1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Copyright (C) 2017, Intel Corporation, all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "../precomp.hpp"
44 #include "layers_common.hpp"
45 #include "../op_cuda.hpp"
46 #include "../op_halide.hpp"
47 #include "../op_inf_engine.hpp"
48 #include "../ie_ngraph.hpp"
49 #include "../op_vkcom.hpp"
50 
51 #include "opencv2/imgproc.hpp"
52 #include "opencv2/dnn/shape_utils.hpp"
53 #include "opencv2/core/hal/hal.hpp"
54 #include <algorithm>
55 
56 #ifdef HAVE_OPENCL
57 #include "opencl_kernels_dnn.hpp"
58 using namespace cv::dnn::ocl4dnn;
59 #endif
60 
61 #ifdef HAVE_CUDA
62 #include "../cuda4dnn/primitives/lrn.hpp"
63 using namespace cv::dnn::cuda4dnn;
64 #endif
65 
66 namespace cv
67 {
68 namespace dnn
69 {
70 
71 class LRNLayerImpl CV_FINAL : public LRNLayer
72 {
73 public:
LRNLayerImpl(const LayerParams & params)74     LRNLayerImpl(const LayerParams& params)
75     {
76         setParamsFrom(params);
77         type = -1;
78         String nrmType = params.get<String>("norm_region", "ACROSS_CHANNELS");
79         if (nrmType == "ACROSS_CHANNELS")
80             type = CHANNEL_NRM;
81         else if (nrmType == "WITHIN_CHANNEL")
82             type = SPATIAL_NRM;
83         else
84             CV_Error(Error::StsBadArg, "Unknown region type \"" + nrmType + "\"");
85 
86         size = params.get<int>("local_size", 5);
87         if (size % 2 != 1 || size <= 0)
88             CV_Error(Error::StsBadArg, "LRN layer supports only positive odd values for local_size");
89 
90         alpha = params.get<double>("alpha", 1);
91         beta = params.get<double>("beta", 0.75);
92         bias = params.get<double>("bias", 1);
93         normBySize = params.get<bool>("norm_by_size", true);
94     }
95 
96 #ifdef HAVE_OPENCL
97     Ptr<OCL4DNNLRN<float> > lrnOp;
98 #endif
99 
supportBackend(int backendId)100     virtual bool supportBackend(int backendId) CV_OVERRIDE
101     {
102         if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) {
103             return bias == (int)bias;
104         }
105         if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) {
106             return bias == (int)bias;
107         }
108         return backendId == DNN_BACKEND_OPENCV ||
109                backendId == DNN_BACKEND_CUDA ||
110                backendId == DNN_BACKEND_HALIDE ||
111                (backendId == DNN_BACKEND_VKCOM && haveVulkan() && (size % 2 == 1) && (type == CHANNEL_NRM));
112     }
113 
114 #ifdef HAVE_OPENCL
finalize(InputArrayOfArrays,OutputArrayOfArrays)115     virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
116     {
117         lrnOp.release();
118     }
119 
forward_ocl(InputArrayOfArrays inps,OutputArrayOfArrays outs,OutputArrayOfArrays internals)120     bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
121     {
122         std::vector<UMat> inputs;
123         std::vector<UMat> outputs;
124 
125         bool use_half = (inps.depth() == CV_16S);
126         inps.getUMatVector(inputs);
127         outs.getUMatVector(outputs);
128 
129         if (lrnOp.empty())
130         {
131             OCL4DNNLRNConfig config;
132             config.lrn_type = type == CHANNEL_NRM ?
