1 /*
2  * jdarith.c
3  *
4  * Developed 1997-2019 by Guido Vollbeding.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains portable arithmetic entropy decoding routines for JPEG
9  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
10  *
11  * Both sequential and progressive modes are supported in this single module.
12  *
13  * Suspension is not currently supported in this module.
14  */
15 
16 #define JPEG_INTERNALS
17 #include "jinclude.h"
18 #include "jpeglib.h"
19 
20 
21 /* Expanded entropy decoder object for arithmetic decoding. */
22 
23 typedef struct {
24   struct jpeg_entropy_decoder pub; /* public fields */
25 
26   INT32 c;       /* C register, base of coding interval + input bit buffer */
27   INT32 a;               /* A register, normalized size of coding interval */
28   int ct;     /* bit shift counter, # of bits left in bit buffer part of C */
29                                                          /* init: ct = -16 */
30                                                          /* run: ct = 0..7 */
31                                                          /* error: ct = -1 */
32   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
33   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
34 
35   unsigned int restarts_to_go;	/* MCUs left in this restart interval */
36 
37   /* Pointers to statistics areas (these workspaces have image lifespan) */
38   unsigned char * dc_stats[NUM_ARITH_TBLS];
39   unsigned char * ac_stats[NUM_ARITH_TBLS];
40 
41   /* Statistics bin for coding with fixed probability 0.5 */
42   unsigned char fixed_bin[4];
43 } arith_entropy_decoder;
44 
45 typedef arith_entropy_decoder * arith_entropy_ptr;
46 
47 /* The following two definitions specify the allocation chunk size
48  * for the statistics area.
49  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
50  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
51  *
52  * We use a compact representation with 1 byte per statistics bin,
53  * thus the numbers directly represent byte sizes.
54  * This 1 byte per statistics bin contains the meaning of the MPS
55  * (more probable symbol) in the highest bit (mask 0x80), and the
56  * index into the probability estimation state machine table
57  * in the lower bits (mask 0x7F).
58  */
59 
60 #define DC_STAT_BINS 64
61 #define AC_STAT_BINS 256
62 
63 
64 LOCAL(int)
get_byte(j_decompress_ptr cinfo)65 get_byte (j_decompress_ptr cinfo)
66 /* Read next input byte; we do not support suspension in this module. */
67 {
68   struct jpeg_source_mgr * src = cinfo->src;
69 
70   if (src->bytes_in_buffer == 0)
71     if (! (*src->fill_input_buffer) (cinfo))
72       ERREXIT(cinfo, JERR_CANT_SUSPEND);
73   src->bytes_in_buffer--;
74   return GETJOCTET(*src->next_input_byte++);
75 }
76 
77 
78 /*
79  * The core arithmetic decoding routine (common in JPEG and JBIG).
80  * This needs to go as fast as possible.
81  * Machine-dependent optimization facilities
82  * are not utilized in this portable implementation.
83  * However, this code should be fairly efficient and
84  * may be a good base for further optimizations anyway.
85  *
86  * Return value is 0 or 1 (binary decision).
87  *
88  * Note: I've changed the handling of the code base & bit
89  * buffer register C compared to other implementations
90  * based on the standards layout & procedures.
91  * While it also contains both the actual base of the
92  * coding interval (16 bits) and the next-bits buffer,
93  * the cut-point between these two parts is floating
94  * (instead of fixed) with the bit shift counter CT.
95  * Thus, we also need only one (variable instead of
96  * fixed size) shift for the LPS/MPS decision, and
97  * we can do away with any renormalization update
98  * of C (except for new data insertion, of course).
99  *
100  * I've also introduced a new scheme for accessing
101  * the probability estimation state machine table,
102  * derived from Markus Kuhn's JBIG implementation.
103  */
104 
105 LOCAL(int)
arith_decode(j_decompress_ptr cinfo,unsigned char * st)106 arith_decode (j_decompress_ptr cinfo, unsigned char *st)
107 {
108   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
109   register unsigned char nl, nm;
110   register INT32 qe, temp;
111   register int sv, data;
112 
113   /* Renormalization & data input per section D.2.6 */
114   while (e->a < 0x8000L) {
115     if (--e->ct < 0) {
116       /* Need to fetch next data byte */
117       if (cinfo->unread_marker)
118 	data = 0;		/* stuff zero data */
119       else {
120 	data = get_byte(cinfo);	/* read next input byte */
121 	if (data == 0xFF) {	/* zero stuff or marker code */
122 	  do data = get_byte(cinfo);
123 	  while (data == 0xFF);	/* swallow extra 0xFF bytes */
124 	  if (data == 0)
125 	    data = 0xFF;	/* discard stuffed zero byte */
126 	  else {
127 	    /* Note: Different from the Huffman decoder, hitting
128 	     * a marker while processing the compressed data
129 	     * segment is legal in arithmetic coding.
