1 /*
2 * Copyright © 2019 Google, Inc
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file lower_precision.cpp
26 */
27
28 #include "main/macros.h"
29 #include "main/mtypes.h"
30 #include "compiler/glsl_types.h"
31 #include "ir.h"
32 #include "ir_builder.h"
33 #include "ir_optimization.h"
34 #include "ir_rvalue_visitor.h"
35 #include "util/half_float.h"
36 #include "util/set.h"
37 #include "util/hash_table.h"
38 #include <vector>
39
40 namespace {
41
42 class find_precision_visitor : public ir_rvalue_enter_visitor {
43 public:
44 find_precision_visitor(const struct gl_shader_compiler_options *options);
45 ~find_precision_visitor();
46
47 virtual void handle_rvalue(ir_rvalue **rvalue);
48 virtual ir_visitor_status visit_enter(ir_call *ir);
49
50 ir_function_signature *map_builtin(ir_function_signature *sig);
51
52 /* Set of rvalues that can be lowered. This will be filled in by
53 * find_lowerable_rvalues_visitor. Only the root node of a lowerable section
54 * will be added to this set.
55 */
56 struct set *lowerable_rvalues;
57
58 /**
59 * A mapping of builtin signature functions to lowered versions. This is
60 * filled in lazily when a lowered version is needed.
61 */
62 struct hash_table *lowered_builtins;
63 /**
64 * A temporary hash table only used in order to clone functions.
65 */
66 struct hash_table *clone_ht;
67
68 void *lowered_builtin_mem_ctx;
69
70 const struct gl_shader_compiler_options *options;
71 };
72
73 class find_lowerable_rvalues_visitor : public ir_hierarchical_visitor {
74 public:
75 enum can_lower_state {
76 UNKNOWN,
77 CANT_LOWER,
78 SHOULD_LOWER,
79 };
80
81 enum parent_relation {
82 /* The parent performs a further operation involving the result from the
83 * child and can be lowered along with it.
84 */
85 COMBINED_OPERATION,
86 /* The parent instruction’s operation is independent of the child type so
87 * the child should be lowered separately.
88 */
89 INDEPENDENT_OPERATION,
90 };
91
92 struct stack_entry {
93 ir_instruction *instr;
94 enum can_lower_state state;
95 /* List of child rvalues that can be lowered. When this stack entry is
96 * popped, if this node itself can’t be lowered than all of the children
97 * are root nodes to lower so we will add them to lowerable_rvalues.
98 * Otherwise if this node can also be lowered then we won’t add the
99 * children because we only want to add the topmost lowerable nodes to
100 * lowerable_rvalues and the children will be lowered as part of lowering
101 * this node.
102 */
103 std::vector<ir_instruction *> lowerable_children;
104 };
105
106 find_lowerable_rvalues_visitor(struct set *result,
107 const struct gl_shader_compiler_options *options);
108
109 static void stack_enter(class ir_instruction *ir, void *data);
110 static void stack_leave(class ir_instruction *ir, void *data);
111
112 virtual ir_visitor_status visit(ir_constant *ir);
113 virtual ir_visitor_status visit(ir_dereference_variable *ir);
114
115 virtual ir_visitor_status visit_enter(ir_dereference_record *ir);
116 virtual ir_visitor_status visit_enter(ir_dereference_array *ir);
117 virtual ir_visitor_status visit_enter(ir_texture *ir);
118 virtual ir_visitor_status visit_enter(ir_expression *ir);
119
120 virtual ir_visitor_status visit_leave(ir_assignment *ir);
121 virtual ir_visitor_status visit_leave(ir_call *ir);
122
123 can_lower_state handle_precision(const glsl_type *type,
124 int precision) const;
125
126 static parent_relation get_parent_relation(ir_instruction *parent,
127 ir_instruction *child);
128
129 std::vector<stack_entry> stack;
130 struct set *lowerable_rvalues;
131 const struct gl_shader_compiler_options *options;
132
133 void pop_stack_entry();
134 void add_lowerable_children(const stack_entry &entry);
135 };
136
137 class lower_precision_visitor : public ir_rvalue_visitor {
138 public:
139 virtual void handle_rvalue(ir_rvalue **rvalue);
140 virtual ir_visitor_status visit_enter(ir_dereference_array *);
141 virtual ir_visitor_status visit_enter(ir_dereference_record *);
142 virtual ir_visitor_status visit_enter(ir_call *ir);
143 virtual ir_visitor_status visit_enter(ir_texture *ir);
144 virtual ir_visitor_status visit_leave(ir_expression *);
145 };
146
147 static bool
can_lower_type(const struct gl_shader_compiler_options * options,const glsl_type * type)148 can_lower_type(const struct gl_shader_compiler_options *options,
149 const glsl_type *type)
150 {
151 /* Don’t lower any expressions involving non-float types except bool and
152 * texture samplers. This will rule out operations that change the type such
153 * as conversion to ints. Instead it will end up lowering the arguments
154 * instead and adding a final conversion to float32. We want to handle
155 * boolean types so that it will do comparisons as 16-bit.
156 */
157
158 switch (type->without_array()->base_type) {
159 /* TODO: should we do anything for these two with regard to Int16 vs FP16
160 * support?
161 */
162 case GLSL_TYPE_BOOL:
163 case GLSL_TYPE_SAMPLER:
164 case GLSL_TYPE_IMAGE:
165 return true;
166
167 case GLSL_TYPE_FLOAT:
168 return options->LowerPrecisionFloat16;
169
170 case GLSL_TYPE_UINT:
171 case GLSL_TYPE_INT:
172 return options->LowerPrecisionInt16;
173
174 default:
175 return false;
176 }
177 }
178
find_lowerable_rvalues_visitor(struct set * res,const struct gl_shader_compiler_options * opts)179 find_lowerable_rvalues_visitor::find_lowerable_rvalues_visitor(struct set *res,
180 const struct gl_shader_compiler_options *opts)
181 {
182 lowerable_rvalues = res;
183 options = opts;
184 callback_enter = stack_enter;
185 callback_leave = stack_leave;
186 data_enter = this;
187 data_leave = this;
188 }
189
190 void
stack_enter(class ir_instruction * ir,void * data)191 find_lowerable_rvalues_visitor::stack_enter(class ir_instruction *ir,
192 void *data)
193 {
194 find_lowerable_rvalues_visitor *state =
195 (find_lowerable_rvalues_visitor *) data;
196
197 /* Add a new stack entry for this instruction */
198 stack_entry entry;
199
200 entry.instr = ir;
201 entry.state = state->in_assignee ? CANT_LOWER : UNKNOWN;
202
203 state->stack.push_back(entry);
204 }
205
206 void
add_lowerable_children(const stack_entry & entry)207 find_lowerable_rvalues_visitor::add_lowerable_children(const stack_entry &entry)
208 {
209 /* We can’t lower this node so if there were any pending children then they
210 * are all root lowerable nodes and we should add them to the set.
