1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Jason Ekstrand (jason@jlekstrand.net)
25  *
26  */
27 
28 #include "nir.h"
29 #include "nir_builder.h"
30 #include "nir_vla.h"
31 
32 /*
33  * This file implements an out-of-SSA pass as described in "Revisiting
34  * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
35  * Boissinot et al.
36  */
37 
38 struct from_ssa_state {
39    nir_builder builder;
40    void *dead_ctx;
41    struct exec_list dead_instrs;
42    bool phi_webs_only;
43    struct hash_table *merge_node_table;
44    nir_instr *instr;
45    bool progress;
46 };
47 
48 /* Returns if def @a comes after def @b.
49  *
50  * The core observation that makes the Boissinot algorithm efficient
51  * is that, given two properly sorted sets, we can check for
52  * interference in these sets via a linear walk. This is accomplished
53  * by doing single combined walk over union of the two sets in DFS
54  * order. It doesn't matter what DFS we do so long as we're
55  * consistent. Fortunately, the dominance algorithm we ran prior to
56  * this pass did such a walk and recorded the pre- and post-indices in
57  * the blocks.
58  *
59  * We treat SSA undefs as always coming before other instruction types.
60  */
61 static bool
def_after(nir_ssa_def * a,nir_ssa_def * b)62 def_after(nir_ssa_def *a, nir_ssa_def *b)
63 {
64    if (a->parent_instr->type == nir_instr_type_ssa_undef)
65       return false;
66 
67    if (b->parent_instr->type == nir_instr_type_ssa_undef)
68       return true;
69 
70    /* If they're in the same block, we can rely on whichever instruction
71     * comes first in the block.
72     */
73    if (a->parent_instr->block == b->parent_instr->block)
74       return a->parent_instr->index > b->parent_instr->index;
75 
76    /* Otherwise, if blocks are distinct, we sort them in DFS pre-order */
77    return a->parent_instr->block->dom_pre_index >
78           b->parent_instr->block->dom_pre_index;
79 }
80 
81 /* Returns true if a dominates b */
82 static bool
ssa_def_dominates(nir_ssa_def * a,nir_ssa_def * b)83 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
84 {
85    if (a->parent_instr->type == nir_instr_type_ssa_undef) {
86       /* SSA undefs always dominate */
87       return true;
88    } if (def_after(a, b)) {
89       return false;
90    } else if (a->parent_instr->block == b->parent_instr->block) {
91       return def_after(b, a);
92    } else {
93       return nir_block_dominates(a->parent_instr->block,
94                                  b->parent_instr->block);
95    }
96 }
97 
98 
99 /* The following data structure, which I have named merge_set is a way of
100  * representing a set registers of non-interfering registers.  This is
101  * based on the concept of a "dominance forest" presented in "Fast Copy
102  * Coalescing and Live-Range Identification" by Budimlic et al. but the
103  * implementation concept is taken from  "Revisiting Out-of-SSA Translation
104  * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
105  *
106  * Each SSA definition is associated with a merge_node and the association
107  * is represented by a combination of a hash table and the "def" parameter
108  * in the merge_node structure.  The merge_set stores a linked list of
109  * merge_nodes, ordered by a pre-order DFS walk of the dominance tree.  (Since
110  * the liveness analysis pass indexes the SSA values in dominance order for
111  * us, this is an easy thing to keep up.)  It is assumed that no pair of the
112  * nodes in a given set interfere.  Merging two sets or checking for
113  * interference can be done in a single linear-time merge-sort walk of the
114  * two lists of nodes.
115  */
116 struct merge_set;
117 
118 typedef struct {
119    struct exec_node node;
120    struct merge_set *set;
121    nir_ssa_def *def;
122 } merge_node;
123 
124 typedef struct merge_set {
125    struct exec_list nodes;
126    unsigned size;
127    bool divergent;
128    nir_register *reg;
129 } merge_set;
130 
131 #if 0
132 static void
133 merge_set_dump(merge_set *set, FILE *fp)
134 {
135    nir_ssa_def *dom[set->size];
136    int dom_idx = -1;
137 
138    foreach_list_typed(merge_node, node, node, &set->nodes) {
139       while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
140          dom_idx--;
141 
142       for (int i = 0; i <= dom_idx; i++)
143          fprintf(fp, "  ");
144 
145       fprintf(fp, "ssa_%d\n", node->def->index);
146 
147       dom[++dom_idx] = node->def;
148    }
149 }
150 #endif
151 
152 static merge_node *
get_merge_node(nir_ssa_def * def,struct from_ssa_state * state)153 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
154 {
155    struct hash_entry *entry =
156       _mesa_hash_table_search(state->merge_node_table, def);
157    if (entry)
158       return entry->data;
159 
160    merge_set *set = ralloc(state->dead_ctx, merge_set);
161    exec_list_make_empty(&set->nodes);
162    set->size = 1;
163    set->divergent = def->divergent;
164    set->reg = NULL;
165 
166    merge_node *node = ralloc(state->dead_ctx, merge_node);
167    node->set = set;
168    node->def = def;
169    exec_list_push_head(&set->nodes, &node->node);
170 
171    _mesa_hash_table_insert(state->merge_node_table, def, node);
172 
173    return node;
174 }
175 
176 static bool
merge_nodes_interfere(merge_node * a,merge_node * b)177 merge_nodes_interfere(merge_node *a, merge_node *b)
178 {
179    /* There's no need to check for interference within the same set,
180     * because we assume, that sets themselves are already
181     * interference-free.