130 	     * The convention is to supply zero data
131 	     * then until decoding is complete.
132 	     */
133 	    cinfo->unread_marker = data;
134 	    data = 0;
135 	  }
136 	}
137       }
138       e->c = (e->c << 8) | data; /* insert data into C register */
139       if ((e->ct += 8) < 0)	 /* update bit shift counter */
140 	/* Need more initial bytes */
141 	if (++e->ct == 0)
142 	  /* Got 2 initial bytes -> re-init A and exit loop */
143 	  e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */
144     }
145     e->a <<= 1;
146   }
147 
148   /* Fetch values from our compact representation of Table D.3(D.2):
149    * Qe values and probability estimation state machine
150    */
151   sv = *st;
152   qe = jpeg_aritab[sv & 0x7F];	/* => Qe_Value */
153   nl = qe & 0xFF; qe >>= 8;	/* Next_Index_LPS + Switch_MPS */
154   nm = qe & 0xFF; qe >>= 8;	/* Next_Index_MPS */
155 
156   /* Decode & estimation procedures per sections D.2.4 & D.2.5 */
157   temp = e->a - qe;
158   e->a = temp;
159   temp <<= e->ct;
160   if (e->c >= temp) {
161     e->c -= temp;
162     /* Conditional LPS (less probable symbol) exchange */
163     if (e->a < qe) {
164       e->a = qe;
165       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
166     } else {
167       e->a = qe;
168       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
169       sv ^= 0x80;		/* Exchange LPS/MPS */
170     }
171   } else if (e->a < 0x8000L) {
172     /* Conditional MPS (more probable symbol) exchange */
173     if (e->a < qe) {
174       *st = (sv & 0x80) ^ nl;	/* Estimate_after_LPS */
175       sv ^= 0x80;		/* Exchange LPS/MPS */
176     } else {
177       *st = (sv & 0x80) ^ nm;	/* Estimate_after_MPS */
178     }
179   }
180 
181   return sv >> 7;
182 }
183 
184 
185 /*
186  * Check for a restart marker & resynchronize decoder.
187  */
188 
189 LOCAL(void)
process_restart(j_decompress_ptr cinfo)190 process_restart (j_decompress_ptr cinfo)
191 {
192   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
193   int ci;
194   jpeg_component_info * compptr;
195 
196   /* Advance past the RSTn marker */
197   if (! (*cinfo->marker->read_restart_marker) (cinfo))
198     ERREXIT(cinfo, JERR_CANT_SUSPEND);
199 
200   /* Re-initialize statistics areas */
201   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
202     compptr = cinfo->cur_comp_info[ci];
203     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
204       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
205       /* Reset DC predictions to 0 */
206       entropy->last_dc_val[ci] = 0;
207       entropy->dc_context[ci] = 0;
208     }
209     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
210 	(cinfo->progressive_mode && cinfo->Ss)) {
211       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
212     }
213   }
214 
215   /* Reset arithmetic decoding variables */
216   entropy->c = 0;
217   entropy->a = 0;
218   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
219 
220   /* Reset restart counter */
221   entropy->restarts_to_go = cinfo->restart_interval;
222 }
223 
224 
225 /*
226  * Arithmetic MCU decoding.
227  * Each of these routines decodes and returns one MCU's worth of
228  * arithmetic-compressed coefficients.
229  * The coefficients are reordered from zigzag order into natural array order,
230  * but are not dequantized.
231  *
232  * The i'th block of the MCU is stored into the block pointed to by
233  * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
234  */
235 
236 /*
237  * MCU decoding for DC initial scan (either spectral selection,
238  * or first pass of successive approximation).