133                               LRNParameter_NormRegion_ACROSS_CHANNELS :
134                               LRNParameter_NormRegion_WITHIN_CHANNEL;
135 
136             CHECK_EQ(size % 2, 1)<< "LRN only supports odd values for local_size";
137             config.local_size = size;
138             config.alpha = alpha;
139             config.beta = beta;
140             config.k = bias;
141             CHECK_EQ(4, inputs[0].dims) << "Input must have 4 axes, "
142                      << "corresponding to (num, channels, height, width)";
143             config.batch_size = inputs[0].size[0];
144             config.channels = inputs[0].size[1];
145             config.height = inputs[0].size[2];
146             config.width = inputs[0].size[3];
147             config.norm_by_size = normBySize;
148             config.use_half = use_half;
149 
150             lrnOp = Ptr<OCL4DNNLRN<float> >(new OCL4DNNLRN<float>(config));
151         }
152 
153         if (!lrnOp->Forward(inputs[0], outputs[0]))
154             return false;
155 
156         return true;
157     }
158 #endif
159 
forward(InputArrayOfArrays inputs_arr,OutputArrayOfArrays outputs_arr,OutputArrayOfArrays internals_arr)160     void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
161     {
162         CV_TRACE_FUNCTION();
163         CV_TRACE_ARG_VALUE(name, "name", name.c_str());
164 
165         CV_Assert(inputs_arr.total() == outputs_arr.total());
166 
167         CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
168                    forward_ocl(inputs_arr, outputs_arr, internals_arr))
169 
170         if (inputs_arr.depth() == CV_16S)
171         {
172             forward_fallback(inputs_arr, outputs_arr, internals_arr);
173             return;
174         }
175 
176         std::vector<Mat> inputs, outputs;
177         inputs_arr.getMatVector(inputs);
178         outputs_arr.getMatVector(outputs);
179 
180         CV_Assert(inputs.size() == outputs.size());
181 
182         for (int i = 0; i < inputs.size(); i++)
183         {
184             CV_Assert(inputs[i].dims == 4);
185 
186             Mat &src = inputs[i];
187             Mat &dst = outputs[i];
188 
189             switch (type)
190             {
191                 case CHANNEL_NRM:
192                     channelNormalization(src, dst);
193                     break;
194                 case SPATIAL_NRM:
195                     spatialNormalization(src, dst);
196                     break;
197                 default:
198                     CV_Error(Error::StsNotImplemented, "Unimplemented mode of LRN layer");
199                     break;
200             }
201         }
202     }
203 
204     class ChannelLRN : public ParallelLoopBody
205     {
206     public:
ChannelLRN(const float * src,float * dst,int channels,int ksize,float alpha1,float bias1,float beta1,size_t planeSize,int nsamples,int nstripes)207         ChannelLRN(const float* src, float* dst, int channels, int ksize,
208                    float alpha1, float bias1, float beta1,
209                    size_t planeSize, int nsamples, int nstripes)
210         {
211             src_ = src; dst_ = dst;
212             channels_ = channels;
213             ksize_ = ksize;
214             alpha1_ = alpha1; bias1_ = bias1; beta1_ = beta1;
215             planeSize_ = planeSize; nsamples_ = nsamples; nstripes_ = nstripes;
216         }
217 
operator ()(const Range & r) const218         void operator()(const Range& r) const CV_OVERRIDE
219         {
220             int nsamples = nsamples_, nstripes = nstripes_;
221             size_t planeSize = planeSize_, planeSize_n = planeSize * nsamples;
222             size_t elemsPerStripe = (planeSize_n + nstripes - 1)/nstripes;
223             size_t rstart = r.start*elemsPerStripe;
224             size_t rend = r.end == nstripes ? planeSize_n : r.end*elemsPerStripe;
225             rstart = std::min(rstart, planeSize_n);
226             rend = std::min(rend, planeSize_n);
227             float alpha1 = alpha1_, bias1 = bias1_, beta1 = beta1_;
228             int k, channels = channels_, ksize = ksize_;
229 
230             AutoBuffer<float> buf_((channels + ksize + 1)*2);