182     */
183    if (a->set == b->set)
184       return false;
185 
186    return nir_ssa_defs_interfere(a->def, b->def);
187 }
188 
189 /* Merges b into a
190  *
191  * This algorithm uses def_after to ensure that the sets always stay in the
192  * same order as the pre-order DFS done by the liveness algorithm.
193  */
194 static merge_set *
merge_merge_sets(merge_set * a,merge_set * b)195 merge_merge_sets(merge_set *a, merge_set *b)
196 {
197    struct exec_node *an = exec_list_get_head(&a->nodes);
198    struct exec_node *bn = exec_list_get_head(&b->nodes);
199    while (!exec_node_is_tail_sentinel(bn)) {
200       merge_node *a_node = exec_node_data(merge_node, an, node);
201       merge_node *b_node = exec_node_data(merge_node, bn, node);
202 
203       if (exec_node_is_tail_sentinel(an) ||
204           def_after(a_node->def, b_node->def)) {
205          struct exec_node *next = bn->next;
206          exec_node_remove(bn);
207          exec_node_insert_node_before(an, bn);
208          exec_node_data(merge_node, bn, node)->set = a;
209          bn = next;
210       } else {
211          an = an->next;
212       }
213    }
214 
215    a->size += b->size;
216    b->size = 0;
217    a->divergent |= b->divergent;
218 
219    return a;
220 }
221 
222 /* Checks for any interference between two merge sets
223  *
224  * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
225  * Translation for Correctness, Code Quality, and Efficiency" by
226  * Boissinot et al.
227  */
228 static bool
merge_sets_interfere(merge_set * a,merge_set * b)229 merge_sets_interfere(merge_set *a, merge_set *b)
230 {
231    /* List of all the nodes which dominate the current node, in dominance
232     * order.
233     */
234    NIR_VLA(merge_node *, dom, a->size + b->size);
235    int dom_idx = -1;
236 
237    struct exec_node *an = exec_list_get_head(&a->nodes);
238    struct exec_node *bn = exec_list_get_head(&b->nodes);
239    while (!exec_node_is_tail_sentinel(an) ||
240           !exec_node_is_tail_sentinel(bn)) {
241 
242       /* We walk the union of the two sets in the same order as the pre-order
243        * DFS done by liveness analysis.
244        */
245       merge_node *current;
246       if (exec_node_is_tail_sentinel(an)) {
247          current = exec_node_data(merge_node, bn, node);
248          bn = bn->next;
249       } else if (exec_node_is_tail_sentinel(bn)) {
250          current = exec_node_data(merge_node, an, node);
251          an = an->next;
252       } else {
253          merge_node *a_node = exec_node_data(merge_node, an, node);
254          merge_node *b_node = exec_node_data(merge_node, bn, node);
255 
256          if (def_after(b_node->def, a_node->def)) {
257             current = a_node;
258             an = an->next;
259          } else {
260             current = b_node;
261             bn = bn->next;
262          }
263       }
264 
265       /* Because our walk is a pre-order DFS, we can maintain the list of
266        * dominating nodes as a simple stack, pushing every node onto the list
267        * after we visit it and popping any non-dominating nodes off before we
268        * visit the current node.
269        */
270       while (dom_idx >= 0 &&
271              !ssa_def_dominates(dom[dom_idx]->def, current->def))
272          dom_idx--;
273 
274       /* There are three invariants of this algorithm that are important here:
275        *
276        *  1. There is no interference within either set a or set b.
277        *  2. None of the nodes processed up until this point interfere.
278        *  3. All the dominators of `current` have been processed
279        *
280        * Because of these invariants, we only need to check the current node
281        * against its minimal dominator.  If any other node N in the union
282        * interferes with current, then N must dominate current because we are
283        * in SSA form.  If N dominates current then it must also dominate our
284        * minimal dominator dom[dom_idx].  Since N is live at current it must
285        * also be live at the minimal dominator which means N interferes with
286        * the minimal dominator dom[dom_idx] and, by invariants 2 and 3 above,
287        * the algorithm would have already terminated.  Therefore, if we got
288        * here, the only node that can possibly interfere with current is the
289        * minimal dominator dom[dom_idx].
290        *
291        * This is what allows us to do a interference check of the union of the
292        * two sets with a single linear-time walk.
