if (!u.rx_ptr)
877       return false;
878 
879    int size = ac_rtld_upload(&u);
880 
881    if (sscreen->debug_flags & DBG(SQTT)) {
882       /* Remember the uploaded code */
883       shader->binary.uploaded_code_size = size;
884       shader->binary.uploaded_code = malloc(size);
885       memcpy(shader->binary.uploaded_code, u.rx_ptr, size);
886    }
887 
888    sscreen->ws->buffer_unmap(sscreen->ws, shader->bo->buf);
889    ac_rtld_close(&binary);
890 
891    return size >= 0;
892 }
893 
si_shader_dump_disassembly(struct si_screen * screen,const struct si_shader_binary * binary,gl_shader_stage stage,unsigned wave_size,struct pipe_debug_callback * debug,const char * name,FILE * file)894 static void si_shader_dump_disassembly(struct si_screen *screen,
895                                        const struct si_shader_binary *binary,
896                                        gl_shader_stage stage, unsigned wave_size,
897                                        struct pipe_debug_callback *debug, const char *name,
898                                        FILE *file)
899 {
900    struct ac_rtld_binary rtld_binary;
901 
902    if (!ac_rtld_open(&rtld_binary, (struct ac_rtld_open_info){
903                                       .info = &screen->info,
904                                       .shader_type = stage,
905                                       .wave_size = wave_size,
906                                       .num_parts = 1,
907                                       .elf_ptrs = &binary->elf_buffer,
908                                       .elf_sizes = &binary->elf_size}))
909       return;
910 
911    const char *disasm;
912    size_t nbytes;
913 
914    if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm, &nbytes))
915       goto out;
916 
917    if (nbytes > INT_MAX)
918       goto out;
919 
920    if (debug && debug->debug_message) {
921       /* Very long debug messages are cut off, so send the
922        * disassembly one line at a time. This causes more
923        * overhead, but on the plus side it simplifies
924        * parsing of resulting logs.
925        */
926       pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly Begin");
927 
928       uint64_t line = 0;
929       while (line < nbytes) {
930          int count = nbytes - line;
931          const char *nl = memchr(disasm + line, '\n', nbytes - line);
932          if (nl)
933             count = nl - (disasm + line);
934 
935          if (count) {
936             pipe_debug_message(debug, SHADER_INFO, "%.*s", count, disasm + line);
937          }
938 
939          line += count + 1;
940       }
941 
942       pipe_debug_message(debug, SHADER_INFO, "Shader Disassembly End");
943    }
944 
945    if (file) {
946       fprintf(file, "Shader %s disassembly:\n", name);
947       fprintf(file, "%*s", (int)nbytes, disasm);
948    }
949 
950 out:
951    ac_rtld_close(&rtld_binary);
952 }
953 
si_calculate_max_simd_waves(struct si_shader * shader)954 static void si_calculate_max_simd_waves(struct si_shader *shader)
955 {
956    struct si_screen *sscreen = shader->selector->screen;
957    struct ac_shader_config *conf = &shader->config;
958    unsigned num_inputs = shader->selector->info.num_inputs;
959    unsigned lds_increment = sscreen->info.chip_class >= GFX7 ? 512 : 256;
960    unsigned lds_per_wave = 0;
961    unsigned max_simd_waves;
962 
963    max_simd_waves = sscreen->info.max_wave64_per_simd;
964 
965    /* Compute LDS usage for PS. */
966    switch (shader->selector->info.stage) {
967    case MESA_SHADER_FRAGMENT:
968       /* The minimum usage per wave is (num_inputs * 48). The maximum
969        * usage is (num_inputs * 48 * 16).
970        * We can get anything in between and it varies between waves.
971        *
972        * The 48 bytes per input for a single primitive is equal to
973        * 4 bytes/component * 4 components/input * 3 points.
974        *
975        * Other stages don't know the size at compile time or don't
976        * allocate LDS per wave, but instead they do it per thread group.
977        */
978       lds_per_wave = conf->lds_size * lds_increment + align(num_inputs * 48, lds_increment);
979       break;
980    case MESA_SHADER_COMPUTE: {
981          unsigned max_workgroup_size = si_get_max_workgroup_size(shader);
982          lds_per_wave = (conf->lds_size * lds_increment) /
983                         DIV_ROUND_UP(max_workgroup_size, sscreen->compute_wave_size);
984       }
985       break;
986    default:;
987    }
988 
989    /* Compute the per-SIMD wave counts. */
990    if (conf->num_sgprs) {
991       max_simd_waves =
992          MIN2(max_simd_waves, sscreen->info.num_physical_sgprs_per_simd / conf->num_sgprs);
993    }
994 
995    if (conf->num_vgprs) {
996       /* Always print wave limits as Wave64, so that we can compare
997        * Wave32 and Wave64 with shader-db fairly. */
998       unsigned max_vgprs = sscreen->info.num_physical_wave64_vgprs_per_simd;
999       max_simd_waves = MIN2(max_simd_waves, max_vgprs / conf->num_vgprs);
1000    }
1001 
1002    unsigned max_lds_per_simd = sscreen->info.lds_size_per_workgroup / 4;
1003    if (lds_per_wave)
1004       max_simd_waves = MIN2(max_simd_waves, max_lds_per_simd / lds_per_wave);
1005 
1006    shader->info.max_simd_waves = max_simd_waves;
1007 }
1008 
si_shader_dump_stats_for_shader_db(struct si_screen * screen,struct si_shader * shader,struct pipe_debug_callback * debug)1009 void si_shader_dump_stats_for_shader_db(struct si_screen *screen, struct si_shader *shader,
1010                                         struct pipe_debug_callback *debug)
1011 {
1012    const struct ac_shader_config *conf = &shader->config;
1013 
1014    if (screen->options.debug_disassembly)
1015       si_shader_dump_disassembly(screen, &shader->binary, shader->selector->info.stage,
1016                                  si_get_shader_wave_size(shader), debug, "main", NULL);
1017 
1018    pipe_debug_message(debug, SHADER_INFO,
1019                       "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
1020                       "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
1021                       "Spilled VGPRs: %d PrivMem VGPRs: %d",
1022                       conf->num_sgprs, conf->num_vgprs, si_get_shader_binary_size(screen, shader),
1023                       conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves,
1024                       conf->spilled_sgprs, conf->spilled_vgprs, shader->info.private_mem_vgprs);
1025 }
1026 
si_shader_dump_stats(struct si_screen * sscreen,struct si_shader * shader,FILE * file,bool check_debug_option)1027 static void si_shader_dump_stats(struct si_screen *sscreen, struct si_shader *shader, FILE *file,
1028                                  bool check_debug_option)
1029 {
1030    const struct ac_shader_config *conf = &shader->config;
1031 
1032    if (!check_debug_option || si_can_dump_shader(sscreen, shader->selector->info.stage)) {
1033       if (shader->selector->info.stage == MESA_SHADER_FRAGMENT) {
1034          fprintf(file,
1035                  "*** SHADER CONFIG ***\n"
1036                  "SPI_PS_INPUT_ADDR = 0x%04x\n"
1037                  "SPI_PS_INPUT_ENA  = 0x%04x\n",
1038                  conf->spi_ps_input_addr, conf->spi_ps_input_ena);
1039       }
1040 
1041       fprintf(file,
1042               "*** SHADER STATS ***\n"
1043               "SGPRS: %d\n"
1044               "VGPRS: %d\n"
1045               "Spilled SGPRs: %d\n"
1046               "Spilled VGPRs: %d\n"
1047               "Private memory VGPRs: %d\n"
1048               "Code Size: %d bytes\n"
1049               "LDS: %d blocks\n"
1050               "Scratch: %d bytes per wave\n"
1051               "Max Waves: %d\n"