239  */
240 
241 METHODDEF(boolean)
decode_mcu_DC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)242 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
243 {
244   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
245   JBLOCKROW block;
246   unsigned char *st;
247   int blkn, ci, tbl, sign;
248   int v, m;
249 
250   /* Process restart marker if needed */
251   if (cinfo->restart_interval) {
252     if (entropy->restarts_to_go == 0)
253       process_restart(cinfo);
254     entropy->restarts_to_go--;
255   }
256 
257   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
258 
259   /* Outer loop handles each block in the MCU */
260 
261   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
262     block = MCU_data[blkn];
263     ci = cinfo->MCU_membership[blkn];
264     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
265 
266     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
267 
268     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
269     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
270 
271     /* Figure F.19: Decode_DC_DIFF */
272     if (arith_decode(cinfo, st) == 0)
273       entropy->dc_context[ci] = 0;
274     else {
275       /* Figure F.21: Decoding nonzero value v */
276       /* Figure F.22: Decoding the sign of v */
277       sign = arith_decode(cinfo, st + 1);
278       st += 2; st += sign;
279       /* Figure F.23: Decoding the magnitude category of v */
280       if ((m = arith_decode(cinfo, st)) != 0) {
281 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
282 	while (arith_decode(cinfo, st)) {
283 	  if ((m <<= 1) == (int) 0x8000U) {
284 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
285 	    entropy->ct = -1;			/* magnitude overflow */
286 	    return TRUE;
287 	  }
288 	  st += 1;
289 	}
290       }
291       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
292       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
293 	entropy->dc_context[ci] = 0;		   /* zero diff category */
294       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
295 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
296       else
297 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
298       v = m;
299       /* Figure F.24: Decoding the magnitude bit pattern of v */
300       st += 14;
301       while (m >>= 1)
302 	if (arith_decode(cinfo, st)) v |= m;
303       v += 1; if (sign) v = -v;
304       entropy->last_dc_val[ci] += v;
305     }
306 
307     /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */
308     (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al);
309   }
310 
311   return TRUE;
312 }
313 
314 
315 /*
316  * MCU decoding for AC initial scan (either spectral selection,
317  * or first pass of successive approximation).
318  */
319 
320 METHODDEF(boolean)
decode_mcu_AC_first(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)321 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
322 {
323   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
324   JBLOCKROW block;
325   unsigned char *st;
326   int tbl, sign, k;
327   int v, m;
328   const int * natural_order;
329 
330   /* Process restart marker if needed */
331   if (cinfo->restart_interval) {
332     if (entropy->restarts_to_go == 0)
333       process_restart(cinfo);
334     entropy->restarts_to_go--;
335   }
336 
337   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
338 
339   natural_order = cinfo->natural_order;
340 
341   /* There is always only one block per MCU */
342   block = MCU_data[0];
343   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
344 
345   /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
346 
347   /* Figure F.20: Decode_AC_coefficients */
348   k = cinfo->Ss - 1;
349   do {
350     st = entropy->ac_stats[tbl] + 3 * k;
351     if (arith_decode(cinfo, st)) break;		/* EOB flag */
352     for (;;) {
353       k++;
354       if (arith_decode(cinfo, st + 1)) break;
355       st += 3;
356       if (k >= cinfo->Se) {
357 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
358 	entropy->ct = -1;			/* spectral overflow */
359 	return TRUE;
360       }
361     }
362     /* Figure F.21: Decoding nonzero value v */
363     /* Figure F.22: Decoding the sign of v */
364     sign = arith_decode(cinfo, entropy->fixed_bin);
365     st += 2;
366     /* Figure F.23: Decoding the magnitude category of v */
367     if ((m = arith_decode(cinfo, st)) != 0) {
368       if (arith_decode(cinfo, st)) {
369 	m <<= 1;
370 	st = entropy->ac_stats[tbl] +
371 	     (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
372 	while (arith_decode(cinfo, st)) {
373 	  if ((m <<= 1) == (int) 0x8000U) {
374 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
375 	    entropy->ct = -1;			/* magnitude overflow */
376 	    return TRUE;
377 	  }
378 	  st += 1;
379 	}
380       }
381     }
382     v = m;
383     /* Figure F.24: Decoding the magnitude bit pattern of v */
384     st += 14;
385     while (m >>= 1)
386       if (arith_decode(cinfo, st)) v |= m;
387     v += 1; if (sign) v = -v;
388     /* Scale and output coefficient in natural (dezigzagged) order */
389     (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al);
390   } while (k < cinfo->Se);
391 
392   return TRUE;
393 }
394 
395 
396 /*
397  * MCU decoding for DC successive approximation refinement scan.