293        */
294       if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
295          return true;
296 
297       dom[++dom_idx] = current;
298    }
299 
300    return false;
301 }
302 
303 static bool
add_parallel_copy_to_end_of_block(nir_shader * shader,nir_block * block,void * dead_ctx)304 add_parallel_copy_to_end_of_block(nir_shader *shader, nir_block *block, void *dead_ctx)
305 {
306    bool need_end_copy = false;
307    if (block->successors[0]) {
308       nir_instr *instr = nir_block_first_instr(block->successors[0]);
309       if (instr && instr->type == nir_instr_type_phi)
310          need_end_copy = true;
311    }
312 
313    if (block->successors[1]) {
314       nir_instr *instr = nir_block_first_instr(block->successors[1]);
315       if (instr && instr->type == nir_instr_type_phi)
316          need_end_copy = true;
317    }
318 
319    if (need_end_copy) {
320       /* If one of our successors has at least one phi node, we need to
321        * create a parallel copy at the end of the block but before the jump
322        * (if there is one).
323        */
324       nir_parallel_copy_instr *pcopy =
325          nir_parallel_copy_instr_create(shader);
326 
327       nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
328    }
329 
330    return true;
331 }
332 
333 static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block * block)334 get_parallel_copy_at_end_of_block(nir_block *block)
335 {
336    nir_instr *last_instr = nir_block_last_instr(block);
337    if (last_instr == NULL)
338       return NULL;
339 
340    /* The last instruction may be a jump in which case the parallel copy is
341     * right before it.
342     */
343    if (last_instr->type == nir_instr_type_jump)
344       last_instr = nir_instr_prev(last_instr);
345 
346    if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
347       return nir_instr_as_parallel_copy(last_instr);
348    else
349       return NULL;
350 }
351 
352 /** Isolate phi nodes with parallel copies
353  *
354  * In order to solve the dependency problems with the sources and
355  * destinations of phi nodes, we first isolate them by adding parallel
356  * copies to the beginnings and ends of basic blocks.  For every block with
357  * phi nodes, we add a parallel copy immediately following the last phi
358  * node that copies the destinations of all of the phi nodes to new SSA
359  * values.  We also add a parallel copy to the end of every block that has
360  * a successor with phi nodes that, for each phi node in each successor,
361  * copies the corresponding sorce of the phi node and adjust the phi to
362  * used the destination of the parallel copy.
363  *
364  * In SSA form, each value has exactly one definition.  What this does is
365  * ensure that each value used in a phi also has exactly one use.  The
366  * destinations of phis are only used by the parallel copy immediately
367  * following the phi nodes and.  Thanks to the parallel copy at the end of
368  * the predecessor block, the sources of phi nodes are are the only use of
369  * that value.  This allows us to immediately assign all the sources and
370  * destinations of any given phi node to the same register without worrying
371  * about interference at all.  We do coalescing to get rid of the parallel
372  * copies where possible.
373  *
374  * Before this pass can be run, we have to iterate over the blocks with
375  * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
376  * the ends of blocks exist.  We can create the ones at the beginnings as
377  * we go, but the ones at the ends of blocks need to be created ahead of
378  * time because of potential back-edges in the CFG.
379  */
380 static bool
isolate_phi_nodes_block(nir_shader * shader,nir_block * block,void * dead_ctx)381 isolate_phi_nodes_block(nir_shader *shader, nir_block *block, void *dead_ctx)
382 {
383    nir_instr *last_phi_instr = NULL;
384    nir_foreach_instr(instr, block) {
385       /* Phi nodes only ever come at the start of a block */
386       if (instr->type != nir_instr_type_phi)
387          break;
388 
389       last_phi_instr = instr;
390    }
391 
392    /* If we don't have any phis, then there's nothing for us to do. */
393    if (last_phi_instr == NULL)
394       return true;
395 
396    /* If we have phi nodes, we need to create a parallel copy at the
397     * start of this block but after the phi nodes.