1052               "********************\n\n\n",
1053               conf->num_sgprs, conf->num_vgprs, conf->spilled_sgprs, conf->spilled_vgprs,
1054               shader->info.private_mem_vgprs, si_get_shader_binary_size(sscreen, shader),
1055               conf->lds_size, conf->scratch_bytes_per_wave, shader->info.max_simd_waves);
1056    }
1057 }
1058 
si_get_shader_name(const struct si_shader * shader)1059 const char *si_get_shader_name(const struct si_shader *shader)
1060 {
1061    switch (shader->selector->info.stage) {
1062    case MESA_SHADER_VERTEX:
1063       if (shader->key.as_es)
1064          return "Vertex Shader as ES";
1065       else if (shader->key.as_ls)
1066          return "Vertex Shader as LS";
1067       else if (shader->key.as_ngg)
1068          return "Vertex Shader as ESGS";
1069       else
1070          return "Vertex Shader as VS";
1071    case MESA_SHADER_TESS_CTRL:
1072       return "Tessellation Control Shader";
1073    case MESA_SHADER_TESS_EVAL:
1074       if (shader->key.as_es)
1075          return "Tessellation Evaluation Shader as ES";
1076       else if (shader->key.as_ngg)
1077          return "Tessellation Evaluation Shader as ESGS";
1078       else
1079          return "Tessellation Evaluation Shader as VS";
1080    case MESA_SHADER_GEOMETRY:
1081       if (shader->is_gs_copy_shader)
1082          return "GS Copy Shader as VS";
1083       else
1084          return "Geometry Shader";
1085    case MESA_SHADER_FRAGMENT:
1086       return "Pixel Shader";
1087    case MESA_SHADER_COMPUTE:
1088       return "Compute Shader";
1089    default:
1090       return "Unknown Shader";
1091    }
1092 }
1093 
si_shader_dump(struct si_screen * sscreen,struct si_shader * shader,struct pipe_debug_callback * debug,FILE * file,bool check_debug_option)1094 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
1095                     struct pipe_debug_callback *debug, FILE *file, bool check_debug_option)
1096 {
1097    gl_shader_stage stage = shader->selector->info.stage;
1098 
1099    if (!check_debug_option || si_can_dump_shader(sscreen, stage))
1100       si_dump_shader_key(shader, file);
1101 
1102    if (!check_debug_option && shader->binary.llvm_ir_string) {
1103       if (shader->previous_stage && shader->previous_stage->binary.llvm_ir_string) {
1104          fprintf(file, "\n%s - previous stage - LLVM IR:\n\n", si_get_shader_name(shader));
1105          fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
1106       }
1107 
1108       fprintf(file, "\n%s - main shader part - LLVM IR:\n\n", si_get_shader_name(shader));
1109       fprintf(file, "%s\n", shader->binary.llvm_ir_string);
1110    }
1111 
1112    if (!check_debug_option ||
1113        (si_can_dump_shader(sscreen, stage) && !(sscreen->debug_flags & DBG(NO_ASM)))) {
1114       unsigned wave_size = si_get_shader_wave_size(shader);
1115 
1116       fprintf(file, "\n%s:\n", si_get_shader_name(shader));
1117 
1118       if (shader->prolog)
1119          si_shader_dump_disassembly(sscreen, &shader->prolog->binary, stage, wave_size, debug,
1120                                     "prolog", file);
1121       if (shader->previous_stage)
1122          si_shader_dump_disassembly(sscreen, &shader->previous_stage->binary, stage,
1123                                     wave_size, debug, "previous stage", file);
1124       if (shader->prolog2)
1125          si_shader_dump_disassembly(sscreen, &shader->prolog2->binary, stage, wave_size,
1126                                     debug, "prolog2", file);
1127 
1128       si_shader_dump_disassembly(sscreen, &shader->binary, stage, wave_size, debug, "main",
1129                                  file);
1130 
1131       if (shader->epilog)
1132          si_shader_dump_disassembly(sscreen, &shader->epilog->binary, stage, wave_size, debug,
1133                                     "epilog", file);
1134       fprintf(file, "\n");
1135    }
1136 
1137    si_shader_dump_stats(sscreen, shader, file, check_debug_option);
1138 }
1139 
si_dump_shader_key_vs(const struct si_shader_key * key,const struct si_vs_prolog_bits * prolog,const char * prefix,FILE * f)1140 static void si_dump_shader_key_vs(const struct si_shader_key *key,
1141                                   const struct si_vs_prolog_bits *prolog, const char *prefix,
1142                                   FILE *f)
1143 {
1144    fprintf(f, "  %s.instance_divisor_is_one = %u\n", prefix, prolog->instance_divisor_is_one);
1145    fprintf(f, "  %s.instance_divisor_is_fetched = %u\n", prefix,
1146            prolog->instance_divisor_is_fetched);
1147    fprintf(f, "  %s.ls_vgpr_fix = %u\n", prefix, prolog->ls_vgpr_fix);
1148 
1149    fprintf(f, "  mono.vs.fetch_opencode = %x\n", key->mono.vs_fetch_opencode);
1150    fprintf(f, "  mono.vs.fix_fetch = {");
1151    for (int i = 0; i < SI_MAX_ATTRIBS; i++) {
1152       union si_vs_fix_fetch fix = key->mono.vs_fix_fetch[i];
1153       if (i)
1154          fprintf(f, ", ");
1155       if (!fix.bits)
1156          fprintf(f, "0");
1157       else
1158          fprintf(f, "%u.%u.%u.%u", fix.u.reverse, fix.u.log_size, fix.u.num_channels_m1,
1159                  fix.u.format);
1160    }
1161    fprintf(f, "}\n");
1162 }
1163 
si_dump_shader_key(const struct si_shader * shader,FILE * f)1164 static void si_dump_shader_key(const struct si_shader *shader, FILE *f)
1165 {
1166    const struct si_shader_key *key = &shader->key;
1167    gl_shader_stage stage = shader->selector->info.stage;
1168 
1169    fprintf(f, "SHADER KEY\n");
1170 
1171    switch (stage) {
1172    case MESA_SHADER_VERTEX:
1173       si_dump_shader_key_vs(key, &key->part.vs.prolog, "part.vs.prolog", f);
1174       fprintf(f, "  as_es = %u\n", key->as_es);
1175       fprintf(f, "  as_ls = %u\n", key->as_ls);
1176       fprintf(f, "  as_ngg = %u\n", key->as_ngg);
1177       fprintf(f, "  mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id);
1178       break;
1179 
1180    case MESA_SHADER_TESS_CTRL:
1181       if (shader->selector->screen->info.chip_class >= GFX9) {
1182          si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog, "part.tcs.ls_prolog", f);
1183       }
1184       fprintf(f, "  part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
1185       fprintf(f, "  mono.u.ff_tcs_inputs_to_copy = 0x%" PRIx64 "\n",
1186               key->mono.u.ff_tcs_inputs_to_copy);
1187       fprintf(f, "  opt.prefer_mono = %u\n", key->opt.prefer_mono);
1188       fprintf(f, "  opt.same_patch_vertices = %u\n", key->opt.same_patch_vertices);
1189       break;
1190 
1191    case MESA_SHADER_TESS_EVAL:
1192       fprintf(f, "  as_es = %u\n", key->as_es);
1193       fprintf(f, "  as_ngg = %u\n", key->as_ngg);
1194       fprintf(f, "  mono.u.vs_export_prim_id = %u\n", key->mono.u.vs_export_prim_id);
1195       break;
1196 
1197    case MESA_SHADER_GEOMETRY:
1198       if (shader->is_gs_copy_shader)
1199          break;
1200 
1201       if (shader->selector->screen->info.chip_class >= GFX9 &&
1202           key->part.gs.es->info.stage == MESA_SHADER_VERTEX) {
1203          si_dump_shader_key_vs(key, &key->part.gs.vs_prolog, "part.gs.vs_prolog", f);
1204       }
1205       fprintf(f, "  part.gs.prolog.tri_strip_adj_fix = %u\n",
1206               key->part.gs.prolog.tri_strip_adj_fix);
1207       fprintf(f, "  as_ngg = %u\n", key->as_ngg);
1208       break;
1209 
1210    case MESA_SHADER_COMPUTE:
1211       break;
1212 
1213    case MESA_SHADER_FRAGMENT:
1214       fprintf(f, "  part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
1215       fprintf(f, "  part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
1216       fprintf(f, "  part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
1217       fprintf(f, "  part.ps.prolog.force_persp_sample_interp = %u\n",
