1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49
create(int,float,int,int,int,int,int,int,int,bool)50 Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int, float, int, int, int, int, int, int, int, bool) { throw_no_cuda(); return Ptr<cv::cuda::ORB>(); }
51
52 #else /* !defined (HAVE_CUDA) */
53
54 namespace cv { namespace cuda { namespace device
55 {
56 namespace orb
57 {
58 int cull_gpu(int* loc, float* response, int size, int n_points, cudaStream_t stream);
59
60 void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);
61
62 void loadUMax(const int* u_max, int count);
63
64 void IC_Angle_gpu(PtrStepSzb image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream);
65
66 void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
67 const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream);
68
69 void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream);
70 }
71 }}}
72
73 namespace
74 {
75 const float HARRIS_K = 0.04f;
76 const int DESCRIPTOR_SIZE = 32;
77
78 const int bit_pattern_31_[256 * 4] =
79 {
80 8,-3, 9,5/*mean (0), correlation (0)*/,
81 4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
82 -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
83 7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
84 2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
85 1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
86 -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
87 -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
88 -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
89 10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
90 -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
91 -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
92 7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
93 -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
94 -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
95 -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
96 12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
97 -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
98 -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
99 11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
100 4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
101 5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
102 3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
103 -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
104 -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
105 -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
106 -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
107 -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
108 -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
109 5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
110 5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
111 1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
112 9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
113 4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
114 2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
115 -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
116 -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
117 4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
118 0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
119 -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
120 -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
121 -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
122 8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
123 0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
124 7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
125 -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
126 10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
127 -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
128 10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
129 -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
130 -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
131 3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
132 5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
133 -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
134 3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
135 2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
136 -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
137 -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
138 -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
139 -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
140 6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
141 -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
142 -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
143 -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
144 3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
145 -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
146 -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
147 2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
148 -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
149 -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
150 5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
151 -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
152 -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
153 -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
154 10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
155 7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
156 -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
157 -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
158 7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
159 -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
160 -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
161 -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
162 7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
163 -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
164 1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
165 2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
166 -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
