1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::cuda;
47 
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49 
create(int,float,int,int,int,int,int,int,int,bool)50 Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int, float, int, int, int, int, int, int, int, bool) { throw_no_cuda(); return Ptr<cv::cuda::ORB>(); }
51 
52 #else /* !defined (HAVE_CUDA) */
53 
54 namespace cv { namespace cuda { namespace device
55 {
56     namespace orb
57     {
58         int cull_gpu(int* loc, float* response, int size, int n_points, cudaStream_t stream);
59 
60         void HarrisResponses_gpu(PtrStepSzb img, const short2* loc, float* response, const int npoints, int blockSize, float harris_k, cudaStream_t stream);
61 
62         void loadUMax(const int* u_max, int count);
63 
64         void IC_Angle_gpu(PtrStepSzb image, const short2* loc, float* angle, int npoints, int half_k, cudaStream_t stream);
65 
66         void computeOrbDescriptor_gpu(PtrStepb img, const short2* loc, const float* angle, const int npoints,
67             const int* pattern_x, const int* pattern_y, PtrStepb desc, int dsize, int WTA_K, cudaStream_t stream);
68 
69         void mergeLocation_gpu(const short2* loc, float* x, float* y, int npoints, float scale, cudaStream_t stream);
70     }
71 }}}
72 
73 namespace
74 {
75     const float HARRIS_K = 0.04f;
76     const int DESCRIPTOR_SIZE = 32;
77 
78     const int bit_pattern_31_[256 * 4] =
79     {
80         8,-3, 9,5/*mean (0), correlation (0)*/,
81         4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
82         -11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
83         7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
84         2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
85         1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
86         -2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
87         -13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
88         -13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
89         10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
90         -13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
91         -11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
92         7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
93         -4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
94         -13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
95         -9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
96         12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
97         -3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
98         -6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
99         11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
100         4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
101         5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
102         3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
103         -8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
104         -2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
105         -13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
106         -7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
107         -4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
108         -10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
109         5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
110         5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
111         1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
112         9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
113         4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
114         2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
115         -4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
116         -8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
117         4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
118         0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
119         -13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
120         -3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
121         -6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
122         8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
123         0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
124         7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
125         -13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
126         10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
127         -6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
128         10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
129         -13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
130         -13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
131         3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
132         5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
133         -1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
134         3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
135         2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
136         -13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
137         -13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
138         -13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
139         -7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
140         6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
141         -9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
142         -2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
143         -12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
144         3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
145         -7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
146         -3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
147         2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
148         -11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
149         -1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
150         5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
151         -4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
152         -9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
153         -12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
154         10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
155         7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
156         -7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
157         -4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
158         7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
159         -7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
160         -13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
161         -3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
162         7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
163         -13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