1218               key->part.ps.prolog.force_persp_sample_interp);
1219       fprintf(f, "  part.ps.prolog.force_linear_sample_interp = %u\n",
1220               key->part.ps.prolog.force_linear_sample_interp);
1221       fprintf(f, "  part.ps.prolog.force_persp_center_interp = %u\n",
1222               key->part.ps.prolog.force_persp_center_interp);
1223       fprintf(f, "  part.ps.prolog.force_linear_center_interp = %u\n",
1224               key->part.ps.prolog.force_linear_center_interp);
1225       fprintf(f, "  part.ps.prolog.bc_optimize_for_persp = %u\n",
1226               key->part.ps.prolog.bc_optimize_for_persp);
1227       fprintf(f, "  part.ps.prolog.bc_optimize_for_linear = %u\n",
1228               key->part.ps.prolog.bc_optimize_for_linear);
1229       fprintf(f, "  part.ps.prolog.samplemask_log_ps_iter = %u\n",
1230               key->part.ps.prolog.samplemask_log_ps_iter);
1231       fprintf(f, "  part.ps.epilog.spi_shader_col_format = 0x%x\n",
1232               key->part.ps.epilog.spi_shader_col_format);
1233       fprintf(f, "  part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
1234       fprintf(f, "  part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
1235       fprintf(f, "  part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
1236       fprintf(f, "  part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
1237       fprintf(f, "  part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
1238       fprintf(f, "  part.ps.epilog.poly_line_smoothing = %u\n",
1239               key->part.ps.epilog.poly_line_smoothing);
1240       fprintf(f, "  part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
1241       fprintf(f, "  mono.u.ps.interpolate_at_sample_force_center = %u\n",
1242               key->mono.u.ps.interpolate_at_sample_force_center);
1243       fprintf(f, "  mono.u.ps.fbfetch_msaa = %u\n", key->mono.u.ps.fbfetch_msaa);
1244       fprintf(f, "  mono.u.ps.fbfetch_is_1D = %u\n", key->mono.u.ps.fbfetch_is_1D);
1245       fprintf(f, "  mono.u.ps.fbfetch_layered = %u\n", key->mono.u.ps.fbfetch_layered);
1246       break;
1247 
1248    default:
1249       assert(0);
1250    }
1251 
1252    if ((stage == MESA_SHADER_GEOMETRY || stage == MESA_SHADER_TESS_EVAL ||
1253         stage == MESA_SHADER_VERTEX) &&
1254        !key->as_es && !key->as_ls) {
1255       fprintf(f, "  opt.kill_outputs = 0x%" PRIx64 "\n", key->opt.kill_outputs);
1256       fprintf(f, "  opt.kill_pointsize = 0x%x\n", key->opt.kill_pointsize);
1257       fprintf(f, "  opt.kill_clip_distances = 0x%x\n", key->opt.kill_clip_distances);
1258       if (stage != MESA_SHADER_GEOMETRY)
1259          fprintf(f, "  opt.ngg_culling = 0x%x\n", key->opt.ngg_culling);
1260    }
1261 
1262    fprintf(f, "  opt.prefer_mono = %u\n", key->opt.prefer_mono);
1263    fprintf(f, "  opt.inline_uniforms = %u (0x%x, 0x%x, 0x%x, 0x%x)\n",
1264            key->opt.inline_uniforms,
1265            key->opt.inlined_uniform_values[0],
1266            key->opt.inlined_uniform_values[1],
1267            key->opt.inlined_uniform_values[2],
1268            key->opt.inlined_uniform_values[3]);
1269 }
1270 
si_vs_needs_prolog(const struct si_shader_selector * sel,const struct si_vs_prolog_bits * prolog_key,const struct si_shader_key * key,bool ngg_cull_shader)1271 bool si_vs_needs_prolog(const struct si_shader_selector *sel,
1272                         const struct si_vs_prolog_bits *prolog_key,
1273                         const struct si_shader_key *key, bool ngg_cull_shader)
1274 {
1275    /* VGPR initialization fixup for Vega10 and Raven is always done in the
1276     * VS prolog. */
1277    return sel->vs_needs_prolog || prolog_key->ls_vgpr_fix ||
1278           /* The 2nd VS prolog loads input VGPRs from LDS */
1279           (key->opt.ngg_culling && !ngg_cull_shader);
1280 }
1281 
1282 /**
1283  * Compute the VS prolog key, which contains all the information needed to
1284  * build the VS prolog function, and set shader->info bits where needed.
1285  *
1286  * \param info             Shader info of the vertex shader.
1287  * \param num_input_sgprs  Number of input SGPRs for the vertex shader.
1288  * \param has_old_  Whether the preceding shader part is the NGG cull shader.
1289  * \param prolog_key       Key of the VS prolog
1290  * \param shader_out       The vertex shader, or the next shader if merging LS+HS or ES+GS.
1291  * \param key              Output shader part key.
1292  */
si_get_vs_prolog_key(const struct si_shader_info * info,unsigned num_input_sgprs,bool ngg_cull_shader,const struct si_vs_prolog_bits * prolog_key,struct si_shader * shader_out,union si_shader_part_key * key)1293 void si_get_vs_prolog_key(const struct si_shader_info *info, unsigned num_input_sgprs,
1294                           bool ngg_cull_shader, const struct si_vs_prolog_bits *prolog_key,
1295                           struct si_shader *shader_out, union si_shader_part_key *key)
1296 {
1297    memset(key, 0, sizeof(*key));
1298    key->vs_prolog.states = *prolog_key;
1299    key->vs_prolog.num_input_sgprs = num_input_sgprs;
1300    key->vs_prolog.num_inputs = info->num_inputs;
1301    key->vs_prolog.as_ls = shader_out->key.as_ls;
1302    key->vs_prolog.as_es = shader_out->key.as_es;
1303    key->vs_prolog.as_ngg = shader_out->key.as_ngg;
1304 
1305    if (!ngg_cull_shader && shader_out->key.opt.ngg_culling)
1306       key->vs_prolog.load_vgprs_after_culling = 1;
1307 
1308    if (shader_out->selector->info.stage == MESA_SHADER_TESS_CTRL) {
1309       key->vs_prolog.as_ls = 1;
1310       key->vs_prolog.num_merged_next_stage_vgprs = 2;
1311    } else if (shader_out->selector->info.stage == MESA_SHADER_GEOMETRY) {
1312       key->vs_prolog.as_es = 1;
1313       key->vs_prolog.num_merged_next_stage_vgprs = 5;
1314    } else if (shader_out->key.as_ngg) {
1315       key->vs_prolog.num_merged_next_stage_vgprs = 5;
1316    }
1317 
1318    /* Only one of these combinations can be set. as_ngg can be set with as_es. */
1319    assert(key->vs_prolog.as_ls + key->vs_prolog.as_ngg +
1320           (key->vs_prolog.as_es && !key->vs_prolog.as_ngg) <= 1);
1321 
1322    /* Enable loading the InstanceID VGPR. */
1323    uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
1324 
1325    if ((key->vs_prolog.states.instance_divisor_is_one |
1326         key->vs_prolog.states.instance_divisor_is_fetched) &
1327        input_mask)
1328       shader_out->info.uses_instanceid = true;
1329 }
1330 
si_get_nir_shader(struct si_shader_selector * sel,const struct si_shader_key * key,bool * free_nir)1331 struct nir_shader *si_get_nir_shader(struct si_shader_selector *sel,
1332                                      const struct si_shader_key *key,
1333                                      bool *free_nir)
1334 {
1335    nir_shader *nir;
1336    *free_nir = false;
1337 
1338    if (sel->nir) {
1339       nir = sel->nir;
1340    } else if (sel->nir_binary) {
1341       struct pipe_screen *screen = &sel->screen->b;
1342       const void *options = screen->get_compiler_options(screen, PIPE_SHADER_IR_NIR,
1343                                                          pipe_shader_type_from_mesa(sel->info.stage));
1344 
1345       struct blob_reader blob_reader;
1346       blob_reader_init(&blob_reader, sel->nir_binary, sel->nir_size);
1347       *free_nir = true;
1348       nir = nir_deserialize(NULL, options, &blob_reader);
1349    } else {
1350       return NULL;
1351    }
1352 
1353    if (key && key->opt.inline_uniforms) {
1354       assert(*free_nir);
1355 
1356       /* Most places use shader information from the default variant, not
1357        * the optimized variant. These are the things that the driver looks at
1358        * in optimized variants and the list of things that we need to do.