398     */
399    nir_parallel_copy_instr *block_pcopy =
400       nir_parallel_copy_instr_create(shader);
401    nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
402 
403    nir_foreach_instr(instr, block) {
404       /* Phi nodes only ever come at the start of a block */
405       if (instr->type != nir_instr_type_phi)
406          break;
407 
408       nir_phi_instr *phi = nir_instr_as_phi(instr);
409       assert(phi->dest.is_ssa);
410       nir_foreach_phi_src(src, phi) {
411          nir_parallel_copy_instr *pcopy =
412             get_parallel_copy_at_end_of_block(src->pred);
413          assert(pcopy);
414 
415          nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
416                                                   nir_parallel_copy_entry);
417          nir_ssa_dest_init(&pcopy->instr, &entry->dest,
418                            phi->dest.ssa.num_components,
419                            phi->dest.ssa.bit_size, NULL);
420          entry->dest.ssa.divergent = nir_src_is_divergent(src->src);
421          exec_list_push_tail(&pcopy->entries, &entry->node);
422 
423          assert(src->src.is_ssa);
424          nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
425 
426          nir_instr_rewrite_src(&phi->instr, &src->src,
427                                nir_src_for_ssa(&entry->dest.ssa));
428       }
429 
430       nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
431                                                nir_parallel_copy_entry);
432       nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
433                         phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
434                         NULL);
435       entry->dest.ssa.divergent = phi->dest.ssa.divergent;
436       exec_list_push_tail(&block_pcopy->entries, &entry->node);
437 
438       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
439                                &entry->dest.ssa);
440 
441       nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
442                             nir_src_for_ssa(&phi->dest.ssa));
443    }
444 
445    return true;
446 }
447 
448 static bool
coalesce_phi_nodes_block(nir_block * block,struct from_ssa_state * state)449 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
450 {
451    nir_foreach_instr(instr, block) {
452       /* Phi nodes only ever come at the start of a block */
453       if (instr->type != nir_instr_type_phi)
454          break;
455 
456       nir_phi_instr *phi = nir_instr_as_phi(instr);
457 
458       assert(phi->dest.is_ssa);
459       merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
460 
461       nir_foreach_phi_src(src, phi) {
462          assert(src->src.is_ssa);
463          merge_node *src_node = get_merge_node(src->src.ssa, state);
464          if (src_node->set != dest_node->set)
465             merge_merge_sets(dest_node->set, src_node->set);
466       }
467    }
468 
469    return true;
470 }
471 
472 static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)473 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
474                                  struct from_ssa_state *state)
475 {
476    nir_foreach_parallel_copy_entry(entry, pcopy) {
477       if (!entry->src.is_ssa)
478          continue;
479 
480       /* Since load_const instructions are SSA only, we can't replace their
481        * destinations with registers and, therefore, can't coalesce them.
482        */
483       if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
484          continue;
485 
486       /* Don't try and coalesce these */
487       if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
488          continue;
489 
490       merge_node *src_node = get_merge_node(entry->src.ssa, state);
491       merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
492 
493       if (src_node->set == dest_node->set)
494          continue;
495 
496       /* TODO: We can probably do better here but for now we should be safe if
497        * we just don't coalesce things with different divergence.
498        */
499       if (dest_node->set->divergent != src_node->set->divergent)
500          continue;
501 
502       if (!merge_sets_interfere(src_node->set, dest_node->set))
503          merge_merge_sets(src_node->set, dest_node->set);
504    }
505 }
506 
507 static bool
aggressive_coalesce_block(nir_block * block,struct from_ssa_state * state)508 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
509 {
510    nir_parallel_copy_instr *start_pcopy = NULL;
511    nir_foreach_instr(instr, block) {
512       /* Phi nodes only ever come at the start of a block */
513       if (instr->type != nir_instr_type_phi) {
514          if (instr->type != nir_instr_type_parallel_copy)
515             break; /* The parallel copy must be right after the phis */
516 
517          start_pcopy = nir_instr_as_parallel_copy(instr);
518 
519          aggressive_coalesce_parallel_copy(start_pcopy, state);
520 
521          break;
522       }
523    }
524 
525    nir_parallel_copy_instr *end_pcopy =
526       get_parallel_copy_at_end_of_block(block);
527 
528    if (end_pcopy && end_pcopy != start_pcopy)
529       aggressive_coalesce_parallel_copy(end_pcopy, state);
530 
531    return true;
532 }
533 
534 static nir_register *
create_reg_for_ssa_def(nir_ssa_def * def,nir_function_impl * impl)535 create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
536 {
537    nir_register *reg = nir_local_reg_create(impl);
538 
539    reg->num_components = def->num_components;
540    reg->bit_size = def->bit_size;
541    reg->num_array_elems = 0;
542 
543    return reg;
544 }
545 
546 static bool
rewrite_ssa_def(nir_ssa_def * def,void * void_state)547 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
548 {
549    struct from_ssa_state *state = void_state;
550    nir_register *reg;
551 
552    struct hash_entry *entry =
553       _mesa_hash_table_search(state->merge_node_table, def);
554    if (entry) {
555       /* In this case, we're part of a phi web.  Use the web's register. */
556       merge_node *node = (merge_node *)entry->data;
557 
558       /* If it doesn't have a register yet, create one.  Note that all of
559        * the things in the merge set should be the same so it doesn't
560        * matter which node's definition we use.
561        */
562       if (node->set->reg == NULL) {
563          node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
564          node->set->reg->divergent = node->set->divergent;
565       }
566 
567       reg = node->set->reg;
568    } else {
569       if (state->phi_webs_only)
570          return true;
571 
572       /* We leave load_const SSA values alone.  They act as immediates to
573        * the backend.  If it got coalesced into a phi, that's ok.