231             float* acc = buf_.data();
232             float* buf = acc + channels + ksize + 1;
233             for( k = 0; k <= ksize; k++ )
234                 buf[-k-1] = buf[channels + k] = 0.f;
235 
236             for( size_t ofs = rstart; ofs < rend; )
237             {
238                 int sampleIdx = (int)(ofs/planeSize);
239                 if( sampleIdx >= nsamples )
240                     break;
241                 size_t ofs0 = ofs - sampleIdx*planeSize;
242                 size_t ofs1 = std::min(planeSize - ofs0, rend - ofs) + ofs;
243                 const float* src = src_ + sampleIdx*planeSize*channels + ofs0;
244                 float* dst = dst_ + sampleIdx*planeSize*channels + ofs0;
245 
246                 for( ; ofs < ofs1; ofs++, src++, dst++ )
247                 {
248                     for( k = 0; k < channels; k++ )
249                         buf[k] = src[k*planeSize];
250                     float s = 0;
251                     for( k = 0; k < ksize; k++ )
252                         s += buf[k]*buf[k];
253                     for( k = 0; k < channels; k++ )
254                     {
255                         float x1 = buf[k + ksize];
256                         float x0 = buf[k - ksize - 1];
257                         s = std::max(s + (x1 + x0)*(x1 - x0), 0.f);
258                         acc[k] = (float)(alpha1*s + bias1);
259                     }
260 
261                     hal::log32f(acc, acc, channels);
262                     for( k = 0; k < channels; k++ )
263                         acc[k] *= beta1;
264                     hal::exp32f(acc, acc, channels);
265 
266                     for( k = 0; k < channels; k++ )
267                         dst[k*planeSize] = buf[k]*acc[k];
268                 }
269             }
270         }
271 
272         const float* src_;
273         float* dst_;
274         float alpha1_, bias1_, beta1_;
275         size_t planeSize_;
276         int channels_, ksize_, nsamples_, nstripes_;
277     };
278 
channelNormalization(Mat & srcBlob,Mat & dstBlob)279     void channelNormalization(Mat &srcBlob, Mat &dstBlob)
280     {
281         int num = srcBlob.size[0];
282         int channels = srcBlob.size[1];
283         int ksize = (size - 1) / 2;
284         int sizeNormFactor = normBySize ? size : 1;
285         size_t planeSize = srcBlob.size[2]*srcBlob.size[3];
286 
287         int nstripes = std::max(getNumThreads(), 1);
288 
289         ChannelLRN clrn(srcBlob.ptr<float>(), dstBlob.ptr<float>(), channels,
290                         ksize, alpha/sizeNormFactor, bias, -beta, planeSize, num, nstripes);
291         parallel_for_(Range(0, nstripes), clrn, nstripes);
292     }
293 
sqrBoxFilter_(const Mat & src,Mat & dst)294     void sqrBoxFilter_(const Mat &src, Mat &dst)
295     {
296         Mat srcRawWrapper(src.rows, src.cols, src.type(), src.data, src.step[0]);
297         cv::sqrBoxFilter(srcRawWrapper, dst, dst.depth(), Size(size, size), Point(-1, -1), false, BORDER_CONSTANT);
298     }
299 
spatialNormalization(Mat & srcBlob,Mat & dstBlob)300     void spatialNormalization(Mat &srcBlob, Mat &dstBlob)
301     {
302         int num = srcBlob.size[0];
303         int channels = srcBlob.size[1];
304         int sizeNormFactor = normBySize ? size*size : 1;
305 
306         Mat srcMat = srcBlob;
307         Mat dstMat = dstBlob;
308 
309         for (int n = 0; n < num; n++)
310         {
311             for (int cn = 0; cn < channels; cn++)
312             {
313                 Mat src = getPlane(srcMat, n, cn);
314                 Mat dst = getPlane(dstMat, n, cn);
315 
316                 sqrBoxFilter_(src, dst);
317 
318                 dst.convertTo(dst, dst.type(), alpha/sizeNormFactor, bias);
319                 cv::pow(dst, beta, dst);
320                 cv::divide(src, dst, dst);
321             }
322         }
323     }
324 
325 #ifdef HAVE_CUDA
initCUDA(void * context_,const std::vector<Ptr<BackendWrapper>> & inputs,const std::vector<Ptr<BackendWrapper>> & outputs)326     Ptr<BackendNode> initCUDA(
327         void *context_,
328         const std::vector<Ptr<BackendWrapper>>& inputs,
329         const std::vector<Ptr<BackendWrapper>>& outputs