1359        *
1360        * The driver takes into account these things if they suddenly disappear
1361        * from the shader code:
1362        * - Register usage and code size decrease (obvious)
1363        * - Eliminated PS system values are disabled by LLVM
1364        *   (FragCoord, FrontFace, barycentrics)
1365        * - VS/TES/GS outputs feeding PS are eliminated if outputs are undef.
1366        *   (thanks to an LLVM pass in Mesa - TODO: move it to NIR)
1367        *   The storage for eliminated outputs is also not allocated.
1368        * - VS/TCS/TES/GS/PS input loads are eliminated (VS relies on DCE in LLVM)
1369        * - TCS output stores are eliminated
1370        *
1371        * TODO: These are things the driver ignores in the final shader code
1372        * and relies on the default shader info.
1373        * - Other system values are not eliminated
1374        * - PS.NUM_INTERP = bitcount64(inputs_read), renumber inputs
1375        *   to remove holes
1376        * - uses_discard - if it changed to false
1377        * - writes_memory - if it changed to false
1378        * - VS->TCS, VS->GS, TES->GS output stores for the former stage are not
1379        *   eliminated
1380        * - Eliminated VS/TCS/TES outputs are still allocated. (except when feeding PS)
1381        *   GS outputs are eliminated except for the temporary LDS.
1382        *   Clip distances, gl_PointSize, and PS outputs are eliminated based
1383        *   on current states, so we don't care about the shader code.
1384        *
1385        * TODO: Merged shaders don't inline uniforms for the first stage.
1386        * VS-GS: only GS inlines uniforms; VS-TCS: only TCS; TES-GS: only GS.
1387        * (key == NULL for the first stage here)
1388        *
1389        * TODO: Compute shaders don't support inlinable uniforms, because they
1390        * don't have shader variants.
1391        *
1392        * TODO: The driver uses a linear search to find a shader variant. This
1393        * can be really slow if we get too many variants due to uniform inlining.
1394        */
1395       NIR_PASS_V(nir, nir_inline_uniforms,
1396                  nir->info.num_inlinable_uniforms,
1397                  key->opt.inlined_uniform_values,
1398                  nir->info.inlinable_uniform_dw_offsets);
1399 
1400       si_nir_opts(sel->screen, nir, true);
1401       si_nir_late_opts(nir);
1402 
1403       /* This must be done again. */
1404       NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in |
1405                                                        nir_var_shader_out);
1406    }
1407 
1408    return nir;
1409 }
1410 
si_compile_shader(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug)1411 bool si_compile_shader(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1412                        struct si_shader *shader, struct pipe_debug_callback *debug)
1413 {
1414    struct si_shader_selector *sel = shader->selector;
1415    bool free_nir;
1416    struct nir_shader *nir = si_get_nir_shader(sel, &shader->key, &free_nir);
1417 
1418    /* Dump NIR before doing NIR->LLVM conversion in case the
1419     * conversion fails. */
1420    if (si_can_dump_shader(sscreen, sel->info.stage) &&
1421        !(sscreen->debug_flags & DBG(NO_NIR))) {
1422       nir_print_shader(nir, stderr);
1423       si_dump_streamout(&sel->so);
1424    }
1425 
1426    /* Initialize vs_output_ps_input_cntl to default. */
1427    for (unsigned i = 0; i < ARRAY_SIZE(shader->info.vs_output_ps_input_cntl); i++)
1428       shader->info.vs_output_ps_input_cntl[i] = SI_PS_INPUT_CNTL_UNUSED;
1429    shader->info.vs_output_ps_input_cntl[VARYING_SLOT_COL0] = SI_PS_INPUT_CNTL_UNUSED_COLOR0;
1430 
1431    shader->info.uses_instanceid = sel->info.uses_instanceid;
1432 
1433    /* TODO: ACO could compile non-monolithic shaders here (starting
1434     * with PS and NGG VS), but monolithic shaders should be compiled
1435     * by LLVM due to more complicated compilation.
1436     */
1437    if (!si_llvm_compile_shader(sscreen, compiler, shader, debug, nir, free_nir))
1438       return false;
1439 
1440    /* Compute vs_output_ps_input_cntl. */
1441    if ((sel->info.stage == MESA_SHADER_VERTEX ||
1442         sel->info.stage == MESA_SHADER_TESS_EVAL ||
1443         sel->info.stage == MESA_SHADER_GEOMETRY) &&
1444        !shader->key.as_ls && !shader->key.as_es) {
1445       ubyte *vs_output_param_offset = shader->info.vs_output_param_offset;
1446 
1447       if (sel->info.stage == MESA_SHADER_GEOMETRY && !shader->key.as_ngg)
1448          vs_output_param_offset = sel->gs_copy_shader->info.vs_output_param_offset;
1449 
1450       /* VS and TES should also set primitive ID output if it's used. */
1451       unsigned num_outputs_with_prim_id = sel->info.num_outputs +
1452                                           shader->key.mono.u.vs_export_prim_id;
1453 
1454       for (unsigned i = 0; i < num_outputs_with_prim_id; i++) {
1455          unsigned semantic = sel->info.output_semantic[i];
1456          unsigned offset = vs_output_param_offset[i];
1457          unsigned ps_input_cntl;
1458 
1459          if (offset <= AC_EXP_PARAM_OFFSET_31) {
1460             /* The input is loaded from parameter memory. */
1461             ps_input_cntl = S_028644_OFFSET(offset);
1462          } else {
1463             /* The input is a DEFAULT_VAL constant. */
1464             assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 &&
1465                    offset <= AC_EXP_PARAM_DEFAULT_VAL_1111);
1466             offset -= AC_EXP_PARAM_DEFAULT_VAL_0000;
1467 
1468             /* OFFSET=0x20 means that DEFAULT_VAL is used. */
1469             ps_input_cntl = S_028644_OFFSET(0x20) |
1470                             S_028644_DEFAULT_VAL(offset);
1471          }
1472 
1473          shader->info.vs_output_ps_input_cntl[semantic] = ps_input_cntl;
1474       }
1475    }
1476 
1477    /* Validate SGPR and VGPR usage for compute to detect compiler bugs. */
1478    if (sel->info.stage == MESA_SHADER_COMPUTE) {
1479       unsigned wave_size = sscreen->compute_wave_size;
1480       unsigned max_vgprs =
1481          sscreen->info.num_physical_wave64_vgprs_per_simd * (wave_size == 32 ? 2 : 1);
1482       unsigned max_sgprs = sscreen->info.num_physical_sgprs_per_simd;
1483       unsigned max_sgprs_per_wave = 128;
1484       unsigned simds_per_tg = 4; /* assuming WGP mode on gfx10 */
1485       unsigned threads_per_tg = si_get_max_workgroup_size(shader);
1486       unsigned waves_per_tg = DIV_ROUND_UP(threads_per_tg, wave_size);
1487       unsigned waves_per_simd = DIV_ROUND_UP(waves_per_tg, simds_per_tg);
1488 
1489       max_vgprs = max_vgprs / waves_per_simd;
1490       max_sgprs = MIN2(max_sgprs / waves_per_simd, max_sgprs_per_wave);
1491 
1492       if (shader->config.num_sgprs > max_sgprs || shader->config.num_vgprs > max_vgprs) {
1493          fprintf(stderr,
1494                  "LLVM failed to compile a shader correctly: "
1495                  "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
1496                  shader->config.num_sgprs, shader->config.num_vgprs, max_sgprs, max_vgprs);
1497 
1498          /* Just terminate the process, because dependent
1499           * shaders can hang due to bad input data, but use
1500           * the env var to allow shader-db to work.