167 -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
168 7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
169 1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
170 9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
171 -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
172 -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
173 7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
174 12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
175 6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
176 5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
177 2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
178 3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
179 2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
180 9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
181 -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
182 -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
183 1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
184 6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
185 2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
186 6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
187 3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
188 7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
189 -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
190 -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
191 -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
192 -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
193 8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
194 4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
195 -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
196 4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
197 -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
198 -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
199 7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
200 -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
201 -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
202 8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
203 -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
204 1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
205 7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
206 -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
207 11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
208 -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
209 3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
210 5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
211 0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
212 -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
213 0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
214 -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
215 5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
216 3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
217 -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
218 -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
219 -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
220 6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
221 -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
222 -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
223 1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
224 4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
225 -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
226 2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
227 -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
228 4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
229 -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
230 -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
231 7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
232 4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
233 -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
234 7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
235 7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
236 -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
237 -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
238 -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
239 2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
240 10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
241 -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
242 8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
243 2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
244 -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
245 -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
246 -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
247 5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
248 -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
249 -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
250 -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
251 -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
252 -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
253 2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
254 -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
255 -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
256 -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
257 -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
258 6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
259 -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
260 11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
261 7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
262 -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
263 -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
264 -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
265 -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
266 -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
267 -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
268 -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
269 -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
