1 /*M///////////////////////////////////////////////////////////////////////////////////////
2  //
3  //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4  //
5  //  By downloading, copying, installing or using the software you agree to this license.
6  //  If you do not agree to this license, do not download, install,
7  //  copy or use the software.
8  //
9  //
10  //                           License Agreement
11  //                For Open Source Computer Vision Library
12  //
13  // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
14  // Third party copyrights are property of their respective owners.
15  //
16  // Redistribution and use in source and binary forms, with or without modification,
17  // are permitted provided that the following conditions are met:
18  //
19  //   * Redistribution's of source code must retain the above copyright notice,
20  //     this list of conditions and the following disclaimer.
21  //
22  //   * Redistribution's in binary form must reproduce the above copyright notice,
23  //     this list of conditions and the following disclaimer in the documentation
24  //     and/or other materials provided with the distribution.
25  //
26  //   * The name of the copyright holders may not be used to endorse or promote products
27  //     derived from this software without specific prior written permission.
28  //
29  // This software is provided by the copyright holders and contributors "as is" and
30  // any express or implied warranties, including, but not limited to, the implied
31  // warranties of merchantability and fitness for a particular purpose are disclaimed.
32  // In no event shall the Intel Corporation or contributors be liable for any direct,
33  // indirect, incidental, special, exemplary, or consequential damages
34  // (including, but not limited to, procurement of substitute goods or services;
35  // loss of use, data, or profits; or business interruption) however caused
36  // and on any theory of liability, whether in contract, strict liability,
37  // or tort (including negligence or otherwise) arising in any way out of
38  // the use of this software, even if advised of the possibility of such damage.
39  //
40  //M*/
41 
42 #include "test_precomp.hpp"
43 
44 namespace opencv_test { namespace {
45 
46 const string STRUCTURED_LIGHT_DIR = "structured_light";
47 const string FOLDER_DATA = "data";
48 
49 /****************************************************************************************\
50 *                                    Plane test                                          *
51  \****************************************************************************************/
52 class CV_PlaneTest : public cvtest::BaseTest
53 {
54  public:
55   CV_PlaneTest();
56   ~CV_PlaneTest();
57 
58   //////////////////////////////////////////////////////////////////////////////////////////////////
59   // From rgbd module: since I needed the distance method of plane class, I copied the class from rgb module
60   // it will be made a pull request to make Plane class public
61 
62   /** Structure defining a plane. The notations are from the second paper */
63   class PlaneBase
64   {
65    public:
PlaneBase(const Vec3f & m,const Vec3f & n_in,int index)66     PlaneBase(const Vec3f & m, const Vec3f &n_in, int index) :
67         index_(index),
68         n_(n_in),
69         m_sum_(Vec3f(0, 0, 0)),
70         m_(m),
71         Q_(Matx33f::zeros()),
72         mse_(0),
73         K_(0)
74     {
75       UpdateD();
76     }
77 
~PlaneBase()78     virtual ~PlaneBase()
79     {
80     }
81 
82     /** Compute the distance to the plane. This will be implemented by the children to take into account different
83      * sensor models
84      * @param p_j
85      * @return
86      */
87     virtual
88     float
89     distance(const Vec3f& p_j) const = 0;
90 
91     /** The d coefficient in the plane equation ax+by+cz+d = 0
92      * @return
93      */
d() const94     inline float d() const
95     {
96       return d_;
97     }
98 
99     /** The normal to the plane
100      * @return the normal to the plane
101      */
102     const Vec3f &
n() const103     n() const
104     {
105       return n_;
106     }
107 
108     /** Update the different coefficients of the plane, based on the new statistics
109      */
UpdateParameters()110     void UpdateParameters()
111     {
112       if( empty() )
113         return;
114       m_ = m_sum_ / K_;