1501           */
1502          if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
1503             abort();
1504       }
1505    }
1506 
1507    /* Add the scratch offset to input SGPRs. */
1508    if (shader->config.scratch_bytes_per_wave && !si_is_merged_shader(shader))
1509       shader->info.num_input_sgprs += 1; /* scratch byte offset */
1510 
1511    /* Calculate the number of fragment input VGPRs. */
1512    if (sel->info.stage == MESA_SHADER_FRAGMENT) {
1513       shader->info.num_input_vgprs = ac_get_fs_input_vgpr_cnt(
1514          &shader->config, &shader->info.face_vgpr_index, &shader->info.ancillary_vgpr_index);
1515    }
1516 
1517    si_calculate_max_simd_waves(shader);
1518    si_shader_dump_stats_for_shader_db(sscreen, shader, debug);
1519    return true;
1520 }
1521 
1522 /**
1523  * Create, compile and return a shader part (prolog or epilog).
1524  *
1525  * \param sscreen	screen
1526  * \param list		list of shader parts of the same category
1527  * \param type		shader type
1528  * \param key		shader part key
1529  * \param prolog	whether the part being requested is a prolog
1530  * \param tm		LLVM target machine
1531  * \param debug		debug callback
1532  * \param build		the callback responsible for building the main function
1533  * \return		non-NULL on success
1534  */
1535 static struct si_shader_part *
si_get_shader_part(struct si_screen * sscreen,struct si_shader_part ** list,gl_shader_stage stage,bool prolog,union si_shader_part_key * key,struct ac_llvm_compiler * compiler,struct pipe_debug_callback * debug,void (* build)(struct si_shader_context *,union si_shader_part_key *),const char * name)1536 si_get_shader_part(struct si_screen *sscreen, struct si_shader_part **list,
1537                    gl_shader_stage stage, bool prolog, union si_shader_part_key *key,
1538                    struct ac_llvm_compiler *compiler, struct pipe_debug_callback *debug,
1539                    void (*build)(struct si_shader_context *, union si_shader_part_key *),
1540                    const char *name)
1541 {
1542    struct si_shader_part *result;
1543 
1544    simple_mtx_lock(&sscreen->shader_parts_mutex);
1545 
1546    /* Find existing. */
1547    for (result = *list; result; result = result->next) {
1548       if (memcmp(&result->key, key, sizeof(*key)) == 0) {
1549          simple_mtx_unlock(&sscreen->shader_parts_mutex);
1550          return result;
1551       }
1552    }
1553 
1554    /* Compile a new one. */
1555    result = CALLOC_STRUCT(si_shader_part);
1556    result->key = *key;
1557 
1558    struct si_shader_selector sel = {};
1559    sel.screen = sscreen;
1560 
1561    struct si_shader shader = {};
1562    shader.selector = &sel;
1563 
1564    switch (stage) {
1565    case MESA_SHADER_VERTEX:
1566       shader.key.as_ls = key->vs_prolog.as_ls;
1567       shader.key.as_es = key->vs_prolog.as_es;
1568       shader.key.as_ngg = key->vs_prolog.as_ngg;
1569       break;
1570    case MESA_SHADER_TESS_CTRL:
1571       assert(!prolog);
1572       shader.key.part.tcs.epilog = key->tcs_epilog.states;
1573       break;
1574    case MESA_SHADER_GEOMETRY:
1575       assert(prolog);
1576       shader.key.as_ngg = key->gs_prolog.as_ngg;
1577       break;
1578    case MESA_SHADER_FRAGMENT:
1579       if (prolog)
1580          shader.key.part.ps.prolog = key->ps_prolog.states;
1581       else
1582          shader.key.part.ps.epilog = key->ps_epilog.states;
1583       break;
1584    default:
1585       unreachable("bad shader part");
1586    }
1587 
1588    struct si_shader_context ctx;
1589    si_llvm_context_init(&ctx, sscreen, compiler,
1590                         si_get_wave_size(sscreen, stage,
1591                                          shader.key.as_ngg, shader.key.as_es));
1592    ctx.shader = &shader;
1593    ctx.stage = stage;
1594 
1595    build(&ctx, key);
1596 
1597    /* Compile. */
1598    si_llvm_optimize_module(&ctx);
1599 
1600    if (!si_compile_llvm(sscreen, &result->binary, &result->config, compiler, &ctx.ac, debug,
1601                         ctx.stage, name, false)) {
1602       FREE(result);
1603       result = NULL;
1604       goto out;
1605    }
1606 
1607    result->next = *list;
1608    *list = result;
1609 
1610 out:
1611    si_llvm_dispose(&ctx);
1612    simple_mtx_unlock(&sscreen->shader_parts_mutex);
1613    return result;
1614 }
1615 
si_get_vs_prolog(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug,struct si_shader * main_part,const struct si_vs_prolog_bits * key)1616 static bool si_get_vs_prolog(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1617                              struct si_shader *shader, struct pipe_debug_callback *debug,
1618                              struct si_shader *main_part, const struct si_vs_prolog_bits *key)
1619 {
1620    struct si_shader_selector *vs = main_part->selector;
1621 
1622    if (!si_vs_needs_prolog(vs, key, &shader->key, false))
1623       return true;
1624 
1625    /* Get the prolog. */
1626    union si_shader_part_key prolog_key;
1627    si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs, false, key, shader,
1628                         &prolog_key);
1629 
1630    shader->prolog =
1631       si_get_shader_part(sscreen, &sscreen->vs_prologs, MESA_SHADER_VERTEX, true, &prolog_key,
1632                          compiler, debug, si_llvm_build_vs_prolog, "Vertex Shader Prolog");
1633    return shader->prolog != NULL;
1634 }
1635 
1636 /**
1637  * Select and compile (or reuse) vertex shader parts (prolog & epilog).