270 1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
271 1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
272 9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
273 5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
274 -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
275 -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
276 -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
277 -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
278 8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
279 2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
280 7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
281 -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
282 -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
283 4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
284 3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
285 -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
286 5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
287 4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
288 -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
289 0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
290 -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
291 3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
292 -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
293 8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
294 -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
295 2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
296 10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
297 6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
298 -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
299 -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
300 -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
301 -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
302 -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
303 4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
304 2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
305 6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
306 3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
307 11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
308 -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
309 4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
310 2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
311 -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
312 -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
313 -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
314 6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
315 0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
316 -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
317 -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
318 -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
319 5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
320 2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
321 -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
322 9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
323 11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
324 3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
325 -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
326 3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
327 -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
328 5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
329 8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
330 7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
331 -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
332 7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
333 9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
334 7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
335 -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
336 };
337
338 class ORB_Impl : public cv::cuda::ORB
339 {
340 public:
341 ORB_Impl(int nfeatures,
342 float scaleFactor,
343 int nlevels,
344 int edgeThreshold,
345 int firstLevel,
346 int WTA_K,
347 int scoreType,
348 int patchSize,
349 int fastThreshold,
350 bool blurForDescriptor);
351
352 virtual void detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints);
353 virtual void detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream);
354
355 virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
356
descriptorSize() const357 virtual int descriptorSize() const { return cv::ORB::kBytes; }
descriptorType() const358 virtual int descriptorType() const { return CV_8U; }
defaultNorm() const359 virtual int defaultNorm() const { return NORM_HAMMING; }
360
setMaxFeatures(int maxFeatures)361 virtual void setMaxFeatures(int maxFeatures) { nFeatures_ = maxFeatures; }
getMaxFeatures() const362 virtual int getMaxFeatures() const { return nFeatures_; }
363
setScaleFactor(double scaleFactor)364 virtual void setScaleFactor(double scaleFactor) { scaleFactor_ = scaleFactor; }
getScaleFactor() const365 virtual double getScaleFactor() const { return scaleFactor_; }
366
setNLevels(int nlevels)367 virtual void setNLevels(int nlevels) { nLevels_ = nlevels; }
getNLevels() const368 virtual int getNLevels() const { return nLevels_; }
369
setEdgeThreshold(int edgeThreshold)370 virtual void setEdgeThreshold(int edgeThreshold) { edgeThreshold_ = edgeThreshold; }
getEdgeThreshold() const371 virtual int getEdgeThreshold() const { return edgeThreshold_; }
372
setFirstLevel(int firstLevel)373 virtual void setFirstLevel(int firstLevel) { firstLevel_ = firstLevel; }
getFirstLevel() const374 virtual int getFirstLevel() const { return firstLevel_; }
375
setWTA_K(int wta_k)376 virtual void setWTA_K(int wta_k) { WTA_K_ = wta_k; }
getWTA_K() const377 virtual int getWTA_K() const { return WTA_K_; }
378
setScoreType(int scoreType)379 virtual void setScoreType(int scoreType) { scoreType_ = scoreType; }
getScoreType() const380 virtual int getScoreType() const { return scoreType_; }
381
setPatchSize(int patchSize)382 virtual void setPatchSize(int patchSize) { patchSize_ = patchSize; }
getPatchSize() const383 virtual int getPatchSize() const { return patchSize_; }