164         1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
165         2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
166         -4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
167         -1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
168         7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
169         1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
170         9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
171         -1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
172         -13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
173         7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
174         12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
175         6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
176         5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
177         2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
178         3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
179         2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
180         9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
181         -8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
182         -11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
183         1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
184         6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
185         2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
186         6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
187         3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
188         7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
189         -11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
190         -10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
191         -5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
192         -10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
193         8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
194         4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
195         -10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
196         4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
197         -2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
198         -5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
199         7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
200         -9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
201         -5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
202         8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
203         -9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
204         1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
205         7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
206         -2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
207         11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
208         -12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
209         3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
210         5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
211         0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
212         -9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
213         0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
214         -1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
215         5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
216         3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
217         -13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
218         -5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
219         -4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
220         6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
221         -7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
222         -13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
223         1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
224         4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
225         -2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
226         2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
227         -2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
228         4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
229         -6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
230         -3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
231         7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
232         4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
233         -13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
234         7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
235         7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
236         -7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
237         -8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
238         -13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
239         2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
240         10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
241         -6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
242         8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
243         2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
244         -11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
245         -12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
246         -11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
247         5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
248         -2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
249         -1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
250         -13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
251         -10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
252         -3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
253         2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
254         -9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
255         -4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
256         -4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
257         -6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
258         6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
259         -13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
260         11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
261         7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
262         -1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
263         -4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
264         -7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
265         -13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
266         -7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
267         -8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