211 */
212 for (auto &it : entry.lowerable_children)
213 _mesa_set_add(lowerable_rvalues, it);
214 }
215
216 void
pop_stack_entry()217 find_lowerable_rvalues_visitor::pop_stack_entry()
218 {
219 const stack_entry &entry = stack.back();
220
221 if (stack.size() >= 2) {
222 /* Combine this state into the parent state, unless the parent operation
223 * doesn’t have any relation to the child operations
224 */
225 stack_entry &parent = stack.end()[-2];
226 parent_relation rel = get_parent_relation(parent.instr, entry.instr);
227
228 if (rel == COMBINED_OPERATION) {
229 switch (entry.state) {
230 case CANT_LOWER:
231 parent.state = CANT_LOWER;
232 break;
233 case SHOULD_LOWER:
234 if (parent.state == UNKNOWN)
235 parent.state = SHOULD_LOWER;
236 break;
237 case UNKNOWN:
238 break;
239 }
240 }
241 }
242
243 if (entry.state == SHOULD_LOWER) {
244 ir_rvalue *rv = entry.instr->as_rvalue();
245
246 if (rv == NULL) {
247 add_lowerable_children(entry);
248 } else if (stack.size() >= 2) {
249 stack_entry &parent = stack.end()[-2];
250
251 switch (get_parent_relation(parent.instr, rv)) {
252 case COMBINED_OPERATION:
253 /* We only want to add the toplevel lowerable instructions to the
254 * lowerable set. Therefore if there is a parent then instead of
255 * adding this instruction to the set we will queue depending on
256 * the result of the parent instruction.
257 */
258 parent.lowerable_children.push_back(entry.instr);
259 break;
260 case INDEPENDENT_OPERATION:
261 _mesa_set_add(lowerable_rvalues, rv);
262 break;
263 }
264 } else {
265 /* This is a toplevel node so add it directly to the lowerable
266 * set.
267 */
268 _mesa_set_add(lowerable_rvalues, rv);
269 }
270 } else if (entry.state == CANT_LOWER) {
271 add_lowerable_children(entry);
272 }
273
274 stack.pop_back();
275 }
276
277 void
stack_leave(class ir_instruction * ir,void * data)278 find_lowerable_rvalues_visitor::stack_leave(class ir_instruction *ir,
279 void *data)
280 {
281 find_lowerable_rvalues_visitor *state =
282 (find_lowerable_rvalues_visitor *) data;
283
284 state->pop_stack_entry();
285 }
286
287 enum find_lowerable_rvalues_visitor::can_lower_state
handle_precision(const glsl_type * type,int precision) const288 find_lowerable_rvalues_visitor::handle_precision(const glsl_type *type,
289 int precision) const
290 {
291 if (!can_lower_type(options, type))
292 return CANT_LOWER;
293
294 switch (precision) {
295 case GLSL_PRECISION_NONE:
296 return UNKNOWN;
297 case GLSL_PRECISION_HIGH:
298 return CANT_LOWER;
299 case GLSL_PRECISION_MEDIUM:
300 case GLSL_PRECISION_LOW:
301 return SHOULD_LOWER;
302 }
303
304 return CANT_LOWER;
305 }
306
307 enum find_lowerable_rvalues_visitor::parent_relation
get_parent_relation(ir_instruction * parent,ir_instruction * child)308 find_lowerable_rvalues_visitor::get_parent_relation(ir_instruction *parent,
309 ir_instruction *child)
310 {
311 /* If the parent is a dereference instruction then the only child could be
312 * for example an array dereference and that should be lowered independently
313 * of the parent.
314 */
315 if (parent->as_dereference())
316 return INDEPENDENT_OPERATION;
317
318 /* The precision of texture sampling depend on the precision of the sampler.
319 * The rest of the arguments don’t matter so we can treat it as an
320 * independent operation.
321 */
322 if (parent->as_texture())
323 return INDEPENDENT_OPERATION;
324
325 return COMBINED_OPERATION;
326 }
327
328 ir_visitor_status
visit(ir_constant * ir)329 find_lowerable_rvalues_visitor::visit(ir_constant *ir)
330 {
331 stack_enter(ir, this);
332
333 if (!can_lower_type(options, ir->type))
334 stack.back().state = CANT_LOWER;
335
336 stack_leave(ir, this);
337
338 return visit_continue;
339 }
340
341 ir_visitor_status
visit(ir_dereference_variable * ir)342 find_lowerable_rvalues_visitor::visit(ir_dereference_variable *ir)
343 {
344 stack_enter(ir, this);
345
346 if (stack.back().state == UNKNOWN)
347 stack.back().state = handle_precision(ir->type, ir->precision());
348
349 stack_leave(ir, this);
350
351 return visit_continue;
352 }
353
354 ir_visitor_status
visit_enter(ir_dereference_record * ir)355 find_lowerable_rvalues_visitor::visit_enter(ir_dereference_record *ir)
356 {
357 ir_hierarchical_visitor::visit_enter(ir);
358
359 if (stack.back().state == UNKNOWN)
360 stack.back().state = handle_precision(ir->type, ir->precision());
361
362 return visit_continue;
363 }
364
365 ir_visitor_status
visit_enter(ir_dereference_array * ir)366 find_lowerable_rvalues_visitor::visit_enter(ir_dereference_array *ir)
367 {
368 ir_hierarchical_visitor::visit_enter(ir);
369
370 if (stack.back().state == UNKNOWN)
371 stack.back().state = handle_precision(ir->type, ir->precision());
372
373 return visit_continue;
374 }
375
376 ir_visitor_status
visit_enter(ir_texture * ir)377 find_lowerable_rvalues_visitor::visit_enter(ir_texture *ir)
378 {
379 ir_hierarchical_visitor::visit_enter(ir);
380
381 /* The precision of the sample value depends on the precision of the
382 * sampler.