384
setFastThreshold(int fastThreshold)385 virtual void setFastThreshold(int fastThreshold) { fastThreshold_ = fastThreshold; }
getFastThreshold() const386 virtual int getFastThreshold() const { return fastThreshold_; }
387
setBlurForDescriptor(bool blurForDescriptor)388 virtual void setBlurForDescriptor(bool blurForDescriptor) { blurForDescriptor_ = blurForDescriptor; }
getBlurForDescriptor() const389 virtual bool getBlurForDescriptor() const { return blurForDescriptor_; }
390
391 private:
392 int nFeatures_;
393 float scaleFactor_;
394 int nLevels_;
395 int edgeThreshold_;
396 int firstLevel_;
397 int WTA_K_;
398 int scoreType_;
399 int patchSize_;
400 int fastThreshold_;
401 bool blurForDescriptor_;
402
403 private:
404 void buildScalePyramids(InputArray _image, InputArray _mask, Stream& stream);
405 void computeKeyPointsPyramid(Stream& stream);
406 void computeDescriptors(OutputArray _descriptors, Stream& stream);
407 void mergeKeyPoints(OutputArray _keypoints, Stream& stream);
408
409 private:
410 Ptr<cv::cuda::FastFeatureDetector> fastDetector_;
411
412 //! The number of desired features per scale
413 std::vector<size_t> n_features_per_level_;
414
415 //! Points to compute BRIEF descriptors from
416 GpuMat pattern_;
417
418 std::vector<GpuMat> imagePyr_;
419 std::vector<GpuMat> maskPyr_;
420
421 GpuMat buf_;
422
423 std::vector<GpuMat> keyPointsPyr_;
424 std::vector<int> keyPointsCount_;
425
426 Ptr<cuda::Filter> blurFilter_;
427
428 GpuMat d_keypoints_;
429 };
430
initializeOrbPattern(const Point * pattern0,Mat & pattern,int ntuples,int tupleSize,int poolSize)431 static void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
432 {
433 RNG rng(0x12345678);
434
435 pattern.create(2, ntuples * tupleSize, CV_32SC1);
436 pattern.setTo(Scalar::all(0));
437
438 int* pattern_x_ptr = pattern.ptr<int>(0);
439 int* pattern_y_ptr = pattern.ptr<int>(1);
440
441 for (int i = 0; i < ntuples; i++)
442 {
443 for (int k = 0; k < tupleSize; k++)
444 {
445 for(;;)
446 {
447 int idx = rng.uniform(0, poolSize);
448 Point pt = pattern0[idx];
449
450 int k1;
451 for (k1 = 0; k1 < k; k1++)
452 if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y)
453 break;
454
455 if (k1 == k)
456 {
457 pattern_x_ptr[tupleSize * i + k] = pt.x;
458 pattern_y_ptr[tupleSize * i + k] = pt.y;
459 break;
460 }
461 }
462 }
463 }
464 }
465
makeRandomPattern(int patchSize,Point * pattern,int npoints)466 static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
467 {
468 // we always start with a fixed seed,
469 // to make patterns the same on each run
470 RNG rng(0x34985739);
471
472 for (int i = 0; i < npoints; i++)
473 {
474 pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
475 pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
476 }
477 }
478
ORB_Impl(int nFeatures,float scaleFactor,int nLevels,int edgeThreshold,int firstLevel,int WTA_K,int scoreType,int patchSize,int fastThreshold,bool blurForDescriptor)479 ORB_Impl::ORB_Impl(int nFeatures,
480 float scaleFactor,
481 int nLevels,
482 int edgeThreshold,
483 int firstLevel,
484 int WTA_K,
485 int scoreType,
486 int patchSize,
487 int fastThreshold,
488 bool blurForDescriptor) :
489 nFeatures_(nFeatures),
490 scaleFactor_(scaleFactor),
491 nLevels_(nLevels),
492 edgeThreshold_(edgeThreshold),
493 firstLevel_(firstLevel),
494 WTA_K_(WTA_K),
495 scoreType_(scoreType),
496 patchSize_(patchSize),
497 fastThreshold_(fastThreshold),
498 blurForDescriptor_(blurForDescriptor)
499 {
500 CV_Assert( patchSize_ >= 2 );
501 CV_Assert( WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4 );
502
503 fastDetector_ = cuda::FastFeatureDetector::create(fastThreshold_);
504
505 // fill the extractors and descriptors for the corresponding scales
506 float factor = 1.0f / scaleFactor_;
507 float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_));
508
509 n_features_per_level_.resize(nLevels_);
510 size_t sum_n_features = 0;
511 for (int level = 0; level < nLevels_ - 1; ++level)
512 {
513 n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
514 sum_n_features += n_features_per_level_[level];
515 n_desired_features_per_scale *= factor;
516 }
517 n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features;
518
519 // pre-compute the end of a row in a circular patch
520 int half_patch_size = patchSize_ / 2;
521 std::vector<int> u_max(half_patch_size + 2);
522 for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
523 {
524 u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
525 }
526
527 // Make sure we are symmetric
528 for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v)
529 {
530 while (u_max[v_0] == u_max[v_0 + 1])
531 ++v_0;
532 u_max[v] = v_0;
533 ++v_0;
534 }
535 CV_Assert( u_max.size() < 32 );
536 cv::cuda::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));
537
538 // Calc pattern
539 const int npoints = 512;
540 Point pattern_buf[npoints];
541 const Point* pattern0 = (const Point*)bit_pattern_31_;
542 if (patchSize_ != 31)
543 {
544 pattern0 = pattern_buf;
545 makeRandomPattern(patchSize_, pattern_buf, npoints);
546 }
547
548 Mat h_pattern;
549 if (WTA_K_ == 2)
550 {
551 h_pattern.create(2, npoints, CV_32SC1);
552
553 int* pattern_x_ptr = h_pattern.ptr<int>(0);
554 int* pattern_y_ptr = h_pattern.ptr<int>(1);
555
556 for (int i = 0; i < npoints; ++i)
557 {
558 pattern_x_ptr[i] = pattern0[i].x;
559 pattern_y_ptr[i] = pattern0[i].y;
560 }
561 }
562 else
563 {
564 int ntuples = descriptorSize() * 4;
565 initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints);
566 }
567
568 pattern_.upload(h_pattern);
569
570 blurFilter_ = cuda::createGaussianFilter(CV_8UC1, -1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
571 }
572
getScale(float scaleFactor,int firstLevel,int level)573 static float getScale(float scaleFactor, int firstLevel, int level)
574 {
575 return pow(scaleFactor, level - firstLevel);
576 }
577
detectAndCompute(InputArray _image,InputArray _mask,std::vector<KeyPoint> & keypoints,OutputArray _descriptors,bool useProvidedKeypoints)578 void ORB_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints)
579 {
580 using namespace cv::cuda::device::orb;