574        */
575       if (def->parent_instr->type == nir_instr_type_load_const)
576          return true;
577 
578       reg = create_reg_for_ssa_def(def, state->builder.impl);
579    }
580 
581    nir_ssa_def_rewrite_uses_src(def, nir_src_for_reg(reg));
582    assert(nir_ssa_def_is_unused(def));
583 
584    if (def->parent_instr->type == nir_instr_type_ssa_undef) {
585       /* If it's an ssa_undef instruction, remove it since we know we just got
586        * rid of all its uses.
587        */
588       nir_instr *parent_instr = def->parent_instr;
589       nir_instr_remove(parent_instr);
590       exec_list_push_tail(&state->dead_instrs, &parent_instr->node);
591       state->progress = true;
592       return true;
593    }
594 
595    assert(def->parent_instr->type != nir_instr_type_load_const);
596 
597    /* At this point we know a priori that this SSA def is part of a
598     * nir_dest.  We can use exec_node_data to get the dest pointer.
599     */
600    nir_dest *dest = exec_node_data(nir_dest, def, ssa);
601 
602    nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
603    state->progress = true;
604    return true;
605 }
606 
607 /* Resolves ssa definitions to registers.  While we're at it, we also
608  * remove phi nodes.
609  */
610 static void
resolve_registers_block(nir_block * block,struct from_ssa_state * state)611 resolve_registers_block(nir_block *block, struct from_ssa_state *state)
612 {
613    nir_foreach_instr_safe(instr, block) {
614       state->instr = instr;
615       nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
616 
617       if (instr->type == nir_instr_type_phi) {
618          nir_instr_remove(instr);
619          exec_list_push_tail(&state->dead_instrs, &instr->node);
620          state->progress = true;
621       }
622    }
623    state->instr = NULL;
624 }
625 
626 static void
emit_copy(nir_builder * b,nir_src src,nir_src dest_src)627 emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
628 {
629    assert(!dest_src.is_ssa &&
630           dest_src.reg.indirect == NULL &&
631           dest_src.reg.base_offset == 0);
632 
633    assert(!nir_src_is_divergent(src) || nir_src_is_divergent(dest_src));
634 
635    if (src.is_ssa)
636       assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
637    else
638       assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
639 
640    nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
641    nir_src_copy(&mov->src[0].src, &src);
642    mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
643    mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
644 
645    nir_builder_instr_insert(b, &mov->instr);
646 }
647 
648 /* Resolves a single parallel copy operation into a sequence of movs
649  *
650  * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
651  * Correctness, Code Quality, and Efficiency" by Boissinot et al.
652  * However, I never got the algorithm to work as written, so this version
653  * is slightly modified.
654  *
655  * The algorithm works by playing this little shell game with the values.
656  * We start by recording where every source value is and which source value
657  * each destination value should receive.  We then grab any copy whose
658  * destination is "empty", i.e. not used as a source, and do the following:
659  *  - Find where its source value currently lives
660  *  - Emit the move instruction
661  *  - Set the location of the source value to the destination
662  *  - Mark the location containing the source value
663  *  - Mark the destination as no longer needing to be copied
664  *
665  * When we run out of "empty" destinations, we have a cycle and so we
666  * create a temporary register, copy to that register, and mark the value
667  * we copied as living in that temporary.  Now, the cycle is broken, so we
668  * can continue with the above steps.
669  */
670 static void
resolve_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)671 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
672                       struct from_ssa_state *state)
673 {
674    unsigned num_copies = 0;
675    nir_foreach_parallel_copy_entry(entry, pcopy) {
676       /* Sources may be SSA */
677       if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
678          continue;
679 
680       num_copies++;
681    }
682 
683    if (num_copies == 0) {
684       /* Hooray, we don't need any copies! */
685       nir_instr_remove(&pcopy->instr);
686       exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
687       return;
688    }
689 
690    /* The register/source corresponding to the given index */
691    NIR_VLA_ZERO(nir_src, values, num_copies * 2);
692 
693    /* The current location of a given piece of data.  We will use -1 for "null" */
694    NIR_VLA_FILL(int, loc, num_copies * 2, -1);
695 
696    /* The piece of data that the given piece of data is to be copied from.  We will use -1 for "null" */
697    NIR_VLA_FILL(int, pred, num_copies * 2, -1);
698 
699    /* The destinations we have yet to properly fill */
700    NIR_VLA(int, to_do, num_copies * 2);
701    int to_do_idx = -1;
702 
703    state->builder.cursor = nir_before_instr(&pcopy->instr);
704 
705    /* Now we set everything up:
706     *  - All values get assigned a temporary index
707     *  - Current locations are set from sources
708     *  - Predicessors are recorded from sources and destinations
709     */
710    int num_vals = 0;
711    nir_foreach_parallel_copy_entry(entry, pcopy) {
712       /* Sources may be SSA */
713       if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
714          continue;
715 
716       int src_idx = -1;
717       for (int i = 0; i < num_vals; ++i) {
718          if (nir_srcs_equal(values[i], entry->src))
719             src_idx = i;
720       }
721       if (src_idx < 0) {
722          src_idx = num_vals++;
723          values[src_idx] = entry->src;
724       }
725 
726       nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
727 
728       int dest_idx = -1;
729       for (int i = 0; i < num_vals; ++i) {
730          if (nir_srcs_equal(values[i], dest_src)) {
731             /* Each destination of a parallel copy instruction should be
732              * unique.  A destination may get used as a source, so we still
733              * have to walk the list.  However, the predecessor should not,
734              * at this point, be set yet, so we should have -1 here.