383 */
384 stack.back().state = handle_precision(ir->type,
385 ir->sampler->precision());
386 return visit_continue;
387 }
388
389 ir_visitor_status
visit_enter(ir_expression * ir)390 find_lowerable_rvalues_visitor::visit_enter(ir_expression *ir)
391 {
392 ir_hierarchical_visitor::visit_enter(ir);
393
394 if (!can_lower_type(options, ir->type))
395 stack.back().state = CANT_LOWER;
396
397 /* Don't lower precision for derivative calculations */
398 if (!options->LowerPrecisionDerivatives &&
399 (ir->operation == ir_unop_dFdx ||
400 ir->operation == ir_unop_dFdx_coarse ||
401 ir->operation == ir_unop_dFdx_fine ||
402 ir->operation == ir_unop_dFdy ||
403 ir->operation == ir_unop_dFdy_coarse ||
404 ir->operation == ir_unop_dFdy_fine)) {
405 stack.back().state = CANT_LOWER;
406 }
407
408 return visit_continue;
409 }
410
411 static bool
function_always_returns_mediump_or_lowp(const char * name)412 function_always_returns_mediump_or_lowp(const char *name)
413 {
414 return !strcmp(name, "bitCount") ||
415 !strcmp(name, "findLSB") ||
416 !strcmp(name, "findMSB") ||
417 !strcmp(name, "unpackHalf2x16") ||
418 !strcmp(name, "unpackUnorm4x8") ||
419 !strcmp(name, "unpackSnorm4x8");
420 }
421
422 static unsigned
handle_call(ir_call * ir,const struct set * lowerable_rvalues)423 handle_call(ir_call *ir, const struct set *lowerable_rvalues)
424 {
425 /* The intrinsic call is inside the wrapper imageLoad function that will
426 * be inlined. We have to handle both of them.
427 */
428 if (ir->callee->intrinsic_id == ir_intrinsic_image_load ||
429 (ir->callee->is_builtin() &&
430 !strcmp(ir->callee_name(), "imageLoad"))) {
431 ir_rvalue *param = (ir_rvalue*)ir->actual_parameters.get_head();
432 ir_variable *resource = param->variable_referenced();
433
434 assert(ir->callee->return_precision == GLSL_PRECISION_NONE);
435 assert(resource->type->without_array()->is_image());
436
437 /* GLSL ES 3.20 requires that images have a precision modifier, but if
438 * you set one, it doesn't do anything, because all intrinsics are
439 * defined with highp. This seems to be a spec bug.
440 *
441 * In theory we could set the return value to mediump if the image
442 * format has a lower precision. This appears to be the most sensible
443 * thing to do.
444 */
445 const struct util_format_description *desc =
446 util_format_description(resource->data.image_format);
447 int i =
448 util_format_get_first_non_void_channel(resource->data.image_format);
449 bool mediump;
450
451 assert(i >= 0);
452
453 if (desc->channel[i].pure_integer ||
454 desc->channel[i].type == UTIL_FORMAT_TYPE_FLOAT)
455 mediump = desc->channel[i].size <= 16;
456 else
457 mediump = desc->channel[i].size <= 10; /* unorm/snorm */
458
459 return mediump ? GLSL_PRECISION_MEDIUM : GLSL_PRECISION_HIGH;
460 }
461
462 /* Return the declared precision for user-defined functions. */
463 if (!ir->callee->is_builtin())
464 return ir->callee->return_precision;
465
466 /* Handle special calls. */
467 if (ir->callee->is_builtin() && ir->actual_parameters.length()) {
468 ir_rvalue *param = (ir_rvalue*)ir->actual_parameters.get_head();
469 ir_variable *var = param->variable_referenced();
470
471 /* Handle builtin wrappers around ir_texture opcodes. These wrappers will
472 * be inlined by lower_precision() if we return true here, so that we can
473 * get to ir_texture later and do proper lowering.
474 *
475 * We should lower the type of the return value if the sampler type
476 * uses lower precision. The function parameters don't matter.
477 */
478 if (var && var->type->without_array()->is_sampler()) {
479 /* textureSize always returns highp. */
480 if (!strcmp(ir->callee_name(), "textureSize"))
481 return GLSL_PRECISION_HIGH;
482
483 return var->data.precision;
484 }
485 }
486
487 if (/* Parameters are always highp: */
488 !strcmp(ir->callee_name(), "floatBitsToInt") ||
489 !strcmp(ir->callee_name(), "floatBitsToUint") ||
490 !strcmp(ir->callee_name(), "intBitsToFloat") ||
491 !strcmp(ir->callee_name(), "uintBitsToFloat") ||
492 !strcmp(ir->callee_name(), "bitfieldReverse") ||
493 !strcmp(ir->callee_name(), "frexp") ||
494 !strcmp(ir->callee_name(), "ldexp") ||
495 /* Parameters and outputs are always highp: */
496 /* TODO: The operations are highp, but carry and borrow outputs are lowp. */
497 !strcmp(ir->callee_name(), "uaddCarry") ||
498 !strcmp(ir->callee_name(), "usubBorrow") ||
499 !strcmp(ir->callee_name(), "imulExtended") ||
500 !strcmp(ir->callee_name(), "umulExtended") ||
501 !strcmp(ir->callee_name(), "unpackUnorm2x16") ||
502 !strcmp(ir->callee_name(), "unpackSnorm2x16") ||
503 /* Outputs are highp: */
504 !strcmp(ir->callee_name(), "packUnorm2x16") ||
505 !strcmp(ir->callee_name(), "packSnorm2x16") ||
506 /* Parameters are mediump and outputs are highp. The parameters should
507 * be optimized in NIR, not here, e.g:
508 * - packHalf2x16 can just be a bitcast from f16vec2 to uint32
509 * - Other opcodes don't have to convert parameters to highp if the hw
510 * has f16 versions. Optimize in NIR accordingly.
511 */
512 !strcmp(ir->callee_name(), "packHalf2x16") ||
513 !strcmp(ir->callee_name(), "packUnorm4x8") ||
514 !strcmp(ir->callee_name(), "packSnorm4x8") ||
515 /* Atomic functions are not lowered. */
516 strstr(ir->callee_name(), "atomic") == ir->callee_name())
517 return GLSL_PRECISION_HIGH;
518
519 assert(ir->callee->return_precision == GLSL_PRECISION_NONE);
520
521 /* Number of parameters to check if they are lowerable. */
522 unsigned check_parameters = ir->actual_parameters.length();
523
524 /* Interpolation functions only consider the precision of the interpolant. */
525 /* Bitfield functions ignore the precision of "offset" and "bits". */
526 if (!strcmp(ir->callee_name(), "interpolateAtOffset") ||
527 !strcmp(ir->callee_name(), "interpolateAtSample") ||
528 !strcmp(ir->callee_name(), "bitfieldExtract")) {
529 check_parameters = 1;
530 } else if (!strcmp(ir->callee_name(), "bitfieldInsert")) {
531 check_parameters = 2;
532 } if (function_always_returns_mediump_or_lowp(ir->callee_name())) {
533 /* These only lower the return value. Parameters keep their precision,
534 * which is preserved in map_builtin.