581 if (useProvidedKeypoints)
582 {
583 d_keypoints_.release();
584 keyPointsPyr_.clear();
585
586 int j, level, nkeypoints = (int)keypoints.size();
587 nLevels_ = 0;
588 for( j = 0; j < nkeypoints; j++ )
589 {
590 level = keypoints[j].octave;
591 CV_Assert(level >= 0);
592 nLevels_ = std::max(nLevels_, level);
593 }
594 nLevels_ ++;
595 std::vector<std::vector<KeyPoint> > oKeypoints(nLevels_);
596 for( j = 0; j < nkeypoints; j++ )
597 {
598 level = keypoints[j].octave;
599 oKeypoints[level].push_back(keypoints[j]);
600 }
601 if (!keypoints.empty())
602 {
603 keyPointsPyr_.resize(nLevels_);
604 keyPointsCount_.resize(nLevels_);
605 int t;
606 for(t = 0; t < nLevels_; t++) {
607 const std::vector<KeyPoint>& ks = oKeypoints[t];
608 if (!ks.empty()){
609
610 Mat h_keypoints(ROWS_COUNT, static_cast<int>(ks.size()), CV_32FC1);
611
612 float sf = getScale(scaleFactor_, firstLevel_, t);
613 float locScale = t != firstLevel_ ? sf : 1.0f;
614 float scale = 1.f/locScale;
615
616 short2* x_loc_row = h_keypoints.ptr<short2>(0);
617 float* x_kp_hessian = h_keypoints.ptr<float>(1);
618 float* x_kp_dir = h_keypoints.ptr<float>(2);
619
620 for (size_t i = 0, size = ks.size(); i < size; ++i)
621 {
622 const KeyPoint& kp = ks[i];
623 x_kp_hessian[i] = kp.response;
624 x_loc_row[i].x = cvRound(kp.pt.x * scale);
625 x_loc_row[i].y = cvRound(kp.pt.y * scale);
626 x_kp_dir[i] = kp.angle;
627
628 }
629
630 keyPointsPyr_[t].upload(h_keypoints.rowRange(0,3));
631 keyPointsCount_[t] = h_keypoints.cols;
632 }
633 }
634 }
635 }
636
637 detectAndComputeAsync(_image, _mask, d_keypoints_, _descriptors, useProvidedKeypoints, Stream::Null());
638
639 if (!useProvidedKeypoints) {
640 convert(d_keypoints_, keypoints);
641 }
642 }
643
detectAndComputeAsync(InputArray _image,InputArray _mask,OutputArray _keypoints,OutputArray _descriptors,bool useProvidedKeypoints,Stream & stream)644 void ORB_Impl::detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream)
645 {
646 buildScalePyramids(_image, _mask, stream);
647 if (!useProvidedKeypoints)
648 {
649 computeKeyPointsPyramid(stream);
650 }
651 if (_descriptors.needed())
652 {
653 computeDescriptors(_descriptors, stream);
654 }
655 if (!useProvidedKeypoints)
656 {
657 mergeKeyPoints(_keypoints, stream);
658 }
659 }
660
buildScalePyramids(InputArray _image,InputArray _mask,Stream & stream)661 void ORB_Impl::buildScalePyramids(InputArray _image, InputArray _mask, Stream& stream)
662 {
663 const GpuMat image = _image.getGpuMat();
664 const GpuMat mask = _mask.getGpuMat();
665
666 CV_Assert( image.type() == CV_8UC1 );
667 CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
668
669 imagePyr_.resize(nLevels_);
670 maskPyr_.resize(nLevels_);
671
672 for (int level = 0; level < nLevels_; ++level)
673 {
674 float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);
675
676 Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));
677
678 ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
679 ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
680 maskPyr_[level].setTo(Scalar::all(255));
681
682 // Compute the resized image
683 if (level != firstLevel_)
684 {
685 if (level < firstLevel_)
686 {
687 cuda::resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR, stream);
688
689 if (!mask.empty())
690 cuda::resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR, stream);
691 }
692 else
693 {
694 cuda::resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR, stream);
695
696 if (!mask.empty())
697 {
698 cuda::resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR, stream);
699 cuda::threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO, stream);
700 }
701 }
702 }
703 else
704 {
705 image.copyTo(imagePyr_[level], stream);
706
707 if (!mask.empty())
708 mask.copyTo(maskPyr_[level], stream);
709 }
710
711 // Filter keypoints by image border
712 ensureSizeIsEnough(sz, CV_8UC1, buf_);
713 buf_.setTo(Scalar::all(0), stream);
714 Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
715 buf_(inner).setTo(Scalar::all(255), stream);
716
717 cuda::bitwise_and(maskPyr_[level], buf_, maskPyr_[level], cv::noArray(), stream);
718 }
719 }
720
721 // takes keypoints and culls them by the response
cull(GpuMat & keypoints,int & count,int n_points,Stream & stream)722 static void cull(GpuMat& keypoints, int& count, int n_points, Stream& stream)
723 {
724 using namespace cv::cuda::device::orb;
725
726 //this is only necessary if the keypoints size is greater than the number of desired points.
727 if (count > n_points)
728 {
729 if (n_points == 0)
730 {
731 keypoints.release();
732 return;
733 }
734
735 count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points, StreamAccessor::getStream(stream));
736 }
737 }
738
computeKeyPointsPyramid(Stream & stream)739 void ORB_Impl::computeKeyPointsPyramid(Stream& stream)
740 {
741 using namespace cv::cuda::device::orb;
742
743 int half_patch_size = patchSize_ / 2;
744
745 keyPointsPyr_.resize(nLevels_);
746 keyPointsCount_.resize(nLevels_);
747
748 fastDetector_->setThreshold(fastThreshold_);
749
750 for (int level = 0; level < nLevels_; ++level)
751 {
752 fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area());
753
754 GpuMat fastKpRange;
755 fastDetector_->detectAsync(imagePyr_[level], fastKpRange, maskPyr_[level], stream);
756
757 keyPointsCount_[level] = fastKpRange.cols;
758
759 if (keyPointsCount_[level] == 0)
760 continue;
761
762 ensureSizeIsEnough(3, keyPointsCount_[level], fastKpRange.type(), keyPointsPyr_[level]);
763 fastKpRange.copyTo(keyPointsPyr_[level].rowRange(0, 2), stream);
764
765 const int n_features = static_cast<int>(n_features_per_level_[level]);
766
767 if (scoreType_ == cv::ORB::HARRIS_SCORE)
768 {
769 // Keep more points than necessary as FAST does not give amazing corners
770 cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features, stream);
771
772 // Compute the Harris cornerness (better scoring than FAST)
773 HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, StreamAccessor::getStream(stream));
774 }
775
776 //cull to the final desired level, using the new Harris scores or the original FAST scores.