268         -5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
269         -13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
270         1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
271         1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
272         9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
273         5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
274         -1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
275         -9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
276         -1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
277         -13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
278         8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
279         2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
280         7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
281         -10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
282         -10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
283         4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
284         3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
285         -4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
286         5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
287         4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
288         -9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
289         0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
290         -12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
291         3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
292         -10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
293         8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
294         -8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
295         2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
296         10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
297         6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
298         -7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
299         -3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
300         -1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
301         -3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
302         -8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
303         4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
304         2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
305         6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
306         3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
307         11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
308         -3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
309         4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
310         2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
311         -10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
312         -13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
313         -13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
314         6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
315         0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
316         -13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
317         -9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
318         -13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
319         5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
320         2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
321         -1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
322         9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
323         11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
324         3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
325         -1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
326         3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
327         -13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
328         5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
329         8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
330         7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
331         -10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
332         7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
333         9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
334         7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
335         -1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
336     };
337 
338     class ORB_Impl : public cv::cuda::ORB
339     {
340     public:
341         ORB_Impl(int nfeatures,
342                  float scaleFactor,
343                  int nlevels,
344                  int edgeThreshold,
345                  int firstLevel,
346                  int WTA_K,
347                  int scoreType,
348                  int patchSize,
349                  int fastThreshold,
350                  bool blurForDescriptor);
351 
352         virtual void detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints);
353         virtual void detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream);
354 
355         virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
356 
descriptorSize() const357         virtual int descriptorSize() const { return cv::ORB::kBytes; }
descriptorType() const358         virtual int descriptorType() const { return CV_8U; }
defaultNorm() const359         virtual int defaultNorm() const { return NORM_HAMMING; }
360 
setMaxFeatures(int maxFeatures)361         virtual void setMaxFeatures(int maxFeatures) { nFeatures_ = maxFeatures; }
getMaxFeatures() const362         virtual int getMaxFeatures() const { return nFeatures_; }
363 
setScaleFactor(double scaleFactor)364         virtual void setScaleFactor(double scaleFactor) { scaleFactor_ = scaleFactor; }
getScaleFactor() const365         virtual double getScaleFactor() const { return scaleFactor_; }
366 
setNLevels(int nlevels)367         virtual void setNLevels(int nlevels) { nLevels_ = nlevels; }
getNLevels() const368         virtual int getNLevels() const { return nLevels_; }
369 
setEdgeThreshold(int edgeThreshold)370         virtual void setEdgeThreshold(int edgeThreshold) { edgeThreshold_ = edgeThreshold; }
getEdgeThreshold() const371         virtual int getEdgeThreshold() const { return edgeThreshold_; }
372 
setFirstLevel(int firstLevel)373         virtual void setFirstLevel(int firstLevel) { firstLevel_ = firstLevel; }
getFirstLevel() const374         virtual int getFirstLevel() const { return firstLevel_; }
375 
setWTA_K(int wta_k)376         virtual void setWTA_K(int wta_k) { WTA_K_ = wta_k; }
getWTA_K() const377         virtual int getWTA_K() const { return WTA_K_; }
378 
setScoreType(int scoreType)379         virtual void setScoreType(int scoreType) { scoreType_ = scoreType; }
getScoreType() const380         virtual int getScoreType() const { return scoreType_; }
381 
setPatchSize(int patchSize)382         virtual void setPatchSize(int patchSize) { patchSize_ = patchSize; }