535 */
536 check_parameters = 0;
537 }
538
539 /* If the call is to a builtin, then the function won’t have a return
540 * precision and we should determine it from the precision of the arguments.
541 */
542 foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
543 if (!check_parameters)
544 break;
545
546 if (!param->as_constant() &&
547 _mesa_set_search(lowerable_rvalues, param) == NULL)
548 return GLSL_PRECISION_HIGH;
549
550 --check_parameters;
551 }
552
553 return GLSL_PRECISION_MEDIUM;
554 }
555
556 ir_visitor_status
visit_leave(ir_call * ir)557 find_lowerable_rvalues_visitor::visit_leave(ir_call *ir)
558 {
559 ir_hierarchical_visitor::visit_leave(ir);
560
561 /* Special case for handling temporary variables generated by the compiler
562 * for function calls. If we assign to one of these using a function call
563 * that has a lowerable return type then we can assume the temporary
564 * variable should have a medium precision too.
565 */
566
567 /* Do nothing if the return type is void. */
568 if (!ir->return_deref)
569 return visit_continue;
570
571 ir_variable *var = ir->return_deref->variable_referenced();
572
573 assert(var->data.mode == ir_var_temporary);
574
575 unsigned return_precision = handle_call(ir, lowerable_rvalues);
576
577 can_lower_state lower_state =
578 handle_precision(var->type, return_precision);
579
580 if (lower_state == SHOULD_LOWER) {
581 /* There probably shouldn’t be any situations where multiple ir_call
582 * instructions write to the same temporary?
583 */
584 assert(var->data.precision == GLSL_PRECISION_NONE);
585 var->data.precision = GLSL_PRECISION_MEDIUM;
586 } else {
587 var->data.precision = GLSL_PRECISION_HIGH;
588 }
589
590 return visit_continue;
591 }
592
593 ir_visitor_status
visit_leave(ir_assignment * ir)594 find_lowerable_rvalues_visitor::visit_leave(ir_assignment *ir)
595 {
596 ir_hierarchical_visitor::visit_leave(ir);
597
598 /* Special case for handling temporary variables generated by the compiler.
599 * If we assign to one of these using a lowered precision then we can assume
600 * the temporary variable should have a medium precision too.
601 */
602 ir_variable *var = ir->lhs->variable_referenced();
603
604 if (var->data.mode == ir_var_temporary) {
605 if (_mesa_set_search(lowerable_rvalues, ir->rhs)) {
606 /* Only override the precision if this is the first assignment. For
607 * temporaries such as the ones generated for the ?: operator there
608 * can be multiple assignments with different precisions. This way we
609 * get the highest precision of all of the assignments.
610 */
611 if (var->data.precision == GLSL_PRECISION_NONE)
612 var->data.precision = GLSL_PRECISION_MEDIUM;
613 } else if (!ir->rhs->as_constant()) {
614 var->data.precision = GLSL_PRECISION_HIGH;
615 }
616 }
617
618 return visit_continue;
619 }
620
621 void
find_lowerable_rvalues(const struct gl_shader_compiler_options * options,exec_list * instructions,struct set * result)622 find_lowerable_rvalues(const struct gl_shader_compiler_options *options,
623 exec_list *instructions,
624 struct set *result)
625 {
626 find_lowerable_rvalues_visitor v(result, options);
627
628 visit_list_elements(&v, instructions);
629
630 assert(v.stack.empty());
631 }
632
633 static const glsl_type *
convert_type(bool up,const glsl_type * type)634 convert_type(bool up, const glsl_type *type)
635 {
636 if (type->is_array()) {
637 return glsl_type::get_array_instance(convert_type(up, type->fields.array),
638 type->array_size(),
639 type->explicit_stride);
640 }
641
642 glsl_base_type new_base_type;
643
644 if (up) {
645 switch (type->base_type) {
646 case GLSL_TYPE_FLOAT16:
647 new_base_type = GLSL_TYPE_FLOAT;
648 break;
649 case GLSL_TYPE_INT16:
650 new_base_type = GLSL_TYPE_INT;
651 break;
652 case GLSL_TYPE_UINT16:
653 new_base_type = GLSL_TYPE_UINT;
654 break;
655 default:
656 unreachable("invalid type");
657 return NULL;
658 }
659 } else {
660 switch (type->base_type) {
661 case GLSL_TYPE_FLOAT:
662 new_base_type = GLSL_TYPE_FLOAT16;
663 break;
664 case GLSL_TYPE_INT:
665 new_base_type = GLSL_TYPE_INT16;
666 break;
667 case GLSL_TYPE_UINT:
668 new_base_type = GLSL_TYPE_UINT16;
669 break;
670 default:
671 unreachable("invalid type");
672 return NULL;
673 }
674 }
675
676 return glsl_type::get_instance(new_base_type,
677 type->vector_elements,
678 type->matrix_columns,
679 type->explicit_stride,
680 type->interface_row_major);
681 }
682
683 static const glsl_type *
lower_glsl_type(const glsl_type * type)684 lower_glsl_type(const glsl_type *type)
685 {
686 return convert_type(false, type);
687 }
688
689 static ir_rvalue *
convert_precision(bool up,ir_rvalue * ir)690 convert_precision(bool up, ir_rvalue *ir)
691 {
692 unsigned op;
693
694 if (up) {
695 switch (ir->type->base_type) {
696 case GLSL_TYPE_FLOAT16:
697 op = ir_unop_f162f;
698 break;
699 case GLSL_TYPE_INT16:
700 op = ir_unop_i2i;
701 break;
702 case GLSL_TYPE_UINT16:
703 op = ir_unop_u2u;
704 break;
705 default:
706 unreachable("invalid type");
707 return NULL;
708 }
709 } else {
710 switch (ir->type->base_type) {
711 case GLSL_TYPE_FLOAT:
712 op = ir_unop_f2fmp;
713 break;
714 case GLSL_TYPE_INT:
715 op = ir_unop_i2imp;
716 break;
717 case GLSL_TYPE_UINT:
718 op = ir_unop_u2ump;
719 break;
720 default:
721 unreachable("invalid type");
722 return NULL;
723 }
724 }
725
726 const glsl_type *desired_type = convert_type(up, ir->type);
727 void *mem_ctx = ralloc_parent(ir);
728 return new(mem_ctx) ir_expression(op, desired_type, ir, NULL);
729 }
730
731 void
handle_rvalue(ir_rvalue ** rvalue)732 lower_precision_visitor::handle_rvalue(ir_rvalue **rvalue)
733 {
734 ir_rvalue *ir = *rvalue;
735
736 if (ir == NULL)
737 return;
738
739 if (ir->as_dereference()) {
740 if (!ir->type->is_boolean())
741 *rvalue = convert_precision(false, ir);