398  * Note: we assume such scans can be multi-component,
399  * although the spec is not very clear on the point.
400  */
401 
402 METHODDEF(boolean)
decode_mcu_DC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)403 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
404 {
405   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
406   unsigned char *st;
407   JCOEF p1;
408   int blkn;
409 
410   /* Process restart marker if needed */
411   if (cinfo->restart_interval) {
412     if (entropy->restarts_to_go == 0)
413       process_restart(cinfo);
414     entropy->restarts_to_go--;
415   }
416 
417   st = entropy->fixed_bin;	/* use fixed probability estimation */
418   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
419 
420   /* Outer loop handles each block in the MCU */
421 
422   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
423     /* Encoded data is simply the next bit of the two's-complement DC value */
424     if (arith_decode(cinfo, st))
425       MCU_data[blkn][0][0] |= p1;
426   }
427 
428   return TRUE;
429 }
430 
431 
432 /*
433  * MCU decoding for AC successive approximation refinement scan.
434  */
435 
436 METHODDEF(boolean)
decode_mcu_AC_refine(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)437 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
438 {
439   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
440   JBLOCKROW block;
441   JCOEFPTR thiscoef;
442   unsigned char *st;
443   int tbl, k, kex;
444   JCOEF p1, m1;
445   const int * natural_order;
446 
447   /* Process restart marker if needed */
448   if (cinfo->restart_interval) {
449     if (entropy->restarts_to_go == 0)
450       process_restart(cinfo);
451     entropy->restarts_to_go--;
452   }
453 
454   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
455 
456   natural_order = cinfo->natural_order;
457 
458   /* There is always only one block per MCU */
459   block = MCU_data[0];
460   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
461 
462   p1 = 1 << cinfo->Al;		/* 1 in the bit position being coded */
463   m1 = -p1;			/* -1 in the bit position being coded */
464 
465   /* Establish EOBx (previous stage end-of-block) index */
466   kex = cinfo->Se;
467   do {
468     if ((*block)[natural_order[kex]]) break;
469   } while (--kex);
470 
471   k = cinfo->Ss - 1;
472   do {
473     st = entropy->ac_stats[tbl] + 3 * k;
474     if (k >= kex)
475       if (arith_decode(cinfo, st)) break;	/* EOB flag */
476     for (;;) {
477       thiscoef = *block + natural_order[++k];
478       if (*thiscoef) {				/* previously nonzero coef */
479 	if (arith_decode(cinfo, st + 2)) {
480 	  if (*thiscoef < 0)
481 	    *thiscoef += m1;
482 	  else
483 	    *thiscoef += p1;
484 	}
485 	break;
486       }
487       if (arith_decode(cinfo, st + 1)) {	/* newly nonzero coef */
488 	if (arith_decode(cinfo, entropy->fixed_bin))
489 	  *thiscoef = m1;
490 	else
491 	  *thiscoef = p1;
492 	break;
493       }
494       st += 3;
495       if (k >= cinfo->Se) {
496 	WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
497 	entropy->ct = -1;			/* spectral overflow */
498 	return TRUE;
499       }
500     }
501   } while (k < cinfo->Se);
502 
503   return TRUE;
504 }
505 
506 
507 /*
508  * Decode one MCU's worth of arithmetic-compressed coefficients.