115       // Compute C
116       Matx33f C = Q_ - m_sum_ * m_.t();
117 
118       // Compute n
119       SVD svd(C);
120       n_ = Vec3f(svd.vt.at<float>(2, 0), svd.vt.at<float>(2, 1), svd.vt.at<float>(2, 2));
121       mse_ = svd.w.at<float>(2) / K_;
122 
123       UpdateD();
124     }
125 
126     /** Update the different sum of point and sum of point*point.t()
127      */
UpdateStatistics(const Vec3f & point,const Matx33f & Q_local)128     void UpdateStatistics(const Vec3f & point, const Matx33f & Q_local)
129     {
130       m_sum_ += point;
131       Q_ += Q_local;
132       ++K_;
133     }
134 
empty() const135     inline size_t empty() const
136     {
137       return K_ == 0;
138     }
139 
K() const140     inline int K() const
141     {
142       return K_;
143     }
144     /** The index of the plane */
145     int index_;
146    protected:
147     /** The 4th coefficient in the plane equation ax+by+cz+d = 0 */
148     float d_;
149     /** Normal of the plane */
150     Vec3f n_;
151    private:
UpdateD()152     inline void UpdateD()
153     {
154       // Hessian form (d = nc . p_plane (centroid here) + p)
155       //d = -1 * n.dot (xyz_centroid);//d =-axP+byP+czP
156       d_ = -m_.dot(n_);
157     }
158     /** The sum of the points */
159     Vec3f m_sum_;
160     /** The mean of the points */
161     Vec3f m_;
162     /** The sum of pi * pi^\top */
163     Matx33f Q_;
164     /** The different matrices we need to update */
165     Matx33f C_;
166     float mse_;
167     /** the number of points that form the plane */
168     int K_;
169   };
170 
171   ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
172 
173   /** Basic planar child, with no sensor error model
174    */
175   class Plane : public PlaneBase
176   {
177    public:
Plane(const Vec3f & m,const Vec3f & n_in,int index)178     Plane(const Vec3f & m, const Vec3f &n_in, int index) :
179         PlaneBase(m, n_in, index)
180     {
181     }
182 
183     /** The computed distance is perfect in that case
184      * @param p_j the point to compute its distance to
185      * @return
186      */
distance(const Vec3f & p_j) const187     float distance(const Vec3f& p_j) const
188     {
189       return std::abs(float(p_j.dot(n_) + d_));
190     }
191   };
192   ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
193 
194  protected:
195   void run( int );
196 
197 };
198 
CV_PlaneTest()199 CV_PlaneTest::CV_PlaneTest(){}
200 
~CV_PlaneTest()201 CV_PlaneTest::~CV_PlaneTest(){}
202 
run(int)203 void CV_PlaneTest::run( int )
204 {
205   string folder = cvtest::TS::ptr()->get_data_path() + "/" + STRUCTURED_LIGHT_DIR + "/" + FOLDER_DATA + "/";
206   structured_light::GrayCodePattern::Params params;
207   params.width = 1280;
208   params.height = 800;
209   // Set up GraycodePattern with params
210   Ptr<structured_light::GrayCodePattern> graycode = structured_light::GrayCodePattern::create( params );
211   size_t numberOfPatternImages = graycode->getNumberOfPatternImages();
212 
213 
214   FileStorage fs( folder + "calibrationParameters.yml", FileStorage::READ );
215   if( !fs.isOpened() )
216   {
217     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
218   }
219 
220   FileStorage fs2( folder + "gt_plane.yml", FileStorage::READ );
221   if( !fs.isOpened() )
222   {
223     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
224   }
225 
226   // Loading ground truth plane parameters
227   Vec4f plane_coefficients;
228   Vec3f m;
229   fs2["plane_coefficients"] >> plane_coefficients;
230   fs2["m"] >> m;
231 
232   // Loading calibration parameters
233   Mat cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, R, T;
234 
235   fs["cam1_intrinsics"] >> cam1intrinsics;
236   fs["cam2_intrinsics"] >> cam2intrinsics;
237   fs["cam1_distorsion"] >> cam1distCoeffs;
238   fs["cam2_distorsion"] >> cam2distCoeffs;
239   fs["R"] >> R;
240   fs["T"] >> T;
241 
242   // Loading white and black images
243   vector<Mat> blackImages;
244   vector<Mat> whiteImages;
245 
246   blackImages.resize( 2 );
247   whiteImages.resize( 2 );
248 
249   whiteImages[0] = imread( folder + "pattern_cam1_im43.jpg", 0 );
250   whiteImages[1] = imread( folder + "pattern_cam2_im43.jpg", 0 );
251   blackImages[0] = imread( folder + "pattern_cam1_im44.jpg", 0 );
252   blackImages[1] = imread( folder + "pattern_cam2_im44.jpg", 0 );
253 
254   Size imagesSize = whiteImages[0].size();
255 