742 } else if (ir->type->is_32bit()) {
743 ir->type = lower_glsl_type(ir->type);
744
745 ir_constant *const_ir = ir->as_constant();
746
747 if (const_ir) {
748 ir_constant_data value;
749
750 if (ir->type->base_type == GLSL_TYPE_FLOAT16) {
751 for (unsigned i = 0; i < ARRAY_SIZE(value.f16); i++)
752 value.f16[i] = _mesa_float_to_half(const_ir->value.f[i]);
753 } else if (ir->type->base_type == GLSL_TYPE_INT16) {
754 for (unsigned i = 0; i < ARRAY_SIZE(value.i16); i++)
755 value.i16[i] = const_ir->value.i[i];
756 } else if (ir->type->base_type == GLSL_TYPE_UINT16) {
757 for (unsigned i = 0; i < ARRAY_SIZE(value.u16); i++)
758 value.u16[i] = const_ir->value.u[i];
759 } else {
760 unreachable("invalid type");
761 }
762
763 const_ir->value = value;
764 }
765 }
766 }
767
768 ir_visitor_status
visit_enter(ir_dereference_record * ir)769 lower_precision_visitor::visit_enter(ir_dereference_record *ir)
770 {
771 /* We don’t want to lower the variable */
772 return visit_continue_with_parent;
773 }
774
775 ir_visitor_status
visit_enter(ir_dereference_array * ir)776 lower_precision_visitor::visit_enter(ir_dereference_array *ir)
777 {
778 /* We don’t want to convert the array index or the variable. If the array
779 * index itself is lowerable that will be handled separately.
780 */
781 return visit_continue_with_parent;
782 }
783
784 ir_visitor_status
visit_enter(ir_call * ir)785 lower_precision_visitor::visit_enter(ir_call *ir)
786 {
787 /* We don’t want to convert the arguments. These will be handled separately.
788 */
789 return visit_continue_with_parent;
790 }
791
792 ir_visitor_status
visit_enter(ir_texture * ir)793 lower_precision_visitor::visit_enter(ir_texture *ir)
794 {
795 /* We don’t want to convert the arguments. These will be handled separately.
796 */
797 return visit_continue_with_parent;
798 }
799
800 ir_visitor_status
visit_leave(ir_expression * ir)801 lower_precision_visitor::visit_leave(ir_expression *ir)
802 {
803 ir_rvalue_visitor::visit_leave(ir);
804
805 /* If the expression is a conversion operation to or from bool then fix the
806 * operation.
807 */
808 switch (ir->operation) {
809 case ir_unop_b2f:
810 ir->operation = ir_unop_b2f16;
811 break;
812 case ir_unop_f2b:
813 ir->operation = ir_unop_f162b;
814 break;
815 case ir_unop_b2i:
816 case ir_unop_i2b:
817 /* Nothing to do - they both support int16. */
818 break;
819 default:
820 break;
821 }
822
823 return visit_continue;
824 }
825
826 void
handle_rvalue(ir_rvalue ** rvalue)827 find_precision_visitor::handle_rvalue(ir_rvalue **rvalue)
828 {
829 /* Checking the precision of rvalue can be lowered first throughout
830 * find_lowerable_rvalues_visitor.
831 * Once it found the precision of rvalue can be lowered, then we can
832 * add conversion f2fmp, etc. through lower_precision_visitor.
833 */
834 if (*rvalue == NULL)
835 return;
836
837 struct set_entry *entry = _mesa_set_search(lowerable_rvalues, *rvalue);
838
839 if (!entry)
840 return;
841
842 _mesa_set_remove(lowerable_rvalues, entry);
843
844 /* If the entire expression is just a variable dereference then trying to
845 * lower it will just directly add pointless to and from conversions without
846 * any actual operation in-between. Although these will eventually get
847 * optimised out, avoiding generating them here also avoids breaking inout
848 * parameters to functions.
849 */
850 if ((*rvalue)->as_dereference())
851 return;
852
853 lower_precision_visitor v;
854
855 (*rvalue)->accept(&v);
856 v.handle_rvalue(rvalue);
857
858 /* We don’t need to add the final conversion if the final type has been
859 * converted to bool
860 */
861 if ((*rvalue)->type->base_type != GLSL_TYPE_BOOL) {
862 *rvalue = convert_precision(true, *rvalue);
863 }
864 }
865
866 ir_visitor_status
visit_enter(ir_call * ir)867 find_precision_visitor::visit_enter(ir_call *ir)
868 {
869 ir_rvalue_enter_visitor::visit_enter(ir);
870
871 ir_variable *return_var =
872 ir->return_deref ? ir->return_deref->variable_referenced() : NULL;
873
874 /* Don't do anything for image_load here. We have only changed the return
875 * value to mediump/lowp, so that following instructions can use reduced
876 * precision.
877 *
878 * The return value type of the intrinsic itself isn't changed here, but
879 * can be changed in NIR if all users use the *2*mp opcode.
880 */
881 if (ir->callee->intrinsic_id == ir_intrinsic_image_load)
882 return visit_continue;
883
884 /* If this is a call to a builtin and the find_lowerable_rvalues_visitor
885 * overrode the precision of the temporary return variable, then we can
886 * replace the builtin implementation with a lowered version.
887 */
888
889 if (!ir->callee->is_builtin() ||
890 ir->callee->is_intrinsic() ||
891 return_var == NULL ||
892 (return_var->data.precision != GLSL_PRECISION_MEDIUM &&
893 return_var->data.precision != GLSL_PRECISION_LOW))
894 return visit_continue;
895
896 ir->callee = map_builtin(ir->callee);
897 ir->generate_inline(ir);
898 ir->remove();
899
900 return visit_continue_with_parent;
901 }
902
903 ir_function_signature *
map_builtin(ir_function_signature * sig)904 find_precision_visitor::map_builtin(ir_function_signature *sig)
905 {
906 if (lowered_builtins == NULL) {
907 lowered_builtins = _mesa_pointer_hash_table_create(NULL);
908 clone_ht =_mesa_pointer_hash_table_create(NULL);
909 lowered_builtin_mem_ctx = ralloc_context(NULL);
910 } else {
911 struct hash_entry *entry = _mesa_hash_table_search(lowered_builtins, sig);
912 if (entry)
913 return (ir_function_signature *) entry->data;
914 }
915
916 ir_function_signature *lowered_sig =
917 sig->clone(lowered_builtin_mem_ctx, clone_ht);
918
919 /* Functions that always return mediump or lowp should keep their
920 * parameters intact, because they can be highp. NIR can lower
921 * the up-conversion for parameters if needed.