509  */
510 
511 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)512 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
513 {
514   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
515   jpeg_component_info * compptr;
516   JBLOCKROW block;
517   unsigned char *st;
518   int blkn, ci, tbl, sign, k;
519   int v, m;
520   const int * natural_order;
521 
522   /* Process restart marker if needed */
523   if (cinfo->restart_interval) {
524     if (entropy->restarts_to_go == 0)
525       process_restart(cinfo);
526     entropy->restarts_to_go--;
527   }
528 
529   if (entropy->ct == -1) return TRUE;	/* if error do nothing */
530 
531   natural_order = cinfo->natural_order;
532 
533   /* Outer loop handles each block in the MCU */
534 
535   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
536     block = MCU_data[blkn];
537     ci = cinfo->MCU_membership[blkn];
538     compptr = cinfo->cur_comp_info[ci];
539 
540     /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */
541 
542     tbl = compptr->dc_tbl_no;
543 
544     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
545     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
546 
547     /* Figure F.19: Decode_DC_DIFF */
548     if (arith_decode(cinfo, st) == 0)
549       entropy->dc_context[ci] = 0;
550     else {
551       /* Figure F.21: Decoding nonzero value v */
552       /* Figure F.22: Decoding the sign of v */
553       sign = arith_decode(cinfo, st + 1);
554       st += 2; st += sign;
555       /* Figure F.23: Decoding the magnitude category of v */
556       if ((m = arith_decode(cinfo, st)) != 0) {
557 	st = entropy->dc_stats[tbl] + 20;	/* Table F.4: X1 = 20 */
558 	while (arith_decode(cinfo, st)) {
559 	  if ((m <<= 1) == (int) 0x8000U) {
560 	    WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
561 	    entropy->ct = -1;			/* magnitude overflow */
562 	    return TRUE;
563 	  }
564 	  st += 1;
565 	}
566       }
567       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
568       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
569 	entropy->dc_context[ci] = 0;		   /* zero diff category */
570       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
571 	entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */
572       else
573 	entropy->dc_context[ci] = 4 + (sign * 4);  /* small diff category */
574       v = m;
575       /* Figure F.24: Decoding the magnitude bit pattern of v */
576       st += 14;
577       while (m >>= 1)
578 	if (arith_decode(cinfo, st)) v |= m;
579       v += 1; if (sign) v = -v;
580       entropy->last_dc_val[ci] += v;
581     }
582 
583     (*block)[0] = (JCOEF) entropy->last_dc_val[ci];
584 
585     /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */
586 
587     if (cinfo->lim_Se == 0) continue;
588     tbl = compptr->ac_tbl_no;
589     k = 0;
590 
591     /* Figure F.20: Decode_AC_coefficients */
592     do {
593       st = entropy->ac_stats[tbl] + 3 * k;
594       if (arith_decode(cinfo, st)) break;	/* EOB flag */
595       for (;;) {
596 	k++;
597 	if (arith_decode(cinfo, st + 1)) break;
598 	st += 3;
599 	if (k >= cinfo->lim_Se) {
600 	  WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
601 	  entropy->ct = -1;			/* spectral overflow */
602 	  return TRUE;
603 	}
604       }
605       /* Figure F.21: Decoding nonzero value v */
606       /* Figure F.22: Decoding the sign of v */
607       sign = arith_decode(cinfo, entropy->fixed_bin);
608       st += 2;
609       /* Figure F.23: Decoding the magnitude category of v */
610       if ((m = arith_decode(cinfo, st)) != 0) {
611 	if (arith_decode(cinfo, st)) {
612 	  m <<= 1;
613 	  st = entropy->ac_stats[tbl] +
614 	       (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
615 	  while (arith_decode(cinfo, st)) {
616 	    if ((m <<= 1) == (int) 0x8000U) {
617 	      WARNMS(cinfo, JWRN_ARITH_BAD_CODE);
618 	      entropy->ct = -1;			/* magnitude overflow */
619 	      return TRUE;
620 	    }
621 	    st += 1;
622 	  }
623 	}
624       }
625       v = m;
626       /* Figure F.24: Decoding the magnitude bit pattern of v */
627       st += 14;
628       while (m >>= 1)
629 	if (arith_decode(cinfo, st)) v |= m;
630       v += 1; if (sign) v = -v;
631       (*block)[natural_order[k]] = (JCOEF) v;
632     } while (k < cinfo->lim_Se);
633   }
634 
635   return TRUE;
636 }
637 
638 
639 /*
640  * Initialize for an arithmetic-compressed scan.
641  */
642 
643 METHODDEF(void)
start_pass(j_decompress_ptr cinfo)644 start_pass (j_decompress_ptr cinfo)
645 {
646   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
647   int ci, tbl;
648   jpeg_component_info * compptr;
649 
650   if (cinfo->progressive_mode) {
651     /* Validate progressive scan parameters */
652     if (cinfo->Ss == 0) {
653       if (cinfo->Se != 0)
654 	goto bad;
655     } else {
656       /* need not check Ss/Se < 0 since they came from unsigned bytes */
657       if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
658 	goto bad;
659       /* AC scans may have only one component */
660       if (cinfo->comps_in_scan != 1)
661 	goto bad;
662     }
663     if (cinfo->Ah != 0) {
664       /* Successive approximation refinement scan: must have Al = Ah-1. */
665       if (cinfo->Ah-1 != cinfo->Al)
666 	goto bad;
667     }
668     if (cinfo->Al > 13) {	/* need not check for < 0 */
669       bad:
670       ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
671 	       cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
672     }
673     /* Update progression status, and verify that scan order is legal.