256   if( ( !cam1intrinsics.data ) || ( !cam2intrinsics.data ) || ( !cam1distCoeffs.data ) || ( !cam2distCoeffs.data ) || ( !R.data )
257       || ( !T.data ) || ( !whiteImages[0].data ) || ( !whiteImages[1].data ) || ( !blackImages[0].data )
258       || ( !blackImages[1].data ) )
259   {
260     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
261   }
262 
263   // Computing stereo rectify parameters
264   Mat R1, R2, P1, P2, Q;
265   Rect validRoi[2];
266   stereoRectify( cam1intrinsics, cam1distCoeffs, cam2intrinsics, cam2distCoeffs, imagesSize, R, T, R1, R2, P1, P2, Q, 0,
267                  -1, imagesSize, &validRoi[0], &validRoi[1] );
268 
269   Mat map1x, map1y, map2x, map2y;
270   initUndistortRectifyMap( cam1intrinsics, cam1distCoeffs, R1, P1, imagesSize, CV_32FC1, map1x, map1y );
271   initUndistortRectifyMap( cam2intrinsics, cam2distCoeffs, R2, P2, imagesSize, CV_32FC1, map2x, map2y );
272 
273   vector<vector<Mat> > captured_pattern;
274   captured_pattern.resize( 2 );
275   captured_pattern[0].resize( numberOfPatternImages );
276   captured_pattern[1].resize( numberOfPatternImages );
277 
278   // Loading and rectifying pattern images
279   for( size_t i = 0; i < numberOfPatternImages; i++ )
280   {
281     std::ostringstream name1;
282     name1 << "pattern_cam1_im" << i + 1 << ".jpg";
283     captured_pattern[0][i] = imread( folder + name1.str(), 0 );
284     std::ostringstream name2;
285     name2 << "pattern_cam2_im" << i + 1 << ".jpg";
286     captured_pattern[1][i] = imread( folder + name2.str(), 0 );
287 
288     if( (!captured_pattern[0][i].data) || (!captured_pattern[1][i].data) )
289     {
290       ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
291     }
292 
293     remap( captured_pattern[0][i], captured_pattern[0][i], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
294     remap( captured_pattern[1][i], captured_pattern[1][i], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
295   }
296 
297   // Rectifying white and black images
298   remap( whiteImages[0], whiteImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
299   remap( whiteImages[1], whiteImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
300 
301   remap( blackImages[0], blackImages[0], map2x, map2y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
302   remap( blackImages[1], blackImages[1], map1x, map1y, INTER_NEAREST, BORDER_CONSTANT, Scalar() );
303 
304   // Setting up threshold parameters to reconstruct only the plane in foreground
305   graycode->setBlackThreshold( 55 );
306   graycode->setWhiteThreshold( 10 );
307 
308   // Computing the disparity map
309   Mat disparityMap;
310   bool decoded = graycode->decode( captured_pattern, disparityMap, blackImages, whiteImages,
311                                    structured_light::DECODE_3D_UNDERWORLD );
312   EXPECT_TRUE( decoded );
313 
314   // Computing the point cloud
315   Mat pointcloud;
316   disparityMap.convertTo( disparityMap, CV_32FC1 );
317   reprojectImageTo3D( disparityMap, pointcloud, Q, true, -1 );
318   // from mm (unit of calibration) to m
319   pointcloud = pointcloud / 1000;
320 
321   // Setting up plane with ground truth plane values
322   Vec3f normal( plane_coefficients.val[0], plane_coefficients.val[1], plane_coefficients.val[2] );
323   Ptr<PlaneBase> plane = Ptr<PlaneBase>( new Plane( m, normal, 0 ) );
324 
325   // Computing the distance of every point of the pointcloud from ground truth plane
326   float sum_d = 0;
327   int cont = 0;
328   for( int i = 0; i < disparityMap.rows; i++ )
329   {
330     for( int j = 0; j < disparityMap.cols; j++ )
331     {
332       float value = disparityMap.at<float>( i, j );
333       if( value != 0 )
334       {
335         Vec3f point = pointcloud.at<Vec3f>( i, j );
336         sum_d += plane->distance( point );
337         cont++;
338       }
339     }
340   }
341 
342   sum_d /= cont;
343 
344   // test pass if the mean of points distance from ground truth plane is lower than 3 mm
345   EXPECT_LE( sum_d, 0.003 );
346 }
347 
348 /****************************************************************************************\
349 *                                Test registration                                     *
350  \****************************************************************************************/
351 
TEST(GrayCodePattern,plane_reconstruction)352 TEST( GrayCodePattern, plane_reconstruction )
353 {
354   CV_PlaneTest test;
355   test.safe_run();
356 }
357 
358 }} // namespace
359