1638  */
si_shader_select_vs_parts(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug)1639 static bool si_shader_select_vs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1640                                       struct si_shader *shader, struct pipe_debug_callback *debug)
1641 {
1642    return si_get_vs_prolog(sscreen, compiler, shader, debug, shader, &shader->key.part.vs.prolog);
1643 }
1644 
1645 /**
1646  * Select and compile (or reuse) TCS parts (epilog).
1647  */
si_shader_select_tcs_parts(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug)1648 static bool si_shader_select_tcs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1649                                        struct si_shader *shader, struct pipe_debug_callback *debug)
1650 {
1651    if (sscreen->info.chip_class >= GFX9) {
1652       struct si_shader *ls_main_part = shader->key.part.tcs.ls->main_shader_part_ls;
1653 
1654       if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
1655                             &shader->key.part.tcs.ls_prolog))
1656          return false;
1657 
1658       shader->previous_stage = ls_main_part;
1659    }
1660 
1661    /* Get the epilog. */
1662    union si_shader_part_key epilog_key;
1663    memset(&epilog_key, 0, sizeof(epilog_key));
1664    epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
1665 
1666    shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs, MESA_SHADER_TESS_CTRL, false,
1667                                        &epilog_key, compiler, debug, si_llvm_build_tcs_epilog,
1668                                        "Tessellation Control Shader Epilog");
1669    return shader->epilog != NULL;
1670 }
1671 
1672 /**
1673  * Select and compile (or reuse) GS parts (prolog).
1674  */
si_shader_select_gs_parts(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug)1675 static bool si_shader_select_gs_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1676                                       struct si_shader *shader, struct pipe_debug_callback *debug)
1677 {
1678    if (sscreen->info.chip_class >= GFX9) {
1679       struct si_shader *es_main_part;
1680 
1681       if (shader->key.as_ngg)
1682          es_main_part = shader->key.part.gs.es->main_shader_part_ngg_es;
1683       else
1684          es_main_part = shader->key.part.gs.es->main_shader_part_es;
1685 
1686       if (shader->key.part.gs.es->info.stage == MESA_SHADER_VERTEX &&
1687           !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
1688                             &shader->key.part.gs.vs_prolog))
1689          return false;
1690 
1691       shader->previous_stage = es_main_part;
1692    }
1693 
1694    if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
1695       return true;
1696 
1697    union si_shader_part_key prolog_key;
1698    memset(&prolog_key, 0, sizeof(prolog_key));
1699    prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
1700    prolog_key.gs_prolog.as_ngg = shader->key.as_ngg;
1701 
1702    shader->prolog2 =
1703       si_get_shader_part(sscreen, &sscreen->gs_prologs, MESA_SHADER_GEOMETRY, true, &prolog_key,
1704                          compiler, debug, si_llvm_build_gs_prolog, "Geometry Shader Prolog");
1705    return shader->prolog2 != NULL;
1706 }
1707 
1708 /**
1709  * Compute the PS prolog key, which contains all the information needed to
1710  * build the PS prolog function, and set related bits in shader->config.
1711  */
si_get_ps_prolog_key(struct si_shader * shader,union si_shader_part_key * key,bool separate_prolog)1712 void si_get_ps_prolog_key(struct si_shader *shader, union si_shader_part_key *key,
1713                           bool separate_prolog)
1714 {
1715    struct si_shader_info *info = &shader->selector->info;
1716 
1717    memset(key, 0, sizeof(*key));
1718    key->ps_prolog.states = shader->key.part.ps.prolog;
1719    key->ps_prolog.colors_read = info->colors_read;
1720    key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
1721    key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
1722    key->ps_prolog.wqm =
1723       info->base.fs.needs_quad_helper_invocations &&
1724       (key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
1725        key->ps_prolog.states.force_linear_sample_interp ||
1726        key->ps_prolog.states.force_persp_center_interp ||
1727        key->ps_prolog.states.force_linear_center_interp ||
1728        key->ps_prolog.states.bc_optimize_for_persp || key->ps_prolog.states.bc_optimize_for_linear);
1729    key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
1730 
1731    if (info->colors_read) {
1732       ubyte *color = shader->selector->color_attr_index;
1733 
1734       if (shader->key.part.ps.prolog.color_two_side) {
1735          /* BCOLORs are stored after the last input. */
1736          key->ps_prolog.num_interp_inputs = info->num_inputs;
1737          key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
1738          if (separate_prolog)
1739             shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
1740       }
1741 
1742       for (unsigned i = 0; i < 2; i++) {
1743          unsigned interp = info->color_interpolate[i];
1744          unsigned location = info->color_interpolate_loc[i];
1745 
1746          if (!(info->colors_read & (0xf << i * 4)))
1747             continue;
1748 
1749          key->ps_prolog.color_attr_index[i] = color[i];
1750 
1751          if (shader->key.part.ps.prolog.flatshade_colors && interp == INTERP_MODE_COLOR)
1752             interp = INTERP_MODE_FLAT;
1753 
1754          switch (interp) {
1755          case INTERP_MODE_FLAT:
1756             key->ps_prolog.color_interp_vgpr_index[i] = -1;
1757             break;
1758          case INTERP_MODE_SMOOTH:
1759          case INTERP_MODE_COLOR:
1760             /* Force the interpolation location for colors here. */
1761             if (shader->key.part.ps.prolog.force_persp_sample_interp)
1762                location = TGSI_INTERPOLATE_LOC_SAMPLE;
1763             if (shader->key.part.ps.prolog.force_persp_center_interp)
1764                location = TGSI_INTERPOLATE_LOC_CENTER;
1765 
1766             switch (location) {
1767             case TGSI_INTERPOLATE_LOC_SAMPLE:
1768                key->ps_prolog.color_interp_vgpr_index[i] = 0;
1769                if (separate_prolog) {
1770                   shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
1771                }
1772                break;
1773             case TGSI_INTERPOLATE_LOC_CENTER:
1774                key->ps_prolog.color_interp_vgpr_index[i] = 2;
1775                if (separate_prolog) {
1776                   shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
1777                }
1778                break;
1779             case TGSI_INTERPOLATE_LOC_CENTROID:
1780                key->ps_prolog.color_interp_vgpr_index[i] = 4;
1781                if (separate_prolog) {
1782                   shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTROID_ENA(1);
1783                }
1784                break;
1785             default:
1786                assert(0);
1787             }
1788             break;
1789          case INTERP_MODE_NOPERSPECTIVE:
1790             /* Force the interpolation location for colors here. */
1791             if (shader->key.part.ps.prolog.force_linear_sample_interp)
1792                location = TGSI_INTERPOLATE_LOC_SAMPLE;
1793             if (shader->key.part.ps.prolog.force_linear_center_interp)
1794                location = TGSI_INTERPOLATE_LOC_CENTER;
1795 
1796             /* The VGPR assignment for non-monolithic shaders
1797              * works because InitialPSInputAddr is set on the
1798              * main shader and PERSP_PULL_MODEL is never used.
1799              */
1800             switch (location) {
1801             case TGSI_INTERPOLATE_LOC_SAMPLE:
1802                key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 6 : 9;
1803                if (separate_prolog) {
1804                   shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
1805                }
1806                break;
1807             case TGSI_INTERPOLATE_LOC_CENTER:
1808                key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 8 : 11;
1809                if (separate_prolog) {
1810                   shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
1811                }
1812                break;
1813             case TGSI_INTERPOLATE_LOC_CENTROID:
1814                key->ps_prolog.color_interp_vgpr_index[i] = separate_prolog ? 10 : 13;
1815                if (separate_prolog) {
1816                   shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTROID_ENA(1);
1817                }
1818                break;
1819             default:
1820                assert(0);
1821             }
1822             break;
1823          default:
1824             assert(0);
1825          }
1826       }
1827    }
1828 }
1829 
1830 /**
1831  * Check whether a PS prolog is required based on the key.