922 */
923 if (!function_always_returns_mediump_or_lowp(sig->function_name())) {
924 foreach_in_list(ir_variable, param, &lowered_sig->parameters) {
925 param->data.precision = GLSL_PRECISION_MEDIUM;
926 }
927 }
928
929 lower_precision(options, &lowered_sig->body);
930
931 _mesa_hash_table_clear(clone_ht, NULL);
932
933 _mesa_hash_table_insert(lowered_builtins, sig, lowered_sig);
934
935 return lowered_sig;
936 }
937
find_precision_visitor(const struct gl_shader_compiler_options * options)938 find_precision_visitor::find_precision_visitor(const struct gl_shader_compiler_options *options)
939 : lowerable_rvalues(_mesa_pointer_set_create(NULL)),
940 lowered_builtins(NULL),
941 clone_ht(NULL),
942 lowered_builtin_mem_ctx(NULL),
943 options(options)
944 {
945 }
946
~find_precision_visitor()947 find_precision_visitor::~find_precision_visitor()
948 {
949 _mesa_set_destroy(lowerable_rvalues, NULL);
950
951 if (lowered_builtins) {
952 _mesa_hash_table_destroy(lowered_builtins, NULL);
953 _mesa_hash_table_destroy(clone_ht, NULL);
954 ralloc_free(lowered_builtin_mem_ctx);
955 }
956 }
957
958 /* Lowering opcodes to 16 bits is not enough for programs with control flow
959 * (and the ?: operator, which is represented by if-then-else in the IR),
960 * because temporary variables, which are used for passing values between
961 * code blocks, are not lowered, resulting in 32-bit phis in NIR.
962 *
963 * First change the variable types to 16 bits, then change all ir_dereference
964 * types to 16 bits.
965 */
966 class lower_variables_visitor : public ir_rvalue_enter_visitor {
967 public:
lower_variables_visitor(const struct gl_shader_compiler_options * options)968 lower_variables_visitor(const struct gl_shader_compiler_options *options)
969 : options(options) {
970 lower_vars = _mesa_pointer_set_create(NULL);
971 }
972
~lower_variables_visitor()973 virtual ~lower_variables_visitor()
974 {
975 _mesa_set_destroy(lower_vars, NULL);
976 }
977
978 virtual ir_visitor_status visit(ir_variable *var);
979 virtual ir_visitor_status visit_enter(ir_assignment *ir);
980 virtual ir_visitor_status visit_enter(ir_return *ir);
981 virtual ir_visitor_status visit_enter(ir_call *ir);
982 virtual void handle_rvalue(ir_rvalue **rvalue);
983
984 void fix_types_in_deref_chain(ir_dereference *ir);
985 void convert_split_assignment(ir_dereference *lhs, ir_rvalue *rhs,
986 bool insert_before);
987
988 const struct gl_shader_compiler_options *options;
989 set *lower_vars;
990 };
991
992 static void
lower_constant(ir_constant * ir)993 lower_constant(ir_constant *ir)
994 {
995 if (ir->type->is_array()) {
996 for (int i = 0; i < ir->type->array_size(); i++)
997 lower_constant(ir->get_array_element(i));
998
999 ir->type = lower_glsl_type(ir->type);
1000 return;
1001 }
1002
1003 ir->type = lower_glsl_type(ir->type);
1004 ir_constant_data value;
1005
1006 if (ir->type->base_type == GLSL_TYPE_FLOAT16) {
1007 for (unsigned i = 0; i < ARRAY_SIZE(value.f16); i++)
1008 value.f16[i] = _mesa_float_to_half(ir->value.f[i]);
1009 } else if (ir->type->base_type == GLSL_TYPE_INT16) {
1010 for (unsigned i = 0; i < ARRAY_SIZE(value.i16); i++)
1011 value.i16[i] = ir->value.i[i];
1012 } else if (ir->type->base_type == GLSL_TYPE_UINT16) {
1013 for (unsigned i = 0; i < ARRAY_SIZE(value.u16); i++)
1014 value.u16[i] = ir->value.u[i];
1015 } else {
1016 unreachable("invalid type");
1017 }
1018
1019 ir->value = value;
1020 }
1021
1022 ir_visitor_status
visit(ir_variable * var)1023 lower_variables_visitor::visit(ir_variable *var)
1024 {
1025 if ((var->data.mode != ir_var_temporary &&
1026 var->data.mode != ir_var_auto &&
1027 /* Lower uniforms but not UBOs. */
1028 (var->data.mode != ir_var_uniform ||
1029 var->is_in_buffer_block() ||
1030 !(options->LowerPrecisionFloat16Uniforms &&
1031 var->type->without_array()->base_type == GLSL_TYPE_FLOAT))) ||
1032 !var->type->without_array()->is_32bit() ||
1033 (var->data.precision != GLSL_PRECISION_MEDIUM &&
1034 var->data.precision != GLSL_PRECISION_LOW) ||
1035 !can_lower_type(options, var->type))
1036 return visit_continue;
1037
1038 /* Lower constant initializers. */
1039 if (var->constant_value &&
1040 var->type == var->constant_value->type) {
1041 if (!options->LowerPrecisionConstants)
1042 return visit_continue;
1043 var->constant_value =
1044 var->constant_value->clone(ralloc_parent(var), NULL);
1045 lower_constant(var->constant_value);
1046 }
1047
1048 if (var->constant_initializer &&
1049 var->type == var->constant_initializer->type) {
1050 if (!options->LowerPrecisionConstants)
1051 return visit_continue;
1052 var->constant_initializer =