735              */
736             assert(pred[i] == -1);
737             dest_idx = i;
738          }
739       }
740       if (dest_idx < 0) {
741          dest_idx = num_vals++;
742          values[dest_idx] = dest_src;
743       }
744 
745       loc[src_idx] = src_idx;
746       pred[dest_idx] = src_idx;
747 
748       to_do[++to_do_idx] = dest_idx;
749    }
750 
751    /* Currently empty destinations we can go ahead and fill */
752    NIR_VLA(int, ready, num_copies * 2);
753    int ready_idx = -1;
754 
755    /* Mark the ones that are ready for copying.  We know an index is a
756     * destination if it has a predecessor and it's ready for copying if
757     * it's not marked as containing data.
758     */
759    for (int i = 0; i < num_vals; i++) {
760       if (pred[i] != -1 && loc[i] == -1)
761          ready[++ready_idx] = i;
762    }
763 
764    while (to_do_idx >= 0) {
765       while (ready_idx >= 0) {
766          int b = ready[ready_idx--];
767          int a = pred[b];
768          emit_copy(&state->builder, values[loc[a]], values[b]);
769 
770          /* b has been filled, mark it as not needing to be copied */
771          pred[b] = -1;
772 
773          /* The next bit only applies if the source and destination have the
774           * same divergence.  If they differ (it must be convergent ->
775           * divergent), then we can't guarantee we won't need the convergent
776           * version of again.
777           */
778          if (nir_src_is_divergent(values[a]) ==
779              nir_src_is_divergent(values[b])) {
780             /* If any other copies want a they can find it at b but only if the
781              * two have the same divergence.
782              */
783             loc[a] = b;
784 
785             /* If a needs to be filled... */
786             if (pred[a] != -1) {
787                /* If any other copies want a they can find it at b */
788                loc[a] = b;
789 
790                /* It's ready for copying now */
791                ready[++ready_idx] = a;
792             }
793          }
794       }
795       int b = to_do[to_do_idx--];
796       if (pred[b] == -1)
797          continue;
798 
799       /* If we got here, then we don't have any more trivial copies that we
800        * can do.  We have to break a cycle, so we create a new temporary
801        * register for that purpose.  Normally, if going out of SSA after
802        * register allocation, you would want to avoid creating temporary
803        * registers.  However, we are going out of SSA before register
804        * allocation, so we would rather not create extra register
805        * dependencies for the backend to deal with.  If it wants, the
806        * backend can coalesce the (possibly multiple) temporaries.
807        */
808       assert(num_vals < num_copies * 2);
809       nir_register *reg = nir_local_reg_create(state->builder.impl);
810       reg->num_array_elems = 0;
811       if (values[b].is_ssa) {
812          reg->num_components = values[b].ssa->num_components;
813          reg->bit_size = values[b].ssa->bit_size;
814       } else {
815          reg->num_components = values[b].reg.reg->num_components;
816          reg->bit_size = values[b].reg.reg->bit_size;
817       }
818       reg->divergent = nir_src_is_divergent(values[b]);
819       values[num_vals].is_ssa = false;
820       values[num_vals].reg.reg = reg;
821 
822       emit_copy(&state->builder, values[b], values[num_vals]);
823       loc[b] = num_vals;
824       ready[++ready_idx] = b;
825       num_vals++;
826    }
827 
828    nir_instr_remove(&pcopy->instr);
829    exec_list_push_tail(&state->dead_instrs, &pcopy->instr.node);
830 }
831 
832 /* Resolves the parallel copies in a block.  Each block can have at most
833  * two:  One at the beginning, right after all the phi noces, and one at
834  * the end (or right before the final jump if it exists).
835  */
836 static bool
resolve_parallel_copies_block(nir_block * block,struct from_ssa_state * state)837 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
838 {
839    /* At this point, we have removed all of the phi nodes.  If a parallel
840     * copy existed right after the phi nodes in this block, it is now the
841     * first instruction.