getPatchSize() const383         virtual int getPatchSize() const { return patchSize_; }
384 
setFastThreshold(int fastThreshold)385         virtual void setFastThreshold(int fastThreshold) { fastThreshold_ = fastThreshold; }
getFastThreshold() const386         virtual int getFastThreshold() const { return fastThreshold_; }
387 
setBlurForDescriptor(bool blurForDescriptor)388         virtual void setBlurForDescriptor(bool blurForDescriptor) { blurForDescriptor_ = blurForDescriptor; }
getBlurForDescriptor() const389         virtual bool getBlurForDescriptor() const { return blurForDescriptor_; }
390 
391     private:
392         int nFeatures_;
393         float scaleFactor_;
394         int nLevels_;
395         int edgeThreshold_;
396         int firstLevel_;
397         int WTA_K_;
398         int scoreType_;
399         int patchSize_;
400         int fastThreshold_;
401         bool blurForDescriptor_;
402 
403     private:
404         void buildScalePyramids(InputArray _image, InputArray _mask, Stream& stream);
405         void computeKeyPointsPyramid(Stream& stream);
406         void computeDescriptors(OutputArray _descriptors, Stream& stream);
407         void mergeKeyPoints(OutputArray _keypoints, Stream& stream);
408 
409     private:
410         Ptr<cv::cuda::FastFeatureDetector> fastDetector_;
411 
412         //! The number of desired features per scale
413         std::vector<size_t> n_features_per_level_;
414 
415         //! Points to compute BRIEF descriptors from
416         GpuMat pattern_;
417 
418         std::vector<GpuMat> imagePyr_;
419         std::vector<GpuMat> maskPyr_;
420 
421         GpuMat buf_;
422 
423         std::vector<GpuMat> keyPointsPyr_;
424         std::vector<int> keyPointsCount_;
425 
426         Ptr<cuda::Filter> blurFilter_;
427 
428         GpuMat d_keypoints_;
429     };
430 
initializeOrbPattern(const Point * pattern0,Mat & pattern,int ntuples,int tupleSize,int poolSize)431     static void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
432     {
433         RNG rng(0x12345678);
434 
435         pattern.create(2, ntuples * tupleSize, CV_32SC1);
436         pattern.setTo(Scalar::all(0));
437 
438         int* pattern_x_ptr = pattern.ptr<int>(0);
439         int* pattern_y_ptr = pattern.ptr<int>(1);
440 
441         for (int i = 0; i < ntuples; i++)
442         {
443             for (int k = 0; k < tupleSize; k++)
444             {
445                 for(;;)
446                 {
447                     int idx = rng.uniform(0, poolSize);
448                     Point pt = pattern0[idx];
449 
450                     int k1;
451                     for (k1 = 0; k1 < k; k1++)
452                         if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y)
453                             break;
454 
455                     if (k1 == k)
456                     {
457                         pattern_x_ptr[tupleSize * i + k] = pt.x;
458                         pattern_y_ptr[tupleSize * i + k] = pt.y;
459                         break;
460                     }
461                 }
462             }
463         }
464     }
465 
makeRandomPattern(int patchSize,Point * pattern,int npoints)466     static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
467     {
468         // we always start with a fixed seed,
469         // to make patterns the same on each run
470         RNG rng(0x34985739);
471 
472         for (int i = 0; i < npoints; i++)
473         {
474             pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
475             pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
476         }
477     }
478 
ORB_Impl(int nFeatures,float scaleFactor,int nLevels,int edgeThreshold,int firstLevel,int WTA_K,int scoreType,int patchSize,int fastThreshold,bool blurForDescriptor)479     ORB_Impl::ORB_Impl(int nFeatures,
480                        float scaleFactor,
481                        int nLevels,
482                        int edgeThreshold,
483                        int firstLevel,
484                        int WTA_K,
485                        int scoreType,
486                        int patchSize,
487                        int fastThreshold,
488                        bool blurForDescriptor) :
489         nFeatures_(nFeatures),
490         scaleFactor_(scaleFactor),
491         nLevels_(nLevels),
492         edgeThreshold_(edgeThreshold),
493         firstLevel_(firstLevel),
494         WTA_K_(WTA_K),
495         scoreType_(scoreType),
496         patchSize_(patchSize),
497         fastThreshold_(fastThreshold),
498         blurForDescriptor_(blurForDescriptor)
499     {
500         CV_Assert( patchSize_ >= 2 );
501         CV_Assert( WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4 );
502 
503         fastDetector_ = cuda::FastFeatureDetector::create(fastThreshold_);
504 
505         // fill the extractors and descriptors for the corresponding scales
506         float factor = 1.0f / scaleFactor_;
507         float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_));
508 
509         n_features_per_level_.resize(nLevels_);
510         size_t sum_n_features = 0;
511         for (int level = 0; level < nLevels_ - 1; ++level)
512         {
513             n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
514             sum_n_features += n_features_per_level_[level];
515             n_desired_features_per_scale *= factor;
516         }
517         n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features;
518 
519         // pre-compute the end of a row in a circular patch
520         int half_patch_size = patchSize_ / 2;
521         std::vector<int> u_max(half_patch_size + 2);
522         for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
523         {
524             u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
525         }
526 
527         // Make sure we are symmetric
528         for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v)
529         {
530             while (u_max[v_0] == u_max[v_0 + 1])
531                 ++v_0;
532             u_max[v] = v_0;
533             ++v_0;
534         }
535         CV_Assert( u_max.size() < 32 );
536         cv::cuda::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));
537 
538         // Calc pattern
539         const int npoints = 512;
540         Point pattern_buf[npoints];
541         const Point* pattern0 = (const Point*)bit_pattern_31_;
542         if (patchSize_ != 31)
543         {
544             pattern0 = pattern_buf;
545             makeRandomPattern(patchSize_, pattern_buf, npoints);
546         }
547 
548         Mat h_pattern;
549         if (WTA_K_ == 2)
550         {
551             h_pattern.create(2, npoints, CV_32SC1);
552 
553             int* pattern_x_ptr = h_pattern.ptr<int>(0);
554             int* pattern_y_ptr = h_pattern.ptr<int>(1);
555 
556             for (int i = 0; i < npoints; ++i)
557             {
558                 pattern_x_ptr[i] = pattern0[i].x;
559                 pattern_y_ptr[i] = pattern0[i].y;