1053 var->constant_initializer->clone(ralloc_parent(var), NULL);
1054 lower_constant(var->constant_initializer);
1055 }
1056
1057 var->type = lower_glsl_type(var->type);
1058 _mesa_set_add(lower_vars, var);
1059
1060 return visit_continue;
1061 }
1062
1063 void
fix_types_in_deref_chain(ir_dereference * ir)1064 lower_variables_visitor::fix_types_in_deref_chain(ir_dereference *ir)
1065 {
1066 assert(ir->type->without_array()->is_32bit());
1067 assert(_mesa_set_search(lower_vars, ir->variable_referenced()));
1068
1069 /* Fix the type in the dereference node. */
1070 ir->type = lower_glsl_type(ir->type);
1071
1072 /* If it's an array, fix the types in the whole dereference chain. */
1073 for (ir_dereference_array *deref_array = ir->as_dereference_array();
1074 deref_array;
1075 deref_array = deref_array->array->as_dereference_array()) {
1076 assert(deref_array->array->type->without_array()->is_32bit());
1077 deref_array->array->type = lower_glsl_type(deref_array->array->type);
1078 }
1079 }
1080
1081 void
convert_split_assignment(ir_dereference * lhs,ir_rvalue * rhs,bool insert_before)1082 lower_variables_visitor::convert_split_assignment(ir_dereference *lhs,
1083 ir_rvalue *rhs,
1084 bool insert_before)
1085 {
1086 void *mem_ctx = ralloc_parent(lhs);
1087
1088 if (lhs->type->is_array()) {
1089 for (unsigned i = 0; i < lhs->type->length; i++) {
1090 ir_dereference *l, *r;
1091
1092 l = new(mem_ctx) ir_dereference_array(lhs->clone(mem_ctx, NULL),
1093 new(mem_ctx) ir_constant(i));
1094 r = new(mem_ctx) ir_dereference_array(rhs->clone(mem_ctx, NULL),
1095 new(mem_ctx) ir_constant(i));
1096 convert_split_assignment(l, r, insert_before);
1097 }
1098 return;
1099 }
1100
1101 assert(lhs->type->is_16bit() || lhs->type->is_32bit());
1102 assert(rhs->type->is_16bit() || rhs->type->is_32bit());
1103 assert(lhs->type->is_16bit() != rhs->type->is_16bit());
1104
1105 ir_assignment *assign =
1106 new(mem_ctx) ir_assignment(lhs, convert_precision(lhs->type->is_32bit(), rhs));
1107
1108 if (insert_before)
1109 base_ir->insert_before(assign);
1110 else
1111 base_ir->insert_after(assign);
1112 }
1113
1114 ir_visitor_status
visit_enter(ir_assignment * ir)1115 lower_variables_visitor::visit_enter(ir_assignment *ir)
1116 {
1117 ir_dereference *lhs = ir->lhs;
1118 ir_variable *var = lhs->variable_referenced();
1119 ir_dereference *rhs_deref = ir->rhs->as_dereference();
1120 ir_variable *rhs_var = rhs_deref ? rhs_deref->variable_referenced() : NULL;
1121 ir_constant *rhs_const = ir->rhs->as_constant();
1122
1123 /* Legalize array assignments between lowered and non-lowered variables. */
1124 if (lhs->type->is_array() &&
1125 (rhs_var || rhs_const) &&
1126 (!rhs_var ||
1127 (var &&
1128 var->type->without_array()->is_16bit() !=
1129 rhs_var->type->without_array()->is_16bit())) &&
1130 (!rhs_const ||
1131 (var &&
1132 var->type->without_array()->is_16bit() &&
1133 rhs_const->type->without_array()->is_32bit()))) {
1134 assert(ir->rhs->type->is_array());
1135
1136 /* Fix array assignments from lowered to non-lowered. */
1137 if (rhs_var && _mesa_set_search(lower_vars, rhs_var)) {
1138 fix_types_in_deref_chain(rhs_deref);
1139 /* Convert to 32 bits for LHS. */
1140 convert_split_assignment(lhs, rhs_deref, true);
1141 ir->remove();
1142 return visit_continue;
1143 }
1144
1145 /* Fix array assignments from non-lowered to lowered. */
1146 if (var &&
1147 _mesa_set_search(lower_vars, var) &&
1148 ir->rhs->type->without_array()->is_32bit()) {
1149 fix_types_in_deref_chain(lhs);
1150 /* Convert to 16 bits for LHS. */
1151 convert_split_assignment(lhs, ir->rhs, true);
1152 ir->remove();
1153 return visit_continue;
1154 }
1155 }
1156
1157 /* Fix assignment types. */
1158 if (var &&
1159 _mesa_set_search(lower_vars, var)) {
1160 /* Fix the LHS type. */
1161 if (lhs->type->without_array()->is_32bit())
1162 fix_types_in_deref_chain(lhs);
1163
1164 /* Fix the RHS type if it's a lowered variable. */
1165 if (rhs_var &&
1166 _mesa_set_search(lower_vars, rhs_var) &&
1167 rhs_deref->type->without_array()->is_32bit())
1168 fix_types_in_deref_chain(rhs_deref);
1169
1170 /* Fix the RHS type if it's a non-array expression. */
1171 if (ir->rhs->type->is_32bit()) {
1172 ir_expression *expr = ir->rhs->as_expression();
1173
1174 /* Convert the RHS to the LHS type. */
1175 if (expr &&
1176 (expr->operation == ir_unop_f162f ||
1177 expr->operation == ir_unop_i2i ||
1178 expr->operation == ir_unop_u2u) &&
1179 expr->operands[0]->type->is_16bit()) {
1180 /* If there is an "up" conversion, just remove it.
1181 * This is optional. We could as well execute the else statement and
1182 * let NIR eliminate the up+down conversions.