842     */
843    nir_instr *first_instr = nir_block_first_instr(block);
844    if (first_instr == NULL)
845       return true; /* Empty, nothing to do. */
846 
847    if (first_instr->type == nir_instr_type_parallel_copy) {
848       nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
849 
850       resolve_parallel_copy(pcopy, state);
851    }
852 
853    /* It's possible that the above code already cleaned up the end parallel
854     * copy.  However, doing so removed it form the instructions list so we
855     * won't find it here.  Therefore, it's safe to go ahead and just look
856     * for one and clean it up if it exists.
857     */
858    nir_parallel_copy_instr *end_pcopy =
859       get_parallel_copy_at_end_of_block(block);
860    if (end_pcopy)
861       resolve_parallel_copy(end_pcopy, state);
862 
863    return true;
864 }
865 
866 static bool
nir_convert_from_ssa_impl(nir_function_impl * impl,bool phi_webs_only)867 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
868 {
869    nir_shader *shader = impl->function->shader;
870 
871    struct from_ssa_state state;
872 
873    nir_builder_init(&state.builder, impl);
874    state.dead_ctx = ralloc_context(NULL);
875    state.phi_webs_only = phi_webs_only;
876    state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
877    state.progress = false;
878    exec_list_make_empty(&state.dead_instrs);
879 
880    nir_foreach_block(block, impl) {
881       add_parallel_copy_to_end_of_block(shader, block, state.dead_ctx);
882    }
883 
884    nir_foreach_block(block, impl) {
885       isolate_phi_nodes_block(shader, block, state.dead_ctx);
886    }
887 
888    /* Mark metadata as dirty before we ask for liveness analysis */
889    nir_metadata_preserve(impl, nir_metadata_block_index |
890                                nir_metadata_dominance);
891 
892    nir_metadata_require(impl, nir_metadata_instr_index |
893                               nir_metadata_live_ssa_defs |
894                               nir_metadata_dominance);
895 
896    nir_foreach_block(block, impl) {
897       coalesce_phi_nodes_block(block, &state);
898    }
899 
900    nir_foreach_block(block, impl) {
901       aggressive_coalesce_block(block, &state);
902    }
903 
904    nir_foreach_block(block, impl) {
905       resolve_registers_block(block, &state);
906    }
907 
908    nir_foreach_block(block, impl) {
909       resolve_parallel_copies_block(block, &state);
910    }
911 
912    nir_metadata_preserve(impl, nir_metadata_block_index |
913                                nir_metadata_dominance);
914 
915    /* Clean up dead instructions and the hash tables */
916    nir_instr_free_list(&state.dead_instrs);
917    _mesa_hash_table_destroy(state.merge_node_table, NULL);
918    ralloc_free(state.dead_ctx);
919    return state.progress;
920 }
921 
922 bool
nir_convert_from_ssa(nir_shader * shader,bool phi_webs_only)923 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
924 {
925    bool progress = false;
926 
927    nir_foreach_function(function, shader) {
928       if (function->impl)
929          progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only);
930    }
931 
932    return progress;
933 }
934 
935 
936 static void
place_phi_read(nir_builder * b,nir_register * reg,nir_ssa_def * def,nir_block * block,struct set * visited_blocks)937 place_phi_read(nir_builder *b, nir_register *reg,
938                nir_ssa_def *def, nir_block *block, struct set *visited_blocks)
939 {
940   /* Search already visited blocks to avoid back edges in tree */
941   if (_mesa_set_search(visited_blocks, block) == NULL) {
942       /* Try to go up the single-successor tree */
943       bool all_single_successors = true;
944       set_foreach(block->predecessors, entry) {
945          nir_block *pred = (nir_block *)entry->key;
946          if (pred->successors[0] && pred->successors[1]) {
947             all_single_successors = false;
948             break;
949          }
950       }
951 
952       if (all_single_successors) {
953          /* All predecessors of this block have exactly one successor and it
954           * is this block so they must eventually lead here without
955           * intersecting each other.  Place the reads in the predecessors
956           * instead of this block.
957           */
958          _mesa_set_add(visited_blocks, block);
959 
960          set_foreach(block->predecessors, entry) {
961             place_phi_read(b, reg, def, (nir_block *)entry->key, visited_blocks);
962          }
963          return;
964       }
965    }
966 
967    b->cursor = nir_after_block_before_jump(block);
968    nir_store_reg(b, reg, def, ~0);
969 }
970 
971 /** Lower all of the phi nodes in a block to movs to and from a register
972  *
973  * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
974  * single block to convert all of its phis to a register and some movs.
975  * The code that is generated, while not optimal for actual codegen in a
976  * back-end, is easy to generate, correct, and will turn into the same set of
977  * phis after you call regs_to_ssa and do some copy propagation.
978  *
979  * The one intelligent thing this pass does is that it places the moves from
980  * the phi sources as high up the predecessor tree as possible instead of in
981  * the exact predecessor.  This means that, in particular, it will crawl into
982  * the deepest nesting of any if-ladders.  In order to ensure that doing so is
983  * safe, it stops as soon as one of the predecessors has multiple successors.