560             }
561         }
562         else
563         {
564             int ntuples = descriptorSize() * 4;
565             initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints);
566         }
567 
568         pattern_.upload(h_pattern);
569 
570         blurFilter_ = cuda::createGaussianFilter(CV_8UC1, -1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
571     }
572 
getScale(float scaleFactor,int firstLevel,int level)573     static float getScale(float scaleFactor, int firstLevel, int level)
574     {
575         return pow(scaleFactor, level - firstLevel);
576     }
577 
detectAndCompute(InputArray _image,InputArray _mask,std::vector<KeyPoint> & keypoints,OutputArray _descriptors,bool useProvidedKeypoints)578     void ORB_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints)
579     {
580         using namespace cv::cuda::device::orb;
581         if (useProvidedKeypoints)
582         {
583             d_keypoints_.release();
584             keyPointsPyr_.clear();
585 
586             int j, level, nkeypoints = (int)keypoints.size();
587             nLevels_ = 0;
588             for( j = 0; j < nkeypoints; j++ )
589             {
590                 level = keypoints[j].octave;
591                 CV_Assert(level >= 0);
592                 nLevels_ = std::max(nLevels_, level);
593             }
594             nLevels_ ++;
595             std::vector<std::vector<KeyPoint> > oKeypoints(nLevels_);
596             for( j = 0; j < nkeypoints; j++ )
597             {
598                 level = keypoints[j].octave;
599                 oKeypoints[level].push_back(keypoints[j]);
600             }
601             if (!keypoints.empty())
602             {
603                 keyPointsPyr_.resize(nLevels_);
604                 keyPointsCount_.resize(nLevels_);
605                 int t;
606                 for(t = 0; t < nLevels_; t++) {
607                     const std::vector<KeyPoint>& ks = oKeypoints[t];
608                     if (!ks.empty()){
609 
610                         Mat h_keypoints(ROWS_COUNT, static_cast<int>(ks.size()), CV_32FC1);
611 
612                         float sf = getScale(scaleFactor_, firstLevel_, t);
613                         float locScale = t != firstLevel_ ? sf : 1.0f;
614                         float scale = 1.f/locScale;
615 
616                         short2* x_loc_row = h_keypoints.ptr<short2>(0);
617                         float* x_kp_hessian = h_keypoints.ptr<float>(1);
618                         float* x_kp_dir = h_keypoints.ptr<float>(2);
619 
620                         for (size_t i = 0, size = ks.size(); i < size; ++i)
621                         {
622                             const KeyPoint& kp = ks[i];
623                             x_kp_hessian[i] = kp.response;
624                             x_loc_row[i].x = cvRound(kp.pt.x * scale);
625                             x_loc_row[i].y = cvRound(kp.pt.y * scale);
626                             x_kp_dir[i] = kp.angle;
627 
628                         }
629 
630                         keyPointsPyr_[t].upload(h_keypoints.rowRange(0,3));
631                         keyPointsCount_[t] = h_keypoints.cols;
632                     }
633                 }
634             }
635         }
636 
637         detectAndComputeAsync(_image, _mask, d_keypoints_, _descriptors, useProvidedKeypoints, Stream::Null());
638 
639         if (!useProvidedKeypoints) {
640             convert(d_keypoints_, keypoints);
641         }
642     }
643 
detectAndComputeAsync(InputArray _image,InputArray _mask,OutputArray _keypoints,OutputArray _descriptors,bool useProvidedKeypoints,Stream & stream)644     void ORB_Impl::detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream)
645     {
646         buildScalePyramids(_image, _mask, stream);
647         if (!useProvidedKeypoints)
648         {
649            computeKeyPointsPyramid(stream);
650         }
651         if (_descriptors.needed())
652         {
653             computeDescriptors(_descriptors, stream);
654         }
655         if (!useProvidedKeypoints)
656         {
657             mergeKeyPoints(_keypoints, stream);
658         }
659     }
660 
buildScalePyramids(InputArray _image,InputArray _mask,Stream & stream)661     void ORB_Impl::buildScalePyramids(InputArray _image, InputArray _mask, Stream& stream)
662     {
663         const GpuMat image = _image.getGpuMat();
664         const GpuMat mask = _mask.getGpuMat();
665 
666         CV_Assert( image.type() == CV_8UC1 );
667         CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
668 
669         imagePyr_.resize(nLevels_);
670         maskPyr_.resize(nLevels_);
671 
672         for (int level = 0; level < nLevels_; ++level)
673         {
674             float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level);
675 
676             Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale));
677 
678             ensureSizeIsEnough(sz, image.type(), imagePyr_[level]);
679             ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]);
680             maskPyr_[level].setTo(Scalar::all(255));
681 
682             // Compute the resized image
683             if (level != firstLevel_)
684             {
685                 if (level < firstLevel_)
686                 {
687                     cuda::resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR, stream);
688 
689                     if (!mask.empty())
690                         cuda::resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR, stream);
691                 }
692                 else
693                 {
694                     cuda::resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR, stream);
695 
696                     if (!mask.empty())
697                     {
698                         cuda::resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR, stream);
699                         cuda::threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO, stream);
700                     }
701                 }
702             }
703             else
704             {
705                 image.copyTo(imagePyr_[level], stream);
706 
707                 if (!mask.empty())
708                     mask.copyTo(maskPyr_[level], stream);
709             }
710 
711             // Filter keypoints by image border
712             ensureSizeIsEnough(sz, CV_8UC1, buf_);
713             buf_.setTo(Scalar::all(0), stream);
714             Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_);
715             buf_(inner).setTo(Scalar::all(255), stream);
716 
717             cuda::bitwise_and(maskPyr_[level], buf_, maskPyr_[level], cv::noArray(), stream);
718         }
719     }
720 
721     // takes keypoints and culls them by the response
cull(GpuMat & keypoints,int & count,int n_points,Stream & stream)722     static void cull(GpuMat& keypoints, int& count, int n_points, Stream& stream)
723     {
724         using namespace cv::cuda::device::orb;
725 
726         //this is only necessary if the keypoints size is greater than the number of desired points.