1832  */
si_need_ps_prolog(const union si_shader_part_key * key)1833 bool si_need_ps_prolog(const union si_shader_part_key *key)
1834 {
1835    return key->ps_prolog.colors_read || key->ps_prolog.states.force_persp_sample_interp ||
1836           key->ps_prolog.states.force_linear_sample_interp ||
1837           key->ps_prolog.states.force_persp_center_interp ||
1838           key->ps_prolog.states.force_linear_center_interp ||
1839           key->ps_prolog.states.bc_optimize_for_persp ||
1840           key->ps_prolog.states.bc_optimize_for_linear || key->ps_prolog.states.poly_stipple ||
1841           key->ps_prolog.states.samplemask_log_ps_iter;
1842 }
1843 
1844 /**
1845  * Compute the PS epilog key, which contains all the information needed to
1846  * build the PS epilog function.
1847  */
si_get_ps_epilog_key(struct si_shader * shader,union si_shader_part_key * key)1848 void si_get_ps_epilog_key(struct si_shader *shader, union si_shader_part_key *key)
1849 {
1850    struct si_shader_info *info = &shader->selector->info;
1851    memset(key, 0, sizeof(*key));
1852    key->ps_epilog.colors_written = info->colors_written;
1853    key->ps_epilog.color_types = info->output_color_types;
1854    key->ps_epilog.writes_z = info->writes_z;
1855    key->ps_epilog.writes_stencil = info->writes_stencil;
1856    key->ps_epilog.writes_samplemask = info->writes_samplemask;
1857    key->ps_epilog.states = shader->key.part.ps.epilog;
1858 }
1859 
1860 /**
1861  * Select and compile (or reuse) pixel shader parts (prolog & epilog).
1862  */
si_shader_select_ps_parts(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug)1863 static bool si_shader_select_ps_parts(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1864                                       struct si_shader *shader, struct pipe_debug_callback *debug)
1865 {
1866    union si_shader_part_key prolog_key;
1867    union si_shader_part_key epilog_key;
1868 
1869    /* Get the prolog. */
1870    si_get_ps_prolog_key(shader, &prolog_key, true);
1871 
1872    /* The prolog is a no-op if these aren't set. */
1873    if (si_need_ps_prolog(&prolog_key)) {
1874       shader->prolog =
1875          si_get_shader_part(sscreen, &sscreen->ps_prologs, MESA_SHADER_FRAGMENT, true, &prolog_key,
1876                             compiler, debug, si_llvm_build_ps_prolog, "Fragment Shader Prolog");
1877       if (!shader->prolog)
1878          return false;
1879    }
1880 
1881    /* Get the epilog. */
1882    si_get_ps_epilog_key(shader, &epilog_key);
1883 
1884    shader->epilog =
1885       si_get_shader_part(sscreen, &sscreen->ps_epilogs, MESA_SHADER_FRAGMENT, false, &epilog_key,
1886                          compiler, debug, si_llvm_build_ps_epilog, "Fragment Shader Epilog");
1887    if (!shader->epilog)
1888       return false;
1889 
1890    /* Enable POS_FIXED_PT if polygon stippling is enabled. */
1891    if (shader->key.part.ps.prolog.poly_stipple) {
1892       shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
1893       assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
1894    }
1895 
1896    /* Set up the enable bits for per-sample shading if needed. */
1897    if (shader->key.part.ps.prolog.force_persp_sample_interp &&
1898        (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
1899         G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1900       shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
1901       shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
1902       shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
1903    }
1904    if (shader->key.part.ps.prolog.force_linear_sample_interp &&
1905        (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
1906         G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1907       shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
1908       shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
1909       shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
1910    }
1911    if (shader->key.part.ps.prolog.force_persp_center_interp &&
1912        (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
1913         G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1914       shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
1915       shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
1916       shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
1917    }
1918    if (shader->key.part.ps.prolog.force_linear_center_interp &&
1919        (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
1920         G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
1921       shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
1922       shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
1923       shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
1924    }
1925 
1926    /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
1927    if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
1928        !(shader->config.spi_ps_input_ena & 0xf)) {
1929       shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
1930       assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
1931    }
1932 
1933    /* At least one pair of interpolation weights must be enabled. */
1934    if (!(shader->config.spi_ps_input_ena & 0x7f)) {
1935       shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
1936       assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
1937    }
1938 
1939    /* Samplemask fixup requires the sample ID. */
1940    if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
1941       shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
1942       assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
1943    }
1944 
1945    /* The sample mask input is always enabled, because the API shader always
1946     * passes it through to the epilog. Disable it here if it's unused.
1947     */
1948    if (!shader->key.part.ps.epilog.poly_line_smoothing && !shader->selector->info.reads_samplemask)
1949       shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
1950 
1951    return true;
1952 }
1953 
si_multiwave_lds_size_workaround(struct si_screen * sscreen,unsigned * lds_size)1954 void si_multiwave_lds_size_workaround(struct si_screen *sscreen, unsigned *lds_size)
1955 {
1956    /* If tessellation is all offchip and on-chip GS isn't used, this
1957     * workaround is not needed.
1958     */
1959    return;
1960 
1961    /* SPI barrier management bug:
1962     *   Make sure we have at least 4k of LDS in use to avoid the bug.
1963     *   It applies to workgroup sizes of more than one wavefront.
1964     */
1965    if (sscreen->info.family == CHIP_BONAIRE || sscreen->info.family == CHIP_KABINI)
1966       *lds_size = MAX2(*lds_size, 8);
1967 }
1968 
si_fix_resource_usage(struct si_screen * sscreen,struct si_shader * shader)1969 void si_fix_resource_usage(struct si_screen *sscreen, struct si_shader *shader)
1970 {
1971    unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
1972 
1973    shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
1974 
1975    if (shader->selector->info.stage == MESA_SHADER_COMPUTE &&
1976        si_get_max_workgroup_size(shader) > sscreen->compute_wave_size) {
1977       si_multiwave_lds_size_workaround(sscreen, &shader->config.lds_size);
1978    }
1979 }
1980 
si_create_shader_variant(struct si_screen * sscreen,struct ac_llvm_compiler * compiler,struct si_shader * shader,struct pipe_debug_callback * debug)1981 bool si_create_shader_variant(struct si_screen *sscreen, struct ac_llvm_compiler *compiler,
1982                               struct si_shader *shader, struct pipe_debug_callback *debug)
1983 {
1984    struct si_shader_selector *sel = shader->selector;
1985    struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
1986 
1987    /* LS, ES, VS are compiled on demand if the main part hasn't been
1988     * compiled for that stage.
1989     *
1990     * GS are compiled on demand if the main part hasn't been compiled
1991     * for the chosen NGG-ness.
1992     *
1993     * Vertex shaders are compiled on demand when a vertex fetch
1994     * workaround must be applied.
1995     */
1996    if (shader->is_monolithic) {
1997       /* Monolithic shader (compiled as a whole, has many variants,
1998        * may take a long time to compile).
1999        */
2000       if (!si_compile_shader(sscreen, compiler, shader, debug))
2001          return false;
2002    } else {
2003       /* The shader consists of several parts:
2004        *
2005        * - the middle part is the user shader, it has 1 variant only
2006        *   and it was compiled during the creation of the shader
2007        *   selector
2008        * - the prolog part is inserted at the beginning
2009        * - the epilog part is inserted at the end
2010        *
2011        * The prolog and epilog have many (but simple) variants.