984  */
985 bool
nir_lower_phis_to_regs_block(nir_block * block)986 nir_lower_phis_to_regs_block(nir_block *block)
987 {
988    nir_builder b;
989    nir_builder_init(&b, nir_cf_node_get_function(&block->cf_node));
990    struct set *visited_blocks = _mesa_set_create(NULL, _mesa_hash_pointer,
991                                                  _mesa_key_pointer_equal);
992 
993    bool progress = false;
994    nir_foreach_instr_safe(instr, block) {
995       if (instr->type != nir_instr_type_phi)
996          break;
997 
998       nir_phi_instr *phi = nir_instr_as_phi(instr);
999       assert(phi->dest.is_ssa);
1000 
1001       nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, b.impl);
1002 
1003       b.cursor = nir_after_instr(&phi->instr);
1004       nir_ssa_def *def = nir_load_reg(&b, reg);
1005 
1006       nir_ssa_def_rewrite_uses(&phi->dest.ssa, def);
1007 
1008       nir_foreach_phi_src(src, phi) {
1009          assert(src->src.is_ssa);
1010          _mesa_set_add(visited_blocks, src->src.ssa->parent_instr->block);
1011          place_phi_read(&b, reg, src->src.ssa, src->pred, visited_blocks);
1012          _mesa_set_clear(visited_blocks, NULL);
1013       }
1014 
1015       nir_instr_remove(&phi->instr);
1016 
1017       progress = true;
1018    }
1019 
1020    _mesa_set_destroy(visited_blocks, NULL);
1021 
1022    return progress;
1023 }
1024 
1025 struct ssa_def_to_reg_state {
1026    nir_function_impl *impl;
1027    bool progress;
1028 };
1029 
1030 static bool
dest_replace_ssa_with_reg(nir_dest * dest,void * void_state)1031 dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
1032 {
1033    struct ssa_def_to_reg_state *state = void_state;
1034 
1035    if (!dest->is_ssa)
1036       return true;
1037 
1038    nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
1039 
1040    nir_ssa_def_rewrite_uses_src(&dest->ssa, nir_src_for_reg(reg));
1041 
1042    nir_instr *instr = dest->ssa.parent_instr;
1043    *dest = nir_dest_for_reg(reg);
1044    dest->reg.parent_instr = instr;
1045    list_addtail(&dest->reg.def_link, &reg->defs);
1046 
1047    state->progress = true;
1048 
1049    return true;
1050 }
1051 
1052 static bool
ssa_def_is_local_to_block(nir_ssa_def * def,UNUSED void * state)1053 ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state)
1054 {
1055    nir_block *block = def->parent_instr->block;
1056    nir_foreach_use(use_src, def) {
1057       if (use_src->parent_instr->block != block ||
1058           use_src->parent_instr->type == nir_instr_type_phi) {
1059          return false;
1060       }
1061    }
1062 
1063    if (!list_is_empty(&def->if_uses))
1064       return false;
1065 
1066    return true;
1067 }
1068 
1069 /** Lower all of the SSA defs in a block to registers
1070  *
1071  * This performs the very simple operation of blindly replacing all of the SSA
1072  * defs in the given block with registers.  If not used carefully, this may
1073  * result in phi nodes with register sources which is technically invalid.
1074  * Fortunately, the register-based into-SSA pass handles them anyway.
1075  */
1076 bool
nir_lower_ssa_defs_to_regs_block(nir_block * block)1077 nir_lower_ssa_defs_to_regs_block(nir_block *block)
1078 {
1079    nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
1080    nir_shader *shader = impl->function->shader;
1081 
1082    struct ssa_def_to_reg_state state = {
1083       .impl = impl,
1084       .progress = false,
1085    };
1086 
1087    nir_foreach_instr(instr, block) {
1088       if (instr->type == nir_instr_type_ssa_undef) {
1089          /* Undefs are just a read of something never written. */
1090          nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
1091          nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
1092          nir_ssa_def_rewrite_uses_src(&undef->def, nir_src_for_reg(reg));
1093       } else if (instr->type == nir_instr_type_load_const) {
1094          /* Constant loads are SSA-only, we need to insert a move */
1095          nir_load_const_instr *load = nir_instr_as_load_const(instr);
1096          nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
1097          nir_ssa_def_rewrite_uses_src(&load->def, nir_src_for_reg(reg));
1098 
1099          nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
1100          mov->src[0].src = nir_src_for_ssa(&load->def);
1101          mov->dest.dest = nir_dest_for_reg(reg);
1102          mov->dest.write_mask = (1 << reg->num_components) - 1;
1103          nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
1104       } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) {
1105          /* If the SSA def produced by this instruction is only in the block
1106           * in which it is defined and is not used by ifs or phis, then we
1107           * don't have a reason to convert it to a register.
1108           */
1109       } else {
1110          nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
1111       }
1112    }
1113 
1114    return state.progress;
1115 }
1116