727         if (count > n_points)
728         {
729             if (n_points == 0)
730             {
731                 keypoints.release();
732                 return;
733             }
734 
735             count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points, StreamAccessor::getStream(stream));
736         }
737     }
738 
computeKeyPointsPyramid(Stream & stream)739     void ORB_Impl::computeKeyPointsPyramid(Stream& stream)
740     {
741         using namespace cv::cuda::device::orb;
742 
743         int half_patch_size = patchSize_ / 2;
744 
745         keyPointsPyr_.resize(nLevels_);
746         keyPointsCount_.resize(nLevels_);
747 
748         fastDetector_->setThreshold(fastThreshold_);
749 
750         for (int level = 0; level < nLevels_; ++level)
751         {
752             fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area());
753 
754             GpuMat fastKpRange;
755             fastDetector_->detectAsync(imagePyr_[level], fastKpRange, maskPyr_[level], stream);
756 
757             keyPointsCount_[level] = fastKpRange.cols;
758 
759             if (keyPointsCount_[level] == 0)
760                 continue;
761 
762             ensureSizeIsEnough(3, keyPointsCount_[level], fastKpRange.type(), keyPointsPyr_[level]);
763             fastKpRange.copyTo(keyPointsPyr_[level].rowRange(0, 2), stream);
764 
765             const int n_features = static_cast<int>(n_features_per_level_[level]);
766 
767             if (scoreType_ == cv::ORB::HARRIS_SCORE)
768             {
769                 // Keep more points than necessary as FAST does not give amazing corners
770                 cull(keyPointsPyr_[level], keyPointsCount_[level], 2 * n_features, stream);
771 
772                 // Compute the Harris cornerness (better scoring than FAST)
773                 HarrisResponses_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(1), keyPointsCount_[level], 7, HARRIS_K, StreamAccessor::getStream(stream));
774             }
775 
776             //cull to the final desired level, using the new Harris scores or the original FAST scores.
777             cull(keyPointsPyr_[level], keyPointsCount_[level], n_features, stream);
778 
779             // Compute orientation
780             IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, StreamAccessor::getStream(stream));
781         }
782     }
783 
computeDescriptors(OutputArray _descriptors,Stream & stream)784     void ORB_Impl::computeDescriptors(OutputArray _descriptors, Stream& stream)
785     {
786         using namespace cv::cuda::device::orb;
787 
788         int nAllkeypoints = 0;
789 
790         for (int level = 0; level < nLevels_; ++level)
791             nAllkeypoints += keyPointsCount_[level];
792 
793         if (nAllkeypoints == 0)
794         {
795             _descriptors.release();
796             return;
797         }
798 
799         ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, _descriptors);
800         GpuMat descriptors = _descriptors.getGpuMat();
801 
802         int offset = 0;
803 
804         for (int level = 0; level < nLevels_; ++level)
805         {
806             if (keyPointsCount_[level] == 0)
807                 continue;
808 
809             GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
810 
811             if (blurForDescriptor_)
812             {
813                 // preprocess the resized image
814                 ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
815                 blurFilter_->apply(imagePyr_[level], buf_, stream);
816             }
817 
818             computeOrbDescriptor_gpu(blurForDescriptor_ ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
819                 keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, StreamAccessor::getStream(stream));
820 
821             offset += keyPointsCount_[level];
822         }
823     }
824 
mergeKeyPoints(OutputArray _keypoints,Stream & stream)825     void ORB_Impl::mergeKeyPoints(OutputArray _keypoints, Stream& stream)
826     {
827         using namespace cv::cuda::device::orb;
828 
829         int nAllkeypoints = 0;