2012        *
2013        * Starting with gfx9, geometry and tessellation control
2014        * shaders also contain the prolog and user shader parts of
2015        * the previous shader stage.
2016        */
2017 
2018       if (!mainp)
2019          return false;
2020 
2021       /* Copy the compiled shader data over. */
2022       shader->is_binary_shared = true;
2023       shader->binary = mainp->binary;
2024       shader->config = mainp->config;
2025       shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
2026       shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
2027       shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
2028       shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
2029       memcpy(shader->info.vs_output_ps_input_cntl, mainp->info.vs_output_ps_input_cntl,
2030              sizeof(mainp->info.vs_output_ps_input_cntl));
2031       shader->info.uses_instanceid = mainp->info.uses_instanceid;
2032       shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
2033       shader->info.nr_param_exports = mainp->info.nr_param_exports;
2034 
2035       /* Select prologs and/or epilogs. */
2036       switch (sel->info.stage) {
2037       case MESA_SHADER_VERTEX:
2038          if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
2039             return false;
2040          break;
2041       case MESA_SHADER_TESS_CTRL:
2042          if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
2043             return false;
2044          break;
2045       case MESA_SHADER_TESS_EVAL:
2046          break;
2047       case MESA_SHADER_GEOMETRY:
2048          if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
2049             return false;
2050          break;
2051       case MESA_SHADER_FRAGMENT:
2052          if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
2053             return false;
2054 
2055          /* Make sure we have at least as many VGPRs as there
2056           * are allocated inputs.
2057           */
2058          shader->config.num_vgprs = MAX2(shader->config.num_vgprs, shader->info.num_input_vgprs);
2059          break;
2060       default:;
2061       }
2062 
2063       /* Update SGPR and VGPR counts. */
2064       if (shader->prolog) {
2065          shader->config.num_sgprs =
2066             MAX2(shader->config.num_sgprs, shader->prolog->config.num_sgprs);
2067          shader->config.num_vgprs =
2068             MAX2(shader->config.num_vgprs, shader->prolog->config.num_vgprs);
2069       }
2070       if (shader->previous_stage) {
2071          shader->config.num_sgprs =
2072             MAX2(shader->config.num_sgprs, shader->previous_stage->config.num_sgprs);
2073          shader->config.num_vgprs =
2074             MAX2(shader->config.num_vgprs, shader->previous_stage->config.num_vgprs);
2075          shader->config.spilled_sgprs =
2076             MAX2(shader->config.spilled_sgprs, shader->previous_stage->config.spilled_sgprs);
2077          shader->config.spilled_vgprs =
2078             MAX2(shader->config.spilled_vgprs, shader->previous_stage->config.spilled_vgprs);
2079          shader->info.private_mem_vgprs =
2080             MAX2(shader->info.private_mem_vgprs, shader->previous_stage->info.private_mem_vgprs);
2081          shader->config.scratch_bytes_per_wave =
2082             MAX2(shader->config.scratch_bytes_per_wave,
2083                  shader->previous_stage->config.scratch_bytes_per_wave);
2084          shader->info.uses_instanceid |= shader->previous_stage->info.uses_instanceid;
2085       }
2086       if (shader->prolog2) {
2087          shader->config.num_sgprs =
2088             MAX2(shader->config.num_sgprs, shader->prolog2->config.num_sgprs);
2089          shader->config.num_vgprs =
2090             MAX2(shader->config.num_vgprs, shader->prolog2->config.num_vgprs);
2091       }
2092       if (shader->epilog) {
2093          shader->config.num_sgprs =
2094             MAX2(shader->config.num_sgprs, shader->epilog->config.num_sgprs);
2095          shader->config.num_vgprs =
2096             MAX2(shader->config.num_vgprs, shader->epilog->config.num_vgprs);
2097       }
2098       si_calculate_max_simd_waves(shader);
2099    }
2100 
2101    if (shader->key.as_ngg) {
2102       assert(!shader->key.as_es && !shader->key.as_ls);
2103       if (!gfx10_ngg_calculate_subgroup_info(shader)) {
2104          fprintf(stderr, "Failed to compute subgroup info\n");
2105          return false;
2106       }
2107    } else if (sscreen->info.chip_class >= GFX9 && sel->info.stage == MESA_SHADER_GEOMETRY) {
2108       gfx9_get_gs_info(shader->previous_stage_sel, sel, &shader->gs_info);
2109    }
2110 
2111    shader->uses_vs_state_provoking_vertex =
2112       sscreen->use_ngg &&
2113       /* Used to convert triangle strips from GS to triangles. */
2114       ((sel->info.stage == MESA_SHADER_GEOMETRY &&
2115         util_rast_prim_is_triangles(sel->info.base.gs.output_primitive)) ||
2116        (sel->info.stage == MESA_SHADER_VERTEX &&
2117         /* Used to export PrimitiveID from the correct vertex. */
2118         shader->key.mono.u.vs_export_prim_id));
2119 
2120    shader->uses_vs_state_outprim = sscreen->use_ngg &&
2121                                    /* Only used by streamout in vertex shaders. */
2122                                    sel->info.stage == MESA_SHADER_VERTEX &&
2123                                    sel->so.num_outputs;
2124 
2125    if (sel->info.stage == MESA_SHADER_VERTEX) {
2126       shader->uses_base_instance = sel->info.uses_base_instance ||
2127                                    shader->key.part.vs.prolog.instance_divisor_is_one ||
2128                                    shader->key.part.vs.prolog.instance_divisor_is_fetched;
2129    } else if (sel->info.stage == MESA_SHADER_TESS_CTRL) {
2130       shader->uses_base_instance = shader->previous_stage_sel &&
2131                                    (shader->previous_stage_sel->info.uses_base_instance ||
2132                                     shader->key.part.tcs.ls_prolog.instance_divisor_is_one ||
2133                                     shader->key.part.tcs.ls_prolog.instance_divisor_is_fetched);
2134    } else if (sel->info.stage == MESA_SHADER_GEOMETRY) {
2135       shader->uses_base_instance = shader->previous_stage_sel &&
2136                                    (shader->previous_stage_sel->info.uses_base_instance ||
2137                                     shader->key.part.gs.vs_prolog.instance_divisor_is_one ||
2138                                     shader->key.part.gs.vs_prolog.instance_divisor_is_fetched);
2139    }
2140 
2141    si_fix_resource_usage(sscreen, shader);
2142    si_shader_dump(sscreen, shader, debug, stderr, true);
2143 
2144    /* Upload. */
2145    if (!si_shader_binary_upload(sscreen, shader, 0)) {
2146       fprintf(stderr, "LLVM failed to upload shader\n");
2147       return false;
2148    }
2149 
2150    return true;
2151 }
2152 
si_shader_binary_clean(struct si_shader_binary * binary)2153 void si_shader_binary_clean(struct si_shader_binary *binary)
2154 {
2155    free((void *)binary->elf_buffer);
2156    binary->elf_buffer = NULL;
2157 
2158    free(binary->llvm_ir_string);
2159    binary->llvm_ir_string = NULL;
2160 
2161    free(binary->uploaded_code);
2162    binary->uploaded_code = NULL;
2163    binary->uploaded_code_size = 0;
2164 }
2165 
si_shader_destroy(struct si_shader * shader)2166 void si_shader_destroy(struct si_shader *shader)
2167 {
2168    if (shader->scratch_bo)
2169       si_resource_reference(&shader->scratch_bo, NULL);
2170 
2171    si_resource_reference(&shader->bo, NULL);
2172 
2173    if (!shader->is_binary_shared)
2174       si_shader_binary_clean(&shader->binary);
2175 
2176    free(shader->shader_log);
2177 }
2178