330     ) override
331     {
332         auto context = reinterpret_cast<csl::CSLContext*>(context_);
333 
334         cuda4dnn::LRNType type_;
335         if (type == CHANNEL_NRM)
336             type_ = cuda4dnn::LRNType::ACROSS_CHANNELS;
337         else if (type == SPATIAL_NRM)
338             type_ = cuda4dnn::LRNType::WITHIN_CHANNEL;
339         else
340             CV_Error(Error::StsNotImplemented, "Unknown normalization region");
341 
342         float alphaSize = alpha;
343         if (!normBySize) {
344             switch (type) {
345             case CHANNEL_NRM: alphaSize = alpha * size; break;
346             case SPATIAL_NRM: alphaSize = alpha * size * size; break;
347             }
348         }
349 
350         std::size_t largestInputSize = 0;
351         for(auto& wrapper : inputs) {
352             auto input_wrapper = wrapper.dynamicCast<CUDABackendWrapper>();
353             auto shape = input_wrapper->getShape();
354             largestInputSize = std::max<std::size_t>(
355                 largestInputSize,
356                 std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<int>())
357             );
358         }
359 
360         return make_cuda_node<cuda4dnn::LRNOp>(preferableTarget,
361             std::move(context->cudnn_handle), type_, size, alphaSize, beta, bias, largestInputSize);
362     }
363 #endif
364 
initVkCom(const std::vector<Ptr<BackendWrapper>> & inputs)365     virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
366     {
367 #ifdef HAVE_VULKAN
368         std::shared_ptr<vkcom::OpBase> op(new vkcom::OpLRN(size / 2, bias, alpha, beta, normBySize));
369         return Ptr<BackendNode>(new VkComBackendNode(inputs, op));
370 #endif
371         return Ptr<BackendNode>();
372     }
373 
initHalide(const std::vector<Ptr<BackendWrapper>> & inputs)374     virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
375     {
376 #ifdef HAVE_HALIDE
377         float alphaSize = alpha;
378         if (normBySize)
379             alphaSize /= (type == CHANNEL_NRM ? size : size * size);
380         int width, height, channels, numImgs;
381         Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
382         getCanonicalSize(inputBuffer, &width, &height, &channels, &numImgs);
383 
384         Halide::Var x("x"), y("y"), c("c"), n("n");
385         Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
386         Halide::Func padded_sq(name + "_padded_sq");
387         Halide::Func sq("sq");
388         sq(x, y, c, n) = inputBuffer(x, y, c, n) * inputBuffer(x, y, c, n);
389 
390         Halide::Func bounded =
391             Halide::BoundaryConditions::constant_exterior(sq, 0, 0, width,
392                                                           0, height,
393                                                           0, channels,
394                                                           0, numImgs);
395         padded_sq(x, y, c, n) = bounded(x, y, c, n);
396 
397         Halide::Expr base;
398         if (type == CHANNEL_NRM)
399         {
400             Halide::RDom r((1 - size) / 2, size);
401             base = alphaSize * sum(padded_sq(x, y, c + r, n));
402         }
403         else  // SPATIAL_NRM
404         {
405             Halide::RDom r((1 - size) / 2, size, (1 - size) / 2, size);
406             base = alphaSize * sum(padded_sq(x + r.x, y + r.y, c, n));
407         }
408         base += static_cast<float>(bias);
409         top(x, y, c, n) = inputBuffer(x, y, c, n) / pow(base, beta);
410         return Ptr<BackendNode>(new HalideBackendNode({ padded_sq, top }));
411 #endif  // HAVE_HALIDE
412         return Ptr<BackendNode>();
413     }
414 
applyHalideScheduler(Ptr<BackendNode> & node,const std::vector<Mat * > & inputs,const std::vector<Mat> & outputs,int targetId) const415     virtual void applyHalideScheduler(Ptr<BackendNode>& node,
416                                       const std::vector<Mat*> &inputs,
417                                       const std::vector<Mat> &outputs,
418                                       int targetId) const CV_OVERRIDE
419     {
420 #ifdef  HAVE_HALIDE
421         if (targetId != DNN_TARGET_CPU)