674      * Note that inter-scan inconsistencies are treated as warnings
675      * not fatal errors ... not clear if this is right way to behave.
676      */
677     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
678       int coefi, cindex = cinfo->cur_comp_info[ci]->component_index;
679       int *coef_bit_ptr = & cinfo->coef_bits[cindex][0];
680       if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
681 	WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
682       for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
683 	int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
684 	if (cinfo->Ah != expected)
685 	  WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
686 	coef_bit_ptr[coefi] = cinfo->Al;
687       }
688     }
689     /* Select MCU decoding routine */
690     if (cinfo->Ah == 0) {
691       if (cinfo->Ss == 0)
692 	entropy->pub.decode_mcu = decode_mcu_DC_first;
693       else
694 	entropy->pub.decode_mcu = decode_mcu_AC_first;
695     } else {
696       if (cinfo->Ss == 0)
697 	entropy->pub.decode_mcu = decode_mcu_DC_refine;
698       else
699 	entropy->pub.decode_mcu = decode_mcu_AC_refine;
700     }
701   } else {
702     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
703      * This ought to be an error condition, but we make it a warning.
704      */
705     if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
706 	(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se))
707       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
708     /* Select MCU decoding routine */
709     entropy->pub.decode_mcu = decode_mcu;
710   }
711 
712   /* Allocate & initialize requested statistics areas */
713   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
714     compptr = cinfo->cur_comp_info[ci];
715     if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
716       tbl = compptr->dc_tbl_no;
717       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
718 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
719       if (entropy->dc_stats[tbl] == NULL)
720 	entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
721 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
722       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
723       /* Initialize DC predictions to 0 */
724       entropy->last_dc_val[ci] = 0;
725       entropy->dc_context[ci] = 0;
726     }
727     if ((! cinfo->progressive_mode && cinfo->lim_Se) ||
728 	(cinfo->progressive_mode && cinfo->Ss)) {
729       tbl = compptr->ac_tbl_no;
730       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
731 	ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
732       if (entropy->ac_stats[tbl] == NULL)
733 	entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
734 	  ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
735       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
736     }
737   }
738 
739   /* Initialize arithmetic decoding variables */
740   entropy->c = 0;
741   entropy->a = 0;
742   entropy->ct = -16;	/* force reading 2 initial bytes to fill C */
743 
744   /* Initialize restart counter */
745   entropy->restarts_to_go = cinfo->restart_interval;
746 }
747 
748 
749 /*
750  * Finish up at the end of an arithmetic-compressed scan.
751  */
752 
753 METHODDEF(void)
finish_pass(j_decompress_ptr cinfo)754 finish_pass (j_decompress_ptr cinfo)
755 {
756   /* no work necessary here */
757 }
758 
759 
760 /*
761  * Module initialization routine for arithmetic entropy decoding.
762  */
763 
764 GLOBAL(void)
jinit_arith_decoder(j_decompress_ptr cinfo)765 jinit_arith_decoder (j_decompress_ptr cinfo)
766 {
767   arith_entropy_ptr entropy;
768   int i;
769 
770   entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small)
771     ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder));
772   cinfo->entropy = &entropy->pub;
773   entropy->pub.start_pass = start_pass;
774   entropy->pub.finish_pass = finish_pass;
775 
776   /* Mark tables unallocated */
777   for (i = 0; i < NUM_ARITH_TBLS; i++) {
778     entropy->dc_stats[i] = NULL;
779     entropy->ac_stats[i] = NULL;
780   }
781 
782   /* Initialize index for fixed probability estimation */
783   entropy->fixed_bin[0] = 113;
784 
785   if (cinfo->progressive_mode) {
786     /* Create progression status table */
787     int *coef_bit_ptr, ci;
788     cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small)
789       ((j_common_ptr) cinfo, JPOOL_IMAGE,
790        cinfo->num_components * DCTSIZE2 * SIZEOF(int));
791     coef_bit_ptr = & cinfo->coef_bits[0][0];
792     for (ci = 0; ci < cinfo->num_components; ci++)
793       for (i = 0; i < DCTSIZE2; i++)
794 	*coef_bit_ptr++ = -1;
795   }
796 }
797