777 cull(keyPointsPyr_[level], keyPointsCount_[level], n_features, stream);
778
779 // Compute orientation
780 IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, StreamAccessor::getStream(stream));
781 }
782 }
783
computeDescriptors(OutputArray _descriptors,Stream & stream)784 void ORB_Impl::computeDescriptors(OutputArray _descriptors, Stream& stream)
785 {
786 using namespace cv::cuda::device::orb;
787
788 int nAllkeypoints = 0;
789
790 for (int level = 0; level < nLevels_; ++level)
791 nAllkeypoints += keyPointsCount_[level];
792
793 if (nAllkeypoints == 0)
794 {
795 _descriptors.release();
796 return;
797 }
798
799 ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, _descriptors);
800 GpuMat descriptors = _descriptors.getGpuMat();
801
802 int offset = 0;
803
804 for (int level = 0; level < nLevels_; ++level)
805 {
806 if (keyPointsCount_[level] == 0)
807 continue;
808
809 GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
810
811 if (blurForDescriptor_)
812 {
813 // preprocess the resized image
814 ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
815 blurFilter_->apply(imagePyr_[level], buf_, stream);
816 }
817
818 computeOrbDescriptor_gpu(blurForDescriptor_ ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
819 keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, StreamAccessor::getStream(stream));
820
821 offset += keyPointsCount_[level];
822 }
823 }
824
mergeKeyPoints(OutputArray _keypoints,Stream & stream)825 void ORB_Impl::mergeKeyPoints(OutputArray _keypoints, Stream& stream)
826 {
827 using namespace cv::cuda::device::orb;
828
829 int nAllkeypoints = 0;
830
831 for (int level = 0; level < nLevels_; ++level)
832 nAllkeypoints += keyPointsCount_[level];
833
834 if (nAllkeypoints == 0)
835 {
836 _keypoints.release();
837 return;
838 }
839
840 ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, _keypoints);
841 GpuMat& keypoints = _keypoints.getGpuMatRef();
842
843 int offset = 0;
844
845 for (int level = 0; level < nLevels_; ++level)
846 {
847 if (keyPointsCount_[level] == 0)
848 continue;
849
850 float sf = getScale(scaleFactor_, firstLevel_, level);
851
852 GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);
853
854 float locScale = level != firstLevel_ ? sf : 1.0f;
855
856 mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, StreamAccessor::getStream(stream));
857
858 GpuMat range = keyPointsRange.rowRange(2, 4);
859 keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range, stream);
860
861 keyPointsRange.row(4).setTo(Scalar::all(level), stream);
862 keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf), stream);
863
864 offset += keyPointsCount_[level];
865 }
866 }
867
convert(InputArray _gpu_keypoints,std::vector<KeyPoint> & keypoints)868 void ORB_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
869 {
870 if (_gpu_keypoints.empty())
871 {
872 keypoints.clear();
873 return;
874 }
875
876 Mat h_keypoints;
877 if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
878 {
879 _gpu_keypoints.getGpuMat().download(h_keypoints);
880 }
881 else
882 {
883 h_keypoints = _gpu_keypoints.getMat();
884 }
885
886 CV_Assert( h_keypoints.rows == ROWS_COUNT );
887 CV_Assert( h_keypoints.type() == CV_32FC1 );
888
889 const int npoints = h_keypoints.cols;
890
891 keypoints.resize(npoints);
892
893 const float* x_ptr = h_keypoints.ptr<float>(X_ROW);
894 const float* y_ptr = h_keypoints.ptr<float>(Y_ROW);
895 const float* response_ptr = h_keypoints.ptr<float>(RESPONSE_ROW);
896 const float* angle_ptr = h_keypoints.ptr<float>(ANGLE_ROW);
897 const float* octave_ptr = h_keypoints.ptr<float>(OCTAVE_ROW);
898 const float* size_ptr = h_keypoints.ptr<float>(SIZE_ROW);
899
900 for (int i = 0; i < npoints; ++i)
901 {
902 KeyPoint kp;
903
904 kp.pt.x = x_ptr[i];
905 kp.pt.y = y_ptr[i];
906 kp.response = response_ptr[i];
907 kp.angle = angle_ptr[i];
908 kp.octave = static_cast<int>(octave_ptr[i]);
909 kp.size = size_ptr[i];
910
911 keypoints[i] = kp;
912 }
913 }
914 }
915
create(int nfeatures,float scaleFactor,int nlevels,int edgeThreshold,int firstLevel,int WTA_K,int scoreType,int patchSize,int fastThreshold,bool blurForDescriptor)916 Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int nfeatures,
917 float scaleFactor,
918 int nlevels,
919 int edgeThreshold,
920 int firstLevel,
921 int WTA_K,
922 int scoreType,
923 int patchSize,
924 int fastThreshold,
925 bool blurForDescriptor)
926 {
927 return makePtr<ORB_Impl>(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold, blurForDescriptor);
928 }
929
930 #endif /* !defined (HAVE_CUDA) */
931