422         {
423             Layer::applyHalideScheduler(node, inputs, outputs, targetId);
424             return;
425         }
426         int outW, outH, outC, outN;
427         getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
428 
429         Halide::Var x("x"), y("y"), c("c"), n("n"), yo("yo"), yi("yi"), tile("tile");
430         Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
431         Halide::Func& padded_sq = node.dynamicCast<HalideBackendNode>()->funcs[0];
432 
433         if (outW < 8 || outH <= 2)
434             return;
435 
436         top.reorder(x, c, y, n)
437            .split(y, yo, yi, 2)
438            .fuse(yo, n, tile)
439            .parallel(tile)
440            .unroll(yi)
441            .vectorize(x, 8);
442         padded_sq.store_at(top, tile)
443                  .compute_at(top, yi);
444 #endif  // HAVE_HALIDE
445     }
446 
447 #ifdef HAVE_DNN_IE_NN_BUILDER_2019
initInfEngine(const std::vector<Ptr<BackendWrapper>> &)448     virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
449     {
450         float alphaSize = alpha;
451         if (!normBySize)
452             alphaSize *= (type == SPATIAL_NRM ? size*size : size);
453 
454         InferenceEngine::Builder::NormLayer ieLayer(name);
455         ieLayer.setSize(size);
456         ieLayer.setAlpha(alphaSize);
457         ieLayer.setBeta(beta);
458         ieLayer.setAcrossMaps(type == CHANNEL_NRM);
459 
460         InferenceEngine::Builder::Layer l = ieLayer;
461         l.getParameters()["k"] = bias;
462         return Ptr<BackendNode>(new InfEngineBackendNode(l));
463     }
464 #endif  // HAVE_DNN_IE_NN_BUILDER_2019
465 
466 #ifdef HAVE_DNN_NGRAPH
initNgraph(const std::vector<Ptr<BackendWrapper>> & inputs,const std::vector<Ptr<BackendNode>> & nodes)467     virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs, const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
468     {
469         float alphaSize = alpha;
470         if (!normBySize)
471             alphaSize *= (type == SPATIAL_NRM ? size*size : size);
472 
473         auto& ieInpNode = nodes[0].dynamicCast<InfEngineNgraphNode>()->node;
474         std::vector<int64_t> axes;
475         if (type != SPATIAL_NRM) {
476             axes = {1};
477         } else {
478             axes.resize(ieInpNode->get_shape().size() - 2);
479             std::iota(axes.begin(), axes.end(), 2);
480         }
481         auto ngraph_axes = std::make_shared<ngraph::op::Constant>(ngraph::element::i64, ngraph::Shape{axes.size()}, axes.data());
482         auto lrn = std::make_shared<ngraph::op::LRN>(ieInpNode, ngraph_axes, alphaSize, beta, bias, size);
483         return Ptr<BackendNode>(new InfEngineNgraphNode(lrn));
484     }
485 #endif  // HAVE_DNN_NGRAPH
486 
getFLOPS(const std::vector<MatShape> & inputs,const std::vector<MatShape> & outputs) const487     virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
488                            const std::vector<MatShape> &outputs) const CV_OVERRIDE
489     {
490         CV_UNUSED(outputs); // suppress unused variable warning
491         CV_Assert(inputs.size() > 0);
492         long flops = 0;
493 
494         for(int i = 0; i < inputs.size(); i++)
495         {
496             if (type == CHANNEL_NRM)
497             {
498                 int channels = inputs[i][1];
499                 int ksize = (size - 1) / 2;
500 
501                 flops += inputs[i][0]*(std::min(ksize, channels)*2*total(inputs[i], 2) + channels*4*total(inputs[i], 2));
502 
503                 if (ksize < channels)
504                 {
505                     flops += (size + 2*(channels - size))*total(inputs[i], 2);
506                 }
507             }
508             else
509             {
510                 flops += total(inputs[i])*(2*size*size + 2);
511             }
512         }
513         return flops;
514     }
515 
516 private:
517     enum Type
518     {
519         CHANNEL_NRM,
520         SPATIAL_NRM
521     };
522 };
523 
create(const LayerParams & params)524 Ptr<LRNLayer> LRNLayer::create(const LayerParams& params)
525 {
526     return Ptr<LRNLayer>(new LRNLayerImpl(params));
527 }
528 
529 }
530 }
531