1183 */
1184 ir->rhs = expr->operands[0];
1185 } else {
1186 /* Add a "down" conversion operation to fix the type of RHS. */
1187 ir->rhs = convert_precision(false, ir->rhs);
1188 }
1189 }
1190 }
1191
1192 return ir_rvalue_enter_visitor::visit_enter(ir);
1193 }
1194
1195 ir_visitor_status
visit_enter(ir_return * ir)1196 lower_variables_visitor::visit_enter(ir_return *ir)
1197 {
1198 void *mem_ctx = ralloc_parent(ir);
1199
1200 ir_dereference *deref = ir->value ? ir->value->as_dereference() : NULL;
1201 if (deref) {
1202 ir_variable *var = deref->variable_referenced();
1203
1204 /* Fix the type of the return value. */
1205 if (var &&
1206 _mesa_set_search(lower_vars, var) &&
1207 deref->type->without_array()->is_32bit()) {
1208 /* Create a 32-bit temporary variable. */
1209 ir_variable *new_var =
1210 new(mem_ctx) ir_variable(deref->type, "lowerp", ir_var_temporary);
1211 base_ir->insert_before(new_var);
1212
1213 /* Fix types in dereferences. */
1214 fix_types_in_deref_chain(deref);
1215
1216 /* Convert to 32 bits for the return value. */
1217 convert_split_assignment(new(mem_ctx) ir_dereference_variable(new_var),
1218 deref, true);
1219 ir->value = new(mem_ctx) ir_dereference_variable(new_var);
1220 }
1221 }
1222
1223 return ir_rvalue_enter_visitor::visit_enter(ir);
1224 }
1225
handle_rvalue(ir_rvalue ** rvalue)1226 void lower_variables_visitor::handle_rvalue(ir_rvalue **rvalue)
1227 {
1228 ir_rvalue *ir = *rvalue;
1229
1230 if (in_assignee || ir == NULL)
1231 return;
1232
1233 ir_expression *expr = ir->as_expression();
1234 ir_dereference *expr_op0_deref = expr ? expr->operands[0]->as_dereference() : NULL;
1235
1236 /* Remove f2fmp(float16). Same for int16 and uint16. */
1237 if (expr &&
1238 expr_op0_deref &&
1239 (expr->operation == ir_unop_f2fmp ||
1240 expr->operation == ir_unop_i2imp ||
1241 expr->operation == ir_unop_u2ump ||
1242 expr->operation == ir_unop_f2f16 ||
1243 expr->operation == ir_unop_i2i ||
1244 expr->operation == ir_unop_u2u) &&
1245 expr->type->without_array()->is_16bit() &&
1246 expr_op0_deref->type->without_array()->is_32bit() &&
1247 expr_op0_deref->variable_referenced() &&
1248 _mesa_set_search(lower_vars, expr_op0_deref->variable_referenced())) {
1249 fix_types_in_deref_chain(expr_op0_deref);
1250
1251 /* Remove f2fmp/i2imp/u2ump. */
1252 *rvalue = expr_op0_deref;
1253 return;
1254 }
1255
1256 ir_dereference *deref = ir->as_dereference();
1257
1258 if (deref) {
1259 ir_variable *var = deref->variable_referenced();
1260
1261 /* var can be NULL if we are dereferencing ir_constant. */
1262 if (var &&
1263 _mesa_set_search(lower_vars, var) &&
1264 deref->type->without_array()->is_32bit()) {
1265 void *mem_ctx = ralloc_parent(ir);
1266
1267 /* Create a 32-bit temporary variable. */
1268 ir_variable *new_var =
1269 new(mem_ctx) ir_variable(deref->type, "lowerp", ir_var_temporary);
1270 base_ir->insert_before(new_var);
1271
1272 /* Fix types in dereferences. */
1273 fix_types_in_deref_chain(deref);
1274
1275 /* Convert to 32 bits for the rvalue. */
1276 convert_split_assignment(new(mem_ctx) ir_dereference_variable(new_var),
1277 deref, true);
1278 *rvalue = new(mem_ctx) ir_dereference_variable(new_var);
1279 }
1280 }
1281 }
1282
1283 ir_visitor_status
visit_enter(ir_call * ir)1284 lower_variables_visitor::visit_enter(ir_call *ir)
1285 {
1286 void *mem_ctx = ralloc_parent(ir);
1287
1288 /* We can't pass 16-bit variables as 32-bit inout/out parameters. */
1289 foreach_two_lists(formal_node, &ir->callee->parameters,
1290 actual_node, &ir->actual_parameters) {
1291 ir_dereference *param_deref =
1292 ((ir_rvalue *)actual_node)->as_dereference();
1293 ir_variable *param = (ir_variable *)formal_node;
1294
1295 if (!param_deref)
1296 continue;
1297
1298 ir_variable *var = param_deref->variable_referenced();
1299
1300 /* var can be NULL if we are dereferencing ir_constant. */
1301 if (var &&
1302 _mesa_set_search(lower_vars, var) &&
1303 param->type->without_array()->is_32bit()) {
1304 fix_types_in_deref_chain(param_deref);
1305
1306 /* Create a 32-bit temporary variable for the parameter. */
1307 ir_variable *new_var =
1308 new(mem_ctx) ir_variable(param->type, "lowerp", ir_var_temporary);
1309 base_ir->insert_before(new_var);
1310
1311 /* Replace the parameter. */
1312 actual_node->replace_with(new(mem_ctx) ir_dereference_variable(new_var));
1313
1314 if (param->data.mode == ir_var_function_in ||
1315 param->data.mode == ir_var_function_inout) {
1316 /* Convert to 32 bits for passing in. */
1317 convert_split_assignment(new(mem_ctx) ir_dereference_variable(new_var),
1318 param_deref->clone(mem_ctx, NULL), true);
1319 }
1320 if (param->data.mode == ir_var_function_out ||
1321 param->data.mode == ir_var_function_inout) {
1322 /* Convert to 16 bits after returning. */
1323 convert_split_assignment(param_deref,
1324 new(mem_ctx) ir_dereference_variable(new_var),
1325 false);
1326 }
1327 }
1328 }
1329
1330 /* Fix the type of return value dereferencies. */
1331 ir_dereference_variable *ret_deref = ir->return_deref;
1332 ir_variable *ret_var = ret_deref ? ret_deref->variable_referenced() : NULL;
1333
1334 if (ret_var &&
1335 _mesa_set_search(lower_vars, ret_var) &&
1336 ret_deref->type->without_array()->is_32bit()) {
1337 /* Create a 32-bit temporary variable. */
1338 ir_variable *new_var =
1339 new(mem_ctx) ir_variable(ir->callee->return_type, "lowerp",
1340 ir_var_temporary);
1341 base_ir->insert_before(new_var);
1342
1343 /* Replace the return variable. */
1344 ret_deref->var = new_var;
1345
1346 /* Convert to 16 bits after returning. */
1347 convert_split_assignment(new(mem_ctx) ir_dereference_variable(ret_var),
1348 new(mem_ctx) ir_dereference_variable(new_var),
1349 false);
1350 }
1351
1352 return ir_rvalue_enter_visitor::visit_enter(ir);
1353 }
1354
1355 }
1356
1357 void
lower_precision(const struct gl_shader_compiler_options * options,exec_list * instructions)1358 lower_precision(const struct gl_shader_compiler_options *options,
1359 exec_list *instructions)
1360 {
1361 find_precision_visitor v(options);
1362 find_lowerable_rvalues(options, instructions, v.lowerable_rvalues);
1363 visit_list_elements(&v, instructions);
1364
1365 lower_variables_visitor vars(options);
1366 visit_list_elements(&vars, instructions);
1367 }
1368