830 
831         for (int level = 0; level < nLevels_; ++level)
832             nAllkeypoints += keyPointsCount_[level];
833 
834         if (nAllkeypoints == 0)
835         {
836             _keypoints.release();
837             return;
838         }
839 
840         ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, _keypoints);
841         GpuMat& keypoints = _keypoints.getGpuMatRef();
842 
843         int offset = 0;
844 
845         for (int level = 0; level < nLevels_; ++level)
846         {
847             if (keyPointsCount_[level] == 0)
848                 continue;
849 
850             float sf = getScale(scaleFactor_, firstLevel_, level);
851 
852             GpuMat keyPointsRange = keypoints.colRange(offset, offset + keyPointsCount_[level]);
853 
854             float locScale = level != firstLevel_ ? sf : 1.0f;
855 
856             mergeLocation_gpu(keyPointsPyr_[level].ptr<short2>(0), keyPointsRange.ptr<float>(0), keyPointsRange.ptr<float>(1), keyPointsCount_[level], locScale, StreamAccessor::getStream(stream));
857 
858             GpuMat range = keyPointsRange.rowRange(2, 4);
859             keyPointsPyr_[level](Range(1, 3), Range(0, keyPointsCount_[level])).copyTo(range, stream);
860 
861             keyPointsRange.row(4).setTo(Scalar::all(level), stream);
862             keyPointsRange.row(5).setTo(Scalar::all(patchSize_ * sf), stream);
863 
864             offset += keyPointsCount_[level];
865         }
866     }
867 
convert(InputArray _gpu_keypoints,std::vector<KeyPoint> & keypoints)868     void ORB_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
869     {
870         if (_gpu_keypoints.empty())
871         {
872             keypoints.clear();
873             return;
874         }
875 
876         Mat h_keypoints;
877         if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
878         {
879             _gpu_keypoints.getGpuMat().download(h_keypoints);
880         }
881         else
882         {
883             h_keypoints = _gpu_keypoints.getMat();
884         }
885 
886         CV_Assert( h_keypoints.rows == ROWS_COUNT );
887         CV_Assert( h_keypoints.type() == CV_32FC1 );
888 
889         const int npoints = h_keypoints.cols;
890 
891         keypoints.resize(npoints);
892 
893         const float* x_ptr = h_keypoints.ptr<float>(X_ROW);
894         const float* y_ptr = h_keypoints.ptr<float>(Y_ROW);
895         const float* response_ptr = h_keypoints.ptr<float>(RESPONSE_ROW);
896         const float* angle_ptr = h_keypoints.ptr<float>(ANGLE_ROW);
897         const float* octave_ptr = h_keypoints.ptr<float>(OCTAVE_ROW);
898         const float* size_ptr = h_keypoints.ptr<float>(SIZE_ROW);
899 
900         for (int i = 0; i < npoints; ++i)
901         {
902             KeyPoint kp;
903 
904             kp.pt.x = x_ptr[i];
905             kp.pt.y = y_ptr[i];
906             kp.response = response_ptr[i];
907             kp.angle = angle_ptr[i];
908             kp.octave = static_cast<int>(octave_ptr[i]);
909             kp.size = size_ptr[i];
910 
911             keypoints[i] = kp;
912         }
913     }
914 }
915 
create(int nfeatures,float scaleFactor,int nlevels,int edgeThreshold,int firstLevel,int WTA_K,int scoreType,int patchSize,int fastThreshold,bool blurForDescriptor)916 Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int nfeatures,
917                                          float scaleFactor,
918                                          int nlevels,
919                                          int edgeThreshold,
920                                          int firstLevel,
921                                          int WTA_K,
922                                          int scoreType,
923                                          int patchSize,
924                                          int fastThreshold,
925                                          bool blurForDescriptor)
926 {
927     return makePtr<ORB_Impl>(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold, blurForDescriptor);
928 }
929 
930 #endif /* !defined (HAVE_CUDA) */
931